code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowerCamelCase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] lowerCamelCase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = "whisper" SCREAMING_SNAKE_CASE__ :Dict = ["past_key_values"] SCREAMING_SNAKE_CASE__ :List[Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , __a : Dict=5_1865 , __a : Tuple=80 , __a : Optional[Any]=6 , __a : List[Any]=4 , __a : Any=6 , __a : Tuple=4 , __a : List[str]=1536 , __a : str=1536 , __a : Any=0.0 , __a : List[str]=0.0 , __a : Dict=5_0257 , __a : str=True , __a : Optional[Any]=True , __a : Optional[Any]="gelu" , __a : Optional[int]=256 , __a : List[Any]=0.0 , __a : Dict=0.0 , __a : List[Any]=0.0 , __a : int=0.02 , __a : Optional[Any]=False , __a : Optional[Any]=1500 , __a : List[str]=448 , __a : Union[str, Any]=5_0256 , __a : List[str]=5_0256 , __a : Any=5_0256 , __a : str=None , __a : List[Any]=[220, 5_0256] , __a : int=False , __a : str=256 , __a : Any=False , __a : Optional[Any]=0.05 , __a : Union[str, Any]=10 , __a : int=2 , __a : int=0.0 , __a : Optional[int]=10 , __a : str=0 , __a : Any=7 , **__a : Tuple , ) -> Tuple: _UpperCamelCase : Tuple = vocab_size _UpperCamelCase : List[Any] = num_mel_bins _UpperCamelCase : Union[str, Any] = d_model _UpperCamelCase : Tuple = encoder_layers _UpperCamelCase : Any = encoder_attention_heads _UpperCamelCase : List[Any] = decoder_layers _UpperCamelCase : int = decoder_attention_heads _UpperCamelCase : Dict = decoder_ffn_dim _UpperCamelCase : Tuple = encoder_ffn_dim _UpperCamelCase : Tuple = dropout _UpperCamelCase : Union[str, Any] = attention_dropout _UpperCamelCase : int = activation_dropout _UpperCamelCase : int = activation_function _UpperCamelCase : str = init_std _UpperCamelCase : List[Any] = encoder_layerdrop _UpperCamelCase : Tuple = decoder_layerdrop _UpperCamelCase : List[Any] = use_cache _UpperCamelCase : List[str] = encoder_layers _UpperCamelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCamelCase : Dict = max_source_positions _UpperCamelCase : Dict = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. _UpperCamelCase : Union[str, Any] = classifier_proj_size _UpperCamelCase : List[str] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase : Tuple = apply_spec_augment _UpperCamelCase : List[Any] = mask_time_prob _UpperCamelCase : List[Any] = mask_time_length _UpperCamelCase : Tuple = mask_time_min_masks _UpperCamelCase : List[Any] = mask_feature_prob _UpperCamelCase : str = mask_feature_length _UpperCamelCase : int = mask_feature_min_masks _UpperCamelCase : Union[str, Any] = median_filter_width super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , suppress_tokens=__a , begin_suppress_tokens=__a , **__a , ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: _UpperCamelCase : int = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: _UpperCamelCase : Union[str, Any] = {0: "batch"} else: _UpperCamelCase : Optional[int] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__a , direction="inputs" ) return common_inputs def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 2_2050 , __a : float = 5.0 , __a : int = 220 , ) -> Mapping[str, Any]: _UpperCamelCase : str = OrderedDict() _UpperCamelCase : str = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=__a , framework=__a , sampling_rate=__a , time_duration=__a , frequency=__a , ) _UpperCamelCase : List[str] = encoder_inputs["input_features"].shape[2] _UpperCamelCase : Union[str, Any] = encoder_sequence_length // 2 if self.use_past else seq_length _UpperCamelCase : Dict = super().generate_dummy_inputs( preprocessor.tokenizer , __a , __a , __a , __a ) _UpperCamelCase : int = encoder_inputs.pop("input_features" ) _UpperCamelCase : List[Any] = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: _UpperCamelCase : Optional[int] = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def __SCREAMING_SNAKE_CASE ( self : str ) -> float: return 1e-3
51
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[int] = None if token is not None: _UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) _UpperCamelCase : Any = "636036" _UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' _UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json() return result["workflow_runs"] def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ ) _UpperCamelCase : Tuple = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCamelCase : Union[str, Any] = workflow_run["id"] break return workflow_run_id def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: _UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCamelCase : Dict = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = {} for artifact_name in artifact_names: _UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' ) if os.path.isfile(lowercase_ ): _UpperCamelCase : int = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: _UpperCamelCase : int = f.read().decode("UTF-8" ) return results
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : Tuple = (boundary[1] - boundary[0]) / steps _UpperCamelCase : Any = boundary[0] _UpperCamelCase : str = boundary[1] _UpperCamelCase : Tuple = make_points(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Union[str, Any] = 0.0 y += (h / 2.0) * f(lowercase_ ) for i in x_i: # print(i) y += h * f(lowercase_ ) y += (h / 2.0) * f(lowercase_ ) return y def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Optional[Any] = a + h while x < (b - h): yield x _UpperCamelCase : Optional[Any] = x + h def lowercase__ ( lowercase_ ) -> Union[str, Any]: # enter your function here """simple docstring""" _UpperCamelCase : Dict = (x - 0) * (x - 0) return y def lowercase__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase : int = 0.0 # Lower bound of integration _UpperCamelCase : List[str] = 1.0 # Upper bound of integration _UpperCamelCase : List[str] = 10.0 # define number of steps or resolution _UpperCamelCase : List[Any] = [a, b] # define boundary of integration _UpperCamelCase : Dict = method_a(lowercase_ ,lowercase_ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
51
"""simple docstring""" import math class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int: _UpperCamelCase : List[Any] = 0.0 _UpperCamelCase : Union[str, Any] = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]: for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase : List[Any] = SelfOrganizingMap() _UpperCamelCase : int = 3 _UpperCamelCase : List[Any] = 0.5 for _ in range(lowercase_ ): for j in range(len(lowercase_ ) ): # training sample _UpperCamelCase : int = training_samples[j] # Compute the winning vector _UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # Update the winning vector _UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) # classify test sample _UpperCamelCase : Optional[int] = [0, 0, 0, 1] _UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
51
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) lowerCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowercase__ ( lowercase_ ) -> Dict: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCamelCase : Tuple = model_type_to_module_name(lowercase_ ) _UpperCamelCase : Dict = importlib.import_module(F'''.{module_name}''' ,"transformers.models" ) try: return getattr(lowercase_ ,lowercase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowercase_ ,"__name__" ,lowercase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCamelCase : Tuple = importlib.import_module("transformers" ) if hasattr(lowercase_ ,lowercase_ ): return getattr(lowercase_ ,lowercase_ ) return None def lowercase__ ( lowercase_ ,lowercase_ = None ,lowercase_ = False ,lowercase_ = False ,lowercase_ = None ,lowercase_ = None ,lowercase_ = None ,lowercase_ = False ,**lowercase_ ,) -> Tuple: """simple docstring""" _UpperCamelCase : Tuple = get_file_from_repo( lowercase_ ,lowercase_ ,cache_dir=lowercase_ ,force_download=lowercase_ ,resume_download=lowercase_ ,proxies=lowercase_ ,use_auth_token=lowercase_ ,revision=lowercase_ ,local_files_only=lowercase_ ,) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(lowercase_ ,encoding="utf-8" ) as reader: return json.load(lowercase_ ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int ) -> List[Any]: raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(__a ) def __SCREAMING_SNAKE_CASE ( cls : str , __a : Tuple , **__a : Optional[int] ) -> Optional[Any]: _UpperCamelCase : Tuple = kwargs.pop("config" , __a ) _UpperCamelCase : List[str] = kwargs.pop("trust_remote_code" , __a ) _UpperCamelCase : Dict = True _UpperCamelCase, _UpperCamelCase : Union[str, Any] = ImageProcessingMixin.get_image_processor_dict(__a , **__a ) _UpperCamelCase : Optional[int] = config_dict.get("image_processor_type" , __a ) _UpperCamelCase : List[Any] = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): _UpperCamelCase : List[str] = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _UpperCamelCase : Dict = config_dict.pop("feature_extractor_type" , __a ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) _UpperCamelCase : List[str] = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _UpperCamelCase : Tuple = config_dict["auto_map"]["AutoFeatureExtractor"] _UpperCamelCase : Optional[Any] = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__a , __a ): _UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(__a , **__a ) # It could be in `config.image_processor_type`` _UpperCamelCase : Dict = getattr(__a , "image_processor_type" , __a ) if hasattr(__a , "auto_map" ) and "AutoImageProcessor" in config.auto_map: _UpperCamelCase : Tuple = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: _UpperCamelCase : Optional[int] = image_processor_class_from_name(__a ) _UpperCamelCase : Any = image_processor_auto_map is not None _UpperCamelCase : str = image_processor_class is not None or type(__a ) in IMAGE_PROCESSOR_MAPPING _UpperCamelCase : int = resolve_trust_remote_code( __a , __a , __a , __a ) if has_remote_code and trust_remote_code: _UpperCamelCase : Dict = get_class_from_dynamic_module( __a , __a , **__a ) _UpperCamelCase : int = kwargs.pop("code_revision" , __a ) if os.path.isdir(__a ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__a , **__a ) elif image_processor_class is not None: return image_processor_class.from_dict(__a , **__a ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__a ) in IMAGE_PROCESSOR_MAPPING: _UpperCamelCase : Optional[int] = IMAGE_PROCESSOR_MAPPING[type(__a )] return image_processor_class.from_dict(__a , **__a ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def __SCREAMING_SNAKE_CASE ( __a : List[str] , __a : Optional[int] ) -> str: IMAGE_PROCESSOR_MAPPING.register(__a , __a )
51
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase__ = "src/transformers" lowerCamelCase__ = "docs/source/en" lowerCamelCase__ = "." def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f: _UpperCamelCase : Union[str, Any] = f.readlines() # Find the start prompt. _UpperCamelCase : Dict = 0 while not lines[start_index].startswith(lowercase_ ): start_index += 1 start_index += 1 _UpperCamelCase : Optional[int] = start_index while not lines[end_index].startswith(lowercase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ ) return [m.group(0 ) for m in matches] def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ ) _UpperCamelCase : Union[str, Any] = (width - text_length) // 2 _UpperCamelCase : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : str = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : str = collections.defaultdict(lowercase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowercase_ ): _UpperCamelCase : List[str] = None if attr_name.endswith("Tokenizer" ): _UpperCamelCase : Tuple = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _UpperCamelCase : Optional[Any] = fast_tokenizers _UpperCamelCase : List[str] = attr_name[:-13] elif _re_tf_models.match(lowercase_ ) is not None: _UpperCamelCase : List[Any] = tf_models _UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0] elif _re_flax_models.match(lowercase_ ) is not None: _UpperCamelCase : Dict = flax_models _UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0] elif _re_pt_models.match(lowercase_ ) is not None: _UpperCamelCase : Optional[int] = pt_models _UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0] if lookup_dict is not None: while len(lowercase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Dict = True break # Try again after removing the last word in the name _UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] ) # Let's build that table! _UpperCamelCase : Any = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns] _UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"} for name in model_names: _UpperCamelCase : Optional[int] = model_name_to_prefix[name] _UpperCamelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" return table def lowercase__ ( lowercase_=False ) -> List[Any]: """simple docstring""" _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file( filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,) _UpperCamelCase : Any = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
51
1
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCamelCase__ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = "maskformer" SCREAMING_SNAKE_CASE__ :Optional[int] = {"hidden_size": "mask_feature_size"} SCREAMING_SNAKE_CASE__ :Optional[Any] = ["resnet", "swin"] SCREAMING_SNAKE_CASE__ :Optional[int] = ["detr"] def __init__( self : str , __a : int = 256 , __a : int = 256 , __a : float = 0.1 , __a : bool = False , __a : Optional[Dict] = None , __a : Optional[Dict] = None , __a : float = 0.02 , __a : float = 1.0 , __a : float = 1.0 , __a : float = 1.0 , __a : float = 20.0 , __a : Optional[bool] = None , **__a : Optional[int] , ) -> Any: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _UpperCamelCase : Union[str, Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(__a , __a ): _UpperCamelCase : List[str] = backbone_config.pop("model_type" ) _UpperCamelCase : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase : Dict = config_class.from_dict(__a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _UpperCamelCase : int = DetrConfig() else: # verify that the decoder is supported _UpperCamelCase : Optional[Any] = ( decoder_config.pop("model_type" ) if isinstance(__a , __a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'''Transformer Decoder {decoder_type} not supported, please use one of''' F''' {','.join(self.decoders_supported )}''' ) if isinstance(__a , __a ): _UpperCamelCase : Union[str, Any] = CONFIG_MAPPING[decoder_type] _UpperCamelCase : str = config_class.from_dict(__a ) _UpperCamelCase : List[str] = backbone_config _UpperCamelCase : Optional[int] = decoder_config # main feature dimension for the model _UpperCamelCase : Union[str, Any] = fpn_feature_size _UpperCamelCase : Union[str, Any] = mask_feature_size # initializer _UpperCamelCase : Optional[Any] = init_std _UpperCamelCase : str = init_xavier_std # Hungarian matcher && loss _UpperCamelCase : Tuple = cross_entropy_weight _UpperCamelCase : Tuple = dice_weight _UpperCamelCase : str = mask_weight _UpperCamelCase : str = use_auxiliary_loss _UpperCamelCase : int = no_object_weight _UpperCamelCase : Union[str, Any] = output_auxiliary_logits _UpperCamelCase : Any = self.decoder_config.encoder_attention_heads _UpperCamelCase : Optional[int] = self.decoder_config.num_hidden_layers super().__init__(**__a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Tuple ) -> Dict: return cls( backbone_config=__a , decoder_config=__a , **__a , ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict[str, any]: _UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) _UpperCamelCase : List[str] = self.backbone_config.to_dict() _UpperCamelCase : Optional[Any] = self.decoder_config.to_dict() _UpperCamelCase : Optional[Any] = self.__class__.model_type return output
51
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]: """simple docstring""" _UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] ) return (item, float(lowercase_ )) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]: """simple docstring""" _UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 ) _UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] _UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = list(lowercase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _UpperCamelCase : int = random.choice(lowercase_ ) return "".join(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]: """simple docstring""" _UpperCamelCase : Optional[Any] = [] # Generate more children proportionally to the fitness score. _UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1 _UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n for _ in range(lowercase_ ): _UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0] _UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ ) # Append new string to the population list. pop.append(mutate(lowercase_ ,lowercase_ ) ) pop.append(mutate(lowercase_ ,lowercase_ ) ) return pop def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowercase_ ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCamelCase : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowercase_ ) # Generate random starting population. _UpperCamelCase : Union[str, Any] = [] for _ in range(lowercase_ ): population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCamelCase, _UpperCamelCase : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population] # Check if there is a matching evolution. _UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCamelCase : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase_ ) # Normalize population score to be between 0 and 1. _UpperCamelCase : str = [ (item, score / len(lowercase_ )) for item, score in population_score ] # This is selection for i in range(lowercase_ ): population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase__ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase__ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
51
1
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : int=13 , __a : Any=10 , __a : Tuple=3 , __a : List[str]=2 , __a : Tuple=2 , __a : Optional[Any]=2 , __a : Union[str, Any]=True , __a : Union[str, Any]=True , __a : Dict=32 , __a : Tuple=5 , __a : Union[str, Any]=4 , __a : int=37 , __a : List[Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Dict=0.1 , __a : Optional[int]=10 , __a : str=0.02 , __a : List[Any]=0.9 , __a : Optional[int]=None , ) -> Any: _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : Any = batch_size _UpperCamelCase : List[Any] = image_size _UpperCamelCase : Any = num_channels _UpperCamelCase : int = patch_size _UpperCamelCase : Optional[int] = tubelet_size _UpperCamelCase : Any = num_frames _UpperCamelCase : Optional[int] = is_training _UpperCamelCase : Tuple = use_labels _UpperCamelCase : str = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Optional[Any] = hidden_act _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : List[str] = attention_probs_dropout_prob _UpperCamelCase : Optional[Any] = type_sequence_label_size _UpperCamelCase : str = initializer_range _UpperCamelCase : Tuple = mask_ratio _UpperCamelCase : Union[str, Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _UpperCamelCase : str = (image_size // patch_size) ** 2 _UpperCamelCase : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _UpperCamelCase : int = int(mask_ratio * self.seq_length ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: _UpperCamelCase : Dict = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Optional[int] = None if self.use_labels: _UpperCamelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : str ) -> int: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Optional[int] , __a : Optional[int] , __a : Optional[Any] ) -> Tuple: _UpperCamelCase : int = VideoMAEModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Tuple , __a : List[Any] , __a : Optional[Any] ) -> List[Any]: _UpperCamelCase : str = VideoMAEForPreTraining(__a ) model.to(__a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCamelCase : int = torch.ones((self.num_masks,) ) _UpperCamelCase : Dict = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _UpperCamelCase : Tuple = mask.expand(self.batch_size , -1 ).bool() _UpperCamelCase : Dict = model(__a , __a ) # model only returns predictions for masked patches _UpperCamelCase : List[Any] = mask.sum().item() _UpperCamelCase : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: _UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Tuple = config_and_inputs _UpperCamelCase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Dict = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :Dict = False SCREAMING_SNAKE_CASE__ :Any = False SCREAMING_SNAKE_CASE__ :Dict = False SCREAMING_SNAKE_CASE__ :Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: _UpperCamelCase : str = VideoMAEModelTester(self ) _UpperCamelCase : List[str] = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Optional[int] , __a : List[Any] , __a : Optional[int]=False ) -> List[Any]: _UpperCamelCase : Optional[Any] = copy.deepcopy(__a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCamelCase : Any = torch.ones((self.model_tester.num_masks,) ) _UpperCamelCase : int = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _UpperCamelCase : int = mask.expand(self.model_tester.batch_size , -1 ).bool() _UpperCamelCase : Optional[Any] = bool_masked_pos.to(__a ) if return_labels: if model_class in [ *get_values(__a ), ]: _UpperCamelCase : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: pass def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Tuple = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase, _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__a ) _UpperCamelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[Any] = [*signature.parameters.keys()] _UpperCamelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[Any] = VideoMAEModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: if not self.has_attentions: pass else: _UpperCamelCase, _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Any = True for model_class in self.all_model_classes: _UpperCamelCase : Any = self.model_tester.seq_length - self.model_tester.num_masks _UpperCamelCase : Union[str, Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Dict = True _UpperCamelCase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : int = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : str = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase : Tuple = True _UpperCamelCase : Any = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : Any = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : int = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _UpperCamelCase : Optional[Any] = len(__a ) # Check attention is always last and order is fine _UpperCamelCase : Optional[Any] = True _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : List[str] = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 1 , len(__a ) ) _UpperCamelCase : Any = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: def check_hidden_states_output(__a : Union[str, Any] , __a : Optional[Any] , __a : Union[str, Any] ): _UpperCamelCase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : List[str] = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Union[str, Any] = outputs.hidden_states _UpperCamelCase : Optional[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__a ) , __a ) _UpperCamelCase : List[str] = self.model_tester.seq_length - self.model_tester.num_masks _UpperCamelCase : Tuple = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _UpperCamelCase, _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__a , __a , __a ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: pass def lowercase__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase : int = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" ,filename="eating_spaghetti.npy" ,repo_type="dataset" ) _UpperCamelCase : Dict = np.load(lowercase_ ) return list(lowercase_ ) @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : Any = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( __a ) _UpperCamelCase : List[Any] = self.default_image_processor _UpperCamelCase : Optional[int] = prepare_video() _UpperCamelCase : Dict = image_processor(__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : int = model(**__a ) # verify the logits _UpperCamelCase : Tuple = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : Optional[Any] = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: _UpperCamelCase : List[Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(__a ) _UpperCamelCase : Tuple = self.default_image_processor _UpperCamelCase : List[Any] = prepare_video() _UpperCamelCase : Any = image_processor(__a , return_tensors="pt" ).to(__a ) # add boolean mask, indicating which patches to mask _UpperCamelCase : List[str] = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) _UpperCamelCase : int = torch.load(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : str = model(**__a ) # verify the logits _UpperCamelCase : Dict = torch.Size([1, 1408, 1536] ) _UpperCamelCase : List[Any] = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=__a ) self.assertEqual(outputs.logits.shape , __a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _UpperCamelCase : int = torch.tensor([0.51_42] , device=__a ) self.assertTrue(torch.allclose(outputs.loss , __a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _UpperCamelCase : List[Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=__a ).to( __a ) with torch.no_grad(): _UpperCamelCase : List[str] = model(**__a ) _UpperCamelCase : Tuple = torch.tensor(torch.tensor([0.64_69] ) , device=__a ) self.assertTrue(torch.allclose(outputs.loss , __a , atol=1e-4 ) )
51
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ["model.decoder.embed_positions.weights"] def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if "emb" in name: _UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" ) if "transformer" in name: _UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" ) if "cross_attention" in name: _UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" ) if "linear1" in name: _UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" ) if "linear2" in name: _UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" ) if "norm1" in name: _UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" ) if "norm_cross" in name: _UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" ) if "norm2" in name: _UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" ) if "out_norm" in name: _UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" ) if "linears" in name: _UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]: """simple docstring""" _UpperCamelCase : str = list(state_dict.keys() ) _UpperCamelCase : Optional[Any] = {} for key in keys: _UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ ) _UpperCamelCase : List[Any] = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCamelCase : Tuple = val[:hidden_size, :] _UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _UpperCamelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCamelCase : Optional[Any] = val else: _UpperCamelCase : List[str] = val return state_dict, enc_dec_proj_state_dict def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values _UpperCamelCase : List[Any] = 1_024 _UpperCamelCase : List[str] = 24 _UpperCamelCase : Any = 16 elif checkpoint == "medium": _UpperCamelCase : Tuple = 1_536 _UpperCamelCase : Dict = 48 _UpperCamelCase : Tuple = 24 elif checkpoint == "large": _UpperCamelCase : int = 2_048 _UpperCamelCase : Optional[int] = 48 _UpperCamelCase : Dict = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _UpperCamelCase : str = MusicgenDecoderConfig( hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,) return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]: """simple docstring""" _UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ ) _UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ ) _UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict() _UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict( lowercase_ ,hidden_size=decoder_config.hidden_size ) _UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" ) _UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowercase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass _UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) _UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): _UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" ) _UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) # set the appropriate bos/pad token ids _UpperCamelCase : str = 2_048 _UpperCamelCase : str = 2_048 # set other default generation config params _UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate ) _UpperCamelCase : List[str] = True _UpperCamelCase : int = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowerCamelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
51
1
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) _UpperCamelCase : str = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )] _UpperCamelCase : List[str] = ".".join(lowercase_ ) return test_module_path def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_module_path(lowercase_ ) _UpperCamelCase : str = importlib.import_module(lowercase_ ) return test_module def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[Any] = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowercase_ ,lowercase_ ) ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Any = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): _UpperCamelCase : int = getattr(lowercase_ ,lowercase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] ) if len(lowercase_ ) > 0: test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Dict = get_test_classes(lowercase_ ) _UpperCamelCase : int = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = test_class() if hasattr(lowercase_ ,"setUp" ): test.setUp() _UpperCamelCase : Tuple = None if hasattr(lowercase_ ,"model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCamelCase : Tuple = test.model_tester.__class__ return model_tester def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = get_test_classes(lowercase_ ) _UpperCamelCase : Dict = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = [] for test_class in test_classes: _UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ ) if tester_class is not None: tester_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Any = get_test_classes(lowercase_ ) _UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes} return test_tester_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Optional[int] = { model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_test_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Tuple = { model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_to_tester_mapping def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" if isinstance(lowercase_ ,lowercase_ ): return o elif isinstance(lowercase_ ,lowercase_ ): return o.__name__ elif isinstance(lowercase_ ,(list, tuple) ): return [to_json(lowercase_ ) for x in o] elif isinstance(lowercase_ ,lowercase_ ): return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()} else: return o
51
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase__ = input("Enter image url: ").strip() print(f"""Downloading image from {url} ...""") lowerCamelCase__ = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase__ = soup.find("meta", {"property": "og:image"})["content"] lowerCamelCase__ = requests.get(image_url).content lowerCamelCase__ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, "wb") as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
51
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["OwlViTFeatureExtractor"] lowerCamelCase__ = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) _UpperCamelCase : str = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )] _UpperCamelCase : List[str] = ".".join(lowercase_ ) return test_module_path def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_module_path(lowercase_ ) _UpperCamelCase : str = importlib.import_module(lowercase_ ) return test_module def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[Any] = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowercase_ ,lowercase_ ) ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Any = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): _UpperCamelCase : int = getattr(lowercase_ ,lowercase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] ) if len(lowercase_ ) > 0: test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Dict = get_test_classes(lowercase_ ) _UpperCamelCase : int = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = test_class() if hasattr(lowercase_ ,"setUp" ): test.setUp() _UpperCamelCase : Tuple = None if hasattr(lowercase_ ,"model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCamelCase : Tuple = test.model_tester.__class__ return model_tester def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = get_test_classes(lowercase_ ) _UpperCamelCase : Dict = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = [] for test_class in test_classes: _UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ ) if tester_class is not None: tester_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Any = get_test_classes(lowercase_ ) _UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes} return test_tester_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Optional[int] = { model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_test_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Tuple = { model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_to_tester_mapping def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" if isinstance(lowercase_ ,lowercase_ ): return o elif isinstance(lowercase_ ,lowercase_ ): return o.__name__ elif isinstance(lowercase_ ,(list, tuple) ): return [to_json(lowercase_ ) for x in o] elif isinstance(lowercase_ ,lowercase_ ): return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()} else: return o
51
1
"""simple docstring""" from math import isqrt def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" return all(number % divisor != 0 for divisor in range(2 ,isqrt(lowercase_ ) + 1 ) ) def lowercase__ ( lowercase_ = 10**6 ) -> int: """simple docstring""" _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : Tuple = 1 _UpperCamelCase : Optional[Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(lowercase_ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f"""{solution() = }""")
51
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = len(lowercase_ ) for i in range(length - 1 ): _UpperCamelCase : Optional[int] = i for k in range(i + 1 ,lowercase_ ): if collection[k] < collection[least]: _UpperCamelCase : List[str] = k if least != i: _UpperCamelCase, _UpperCamelCase : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": lowerCamelCase__ = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase__ = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
51
"""simple docstring""" lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
51
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> YolosConfig: """simple docstring""" _UpperCamelCase : str = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _UpperCamelCase : Union[str, Any] = 192 _UpperCamelCase : Dict = 768 _UpperCamelCase : str = 12 _UpperCamelCase : List[Any] = 3 _UpperCamelCase : List[Any] = [800, 1_333] _UpperCamelCase : Union[str, Any] = False elif yolos_name == "yolos_s_dWr": _UpperCamelCase : Optional[int] = 330 _UpperCamelCase : int = 14 _UpperCamelCase : int = 6 _UpperCamelCase : Dict = 1_320 elif "yolos_s" in yolos_name: _UpperCamelCase : Tuple = 384 _UpperCamelCase : List[Any] = 1_536 _UpperCamelCase : Dict = 12 _UpperCamelCase : str = 6 elif "yolos_b" in yolos_name: _UpperCamelCase : int = [800, 1_344] _UpperCamelCase : Union[str, Any] = 91 _UpperCamelCase : Dict = "huggingface/label-files" _UpperCamelCase : int = "coco-detection-id2label.json" _UpperCamelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ ,lowercase_ ,repo_type="dataset" ) ,"r" ) ) _UpperCamelCase : Tuple = {int(lowercase_ ): v for k, v in idalabel.items()} _UpperCamelCase : Optional[Any] = idalabel _UpperCamelCase : Any = {v: k for k, v in idalabel.items()} return config def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase : List[str] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _UpperCamelCase : Optional[int] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : Union[str, Any] = in_proj_weight[: config.hidden_size, :] _UpperCamelCase : List[Any] = in_proj_bias[: config.hidden_size] _UpperCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase : Dict = in_proj_weight[-config.hidden_size :, :] _UpperCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if "backbone" in name: _UpperCamelCase : List[str] = name.replace("backbone" ,"vit" ) if "cls_token" in name: _UpperCamelCase : Tuple = name.replace("cls_token" ,"embeddings.cls_token" ) if "det_token" in name: _UpperCamelCase : str = name.replace("det_token" ,"embeddings.detection_tokens" ) if "mid_pos_embed" in name: _UpperCamelCase : Dict = name.replace("mid_pos_embed" ,"encoder.mid_position_embeddings" ) if "pos_embed" in name: _UpperCamelCase : str = name.replace("pos_embed" ,"embeddings.position_embeddings" ) if "patch_embed.proj" in name: _UpperCamelCase : List[Any] = name.replace("patch_embed.proj" ,"embeddings.patch_embeddings.projection" ) if "blocks" in name: _UpperCamelCase : Dict = name.replace("blocks" ,"encoder.layer" ) if "attn.proj" in name: _UpperCamelCase : Dict = name.replace("attn.proj" ,"attention.output.dense" ) if "attn" in name: _UpperCamelCase : List[Any] = name.replace("attn" ,"attention.self" ) if "norm1" in name: _UpperCamelCase : Optional[int] = name.replace("norm1" ,"layernorm_before" ) if "norm2" in name: _UpperCamelCase : Optional[Any] = name.replace("norm2" ,"layernorm_after" ) if "mlp.fc1" in name: _UpperCamelCase : Dict = name.replace("mlp.fc1" ,"intermediate.dense" ) if "mlp.fc2" in name: _UpperCamelCase : str = name.replace("mlp.fc2" ,"output.dense" ) if "class_embed" in name: _UpperCamelCase : Union[str, Any] = name.replace("class_embed" ,"class_labels_classifier" ) if "bbox_embed" in name: _UpperCamelCase : str = name.replace("bbox_embed" ,"bbox_predictor" ) if "vit.norm" in name: _UpperCamelCase : List[str] = name.replace("vit.norm" ,"vit.layernorm" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): _UpperCamelCase : Any = orig_state_dict.pop(lowercase_ ) if "qkv" in key: _UpperCamelCase : Dict = key.split("." ) _UpperCamelCase : Optional[int] = int(key_split[2] ) _UpperCamelCase : List[Any] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _UpperCamelCase : Any = val[:dim, :] _UpperCamelCase : Tuple = val[ dim : dim * 2, : ] _UpperCamelCase : str = val[-dim:, :] else: _UpperCamelCase : str = val[:dim] _UpperCamelCase : Optional[Any] = val[dim : dim * 2] _UpperCamelCase : List[Any] = val[-dim:] else: _UpperCamelCase : List[str] = val return orig_state_dict def lowercase__ ( ) -> torch.Tensor: """simple docstring""" _UpperCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCamelCase : Optional[int] = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw ) return im @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = False ) -> List[str]: """simple docstring""" _UpperCamelCase : Dict = get_yolos_config(lowercase_ ) # load original state_dict _UpperCamelCase : Tuple = torch.load(lowercase_ ,map_location="cpu" )["model"] # load 🤗 model _UpperCamelCase : Dict = YolosForObjectDetection(lowercase_ ) model.eval() _UpperCamelCase : List[str] = convert_state_dict(lowercase_ ,lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by YolosImageProcessor _UpperCamelCase : List[str] = 800 if yolos_name != "yolos_ti" else 512 _UpperCamelCase : Any = YolosImageProcessor(format="coco_detection" ,size=lowercase_ ) _UpperCamelCase : Union[str, Any] = image_processor(images=prepare_img() ,return_tensors="pt" ) _UpperCamelCase : Dict = model(**lowercase_ ) _UpperCamelCase, _UpperCamelCase : Dict = outputs.logits, outputs.pred_boxes _UpperCamelCase, _UpperCamelCase : int = None, None if yolos_name == "yolos_ti": _UpperCamelCase : List[Any] = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) _UpperCamelCase : str = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": _UpperCamelCase : Union[str, Any] = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) _UpperCamelCase : Optional[Any] = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": _UpperCamelCase : Any = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) _UpperCamelCase : int = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": _UpperCamelCase : int = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) _UpperCamelCase : Optional[Any] = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": _UpperCamelCase : Dict = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) _UpperCamelCase : Optional[Any] = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] ,lowercase_ ,atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] ,lowercase_ ,atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: _UpperCamelCase : str = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) _UpperCamelCase : List[str] = model_mapping[yolos_name] image_processor.push_to_hub(lowercase_ ,organization="hustvl" ) model.push_to_hub(lowercase_ ,organization="hustvl" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCamelCase__ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
51
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: _UpperCamelCase : Tuple = tempfile.mkdtemp() _UpperCamelCase : str = 5 # Realm tok _UpperCamelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) _UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : Any = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : int = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=__a , ) return block_records def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : Tuple = self.get_config() _UpperCamelCase : int = self.get_dummy_retriever() _UpperCamelCase : Tuple = retriever.tokenizer _UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" ) _UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : List[str] = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : str = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Any = self.get_config() _UpperCamelCase : Dict = self.get_dummy_retriever() _UpperCamelCase : Dict = retriever.tokenizer _UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" ) _UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : str = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : Union[str, Any] = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCamelCase : List[Any] = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : Union[str, Any] = set() # edges = list of graph's edges _UpperCamelCase : Union[str, Any] = get_edges(lowercase_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCamelCase, _UpperCamelCase : str = edges.pop() chosen_vertices.add(lowercase_ ) chosen_vertices.add(lowercase_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase_ ) return chosen_vertices def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
51
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = LEDConfig SCREAMING_SNAKE_CASE__ :str = {} SCREAMING_SNAKE_CASE__ :List[str] = "gelu" def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]: _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : List[str] = batch_size _UpperCamelCase : str = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : str = max_position_embeddings _UpperCamelCase : int = eos_token_id _UpperCamelCase : Dict = pad_token_id _UpperCamelCase : Optional[Any] = bos_token_id _UpperCamelCase : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCamelCase : List[str] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a ) _UpperCamelCase : Union[str, Any] = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) _UpperCamelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple: _UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder() _UpperCamelCase : Tuple = inputs_dict["input_ids"] _UpperCamelCase : int = input_ids[:1, :] _UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :] _UpperCamelCase : List[Any] = 1 # first forward pass _UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0] _UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict: """simple docstring""" if attention_mask is None: _UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :Tuple = True SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : int = TFLEDModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] ) _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : str = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) _UpperCamelCase : Dict = True _UpperCamelCase : str = self.model_tester.seq_length _UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a : Optional[int] ): _UpperCamelCase : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a : Optional[Any] ): _UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] _UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCamelCase : Dict = True _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Any = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: _UpperCamelCase : Optional[Any] = model_class(__a ) _UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase : int = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine _UpperCamelCase : Any = True _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: # TODO: Head-masking not yet implement pass def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return tf.constant(lowercase_ ,dtype=tf.intaa ) lowerCamelCase__ = 1E-4 @slow @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Optional[int] = model(**__a )[0] _UpperCamelCase : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Tuple = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Union[str, Any] = model(**__a )[0] _UpperCamelCase : int = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Optional[int] = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
51
1
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = VQModel SCREAMING_SNAKE_CASE__ :List[Any] = "sample" @property def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple=(32, 32) ) -> int: _UpperCamelCase : List[Any] = 4 _UpperCamelCase : Dict = 3 _UpperCamelCase : Any = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) return {"sample": image} @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: return (3, 32, 32) @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: return (3, 32, 32) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: _UpperCamelCase : Tuple = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } _UpperCamelCase : List[Any] = self.dummy_input return init_dict, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: pass def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: _UpperCamelCase, _UpperCamelCase : Any = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__a ) _UpperCamelCase : List[str] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: _UpperCamelCase : Dict = VQModel.from_pretrained("fusing/vqgan-dummy" ) model.to(__a ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _UpperCamelCase : Dict = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _UpperCamelCase : str = image.to(__a ) with torch.no_grad(): _UpperCamelCase : List[str] = model(__a ).sample _UpperCamelCase : str = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCamelCase : str = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) )
51
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer SCREAMING_SNAKE_CASE__ :Dict = None SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = True SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().setUp() _UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] _UpperCamelCase : List[str] = {} _UpperCamelCase : Tuple = {} for i, value in enumerate(__a ): _UpperCamelCase : List[str] = i _UpperCamelCase : Optional[Any] = i _UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) _UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(__a , __a , ensure_ascii=__a ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(__a , __a , ensure_ascii=__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: _UpperCamelCase : Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: _UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _UpperCamelCase : Any = {} for i, token in enumerate(__a ): _UpperCamelCase : str = i _UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: _UpperCamelCase : Tuple = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) _UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False _UpperCamelCase : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = ["的", "人", "有"] _UpperCamelCase : int = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = True _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Any = False _UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". _UpperCamelCase : Any = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a ) _UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a ) _UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : int = "你好,你是谁" _UpperCamelCase : Any = tokenizer.tokenize(__a ) _UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a ) _UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a ) _UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a ) _UpperCamelCase : Optional[int] = tokenizer.prepare_for_model( __a , __a , __a , add_special_tokens=__a ) _UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a ) self.assertEqual(__a , __a )
51
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :int SCREAMING_SNAKE_CASE__ :int class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , __a : int ) -> Optional[Any]: _UpperCamelCase : list[list[Edge]] = [[] for _ in range(__a )] _UpperCamelCase : Tuple = size def __getitem__( self : int , __a : int ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: return self._size def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : int , __a : int , __a : int ) -> Dict: if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : int ) -> int | None: _UpperCamelCase : Optional[Any] = deque([start_vertex] ) _UpperCamelCase : list[int | None] = [None] * self.size _UpperCamelCase : int = 0 while queue: _UpperCamelCase : List[Any] = queue.popleft() _UpperCamelCase : List[str] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCamelCase : List[Any] = current_distance + edge.weight _UpperCamelCase : Dict = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _UpperCamelCase : List[str] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = "yolos" def __init__( self : Dict , __a : Optional[Any]=768 , __a : List[Any]=12 , __a : Any=12 , __a : List[Any]=3072 , __a : Optional[int]="gelu" , __a : Dict=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.02 , __a : Optional[int]=1e-1_2 , __a : List[Any]=[512, 864] , __a : List[str]=16 , __a : str=3 , __a : Optional[Any]=True , __a : Optional[Any]=100 , __a : List[str]=True , __a : Any=False , __a : List[str]=1 , __a : str=5 , __a : Optional[Any]=2 , __a : Tuple=5 , __a : Any=2 , __a : Union[str, Any]=0.1 , **__a : List[str] , ) -> List[str]: super().__init__(**__a ) _UpperCamelCase : Dict = hidden_size _UpperCamelCase : Any = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Tuple = image_size _UpperCamelCase : Tuple = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : Any = qkv_bias _UpperCamelCase : str = num_detection_tokens _UpperCamelCase : str = use_mid_position_embeddings _UpperCamelCase : List[str] = auxiliary_loss # Hungarian matcher _UpperCamelCase : List[Any] = class_cost _UpperCamelCase : int = bbox_cost _UpperCamelCase : Optional[int] = giou_cost # Loss coefficients _UpperCamelCase : List[Any] = bbox_loss_coefficient _UpperCamelCase : str = giou_loss_coefficient _UpperCamelCase : Dict = eos_coefficient class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float: return 1e-4 @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return 12
51
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() _UpperCamelCase : int = SamImageProcessor() _UpperCamelCase : Dict = SamProcessor(__a ) processor.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , **__a : List[str] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).image_processor def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCamelCase : Any = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: _UpperCamelCase : List[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCamelCase : Dict = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) _UpperCamelCase : List[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: _UpperCamelCase : List[str] = self.get_image_processor() _UpperCamelCase : Tuple = SamProcessor(image_processor=__a ) _UpperCamelCase : Any = self.prepare_image_inputs() _UpperCamelCase : List[Any] = image_processor(__a , return_tensors="np" ) _UpperCamelCase : Any = processor(images=__a , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: _UpperCamelCase : Optional[int] = self.get_image_processor() _UpperCamelCase : Optional[int] = SamProcessor(image_processor=__a ) _UpperCamelCase : Tuple = [torch.ones((1, 3, 5, 5) )] _UpperCamelCase : Optional[Any] = [[1764, 2646]] _UpperCamelCase : Tuple = [[683, 1024]] _UpperCamelCase : Optional[int] = processor.post_process_masks(__a , __a , __a ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _UpperCamelCase : Optional[Any] = processor.post_process_masks( __a , torch.tensor(__a ) , torch.tensor(__a ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np _UpperCamelCase : str = [np.ones((1, 3, 5, 5) )] _UpperCamelCase : Dict = processor.post_process_masks(__a , np.array(__a ) , np.array(__a ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _UpperCamelCase : List[Any] = [[1, 0], [0, 1]] with self.assertRaises(__a ): _UpperCamelCase : Optional[Any] = processor.post_process_masks(__a , np.array(__a ) , np.array(__a ) ) @require_vision @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: _UpperCamelCase : Optional[Any] = tempfile.mkdtemp() _UpperCamelCase : Any = SamImageProcessor() _UpperCamelCase : Optional[int] = SamProcessor(__a ) processor.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , **__a : str ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).image_processor def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCamelCase : List[str] = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: _UpperCamelCase : Dict = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCamelCase : Optional[int] = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) _UpperCamelCase : Optional[int] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = self.get_image_processor() _UpperCamelCase : Optional[int] = SamProcessor(image_processor=__a ) _UpperCamelCase : str = self.prepare_image_inputs() _UpperCamelCase : str = image_processor(__a , return_tensors="np" ) _UpperCamelCase : Dict = processor(images=__a , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: _UpperCamelCase : Dict = self.get_image_processor() _UpperCamelCase : Optional[Any] = SamProcessor(image_processor=__a ) _UpperCamelCase : Tuple = [tf.ones((1, 3, 5, 5) )] _UpperCamelCase : Any = [[1764, 2646]] _UpperCamelCase : List[str] = [[683, 1024]] _UpperCamelCase : List[Any] = processor.post_process_masks(__a , __a , __a , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _UpperCamelCase : Tuple = processor.post_process_masks( __a , tf.convert_to_tensor(__a ) , tf.convert_to_tensor(__a ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np _UpperCamelCase : Tuple = [np.ones((1, 3, 5, 5) )] _UpperCamelCase : Optional[Any] = processor.post_process_masks( __a , np.array(__a ) , np.array(__a ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _UpperCamelCase : Any = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): _UpperCamelCase : str = processor.post_process_masks( __a , np.array(__a ) , np.array(__a ) , return_tensors="tf" ) @require_vision @require_torchvision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: _UpperCamelCase : List[str] = tempfile.mkdtemp() _UpperCamelCase : Optional[Any] = SamImageProcessor() _UpperCamelCase : List[Any] = SamProcessor(__a ) processor.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Dict , **__a : Optional[Any] ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).image_processor def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCamelCase : List[str] = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: _UpperCamelCase : Union[str, Any] = self.get_image_processor() _UpperCamelCase : int = SamProcessor(image_processor=__a ) _UpperCamelCase : Union[str, Any] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) _UpperCamelCase : Union[str, Any] = [tf.convert_to_tensor(__a )] _UpperCamelCase : Optional[Any] = [torch.tensor(__a )] _UpperCamelCase : Tuple = [[1764, 2646]] _UpperCamelCase : List[Any] = [[683, 1024]] _UpperCamelCase : Tuple = processor.post_process_masks( __a , __a , __a , return_tensors="tf" ) _UpperCamelCase : List[Any] = processor.post_process_masks( __a , __a , __a , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : int = self.get_image_processor() _UpperCamelCase : str = SamProcessor(image_processor=__a ) _UpperCamelCase : List[Any] = self.prepare_image_inputs() _UpperCamelCase : List[str] = image_processor(__a , return_tensors="pt" )["pixel_values"].numpy() _UpperCamelCase : Optional[Any] = processor(images=__a , return_tensors="pt" )["pixel_values"].numpy() _UpperCamelCase : int = image_processor(__a , return_tensors="tf" )["pixel_values"].numpy() _UpperCamelCase : int = processor(images=__a , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(__a , __a ) ) self.assertTrue(np.allclose(__a , __a ) ) self.assertTrue(np.allclose(__a , __a ) )
51
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCamelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase] lowerCamelCase__ = {ord(char) for char in VALID_CHARS} lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None: """simple docstring""" _UpperCamelCase : str = "" _UpperCamelCase : int _UpperCamelCase : int _UpperCamelCase : int for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ): _UpperCamelCase : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase_ ) return decoded def lowercase__ ( lowercase_ ) -> list[str]: """simple docstring""" _UpperCamelCase : list[str] = [] for key in product(lowercase_ ,repeat=3 ): _UpperCamelCase : int = try_key(lowercase_ ,lowercase_ ) if encoded is not None: possibles.append(lowercase_ ) return possibles def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int: """simple docstring""" _UpperCamelCase : list[int] _UpperCamelCase : list[str] _UpperCamelCase : str _UpperCamelCase : str _UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" ) _UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )] _UpperCamelCase : List[str] = filter_valid_chars(lowercase_ ) for common_word in COMMON_WORDS: _UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ ) if len(lowercase_ ) == 1: break _UpperCamelCase : Union[str, Any] = possibles[0] return sum(ord(lowercase_ ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
51
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ = TaTokenizerFast lowerCamelCase__ = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
51
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ) -> None: """simple docstring""" _UpperCamelCase : List[Any] = len(lowercase_ ) print("The following activities are selected:" ) # The first activity is always selected _UpperCamelCase : List[Any] = 0 print(lowercase_ ,end="," ) # Consider rest of the activities for j in range(lowercase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase_ ,end="," ) _UpperCamelCase : Optional[Any] = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = [1, 3, 0, 5, 8, 5] lowerCamelCase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
51
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : List[str] = SwinConfig( embed_dim=192 ,depths=(2, 2, 18, 2) ,num_heads=(6, 12, 24, 48) ,window_size=12 ,out_features=["stage2", "stage3", "stage4"] ,) _UpperCamelCase : List[Any] = DetaConfig( backbone_config=lowercase_ ,num_queries=900 ,encoder_ffn_dim=2_048 ,decoder_ffn_dim=2_048 ,num_feature_levels=5 ,assign_first_stage=lowercase_ ,with_box_refine=lowercase_ ,two_stage=lowercase_ ,) # set labels _UpperCamelCase : int = "huggingface/label-files" if "o365" in model_name: _UpperCamelCase : Optional[Any] = 366 _UpperCamelCase : List[str] = "object365-id2label.json" else: _UpperCamelCase : List[str] = 91 _UpperCamelCase : List[str] = "coco-detection-id2label.json" _UpperCamelCase : Union[str, Any] = num_labels _UpperCamelCase : Optional[Any] = json.load(open(cached_download(hf_hub_url(lowercase_ ,lowercase_ ,repo_type="dataset" ) ) ,"r" ) ) _UpperCamelCase : Any = {int(lowercase_ ): v for k, v in idalabel.items()} _UpperCamelCase : Tuple = idalabel _UpperCamelCase : List[Any] = {v: k for k, v in idalabel.items()} return config def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : List[str] = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = dct.pop(lowercase_ ) _UpperCamelCase : Optional[Any] = val def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Dict = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCamelCase : List[str] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCamelCase : Optional[Any] = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _UpperCamelCase : Optional[int] = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : int = in_proj_weight[:dim, :] _UpperCamelCase : Any = in_proj_bias[: dim] _UpperCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _UpperCamelCase : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] _UpperCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _UpperCamelCase : Optional[int] = in_proj_bias[-dim :] # fmt: on def lowercase__ ( lowercase_ ,lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Optional[Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _UpperCamelCase : str = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCamelCase : Optional[int] = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : List[str] = in_proj_weight[:hidden_size, :] _UpperCamelCase : Dict = in_proj_bias[:hidden_size] _UpperCamelCase : Dict = in_proj_weight[ hidden_size : hidden_size * 2, : ] _UpperCamelCase : Any = in_proj_bias[hidden_size : hidden_size * 2] _UpperCamelCase : int = in_proj_weight[-hidden_size:, :] _UpperCamelCase : int = in_proj_bias[-hidden_size:] def lowercase__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCamelCase : int = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw ) return im @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = get_deta_config(lowercase_ ) # load original state dict if model_name == "deta-swin-large": _UpperCamelCase : Optional[int] = hf_hub_download(repo_id="nielsr/deta-checkpoints" ,filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": _UpperCamelCase : Any = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" ,filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F'''Model name {model_name} not supported''' ) _UpperCamelCase : Dict = torch.load(lowercase_ ,map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(lowercase_ ,param.shape ) # rename keys _UpperCamelCase : Dict = create_rename_keys(lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ ,lowercase_ ,lowercase_ ) read_in_swin_q_k_v(lowercase_ ,config.backbone_config ) read_in_decoder_q_k_v(lowercase_ ,lowercase_ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ ) _UpperCamelCase : Tuple = val if "input_proj" in key: _UpperCamelCase : Union[str, Any] = state_dict.pop(lowercase_ ) _UpperCamelCase : Union[str, Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _UpperCamelCase : List[Any] = state_dict.pop(lowercase_ ) _UpperCamelCase : Optional[Any] = val # finally, create HuggingFace model and load state dict _UpperCamelCase : Union[str, Any] = DetaForObjectDetection(lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() _UpperCamelCase : List[str] = "cuda" if torch.cuda.is_available() else "cpu" model.to(lowercase_ ) # load image processor _UpperCamelCase : int = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image _UpperCamelCase : Optional[int] = prepare_img() _UpperCamelCase : Dict = processor(images=lowercase_ ,return_tensors="pt" ) _UpperCamelCase : Optional[Any] = encoding["pixel_values"] _UpperCamelCase : Any = model(pixel_values.to(lowercase_ ) ) # verify logits print("Logits:" ,outputs.logits[0, :3, :3] ) print("Boxes:" ,outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _UpperCamelCase : Tuple = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) _UpperCamelCase : List[Any] = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": _UpperCamelCase : Dict = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) _UpperCamelCase : int = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] ,expected_logits.to(lowercase_ ) ,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] ,expected_boxes.to(lowercase_ ) ,atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCamelCase__ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
51
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict: super().__init__() _UpperCamelCase : List[str] = layers_per_block _UpperCamelCase : Dict = torch.nn.Convad( __a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : int = None _UpperCamelCase : Any = nn.ModuleList([] ) # down _UpperCamelCase : List[str] = block_out_channels[0] for i, down_block_type in enumerate(__a ): _UpperCamelCase : Tuple = output_channel _UpperCamelCase : int = block_out_channels[i] _UpperCamelCase : int = i == len(__a ) - 1 _UpperCamelCase : Dict = get_down_block( __a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , ) self.down_blocks.append(__a ) # mid _UpperCamelCase : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # out _UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : Any = nn.SiLU() _UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels _UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 ) _UpperCamelCase : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]: _UpperCamelCase : int = x _UpperCamelCase : Optional[int] = self.conv_in(__a ) if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Tuple ): def custom_forward(*__a : Any ): return module(*__a ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , use_reentrant=__a ) # middle _UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , use_reentrant=__a ) else: for down_block in self.down_blocks: _UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a ) # middle _UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a ) else: # down for down_block in self.down_blocks: _UpperCamelCase : int = down_block(__a ) # middle _UpperCamelCase : int = self.mid_block(__a ) # post-process _UpperCamelCase : Any = self.conv_norm_out(__a ) _UpperCamelCase : Any = self.conv_act(__a ) _UpperCamelCase : Optional[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str: super().__init__() _UpperCamelCase : List[Any] = layers_per_block _UpperCamelCase : Tuple = nn.Convad( __a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = nn.ModuleList([] ) _UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None # mid _UpperCamelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # up _UpperCamelCase : List[str] = list(reversed(__a ) ) _UpperCamelCase : int = reversed_block_out_channels[0] for i, up_block_type in enumerate(__a ): _UpperCamelCase : int = output_channel _UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i] _UpperCamelCase : Optional[Any] = i == len(__a ) - 1 _UpperCamelCase : Union[str, Any] = get_up_block( __a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , ) self.up_blocks.append(__a ) _UpperCamelCase : Optional[Any] = output_channel # out if norm_type == "spatial": _UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a ) else: _UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : str = nn.SiLU() _UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 ) _UpperCamelCase : Dict = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple: _UpperCamelCase : List[str] = z _UpperCamelCase : Dict = self.conv_in(__a ) _UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Any ): def custom_forward(*__a : Tuple ): return module(*__a ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle _UpperCamelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a ) _UpperCamelCase : Optional[int] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , __a , use_reentrant=__a ) else: # middle _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a ) _UpperCamelCase : Union[str, Any] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a ) else: # middle _UpperCamelCase : str = self.mid_block(__a , __a ) _UpperCamelCase : int = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : Any = up_block(__a , __a ) # post-process if latent_embeds is None: _UpperCamelCase : List[str] = self.conv_norm_out(__a ) else: _UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a ) _UpperCamelCase : Tuple = self.conv_act(__a ) _UpperCamelCase : List[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]: super().__init__() _UpperCamelCase : Tuple = n_e _UpperCamelCase : Tuple = vq_embed_dim _UpperCamelCase : Union[str, Any] = beta _UpperCamelCase : str = legacy _UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCamelCase : Any = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) _UpperCamelCase : Dict = self.used.shape[0] _UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase : Optional[int] = self.re_embed _UpperCamelCase : Any = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: _UpperCamelCase : Union[str, Any] = n_e _UpperCamelCase : List[str] = sane_index_shape def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]: _UpperCamelCase : str = inds.shape assert len(__a ) > 1 _UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[Any] = self.used.to(__a ) _UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase : Optional[Any] = match.argmax(-1 ) _UpperCamelCase : Any = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCamelCase : Dict = self.unknown_index return new.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]: _UpperCamelCase : int = inds.shape assert len(__a ) > 1 _UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[int] = self.used.to(__a ) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase : int = 0 # simply set to zero _UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a ) return back.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]: # reshape z -> (batch, height, width, channel) and flatten _UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCamelCase : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 ) _UpperCamelCase : int = self.embedding(__a ).view(z.shape ) _UpperCamelCase : str = None _UpperCamelCase : Any = None # compute loss for embedding if not self.legacy: _UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCamelCase : List[str] = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCamelCase : Dict = self.remap_to_used(__a ) _UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: _UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCamelCase : str = self.unmap_to_all(__a ) _UpperCamelCase : int = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCamelCase : Optional[int] = self.embedding(__a ) if shape is not None: _UpperCamelCase : Tuple = z_q.view(__a ) # reshape back to match original input shape _UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int: _UpperCamelCase : Dict = parameters _UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 ) _UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 ) _UpperCamelCase : Union[str, Any] = deterministic _UpperCamelCase : Dict = torch.exp(0.5 * self.logvar ) _UpperCamelCase : Any = torch.exp(self.logvar ) if self.deterministic: _UpperCamelCase : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype _UpperCamelCase : List[Any] = randn_tensor( self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCamelCase : List[Any] = self.mean + self.std * sample return x def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int: if self.deterministic: return torch.Tensor([0.0] ) _UpperCamelCase : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: return self.mean
51
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : List[str] = botoa.client("iam" ) _UpperCamelCase : Tuple = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowercase_ ,AssumeRolePolicyDocument=json.dumps(lowercase_ ,indent=2 ) ) _UpperCamelCase : List[str] = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowercase_ ,PolicyName=F'''{role_name}_policy_permission''' ,PolicyDocument=json.dumps(lowercase_ ,indent=2 ) ,) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : Dict = botoa.client("iam" ) return iam_client.get_role(RoleName=lowercase_ )["Role"]["Arn"] def lowercase__ ( ) -> int: """simple docstring""" _UpperCamelCase : str = _ask_options( "How do you want to authorize?" ,["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] ,lowercase_ ,) _UpperCamelCase : List[Any] = None if credentials_configuration == 0: _UpperCamelCase : int = _ask_field("Enter your AWS Profile name: [default] " ,default="default" ) _UpperCamelCase : Optional[int] = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) _UpperCamelCase : Union[str, Any] = _ask_field("AWS Access Key ID: " ) _UpperCamelCase : Any = aws_access_key_id _UpperCamelCase : Any = _ask_field("AWS Secret Access Key: " ) _UpperCamelCase : Tuple = aws_secret_access_key _UpperCamelCase : Union[str, Any] = _ask_field("Enter your AWS Region: [us-east-1]" ,default="us-east-1" ) _UpperCamelCase : str = aws_region _UpperCamelCase : Optional[Any] = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" ,["Provide IAM Role name", "Create new IAM role using credentials"] ,lowercase_ ,) if role_management == 0: _UpperCamelCase : List[Any] = _ask_field("Enter your IAM role name: " ) else: _UpperCamelCase : str = "accelerate_sagemaker_execution_role" print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(lowercase_ ) _UpperCamelCase : Union[str, Any] = _ask_field( "Do you want to use custom Docker image? [yes/NO]: " ,_convert_yes_no_to_bool ,default=lowercase_ ,error_message="Please enter yes or no." ,) _UpperCamelCase : Optional[int] = None if is_custom_docker_image: _UpperCamelCase : Optional[int] = _ask_field("Enter your Docker image: " ,lambda lowercase_ : str(lowercase_ ).lower() ) _UpperCamelCase : List[str] = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: " ,_convert_yes_no_to_bool ,default=lowercase_ ,error_message="Please enter yes or no." ,) _UpperCamelCase : Optional[int] = None if is_sagemaker_inputs_enabled: _UpperCamelCase : List[str] = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " ,lambda lowercase_ : str(lowercase_ ).lower() ,) _UpperCamelCase : List[Any] = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: " ,_convert_yes_no_to_bool ,default=lowercase_ ,error_message="Please enter yes or no." ,) _UpperCamelCase : Union[str, Any] = None if is_sagemaker_metrics_enabled: _UpperCamelCase : Tuple = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " ,lambda lowercase_ : str(lowercase_ ).lower() ,) _UpperCamelCase : str = _ask_options( "What is the distributed mode?" ,["No distributed training", "Data parallelism"] ,_convert_sagemaker_distributed_mode ,) _UpperCamelCase : str = {} _UpperCamelCase : List[str] = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:" ,_convert_yes_no_to_bool ,default=lowercase_ ,error_message="Please enter yes or no." ,) if use_dynamo: _UpperCamelCase : Optional[Any] = "dynamo_" _UpperCamelCase : Tuple = _ask_options( "Which dynamo backend would you like to use?" ,[x.lower() for x in DYNAMO_BACKENDS] ,_convert_dynamo_backend ,default=2 ,) _UpperCamelCase : int = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: " ,_convert_yes_no_to_bool ,default=lowercase_ ,error_message="Please enter yes or no." ,) if use_custom_options: _UpperCamelCase : int = _ask_options( "Which mode do you want to use?" ,lowercase_ ,lambda lowercase_ : TORCH_DYNAMO_MODES[int(lowercase_ )] ,default="default" ,) _UpperCamelCase : Optional[Any] = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " ,_convert_yes_no_to_bool ,default=lowercase_ ,error_message="Please enter yes or no." ,) _UpperCamelCase : Union[str, Any] = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: " ,_convert_yes_no_to_bool ,default=lowercase_ ,error_message="Please enter yes or no." ,) _UpperCamelCase : Any = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: _UpperCamelCase : Union[str, Any] = _ask_options( lowercase_ ,lowercase_ ,lambda lowercase_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowercase_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" _UpperCamelCase : Any = _ask_field(lowercase_ ,lambda lowercase_ : str(lowercase_ ).lower() ,default="ml.p3.2xlarge" ) _UpperCamelCase : Optional[int] = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): _UpperCamelCase : Any = _ask_field( "How many machines do you want use? [1]: " ,lowercase_ ,default=1 ,) _UpperCamelCase : List[Any] = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?" ,["no", "fp16", "bf16", "fp8"] ,_convert_mixed_precision ,) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=lowercase_ ,compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER ,distributed_type=lowercase_ ,use_cpu=lowercase_ ,dynamo_config=lowercase_ ,eca_instance_type=lowercase_ ,profile=lowercase_ ,region=lowercase_ ,iam_role_name=lowercase_ ,mixed_precision=lowercase_ ,num_machines=lowercase_ ,sagemaker_inputs_file=lowercase_ ,sagemaker_metrics_file=lowercase_ ,)
51
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"summary": Value("string" )} ) SCREAMING_SNAKE_CASE__ :str = "text" SCREAMING_SNAKE_CASE__ :str = "summary" @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
51
1
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
51
"""simple docstring""" def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : Union[str, Any] = set() # edges = list of graph's edges _UpperCamelCase : Union[str, Any] = get_edges(lowercase_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCamelCase, _UpperCamelCase : str = edges.pop() chosen_vertices.add(lowercase_ ) chosen_vertices.add(lowercase_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase_ ) return chosen_vertices def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
51
1
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]: """simple docstring""" _UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] ) return (item, float(lowercase_ )) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]: """simple docstring""" _UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 ) _UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] _UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = list(lowercase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _UpperCamelCase : int = random.choice(lowercase_ ) return "".join(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]: """simple docstring""" _UpperCamelCase : Optional[Any] = [] # Generate more children proportionally to the fitness score. _UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1 _UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n for _ in range(lowercase_ ): _UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0] _UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ ) # Append new string to the population list. pop.append(mutate(lowercase_ ,lowercase_ ) ) pop.append(mutate(lowercase_ ,lowercase_ ) ) return pop def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowercase_ ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCamelCase : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowercase_ ) # Generate random starting population. _UpperCamelCase : Union[str, Any] = [] for _ in range(lowercase_ ): population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCamelCase, _UpperCamelCase : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population] # Check if there is a matching evolution. _UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCamelCase : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase_ ) # Normalize population score to be between 0 and 1. _UpperCamelCase : str = [ (item, score / len(lowercase_ )) for item, score in population_score ] # This is selection for i in range(lowercase_ ): population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase__ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase__ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
51
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["OwlViTFeatureExtractor"] lowerCamelCase__ = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
1
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : int = inspect.getfile(accelerate.test_utils ) _UpperCamelCase : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _UpperCamelCase : str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: _UpperCamelCase : int = F''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() _UpperCamelCase : Optional[int] = [sys.executable] + distributed_args execute_subprocess_async(__a , env=os.environ.copy() )
51
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int: """simple docstring""" _UpperCamelCase : defaultdict = defaultdict(lowercase_ ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _UpperCamelCase : Any = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: _UpperCamelCase : str = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
51
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = "nat" SCREAMING_SNAKE_CASE__ :Tuple = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , __a : str=4 , __a : Optional[int]=3 , __a : Optional[int]=64 , __a : Any=[3, 4, 6, 5] , __a : Optional[int]=[2, 4, 8, 16] , __a : List[Any]=7 , __a : Optional[Any]=3.0 , __a : Any=True , __a : int=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.1 , __a : Dict="gelu" , __a : List[str]=0.02 , __a : int=1e-5 , __a : int=0.0 , __a : str=None , __a : List[Any]=None , **__a : Dict , ) -> List[str]: super().__init__(**__a ) _UpperCamelCase : str = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = embed_dim _UpperCamelCase : int = depths _UpperCamelCase : Any = len(__a ) _UpperCamelCase : str = num_heads _UpperCamelCase : str = kernel_size _UpperCamelCase : Any = mlp_ratio _UpperCamelCase : str = qkv_bias _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = drop_path_rate _UpperCamelCase : Union[str, Any] = hidden_act _UpperCamelCase : Union[str, Any] = layer_norm_eps _UpperCamelCase : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCamelCase : Tuple = int(embed_dim * 2 ** (len(__a ) - 1) ) _UpperCamelCase : Union[str, Any] = layer_scale_init_value _UpperCamelCase : List[Any] = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(__a ) + 1 )] _UpperCamelCase, _UpperCamelCase : List[Any] = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
51
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("KEY") lowerCamelCase__ = TypeVar("VAL") @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :KEY SCREAMING_SNAKE_CASE__ :VAL class __SCREAMING_SNAKE_CASE ( _Item ): '''simple docstring''' def __init__( self : List[str] ) -> None: super().__init__(__a , __a ) def __bool__( self : Dict ) -> bool: return False lowerCamelCase__ = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None: _UpperCamelCase : str = initial_block_size _UpperCamelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCamelCase : List[str] = capacity_factor _UpperCamelCase : Dict = 0 def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int: return hash(__a ) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int: return (ind + 1) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool: _UpperCamelCase : List[Any] = self._buckets[ind] if not stored: _UpperCamelCase : Tuple = _Item(__a , __a ) self._len += 1 return True elif stored.key == key: _UpperCamelCase : Union[str, Any] = _Item(__a , __a ) return True else: return False def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: _UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False _UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None: _UpperCamelCase : Any = self._buckets _UpperCamelCase : List[Any] = [None] * new_size _UpperCamelCase : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: self._resize(len(self._buckets ) * 2 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: self._resize(len(self._buckets ) // 2 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]: _UpperCamelCase : str = self._get_bucket_index(__a ) for _ in range(len(self._buckets ) ): yield ind _UpperCamelCase : Tuple = self._get_next_ind(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None: for ind in self._iterate_buckets(__a ): if self._try_set(__a , __a , __a ): break def __setitem__( self : int , __a : KEY , __a : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(__a , __a ) def __delitem__( self : str , __a : KEY ) -> None: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: raise KeyError(__a ) if item is _deleted: continue if item.key == key: _UpperCamelCase : List[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , __a : KEY ) -> VAL: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__a ) def __len__( self : List[Any] ) -> int: return self._len def __iter__( self : List[str] ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ) -> str: _UpperCamelCase : Optional[int] = " ,".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
51
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict: super().__init__() _UpperCamelCase : List[str] = layers_per_block _UpperCamelCase : Dict = torch.nn.Convad( __a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : int = None _UpperCamelCase : Any = nn.ModuleList([] ) # down _UpperCamelCase : List[str] = block_out_channels[0] for i, down_block_type in enumerate(__a ): _UpperCamelCase : Tuple = output_channel _UpperCamelCase : int = block_out_channels[i] _UpperCamelCase : int = i == len(__a ) - 1 _UpperCamelCase : Dict = get_down_block( __a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , ) self.down_blocks.append(__a ) # mid _UpperCamelCase : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # out _UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : Any = nn.SiLU() _UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels _UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 ) _UpperCamelCase : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]: _UpperCamelCase : int = x _UpperCamelCase : Optional[int] = self.conv_in(__a ) if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Tuple ): def custom_forward(*__a : Any ): return module(*__a ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , use_reentrant=__a ) # middle _UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , use_reentrant=__a ) else: for down_block in self.down_blocks: _UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a ) # middle _UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a ) else: # down for down_block in self.down_blocks: _UpperCamelCase : int = down_block(__a ) # middle _UpperCamelCase : int = self.mid_block(__a ) # post-process _UpperCamelCase : Any = self.conv_norm_out(__a ) _UpperCamelCase : Any = self.conv_act(__a ) _UpperCamelCase : Optional[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str: super().__init__() _UpperCamelCase : List[Any] = layers_per_block _UpperCamelCase : Tuple = nn.Convad( __a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = nn.ModuleList([] ) _UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None # mid _UpperCamelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # up _UpperCamelCase : List[str] = list(reversed(__a ) ) _UpperCamelCase : int = reversed_block_out_channels[0] for i, up_block_type in enumerate(__a ): _UpperCamelCase : int = output_channel _UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i] _UpperCamelCase : Optional[Any] = i == len(__a ) - 1 _UpperCamelCase : Union[str, Any] = get_up_block( __a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , ) self.up_blocks.append(__a ) _UpperCamelCase : Optional[Any] = output_channel # out if norm_type == "spatial": _UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a ) else: _UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : str = nn.SiLU() _UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 ) _UpperCamelCase : Dict = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple: _UpperCamelCase : List[str] = z _UpperCamelCase : Dict = self.conv_in(__a ) _UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Any ): def custom_forward(*__a : Tuple ): return module(*__a ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle _UpperCamelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a ) _UpperCamelCase : Optional[int] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , __a , use_reentrant=__a ) else: # middle _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a ) _UpperCamelCase : Union[str, Any] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a ) else: # middle _UpperCamelCase : str = self.mid_block(__a , __a ) _UpperCamelCase : int = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : Any = up_block(__a , __a ) # post-process if latent_embeds is None: _UpperCamelCase : List[str] = self.conv_norm_out(__a ) else: _UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a ) _UpperCamelCase : Tuple = self.conv_act(__a ) _UpperCamelCase : List[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]: super().__init__() _UpperCamelCase : Tuple = n_e _UpperCamelCase : Tuple = vq_embed_dim _UpperCamelCase : Union[str, Any] = beta _UpperCamelCase : str = legacy _UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCamelCase : Any = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) _UpperCamelCase : Dict = self.used.shape[0] _UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase : Optional[int] = self.re_embed _UpperCamelCase : Any = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: _UpperCamelCase : Union[str, Any] = n_e _UpperCamelCase : List[str] = sane_index_shape def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]: _UpperCamelCase : str = inds.shape assert len(__a ) > 1 _UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[Any] = self.used.to(__a ) _UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase : Optional[Any] = match.argmax(-1 ) _UpperCamelCase : Any = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCamelCase : Dict = self.unknown_index return new.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]: _UpperCamelCase : int = inds.shape assert len(__a ) > 1 _UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[int] = self.used.to(__a ) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase : int = 0 # simply set to zero _UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a ) return back.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]: # reshape z -> (batch, height, width, channel) and flatten _UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCamelCase : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 ) _UpperCamelCase : int = self.embedding(__a ).view(z.shape ) _UpperCamelCase : str = None _UpperCamelCase : Any = None # compute loss for embedding if not self.legacy: _UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCamelCase : List[str] = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCamelCase : Dict = self.remap_to_used(__a ) _UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: _UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCamelCase : str = self.unmap_to_all(__a ) _UpperCamelCase : int = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCamelCase : Optional[int] = self.embedding(__a ) if shape is not None: _UpperCamelCase : Tuple = z_q.view(__a ) # reshape back to match original input shape _UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int: _UpperCamelCase : Dict = parameters _UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 ) _UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 ) _UpperCamelCase : Union[str, Any] = deterministic _UpperCamelCase : Dict = torch.exp(0.5 * self.logvar ) _UpperCamelCase : Any = torch.exp(self.logvar ) if self.deterministic: _UpperCamelCase : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype _UpperCamelCase : List[Any] = randn_tensor( self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCamelCase : List[Any] = self.mean + self.std * sample return x def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int: if self.deterministic: return torch.Tensor([0.0] ) _UpperCamelCase : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: return self.mean
51
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , __a : list[int] ) -> None: _UpperCamelCase : Tuple = len(__a ) _UpperCamelCase : Dict = [0] * len_array if len_array > 0: _UpperCamelCase : Optional[Any] = array[0] for i in range(1 , __a ): _UpperCamelCase : Tuple = self.prefix_sum[i - 1] + array[i] def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> bool: _UpperCamelCase : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__a ) return False if __name__ == "__main__": import doctest doctest.testmod()
51
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[int] = None if token is not None: _UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) _UpperCamelCase : Any = "636036" _UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' _UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json() return result["workflow_runs"] def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ ) _UpperCamelCase : Tuple = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCamelCase : Union[str, Any] = workflow_run["id"] break return workflow_run_id def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: _UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCamelCase : Dict = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = {} for artifact_name in artifact_names: _UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' ) if os.path.isfile(lowercase_ ): _UpperCamelCase : int = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: _UpperCamelCase : int = f.read().decode("UTF-8" ) return results
51
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
"""simple docstring""" import math class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int: _UpperCamelCase : List[Any] = 0.0 _UpperCamelCase : Union[str, Any] = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]: for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase : List[Any] = SelfOrganizingMap() _UpperCamelCase : int = 3 _UpperCamelCase : List[Any] = 0.5 for _ in range(lowercase_ ): for j in range(len(lowercase_ ) ): # training sample _UpperCamelCase : int = training_samples[j] # Compute the winning vector _UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # Update the winning vector _UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) # classify test sample _UpperCamelCase : Optional[int] = [0, 0, 0, 1] _UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
51
1
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = "MCTCTFeatureExtractor" SCREAMING_SNAKE_CASE__ :Tuple = "AutoTokenizer" def __init__( self : Tuple , __a : Tuple , __a : str ) -> str: super().__init__(__a , __a ) _UpperCamelCase : Tuple = self.feature_extractor _UpperCamelCase : Union[str, Any] = False def __call__( self : int , *__a : Tuple , **__a : Dict ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__a , **__a ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) _UpperCamelCase : List[Any] = kwargs.pop("raw_speech" ) else: _UpperCamelCase : str = kwargs.pop("audio" , __a ) _UpperCamelCase : Optional[int] = kwargs.pop("sampling_rate" , __a ) _UpperCamelCase : List[str] = kwargs.pop("text" , __a ) if len(__a ) > 0: _UpperCamelCase : Dict = args[0] _UpperCamelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _UpperCamelCase : Optional[int] = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) if text is not None: _UpperCamelCase : Union[str, Any] = self.tokenizer(__a , **__a ) if text is None: return inputs elif audio is None: return encodings else: _UpperCamelCase : str = encodings["input_ids"] return inputs def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , *__a : str , **__a : Any ) -> str: return self.tokenizer.batch_decode(*__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *__a : Optional[Any] , **__a : Optional[Any] ) -> Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__a , **__a ) _UpperCamelCase : List[Any] = kwargs.pop("input_features" , __a ) _UpperCamelCase : Dict = kwargs.pop("labels" , __a ) if len(__a ) > 0: _UpperCamelCase : str = args[0] _UpperCamelCase : Union[str, Any] = args[1:] if input_features is not None: _UpperCamelCase : Dict = self.feature_extractor.pad(__a , *__a , **__a ) if labels is not None: _UpperCamelCase : List[str] = self.tokenizer.pad(__a , **__a ) if labels is None: return input_features elif input_features is None: return labels else: _UpperCamelCase : int = labels["input_ids"] return input_features def __SCREAMING_SNAKE_CASE ( self : List[Any] , *__a : List[str] , **__a : List[Any] ) -> Any: return self.tokenizer.decode(*__a , **__a ) @contextmanager def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : List[str] = self.tokenizer yield _UpperCamelCase : Optional[int] = self.feature_extractor _UpperCamelCase : int = False
51
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase__ = "src/transformers" lowerCamelCase__ = "docs/source/en" lowerCamelCase__ = "." def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f: _UpperCamelCase : Union[str, Any] = f.readlines() # Find the start prompt. _UpperCamelCase : Dict = 0 while not lines[start_index].startswith(lowercase_ ): start_index += 1 start_index += 1 _UpperCamelCase : Optional[int] = start_index while not lines[end_index].startswith(lowercase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ ) return [m.group(0 ) for m in matches] def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ ) _UpperCamelCase : Union[str, Any] = (width - text_length) // 2 _UpperCamelCase : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : str = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : str = collections.defaultdict(lowercase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowercase_ ): _UpperCamelCase : List[str] = None if attr_name.endswith("Tokenizer" ): _UpperCamelCase : Tuple = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _UpperCamelCase : Optional[Any] = fast_tokenizers _UpperCamelCase : List[str] = attr_name[:-13] elif _re_tf_models.match(lowercase_ ) is not None: _UpperCamelCase : List[Any] = tf_models _UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0] elif _re_flax_models.match(lowercase_ ) is not None: _UpperCamelCase : Dict = flax_models _UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0] elif _re_pt_models.match(lowercase_ ) is not None: _UpperCamelCase : Optional[int] = pt_models _UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0] if lookup_dict is not None: while len(lowercase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Dict = True break # Try again after removing the last word in the name _UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] ) # Let's build that table! _UpperCamelCase : Any = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns] _UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"} for name in model_names: _UpperCamelCase : Optional[int] = model_name_to_prefix[name] _UpperCamelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" return table def lowercase__ ( lowercase_=False ) -> List[Any]: """simple docstring""" _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file( filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,) _UpperCamelCase : Any = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = 0 _UpperCamelCase : List[str] = len(lowercase_ ) for i in range(n - 1 ): for j in range(i + 1 ,lowercase_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" if len(lowercase_ ) <= 1: return arr, 0 _UpperCamelCase : Union[str, Any] = len(lowercase_ ) // 2 _UpperCamelCase : Union[str, Any] = arr[0:mid] _UpperCamelCase : Optional[int] = arr[mid:] _UpperCamelCase, _UpperCamelCase : Dict = count_inversions_recursive(lowercase_ ) _UpperCamelCase, _UpperCamelCase : Optional[int] = count_inversions_recursive(lowercase_ ) _UpperCamelCase, _UpperCamelCase : str = _count_cross_inversions(lowercase_ ,lowercase_ ) _UpperCamelCase : Union[str, Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Tuple = [] _UpperCamelCase : str = 0 while i < len(lowercase_ ) and j < len(lowercase_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowercase_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowercase_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowercase__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Tuple = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _UpperCamelCase : Tuple = count_inversions_bf(lowercase_ ) _UpperCamelCase, _UpperCamelCase : Dict = count_inversions_recursive(lowercase_ ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " ,lowercase_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _UpperCamelCase : Union[str, Any] = count_inversions_bf(lowercase_ ) _UpperCamelCase, _UpperCamelCase : Tuple = count_inversions_recursive(lowercase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " ,lowercase_ ) # an empty list should also have zero inversions _UpperCamelCase : str = [] _UpperCamelCase : Dict = count_inversions_bf(lowercase_ ) _UpperCamelCase, _UpperCamelCase : List[Any] = count_inversions_recursive(lowercase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " ,lowercase_ ) if __name__ == "__main__": main()
51
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]: """simple docstring""" _UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] ) return (item, float(lowercase_ )) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]: """simple docstring""" _UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 ) _UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] _UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = list(lowercase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _UpperCamelCase : int = random.choice(lowercase_ ) return "".join(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]: """simple docstring""" _UpperCamelCase : Optional[Any] = [] # Generate more children proportionally to the fitness score. _UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1 _UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n for _ in range(lowercase_ ): _UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0] _UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ ) # Append new string to the population list. pop.append(mutate(lowercase_ ,lowercase_ ) ) pop.append(mutate(lowercase_ ,lowercase_ ) ) return pop def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowercase_ ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCamelCase : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowercase_ ) # Generate random starting population. _UpperCamelCase : Union[str, Any] = [] for _ in range(lowercase_ ): population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCamelCase, _UpperCamelCase : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population] # Check if there is a matching evolution. _UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCamelCase : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase_ ) # Normalize population score to be between 0 and 1. _UpperCamelCase : str = [ (item, score / len(lowercase_ )) for item, score in population_score ] # This is selection for i in range(lowercase_ ): population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase__ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase__ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
51
1
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCamelCase__ = pytest.mark.integration @require_faiss class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: _UpperCamelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__a ) for x in np.arange(30 ).tolist()]} ) return dset def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: import faiss _UpperCamelCase : Dataset = self._create_dummy_dataset() _UpperCamelCase : Union[str, Any] = dset.map( lambda __a , __a : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__a , keep_in_memory=__a ) _UpperCamelCase : Dict = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) _UpperCamelCase, _UpperCamelCase : Any = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: import faiss _UpperCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) _UpperCamelCase, _UpperCamelCase : str = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: import faiss _UpperCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) _UpperCamelCase, _UpperCamelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: _UpperCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__a , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: from elasticsearch import Elasticsearch _UpperCamelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: _UpperCamelCase : Tuple = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) _UpperCamelCase : Any = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} _UpperCamelCase : Dict = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__a ) _UpperCamelCase, _UpperCamelCase : Dict = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: import faiss _UpperCamelCase : List[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query _UpperCamelCase : Optional[int] = np.zeros(5 , dtype=np.floataa ) _UpperCamelCase : Dict = 1 _UpperCamelCase, _UpperCamelCase : Optional[Any] = index.search(__a ) self.assertRaises(__a , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries _UpperCamelCase : Optional[int] = np.eye(5 , dtype=np.floataa )[::-1] _UpperCamelCase, _UpperCamelCase : Optional[Any] = index.search_batch(__a ) self.assertRaises(__a , index.search_batch , queries[0] ) _UpperCamelCase : str = [scores[0] for scores in total_scores] _UpperCamelCase : Optional[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: import faiss _UpperCamelCase : str = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) _UpperCamelCase : Any = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__a ): _UpperCamelCase : List[Any] = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: import faiss _UpperCamelCase : List[Any] = faiss.IndexFlat(5 ) _UpperCamelCase : Union[str, Any] = FaissIndex(custom_index=__a ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: import faiss _UpperCamelCase : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file: index.save(tmp_file.name ) _UpperCamelCase : str = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) _UpperCamelCase : Dict = np.zeros(5 , dtype=np.floataa ) _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase, _UpperCamelCase : Tuple = index.search(__a ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowercase__ ( lowercase_ ) -> str: """simple docstring""" import faiss _UpperCamelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) _UpperCamelCase : Any = "index.faiss" _UpperCamelCase : List[Any] = F'''mock://{index_name}''' index.save(lowercase_ ,storage_options=mockfs.storage_options ) _UpperCamelCase : int = FaissIndex.load(lowercase_ ,storage_options=mockfs.storage_options ) _UpperCamelCase : Dict = np.zeros(5 ,dtype=np.floataa ) _UpperCamelCase : str = 1 _UpperCamelCase, _UpperCamelCase : Tuple = index.search(lowercase_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: _UpperCamelCase : List[Any] = Elasticsearch() _UpperCamelCase : Optional[int] = {"acknowledged": True} _UpperCamelCase : Union[str, Any] = ElasticSearchIndex(es_client=__a ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query _UpperCamelCase : Tuple = "foo" _UpperCamelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} _UpperCamelCase, _UpperCamelCase : Optional[int] = index.search(__a ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout _UpperCamelCase : List[Any] = "foo" _UpperCamelCase : List[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} _UpperCamelCase, _UpperCamelCase : Any = index.search(__a , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries _UpperCamelCase : Tuple = ["foo", "bar", "foobar"] _UpperCamelCase : List[str] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} _UpperCamelCase, _UpperCamelCase : Optional[int] = index.search_batch(__a ) _UpperCamelCase : str = [scores[0] for scores in total_scores] _UpperCamelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([1, 1, 1] , __a ) # batched queries with timeout _UpperCamelCase : Optional[int] = ["foo", "bar", "foobar"] _UpperCamelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} _UpperCamelCase, _UpperCamelCase : Dict = index.search_batch(__a , request_timeout=30 ) _UpperCamelCase : Dict = [scores[0] for scores in total_scores] _UpperCamelCase : Optional[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([1, 1, 1] , __a )
51
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ["model.decoder.embed_positions.weights"] def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if "emb" in name: _UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" ) if "transformer" in name: _UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" ) if "cross_attention" in name: _UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" ) if "linear1" in name: _UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" ) if "linear2" in name: _UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" ) if "norm1" in name: _UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" ) if "norm_cross" in name: _UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" ) if "norm2" in name: _UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" ) if "out_norm" in name: _UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" ) if "linears" in name: _UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]: """simple docstring""" _UpperCamelCase : str = list(state_dict.keys() ) _UpperCamelCase : Optional[Any] = {} for key in keys: _UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ ) _UpperCamelCase : List[Any] = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCamelCase : Tuple = val[:hidden_size, :] _UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _UpperCamelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCamelCase : Optional[Any] = val else: _UpperCamelCase : List[str] = val return state_dict, enc_dec_proj_state_dict def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values _UpperCamelCase : List[Any] = 1_024 _UpperCamelCase : List[str] = 24 _UpperCamelCase : Any = 16 elif checkpoint == "medium": _UpperCamelCase : Tuple = 1_536 _UpperCamelCase : Dict = 48 _UpperCamelCase : Tuple = 24 elif checkpoint == "large": _UpperCamelCase : int = 2_048 _UpperCamelCase : Optional[int] = 48 _UpperCamelCase : Dict = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _UpperCamelCase : str = MusicgenDecoderConfig( hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,) return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]: """simple docstring""" _UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ ) _UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ ) _UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict() _UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict( lowercase_ ,hidden_size=decoder_config.hidden_size ) _UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" ) _UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowercase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass _UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) _UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): _UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" ) _UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) # set the appropriate bos/pad token ids _UpperCamelCase : str = 2_048 _UpperCamelCase : str = 2_048 # set other default generation config params _UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate ) _UpperCamelCase : List[str] = True _UpperCamelCase : int = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowerCamelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
51
1
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowercase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "-m" ,"--pretrained_model_name_or_path" ,type=lowercase_ ,default=lowercase_ ,required=lowercase_ ,help="Path to pretrained model or model identifier from huggingface.co/models." ,) parser.add_argument( "-c" ,"--caption" ,type=lowercase_ ,default="robotic cat with wings" ,help="Text used to generate images." ,) parser.add_argument( "-n" ,"--images_num" ,type=lowercase_ ,default=4 ,help="How much images to generate." ,) parser.add_argument( "-s" ,"--seed" ,type=lowercase_ ,default=42 ,help="Seed for random process." ,) parser.add_argument( "-ci" ,"--cuda_id" ,type=lowercase_ ,default=0 ,help="cuda_id." ,) _UpperCamelCase : Union[str, Any] = parser.parse_args() return args def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" if not len(lowercase_ ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) _UpperCamelCase, _UpperCamelCase : int = imgs[0].size _UpperCamelCase : Optional[int] = Image.new("RGB" ,size=(cols * w, rows * h) ) _UpperCamelCase, _UpperCamelCase : List[str] = grid.size for i, img in enumerate(lowercase_ ): grid.paste(lowercase_ ,box=(i % cols * w, i // cols * h) ) return grid def lowercase__ ( lowercase_ ,lowercase_="robotic cat with wings" ,lowercase_=7.5 ,lowercase_=50 ,lowercase_=1 ,lowercase_=42 ,) -> Any: """simple docstring""" _UpperCamelCase : List[Any] = torch.Generator(pipeline.device ).manual_seed(lowercase_ ) _UpperCamelCase : Optional[Any] = pipeline( lowercase_ ,guidance_scale=lowercase_ ,num_inference_steps=lowercase_ ,generator=lowercase_ ,num_images_per_prompt=lowercase_ ,).images _UpperCamelCase : List[Any] = int(math.sqrt(lowercase_ ) ) _UpperCamelCase : Any = image_grid(lowercase_ ,rows=_rows ,cols=num_images_per_prompt // _rows ) return grid, images lowerCamelCase__ = parse_args() # Load models and create wrapper for stable diffusion lowerCamelCase__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") lowerCamelCase__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") lowerCamelCase__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") lowerCamelCase__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") lowerCamelCase__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowerCamelCase__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): lowerCamelCase__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: lowerCamelCase__ = unet.to(torch.device("cuda", args.cuda_id)) lowerCamelCase__ = pipeline.to(unet.device) lowerCamelCase__ , lowerCamelCase__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) lowerCamelCase__ = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
51
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase__ = input("Enter image url: ").strip() print(f"""Downloading image from {url} ...""") lowerCamelCase__ = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase__ = soup.find("meta", {"property": "og:image"})["content"] lowerCamelCase__ = requests.get(image_url).content lowerCamelCase__ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, "wb") as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
51
1
"""simple docstring""" import math import sys def lowercase__ ( lowercase_ ) -> int: """simple docstring""" if number != int(lowercase_ ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 _UpperCamelCase : Optional[int] = [-1] * (number + 1) _UpperCamelCase : List[str] = 0 for i in range(1 ,number + 1 ): _UpperCamelCase : List[str] = sys.maxsize _UpperCamelCase : Optional[int] = int(math.sqrt(lowercase_ ) ) for j in range(1 ,root + 1 ): _UpperCamelCase : str = 1 + answers[i - (j**2)] _UpperCamelCase : Union[str, Any] = min(lowercase_ ,lowercase_ ) _UpperCamelCase : Optional[int] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) _UpperCamelCase : str = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )] _UpperCamelCase : List[str] = ".".join(lowercase_ ) return test_module_path def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_module_path(lowercase_ ) _UpperCamelCase : str = importlib.import_module(lowercase_ ) return test_module def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[Any] = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowercase_ ,lowercase_ ) ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Any = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): _UpperCamelCase : int = getattr(lowercase_ ,lowercase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] ) if len(lowercase_ ) > 0: test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Dict = get_test_classes(lowercase_ ) _UpperCamelCase : int = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = test_class() if hasattr(lowercase_ ,"setUp" ): test.setUp() _UpperCamelCase : Tuple = None if hasattr(lowercase_ ,"model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCamelCase : Tuple = test.model_tester.__class__ return model_tester def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = get_test_classes(lowercase_ ) _UpperCamelCase : Dict = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = [] for test_class in test_classes: _UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ ) if tester_class is not None: tester_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Any = get_test_classes(lowercase_ ) _UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes} return test_tester_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Optional[int] = { model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_test_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Tuple = { model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_to_tester_mapping def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" if isinstance(lowercase_ ,lowercase_ ): return o elif isinstance(lowercase_ ,lowercase_ ): return o.__name__ elif isinstance(lowercase_ ,(list, tuple) ): return [to_json(lowercase_ ) for x in o] elif isinstance(lowercase_ ,lowercase_ ): return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()} else: return o
51
1
"""simple docstring""" from manim import * class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: _UpperCamelCase : int = Rectangle(height=0.5 , width=0.5 ) _UpperCamelCase : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _UpperCamelCase : Optional[int] = [mem.copy() for i in range(6 )] _UpperCamelCase : Optional[int] = [mem.copy() for i in range(6 )] _UpperCamelCase : Optional[Any] = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : Union[str, Any] = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : int = VGroup(__a , __a ).arrange(__a , buff=0 ) _UpperCamelCase : Any = Text("CPU" , font_size=24 ) _UpperCamelCase : List[str] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) _UpperCamelCase : Optional[int] = [mem.copy() for i in range(4 )] _UpperCamelCase : Optional[int] = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : Dict = Text("GPU" , font_size=24 ) _UpperCamelCase : Optional[Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) gpu.move_to([-1, -1, 0] ) self.add(__a ) _UpperCamelCase : Tuple = [mem.copy() for i in range(6 )] _UpperCamelCase : Dict = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : str = Text("Model" , font_size=24 ) _UpperCamelCase : Any = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.add(__a ) _UpperCamelCase : Any = [] for i, rect in enumerate(__a ): rect.set_stroke(__a ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _UpperCamelCase : Optional[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__a , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__a , buff=0.0 ) self.add(__a ) cpu_targs.append(__a ) _UpperCamelCase : List[Any] = [mem.copy() for i in range(6 )] _UpperCamelCase : str = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : Any = Text("Loaded Checkpoint" , font_size=24 ) _UpperCamelCase : List[str] = Group(__a , __a ).arrange(__a , aligned_edge=__a , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _UpperCamelCase : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCamelCase : Optional[Any] = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__a , __a ) _UpperCamelCase : Dict = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _UpperCamelCase : Optional[int] = MarkupText( F'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__a ) , Write(__a ) ) self.play(Write(__a , run_time=1 ) , Create(__a , run_time=1 ) ) _UpperCamelCase : Optional[int] = [] _UpperCamelCase : List[str] = [] for i, rect in enumerate(__a ): _UpperCamelCase : int = fill.copy().set_fill(__a , opacity=0.7 ) target.move_to(__a ) first_animations.append(GrowFromCenter(__a , run_time=1 ) ) _UpperCamelCase : Tuple = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__a , run_time=1.5 ) ) self.play(*__a ) self.play(*__a ) self.wait()
51
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
51
1
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): lowerCamelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowerCamelCase__ = 12_8022 lowerCamelCase__ = 12_8028 @require_sentencepiece class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = MaMaaaTokenizer SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :Tuple = False SCREAMING_SNAKE_CASE__ :str = True def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().setUp() _UpperCamelCase : List[Any] = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _UpperCamelCase : Dict = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : List[str] = Path(self.tmpdirname ) save_json(__a , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__a , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _UpperCamelCase : Tuple = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Dict , **__a : Dict ) -> Optional[int]: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Union[str, Any] ) -> int: return ( "This is a test", "This is a test", ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: _UpperCamelCase : List[str] = "</s>" _UpperCamelCase : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Tuple = self.get_tokenizer() _UpperCamelCase : str = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(__a ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: pass def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : Optional[int] = self.get_tokenizer() _UpperCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [2, 3, 4, 5, 6] , ) _UpperCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) _UpperCamelCase : Any = tokenizer.convert_tokens_to_string(__a ) self.assertEqual(__a , "This is a test" ) @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: # fmt: off _UpperCamelCase : List[Any] = {"input_ids": [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = "facebook/m2m100_418M" SCREAMING_SNAKE_CASE__ :Union[str, Any] = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] SCREAMING_SNAKE_CASE__ :Optional[int] = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off SCREAMING_SNAKE_CASE__ :int = [EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2] @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] ) -> str: _UpperCamelCase : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _UpperCamelCase : Union[str, Any] = 1 return cls def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 12_8063 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = self.tokenizer.get_vocab() self.assertEqual(len(__a ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , __a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: _UpperCamelCase : Union[str, Any] = "en" _UpperCamelCase : Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: self.assertIn(__a , self.tokenizer.all_special_ids ) # fmt: off _UpperCamelCase : Union[str, Any] = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on _UpperCamelCase : Dict = self.tokenizer.decode(__a , skip_special_tokens=__a ) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: _UpperCamelCase : Tuple = tempfile.mkdtemp() _UpperCamelCase : List[str] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(__a ) _UpperCamelCase : int = MaMaaaTokenizer.from_pretrained(__a ) self.assertDictEqual(new_tok.lang_token_to_id , __a ) @require_torch def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: _UpperCamelCase : Optional[Any] = "en" _UpperCamelCase : int = "fr" _UpperCamelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__a , return_tensors="pt" ) _UpperCamelCase : Optional[int] = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _UpperCamelCase : Any = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Any = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _UpperCamelCase : Optional[int] = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: _UpperCamelCase : Any = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _UpperCamelCase : List[str] = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase : Union[str, Any] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(__a ) , { # en_XX, A, test, EOS "input_ids": [[12_8022, 58, 4183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 12_8006, } , )
51
"""simple docstring""" lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> Dict: """simple docstring""" if not head: return True # split the list to two parts _UpperCamelCase, _UpperCamelCase : Tuple = head.next, head while fast and fast.next: _UpperCamelCase : List[str] = fast.next.next _UpperCamelCase : Tuple = slow.next _UpperCamelCase : Tuple = slow.next _UpperCamelCase : Any = None # Don't forget here! But forget still works! # reverse the second part _UpperCamelCase : List[Any] = None while second: _UpperCamelCase : Optional[int] = second.next _UpperCamelCase : List[str] = node _UpperCamelCase : List[Any] = second _UpperCamelCase : List[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _UpperCamelCase : str = node.next _UpperCamelCase : Tuple = head.next return True def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) _UpperCamelCase : Dict = head while fast and fast.next: _UpperCamelCase, _UpperCamelCase : Union[str, Any] = fast.next.next, slow.next # 2. Push the second half into the stack _UpperCamelCase : str = [slow.val] while slow.next: _UpperCamelCase : Dict = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _UpperCamelCase : Any = cur.next return True def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if not head or not head.next: return True _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : List[Any] = 0 while head: if head.val in d: d[head.val].append(lowercase_ ) else: _UpperCamelCase : List[str] = [pos] _UpperCamelCase : Optional[int] = head.next pos += 1 _UpperCamelCase : Tuple = pos - 1 _UpperCamelCase : List[str] = 0 for v in d.values(): if len(lowercase_ ) % 2 != 0: middle += 1 else: _UpperCamelCase : Dict = 0 for i in range(0 ,len(lowercase_ ) ): if v[i] + v[len(lowercase_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
51
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: _UpperCamelCase : Tuple = tempfile.mkdtemp() _UpperCamelCase : str = 5 # Realm tok _UpperCamelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) _UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : Any = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : int = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=__a , ) return block_records def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : Tuple = self.get_config() _UpperCamelCase : int = self.get_dummy_retriever() _UpperCamelCase : Tuple = retriever.tokenizer _UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" ) _UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : List[str] = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : str = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Any = self.get_config() _UpperCamelCase : Dict = self.get_dummy_retriever() _UpperCamelCase : Dict = retriever.tokenizer _UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" ) _UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : str = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : Union[str, Any] = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCamelCase : List[Any] = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
51
1
"""simple docstring""" from __future__ import annotations from typing import TypedDict class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str SCREAMING_SNAKE_CASE__ :int def lowercase__ ( lowercase_ ) -> list[str]: """simple docstring""" if not isinstance(lowercase_ ,lowercase_ ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(lowercase_ ) )] def lowercase__ ( lowercase_ ) -> BWTTransformDict: """simple docstring""" if not isinstance(lowercase_ ,lowercase_ ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) _UpperCamelCase : str = all_rotations(lowercase_ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _UpperCamelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(lowercase_ ), } return response def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" if not isinstance(lowercase_ ,lowercase_ ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: _UpperCamelCase : str = int(lowercase_ ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(lowercase_ ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) _UpperCamelCase : Dict = [""] * len(lowercase_ ) for _ in range(len(lowercase_ ) ): for i in range(len(lowercase_ ) ): _UpperCamelCase : str = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ = "Provide a string that I will generate its BWT transform: " lowerCamelCase__ = input(entry_msg).strip() lowerCamelCase__ = bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result["bwt_string"]}'""" ) lowerCamelCase__ = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """ f"""we get original string '{original_string}'""" )
51
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = LEDConfig SCREAMING_SNAKE_CASE__ :str = {} SCREAMING_SNAKE_CASE__ :List[str] = "gelu" def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]: _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : List[str] = batch_size _UpperCamelCase : str = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : str = max_position_embeddings _UpperCamelCase : int = eos_token_id _UpperCamelCase : Dict = pad_token_id _UpperCamelCase : Optional[Any] = bos_token_id _UpperCamelCase : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCamelCase : List[str] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a ) _UpperCamelCase : Union[str, Any] = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) _UpperCamelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple: _UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder() _UpperCamelCase : Tuple = inputs_dict["input_ids"] _UpperCamelCase : int = input_ids[:1, :] _UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :] _UpperCamelCase : List[Any] = 1 # first forward pass _UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0] _UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict: """simple docstring""" if attention_mask is None: _UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :Tuple = True SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : int = TFLEDModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] ) _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : str = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) _UpperCamelCase : Dict = True _UpperCamelCase : str = self.model_tester.seq_length _UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a : Optional[int] ): _UpperCamelCase : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a : Optional[Any] ): _UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] _UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCamelCase : Dict = True _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Any = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: _UpperCamelCase : Optional[Any] = model_class(__a ) _UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase : int = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine _UpperCamelCase : Any = True _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: # TODO: Head-masking not yet implement pass def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return tf.constant(lowercase_ ,dtype=tf.intaa ) lowerCamelCase__ = 1E-4 @slow @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Optional[int] = model(**__a )[0] _UpperCamelCase : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Tuple = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Union[str, Any] = model(**__a )[0] _UpperCamelCase : int = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Optional[int] = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
51
1
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
51
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer SCREAMING_SNAKE_CASE__ :Dict = None SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = True SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().setUp() _UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] _UpperCamelCase : List[str] = {} _UpperCamelCase : Tuple = {} for i, value in enumerate(__a ): _UpperCamelCase : List[str] = i _UpperCamelCase : Optional[Any] = i _UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) _UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(__a , __a , ensure_ascii=__a ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(__a , __a , ensure_ascii=__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: _UpperCamelCase : Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: _UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _UpperCamelCase : Any = {} for i, token in enumerate(__a ): _UpperCamelCase : str = i _UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: _UpperCamelCase : Tuple = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) _UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False _UpperCamelCase : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = ["的", "人", "有"] _UpperCamelCase : int = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = True _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Any = False _UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". _UpperCamelCase : Any = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a ) _UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a ) _UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : int = "你好,你是谁" _UpperCamelCase : Any = tokenizer.tokenize(__a ) _UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a ) _UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a ) _UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a ) _UpperCamelCase : Optional[int] = tokenizer.prepare_for_model( __a , __a , __a , add_special_tokens=__a ) _UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a ) self.assertEqual(__a , __a )
51
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = "yolos" def __init__( self : Dict , __a : Optional[Any]=768 , __a : List[Any]=12 , __a : Any=12 , __a : List[Any]=3072 , __a : Optional[int]="gelu" , __a : Dict=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.02 , __a : Optional[int]=1e-1_2 , __a : List[Any]=[512, 864] , __a : List[str]=16 , __a : str=3 , __a : Optional[Any]=True , __a : Optional[Any]=100 , __a : List[str]=True , __a : Any=False , __a : List[str]=1 , __a : str=5 , __a : Optional[Any]=2 , __a : Tuple=5 , __a : Any=2 , __a : Union[str, Any]=0.1 , **__a : List[str] , ) -> List[str]: super().__init__(**__a ) _UpperCamelCase : Dict = hidden_size _UpperCamelCase : Any = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Tuple = image_size _UpperCamelCase : Tuple = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : Any = qkv_bias _UpperCamelCase : str = num_detection_tokens _UpperCamelCase : str = use_mid_position_embeddings _UpperCamelCase : List[str] = auxiliary_loss # Hungarian matcher _UpperCamelCase : List[Any] = class_cost _UpperCamelCase : int = bbox_cost _UpperCamelCase : Optional[int] = giou_cost # Loss coefficients _UpperCamelCase : List[Any] = bbox_loss_coefficient _UpperCamelCase : str = giou_loss_coefficient _UpperCamelCase : Dict = eos_coefficient class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float: return 1e-4 @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return 12
51
1
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCamelCase__ = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" lowerCamelCase__ = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" lowerCamelCase__ = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_="binary" ) -> str: """simple docstring""" _UpperCamelCase : Tuple = simple_accuracy(lowercase_ ,lowercase_ ) _UpperCamelCase : Union[str, Any] = float(fa_score(y_true=lowercase_ ,y_pred=lowercase_ ,average=lowercase_ ) ) return { "accuracy": acc, "f1": fa, } def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = {} for id_pred, label in zip(lowercase_ ,lowercase_ ): _UpperCamelCase : int = F'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' _UpperCamelCase : List[Any] = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _UpperCamelCase : int = [(pred, label)] _UpperCamelCase, _UpperCamelCase : Optional[Any] = [], [] for question, preds_labels in question_map.items(): _UpperCamelCase, _UpperCamelCase : str = zip(*lowercase_ ) _UpperCamelCase : Optional[Any] = fa_score(y_true=lowercase_ ,y_pred=lowercase_ ,average="macro" ) fas.append(lowercase_ ) _UpperCamelCase : List[Any] = int(sum(pred == label for pred, label in preds_labels ) == len(lowercase_ ) ) ems.append(lowercase_ ) _UpperCamelCase : Optional[Any] = float(sum(lowercase_ ) / len(lowercase_ ) ) _UpperCamelCase : int = sum(lowercase_ ) / len(lowercase_ ) _UpperCamelCase : Union[str, Any] = float(fa_score(y_true=lowercase_ ,y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def __SCREAMING_SNAKE_CASE ( self : str ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def __SCREAMING_SNAKE_CASE ( self : Any , __a : Dict , __a : Dict ) -> List[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__a , __a )} elif self.config_name == "cb": return acc_and_fa(__a , __a , fa_avg="macro" ) elif self.config_name == "record": _UpperCamelCase : Optional[Any] = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] _UpperCamelCase : Optional[int] = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(__a , __a )[0] elif self.config_name == "multirc": return evaluate_multirc(__a , __a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__a , __a )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
51
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCamelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase] lowerCamelCase__ = {ord(char) for char in VALID_CHARS} lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None: """simple docstring""" _UpperCamelCase : str = "" _UpperCamelCase : int _UpperCamelCase : int _UpperCamelCase : int for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ): _UpperCamelCase : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase_ ) return decoded def lowercase__ ( lowercase_ ) -> list[str]: """simple docstring""" _UpperCamelCase : list[str] = [] for key in product(lowercase_ ,repeat=3 ): _UpperCamelCase : int = try_key(lowercase_ ,lowercase_ ) if encoded is not None: possibles.append(lowercase_ ) return possibles def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int: """simple docstring""" _UpperCamelCase : list[int] _UpperCamelCase : list[str] _UpperCamelCase : str _UpperCamelCase : str _UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" ) _UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )] _UpperCamelCase : List[str] = filter_valid_chars(lowercase_ ) for common_word in COMMON_WORDS: _UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ ) if len(lowercase_ ) == 1: break _UpperCamelCase : Union[str, Any] = possibles[0] return sum(ord(lowercase_ ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
51
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ) -> None: """simple docstring""" _UpperCamelCase : List[Any] = len(lowercase_ ) print("The following activities are selected:" ) # The first activity is always selected _UpperCamelCase : List[Any] = 0 print(lowercase_ ,end="," ) # Consider rest of the activities for j in range(lowercase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase_ ,end="," ) _UpperCamelCase : Optional[Any] = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = [1, 3, 0, 5, 8, 5] lowerCamelCase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
51
1
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowerCamelCase__ = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
51
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict: super().__init__() _UpperCamelCase : List[str] = layers_per_block _UpperCamelCase : Dict = torch.nn.Convad( __a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : int = None _UpperCamelCase : Any = nn.ModuleList([] ) # down _UpperCamelCase : List[str] = block_out_channels[0] for i, down_block_type in enumerate(__a ): _UpperCamelCase : Tuple = output_channel _UpperCamelCase : int = block_out_channels[i] _UpperCamelCase : int = i == len(__a ) - 1 _UpperCamelCase : Dict = get_down_block( __a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , ) self.down_blocks.append(__a ) # mid _UpperCamelCase : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # out _UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : Any = nn.SiLU() _UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels _UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 ) _UpperCamelCase : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]: _UpperCamelCase : int = x _UpperCamelCase : Optional[int] = self.conv_in(__a ) if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Tuple ): def custom_forward(*__a : Any ): return module(*__a ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , use_reentrant=__a ) # middle _UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , use_reentrant=__a ) else: for down_block in self.down_blocks: _UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a ) # middle _UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a ) else: # down for down_block in self.down_blocks: _UpperCamelCase : int = down_block(__a ) # middle _UpperCamelCase : int = self.mid_block(__a ) # post-process _UpperCamelCase : Any = self.conv_norm_out(__a ) _UpperCamelCase : Any = self.conv_act(__a ) _UpperCamelCase : Optional[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str: super().__init__() _UpperCamelCase : List[Any] = layers_per_block _UpperCamelCase : Tuple = nn.Convad( __a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = nn.ModuleList([] ) _UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None # mid _UpperCamelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # up _UpperCamelCase : List[str] = list(reversed(__a ) ) _UpperCamelCase : int = reversed_block_out_channels[0] for i, up_block_type in enumerate(__a ): _UpperCamelCase : int = output_channel _UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i] _UpperCamelCase : Optional[Any] = i == len(__a ) - 1 _UpperCamelCase : Union[str, Any] = get_up_block( __a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , ) self.up_blocks.append(__a ) _UpperCamelCase : Optional[Any] = output_channel # out if norm_type == "spatial": _UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a ) else: _UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : str = nn.SiLU() _UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 ) _UpperCamelCase : Dict = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple: _UpperCamelCase : List[str] = z _UpperCamelCase : Dict = self.conv_in(__a ) _UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Any ): def custom_forward(*__a : Tuple ): return module(*__a ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle _UpperCamelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a ) _UpperCamelCase : Optional[int] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , __a , use_reentrant=__a ) else: # middle _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a ) _UpperCamelCase : Union[str, Any] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a ) else: # middle _UpperCamelCase : str = self.mid_block(__a , __a ) _UpperCamelCase : int = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : Any = up_block(__a , __a ) # post-process if latent_embeds is None: _UpperCamelCase : List[str] = self.conv_norm_out(__a ) else: _UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a ) _UpperCamelCase : Tuple = self.conv_act(__a ) _UpperCamelCase : List[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]: super().__init__() _UpperCamelCase : Tuple = n_e _UpperCamelCase : Tuple = vq_embed_dim _UpperCamelCase : Union[str, Any] = beta _UpperCamelCase : str = legacy _UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCamelCase : Any = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) _UpperCamelCase : Dict = self.used.shape[0] _UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase : Optional[int] = self.re_embed _UpperCamelCase : Any = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: _UpperCamelCase : Union[str, Any] = n_e _UpperCamelCase : List[str] = sane_index_shape def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]: _UpperCamelCase : str = inds.shape assert len(__a ) > 1 _UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[Any] = self.used.to(__a ) _UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase : Optional[Any] = match.argmax(-1 ) _UpperCamelCase : Any = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCamelCase : Dict = self.unknown_index return new.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]: _UpperCamelCase : int = inds.shape assert len(__a ) > 1 _UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[int] = self.used.to(__a ) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase : int = 0 # simply set to zero _UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a ) return back.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]: # reshape z -> (batch, height, width, channel) and flatten _UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCamelCase : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 ) _UpperCamelCase : int = self.embedding(__a ).view(z.shape ) _UpperCamelCase : str = None _UpperCamelCase : Any = None # compute loss for embedding if not self.legacy: _UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCamelCase : List[str] = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCamelCase : Dict = self.remap_to_used(__a ) _UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: _UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCamelCase : str = self.unmap_to_all(__a ) _UpperCamelCase : int = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCamelCase : Optional[int] = self.embedding(__a ) if shape is not None: _UpperCamelCase : Tuple = z_q.view(__a ) # reshape back to match original input shape _UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int: _UpperCamelCase : Dict = parameters _UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 ) _UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 ) _UpperCamelCase : Union[str, Any] = deterministic _UpperCamelCase : Dict = torch.exp(0.5 * self.logvar ) _UpperCamelCase : Any = torch.exp(self.logvar ) if self.deterministic: _UpperCamelCase : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype _UpperCamelCase : List[Any] = randn_tensor( self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCamelCase : List[Any] = self.mean + self.std * sample return x def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int: if self.deterministic: return torch.Tensor([0.0] ) _UpperCamelCase : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: return self.mean
51
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE__ :Dict = "CLIPImageProcessor" SCREAMING_SNAKE_CASE__ :List[str] = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : Union[str, Any] , __a : Any=None , __a : Dict=None , **__a : Dict ) -> Optional[Any]: _UpperCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _UpperCamelCase : Dict = kwargs.pop("feature_extractor" ) _UpperCamelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : Union[str, Any] , __a : Tuple=None , __a : Optional[int]=None , __a : Dict=None , **__a : List[str] ) -> Dict: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _UpperCamelCase : Optional[int] = self.tokenizer(__a , return_tensors=__a , **__a ) if images is not None: _UpperCamelCase : str = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None and images is not None: _UpperCamelCase : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , *__a : Tuple , **__a : Tuple ) -> Any: return self.tokenizer.batch_decode(*__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , *__a : List[Any] , **__a : Dict ) -> Dict: return self.tokenizer.decode(*__a , **__a ) @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: _UpperCamelCase : Tuple = self.tokenizer.model_input_names _UpperCamelCase : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
51
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"summary": Value("string" )} ) SCREAMING_SNAKE_CASE__ :str = "text" SCREAMING_SNAKE_CASE__ :str = "summary" @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
51
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def lowercase__ ( lowercase_ ) -> list[list[float]]: """simple docstring""" _UpperCamelCase : Dict = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowercase_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _UpperCamelCase : Optional[int] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements _UpperCamelCase : List[Any] = [[0.0, 0.0], [0.0, 0.0]] _UpperCamelCase, _UpperCamelCase : int = matrix[1][1], matrix[0][0] _UpperCamelCase, _UpperCamelCase : List[str] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowercase_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowercase_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _UpperCamelCase : Optional[int] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix _UpperCamelCase : Optional[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _UpperCamelCase : Optional[Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _UpperCamelCase : Optional[int] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _UpperCamelCase : str = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _UpperCamelCase : int = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _UpperCamelCase : Optional[int] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _UpperCamelCase : List[str] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _UpperCamelCase : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _UpperCamelCase : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _UpperCamelCase : List[str] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _UpperCamelCase : str = array(lowercase_ ) for i in range(3 ): for j in range(3 ): _UpperCamelCase : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _UpperCamelCase : List[str] = array(lowercase_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowercase_ ) # Calculate the inverse of the matrix return [[float(d(lowercase_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
51
"""simple docstring""" def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : Union[str, Any] = set() # edges = list of graph's edges _UpperCamelCase : Union[str, Any] = get_edges(lowercase_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCamelCase, _UpperCamelCase : str = edges.pop() chosen_vertices.add(lowercase_ ) chosen_vertices.add(lowercase_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase_ ) return chosen_vertices def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
51
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ["pixel_values"] def __init__( self : List[Any] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , **__a : Any , ) -> None: super().__init__(**__a ) _UpperCamelCase : Any = size if size is not None else {"shortest_edge": 224} _UpperCamelCase : List[Any] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : Optional[Any] = crop_size if crop_size is not None else {"height": 256, "width": 256} _UpperCamelCase : List[Any] = get_size_dict(__a , param_name="crop_size" ) _UpperCamelCase : Optional[Any] = do_resize _UpperCamelCase : Optional[Any] = size _UpperCamelCase : str = resample _UpperCamelCase : Optional[Any] = do_rescale _UpperCamelCase : Optional[int] = rescale_factor _UpperCamelCase : List[Any] = do_center_crop _UpperCamelCase : Union[str, Any] = crop_size _UpperCamelCase : Any = do_flip_channel_order def __SCREAMING_SNAKE_CASE ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PIL.Image.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ) -> np.ndarray: _UpperCamelCase : List[Any] = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) _UpperCamelCase : int = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: _UpperCamelCase : Union[str, Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> Tuple: return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : np.ndarray , __a : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: return flip_channel_order(__a , data_format=__a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : List[str] , ) -> PIL.Image.Image: _UpperCamelCase : Optional[Any] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : List[str] = resample if resample is not None else self.resample _UpperCamelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : Dict = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _UpperCamelCase : Union[str, Any] = size if size is not None else self.size _UpperCamelCase : Optional[int] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : Optional[int] = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : List[Any] = get_size_dict(__a , param_name="crop_size" ) _UpperCamelCase : List[Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. _UpperCamelCase : Tuple = [to_numpy_array(__a ) for image in images] if do_resize: _UpperCamelCase : List[Any] = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: _UpperCamelCase : Union[str, Any] = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: _UpperCamelCase : Optional[int] = [self.rescale(image=__a , scale=__a ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _UpperCamelCase : Optional[int] = [self.flip_channel_order(image=__a ) for image in images] _UpperCamelCase : Optional[int] = [to_channel_dimension_format(__a , __a ) for image in images] _UpperCamelCase : List[str] = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[str] , __a : List[Tuple] = None ) -> List[str]: _UpperCamelCase : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a ) != len(__a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(__a ): _UpperCamelCase : Any = target_sizes.numpy() _UpperCamelCase : Tuple = [] for idx in range(len(__a ) ): _UpperCamelCase : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__a ) _UpperCamelCase : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__a ) else: _UpperCamelCase : Optional[int] = logits.argmax(dim=1 ) _UpperCamelCase : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
51
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["OwlViTFeatureExtractor"] lowerCamelCase__ = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
1
"""simple docstring""" from math import pow def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,) -> tuple[int, int]: """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count _UpperCamelCase : List[Any] = int(pow(lowercase_ ,lowercase_ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n _UpperCamelCase, _UpperCamelCase : Union[str, Any] = backtrack( lowercase_ ,lowercase_ ,current_number + 1 ,lowercase_ ,lowercase_ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. _UpperCamelCase, _UpperCamelCase : int = backtrack( lowercase_ ,lowercase_ ,current_number + 1 ,lowercase_ ,lowercase_ ) return current_sum, solutions_count def lowercase__ ( lowercase_ ,lowercase_ ) -> int: """simple docstring""" if not (1 <= needed_sum <= 1_000 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(lowercase_ ,lowercase_ ,1 ,0 ,0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int: """simple docstring""" _UpperCamelCase : defaultdict = defaultdict(lowercase_ ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _UpperCamelCase : Any = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: _UpperCamelCase : str = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
51
1
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : int = model.config _UpperCamelCase : Optional[int] = DonutSwinConfig( image_size=original_config.input_size ,patch_size=4 ,depths=original_config.encoder_layer ,num_heads=[4, 8, 16, 32] ,window_size=original_config.window_size ,embed_dim=128 ,) _UpperCamelCase : Any = MBartConfig( is_decoder=lowercase_ ,is_encoder_decoder=lowercase_ ,add_cross_attention=lowercase_ ,decoder_layers=original_config.decoder_layer ,max_position_embeddings=original_config.max_position_embeddings ,vocab_size=len( model.decoder.tokenizer ) ,scale_embedding=lowercase_ ,add_final_layer_norm=lowercase_ ,) return encoder_config, decoder_config def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" if "encoder.model" in name: _UpperCamelCase : str = name.replace("encoder.model" ,"encoder" ) if "decoder.model" in name: _UpperCamelCase : Dict = name.replace("decoder.model" ,"decoder" ) if "patch_embed.proj" in name: _UpperCamelCase : List[Any] = name.replace("patch_embed.proj" ,"embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _UpperCamelCase : str = name.replace("patch_embed.norm" ,"embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: _UpperCamelCase : Union[str, Any] = "encoder." + name if "attn.proj" in name: _UpperCamelCase : Any = name.replace("attn.proj" ,"attention.output.dense" ) if "attn" in name and "mask" not in name: _UpperCamelCase : int = name.replace("attn" ,"attention.self" ) if "norm1" in name: _UpperCamelCase : int = name.replace("norm1" ,"layernorm_before" ) if "norm2" in name: _UpperCamelCase : int = name.replace("norm2" ,"layernorm_after" ) if "mlp.fc1" in name: _UpperCamelCase : List[str] = name.replace("mlp.fc1" ,"intermediate.dense" ) if "mlp.fc2" in name: _UpperCamelCase : Optional[Any] = name.replace("mlp.fc2" ,"output.dense" ) if name == "encoder.norm.weight": _UpperCamelCase : Union[str, Any] = "encoder.layernorm.weight" if name == "encoder.norm.bias": _UpperCamelCase : Tuple = "encoder.layernorm.bias" return name def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): _UpperCamelCase : Optional[Any] = orig_state_dict.pop(lowercase_ ) if "qkv" in key: _UpperCamelCase : Tuple = key.split("." ) _UpperCamelCase : Dict = int(key_split[3] ) _UpperCamelCase : Optional[Any] = int(key_split[5] ) _UpperCamelCase : int = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCamelCase : int = val[:dim, :] _UpperCamelCase : Tuple = val[dim : dim * 2, :] _UpperCamelCase : Optional[Any] = val[-dim:, :] else: _UpperCamelCase : Union[str, Any] = val[:dim] _UpperCamelCase : Tuple = val[dim : dim * 2] _UpperCamelCase : Any = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _UpperCamelCase : Dict = val return orig_state_dict def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[str] = DonutModel.from_pretrained(lowercase_ ).eval() # load HuggingFace model _UpperCamelCase, _UpperCamelCase : Dict = get_configs(lowercase_ ) _UpperCamelCase : Dict = DonutSwinModel(lowercase_ ) _UpperCamelCase : int = MBartForCausalLM(lowercase_ ) _UpperCamelCase : str = VisionEncoderDecoderModel(encoder=lowercase_ ,decoder=lowercase_ ) model.eval() _UpperCamelCase : str = original_model.state_dict() _UpperCamelCase : Union[str, Any] = convert_state_dict(lowercase_ ,lowercase_ ) model.load_state_dict(lowercase_ ) # verify results on scanned document _UpperCamelCase : Any = load_dataset("hf-internal-testing/example-documents" ) _UpperCamelCase : Any = dataset["test"][0]["image"].convert("RGB" ) _UpperCamelCase : Dict = XLMRobertaTokenizerFast.from_pretrained(lowercase_ ,from_slow=lowercase_ ) _UpperCamelCase : Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis ,size=original_model.config.input_size[::-1] ) _UpperCamelCase : int = DonutProcessor(lowercase_ ,lowercase_ ) _UpperCamelCase : List[str] = processor(lowercase_ ,return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _UpperCamelCase : Optional[Any] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" _UpperCamelCase : str = "When is the coffee break?" _UpperCamelCase : str = task_prompt.replace("{user_input}" ,lowercase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _UpperCamelCase : int = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _UpperCamelCase : Any = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _UpperCamelCase : Tuple = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _UpperCamelCase : Tuple = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _UpperCamelCase : List[Any] = "hello world" else: raise ValueError("Model name not supported" ) _UpperCamelCase : str = original_model.decoder.tokenizer(lowercase_ ,add_special_tokens=lowercase_ ,return_tensors="pt" )[ "input_ids" ] _UpperCamelCase : List[Any] = original_model.encoder.model.patch_embed(lowercase_ ) _UpperCamelCase, _UpperCamelCase : List[Any] = model.encoder.embeddings(lowercase_ ) assert torch.allclose(lowercase_ ,lowercase_ ,atol=1e-3 ) # verify encoder hidden states _UpperCamelCase : Any = original_model.encoder(lowercase_ ) _UpperCamelCase : Any = model.encoder(lowercase_ ).last_hidden_state assert torch.allclose(lowercase_ ,lowercase_ ,atol=1e-2 ) # verify decoder hidden states _UpperCamelCase : Any = original_model(lowercase_ ,lowercase_ ,lowercase_ ).logits _UpperCamelCase : List[str] = model(lowercase_ ,decoder_input_ids=lowercase_ ).logits assert torch.allclose(lowercase_ ,lowercase_ ,atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] ,commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] ,commit_message="Update model" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) lowerCamelCase__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
51
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("KEY") lowerCamelCase__ = TypeVar("VAL") @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :KEY SCREAMING_SNAKE_CASE__ :VAL class __SCREAMING_SNAKE_CASE ( _Item ): '''simple docstring''' def __init__( self : List[str] ) -> None: super().__init__(__a , __a ) def __bool__( self : Dict ) -> bool: return False lowerCamelCase__ = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None: _UpperCamelCase : str = initial_block_size _UpperCamelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCamelCase : List[str] = capacity_factor _UpperCamelCase : Dict = 0 def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int: return hash(__a ) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int: return (ind + 1) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool: _UpperCamelCase : List[Any] = self._buckets[ind] if not stored: _UpperCamelCase : Tuple = _Item(__a , __a ) self._len += 1 return True elif stored.key == key: _UpperCamelCase : Union[str, Any] = _Item(__a , __a ) return True else: return False def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: _UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False _UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None: _UpperCamelCase : Any = self._buckets _UpperCamelCase : List[Any] = [None] * new_size _UpperCamelCase : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: self._resize(len(self._buckets ) * 2 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: self._resize(len(self._buckets ) // 2 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]: _UpperCamelCase : str = self._get_bucket_index(__a ) for _ in range(len(self._buckets ) ): yield ind _UpperCamelCase : Tuple = self._get_next_ind(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None: for ind in self._iterate_buckets(__a ): if self._try_set(__a , __a , __a ): break def __setitem__( self : int , __a : KEY , __a : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(__a , __a ) def __delitem__( self : str , __a : KEY ) -> None: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: raise KeyError(__a ) if item is _deleted: continue if item.key == key: _UpperCamelCase : List[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , __a : KEY ) -> VAL: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__a ) def __len__( self : List[Any] ) -> int: return self._len def __iter__( self : List[str] ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ) -> str: _UpperCamelCase : Optional[int] = " ,".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
51
1
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase__ = "src/transformers" lowerCamelCase__ = "docs/source/en" lowerCamelCase__ = "." def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f: _UpperCamelCase : Union[str, Any] = f.readlines() # Find the start prompt. _UpperCamelCase : Dict = 0 while not lines[start_index].startswith(lowercase_ ): start_index += 1 start_index += 1 _UpperCamelCase : Optional[int] = start_index while not lines[end_index].startswith(lowercase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ ) return [m.group(0 ) for m in matches] def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ ) _UpperCamelCase : Union[str, Any] = (width - text_length) // 2 _UpperCamelCase : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : str = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : str = collections.defaultdict(lowercase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowercase_ ): _UpperCamelCase : List[str] = None if attr_name.endswith("Tokenizer" ): _UpperCamelCase : Tuple = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _UpperCamelCase : Optional[Any] = fast_tokenizers _UpperCamelCase : List[str] = attr_name[:-13] elif _re_tf_models.match(lowercase_ ) is not None: _UpperCamelCase : List[Any] = tf_models _UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0] elif _re_flax_models.match(lowercase_ ) is not None: _UpperCamelCase : Dict = flax_models _UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0] elif _re_pt_models.match(lowercase_ ) is not None: _UpperCamelCase : Optional[int] = pt_models _UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0] if lookup_dict is not None: while len(lowercase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Dict = True break # Try again after removing the last word in the name _UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] ) # Let's build that table! _UpperCamelCase : Any = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns] _UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"} for name in model_names: _UpperCamelCase : Optional[int] = model_name_to_prefix[name] _UpperCamelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" return table def lowercase__ ( lowercase_=False ) -> List[Any]: """simple docstring""" _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file( filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,) _UpperCamelCase : Any = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
51
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , __a : list[int] ) -> None: _UpperCamelCase : Tuple = len(__a ) _UpperCamelCase : Dict = [0] * len_array if len_array > 0: _UpperCamelCase : Optional[Any] = array[0] for i in range(1 , __a ): _UpperCamelCase : Tuple = self.prefix_sum[i - 1] + array[i] def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> bool: _UpperCamelCase : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__a ) return False if __name__ == "__main__": import doctest doctest.testmod()
51
1
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCamelCase__ = HfApi() lowerCamelCase__ = {} # fmt: off lowerCamelCase__ = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) lowerCamelCase__ = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) lowerCamelCase__ = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) lowerCamelCase__ = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) lowerCamelCase__ = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) lowerCamelCase__ = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) lowerCamelCase__ = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) lowerCamelCase__ = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) lowerCamelCase__ = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) lowerCamelCase__ = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) lowerCamelCase__ = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) lowerCamelCase__ = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) lowerCamelCase__ = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) lowerCamelCase__ = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) lowerCamelCase__ = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on lowerCamelCase__ = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCamelCase__ = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): lowerCamelCase__ = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: lowerCamelCase__ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCamelCase__ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCamelCase__ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCamelCase__ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
51
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[int] = None if token is not None: _UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) _UpperCamelCase : Any = "636036" _UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' _UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json() return result["workflow_runs"] def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ ) _UpperCamelCase : Tuple = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCamelCase : Union[str, Any] = workflow_run["id"] break return workflow_run_id def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: _UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCamelCase : Dict = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = {} for artifact_name in artifact_names: _UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' ) if os.path.isfile(lowercase_ ): _UpperCamelCase : int = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: _UpperCamelCase : int = f.read().decode("UTF-8" ) return results
51
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCamelCase__ = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def lowercase__ ( lowercase_=None ) -> Optional[int]: """simple docstring""" if subparsers is not None: _UpperCamelCase : str = subparsers.add_parser("tpu-config" ,description=_description ) else: _UpperCamelCase : str = argparse.ArgumentParser("Accelerate tpu-config command" ,description=_description ) # Core arguments _UpperCamelCase : Tuple = parser.add_argument_group( "Config Arguments" ,"Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" ,type=lowercase_ ,default=lowercase_ ,help="Path to the config file to use for accelerate." ,) config_args.add_argument( "--tpu_name" ,default=lowercase_ ,help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." ,) config_args.add_argument( "--tpu_zone" ,default=lowercase_ ,help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." ,) _UpperCamelCase : List[Any] = parser.add_argument_group("TPU Arguments" ,"Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" ,action="store_true" ,help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." ,) pod_args.add_argument( "--command_file" ,default=lowercase_ ,help="The path to the file containing the commands to run on the pod on startup." ,) pod_args.add_argument( "--command" ,action="append" ,nargs="+" ,help="A command to run on the pod. Can be passed multiple times." ,) pod_args.add_argument( "--install_accelerate" ,action="store_true" ,help="Whether to install accelerate on the pod. Defaults to False." ,) pod_args.add_argument( "--accelerate_version" ,default="latest" ,help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." ,) pod_args.add_argument( "--debug" ,action="store_true" ,help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=lowercase_ ) return parser def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : Tuple = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(lowercase_ ): _UpperCamelCase : Optional[int] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _UpperCamelCase : Optional[Any] = defaults.command_file if not args.command and defaults.commands is not None: _UpperCamelCase : List[str] = defaults.commands if not args.tpu_name: _UpperCamelCase : Optional[Any] = defaults.tpu_name if not args.tpu_zone: _UpperCamelCase : Optional[Any] = defaults.tpu_zone if args.accelerate_version == "dev": _UpperCamelCase : List[str] = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": _UpperCamelCase : int = "accelerate -U" elif isinstance(parse(args.accelerate_version ) ,lowercase_ ): _UpperCamelCase : str = F'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file ,"r" ) as f: _UpperCamelCase : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] ,lowercase_ ): _UpperCamelCase : Optional[int] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _UpperCamelCase : Optional[Any] = ["cd /usr/share"] if args.install_accelerate: new_cmd += [F'''pip install {args.accelerate_version}'''] new_cmd += args.command _UpperCamelCase : Optional[int] = "; ".join(lowercase_ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _UpperCamelCase : Any = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'''Running {' '.join(lowercase_ )}''' ) return subprocess.run(lowercase_ ) print("Successfully setup pod." ) def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : str = tpu_command_parser() _UpperCamelCase : str = parser.parse_args() tpu_command_launcher(lowercase_ )
51
"""simple docstring""" import math class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int: _UpperCamelCase : List[Any] = 0.0 _UpperCamelCase : Union[str, Any] = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]: for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase : List[Any] = SelfOrganizingMap() _UpperCamelCase : int = 3 _UpperCamelCase : List[Any] = 0.5 for _ in range(lowercase_ ): for j in range(len(lowercase_ ) ): # training sample _UpperCamelCase : int = training_samples[j] # Compute the winning vector _UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # Update the winning vector _UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) # classify test sample _UpperCamelCase : Optional[int] = [0, 0, 0, 1] _UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
51
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=_UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = ["torch", "transformers", "onnx"] def __init__( self : Optional[int] , *__a : List[str] , **__a : str ) -> int: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , *__a : Dict , **__a : Dict ) -> Optional[Any]: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Any , *__a : Any , **__a : List[str] ) -> List[Any]: requires_backends(cls , ["torch", "transformers", "onnx"] ) class __SCREAMING_SNAKE_CASE ( metaclass=_UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ["torch", "transformers", "onnx"] def __init__( self : Tuple , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] , *__a : List[Any] , **__a : Any ) -> List[Any]: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , *__a : str , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ["torch", "transformers", "onnx"] ) class __SCREAMING_SNAKE_CASE ( metaclass=_UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = ["torch", "transformers", "onnx"] def __init__( self : Optional[Any] , *__a : int , **__a : int ) -> int: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *__a : Tuple , **__a : Union[str, Any] ) -> int: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[int]: requires_backends(cls , ["torch", "transformers", "onnx"] ) class __SCREAMING_SNAKE_CASE ( metaclass=_UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = ["torch", "transformers", "onnx"] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] , *__a : Tuple , **__a : Optional[Any] ) -> str: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : str , *__a : Optional[Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ["torch", "transformers", "onnx"] ) class __SCREAMING_SNAKE_CASE ( metaclass=_UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = ["torch", "transformers", "onnx"] def __init__( self : Optional[int] , *__a : Optional[int] , **__a : Dict ) -> Tuple: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Tuple , *__a : Optional[Any] , **__a : List[str] ) -> List[str]: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *__a : Optional[Any] , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ["torch", "transformers", "onnx"] ) class __SCREAMING_SNAKE_CASE ( metaclass=_UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = ["torch", "transformers", "onnx"] def __init__( self : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[Any]: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : List[Any] ) -> Tuple: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> str: requires_backends(cls , ["torch", "transformers", "onnx"] )
51
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase__ = "src/transformers" lowerCamelCase__ = "docs/source/en" lowerCamelCase__ = "." def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f: _UpperCamelCase : Union[str, Any] = f.readlines() # Find the start prompt. _UpperCamelCase : Dict = 0 while not lines[start_index].startswith(lowercase_ ): start_index += 1 start_index += 1 _UpperCamelCase : Optional[int] = start_index while not lines[end_index].startswith(lowercase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ ) return [m.group(0 ) for m in matches] def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ ) _UpperCamelCase : Union[str, Any] = (width - text_length) // 2 _UpperCamelCase : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : str = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : str = collections.defaultdict(lowercase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowercase_ ): _UpperCamelCase : List[str] = None if attr_name.endswith("Tokenizer" ): _UpperCamelCase : Tuple = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _UpperCamelCase : Optional[Any] = fast_tokenizers _UpperCamelCase : List[str] = attr_name[:-13] elif _re_tf_models.match(lowercase_ ) is not None: _UpperCamelCase : List[Any] = tf_models _UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0] elif _re_flax_models.match(lowercase_ ) is not None: _UpperCamelCase : Dict = flax_models _UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0] elif _re_pt_models.match(lowercase_ ) is not None: _UpperCamelCase : Optional[int] = pt_models _UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0] if lookup_dict is not None: while len(lowercase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Dict = True break # Try again after removing the last word in the name _UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] ) # Let's build that table! _UpperCamelCase : Any = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns] _UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"} for name in model_names: _UpperCamelCase : Optional[int] = model_name_to_prefix[name] _UpperCamelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" return table def lowercase__ ( lowercase_=False ) -> List[Any]: """simple docstring""" _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file( filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,) _UpperCamelCase : Any = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
51
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase__ = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]: """simple docstring""" _UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] ) return (item, float(lowercase_ )) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]: """simple docstring""" _UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 ) _UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] _UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = list(lowercase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _UpperCamelCase : int = random.choice(lowercase_ ) return "".join(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]: """simple docstring""" _UpperCamelCase : Optional[Any] = [] # Generate more children proportionally to the fitness score. _UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1 _UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n for _ in range(lowercase_ ): _UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0] _UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ ) # Append new string to the population list. pop.append(mutate(lowercase_ ,lowercase_ ) ) pop.append(mutate(lowercase_ ,lowercase_ ) ) return pop def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowercase_ ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCamelCase : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowercase_ ) # Generate random starting population. _UpperCamelCase : Union[str, Any] = [] for _ in range(lowercase_ ): population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCamelCase, _UpperCamelCase : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population] # Check if there is a matching evolution. _UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCamelCase : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase_ ) # Normalize population score to be between 0 and 1. _UpperCamelCase : str = [ (item, score / len(lowercase_ )) for item, score in population_score ] # This is selection for i in range(lowercase_ ): population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase__ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase__ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
51
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"summary": Value("string" )} ) SCREAMING_SNAKE_CASE__ :str = "text" SCREAMING_SNAKE_CASE__ :str = "summary" @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
51
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ["model.decoder.embed_positions.weights"] def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if "emb" in name: _UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" ) if "transformer" in name: _UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" ) if "cross_attention" in name: _UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" ) if "linear1" in name: _UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" ) if "linear2" in name: _UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" ) if "norm1" in name: _UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" ) if "norm_cross" in name: _UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" ) if "norm2" in name: _UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" ) if "out_norm" in name: _UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" ) if "linears" in name: _UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]: """simple docstring""" _UpperCamelCase : str = list(state_dict.keys() ) _UpperCamelCase : Optional[Any] = {} for key in keys: _UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ ) _UpperCamelCase : List[Any] = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCamelCase : Tuple = val[:hidden_size, :] _UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _UpperCamelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCamelCase : Optional[Any] = val else: _UpperCamelCase : List[str] = val return state_dict, enc_dec_proj_state_dict def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values _UpperCamelCase : List[Any] = 1_024 _UpperCamelCase : List[str] = 24 _UpperCamelCase : Any = 16 elif checkpoint == "medium": _UpperCamelCase : Tuple = 1_536 _UpperCamelCase : Dict = 48 _UpperCamelCase : Tuple = 24 elif checkpoint == "large": _UpperCamelCase : int = 2_048 _UpperCamelCase : Optional[int] = 48 _UpperCamelCase : Dict = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _UpperCamelCase : str = MusicgenDecoderConfig( hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,) return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]: """simple docstring""" _UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ ) _UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ ) _UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict() _UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict( lowercase_ ,hidden_size=decoder_config.hidden_size ) _UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" ) _UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowercase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass _UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) _UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): _UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" ) _UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) # set the appropriate bos/pad token ids _UpperCamelCase : str = 2_048 _UpperCamelCase : str = 2_048 # set other default generation config params _UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate ) _UpperCamelCase : List[str] = True _UpperCamelCase : int = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowerCamelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
51
1
"""simple docstring""" lowerCamelCase__ = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> list[str]: """simple docstring""" _UpperCamelCase : List[Any] = set() # keep track of all the paths to be checked _UpperCamelCase : Tuple = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _UpperCamelCase : Tuple = queue.pop(0 ) # get the last node from the path _UpperCamelCase : Dict = path[-1] if node not in explored: _UpperCamelCase : int = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _UpperCamelCase : Optional[int] = list(lowercase_ ) new_path.append(lowercase_ ) queue.append(lowercase_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowercase_ ) # in case there's no path between the 2 nodes return [] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _UpperCamelCase : int = [start] _UpperCamelCase : Tuple = set(lowercase_ ) # Keep tab on distances from `start` node. _UpperCamelCase : str = {start: 0, target: -1} while queue: _UpperCamelCase : Union[str, Any] = queue.pop(0 ) if node == target: _UpperCamelCase : Optional[Any] = ( dist[node] if dist[target] == -1 else min(dist[target] ,dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowercase_ ) queue.append(lowercase_ ) _UpperCamelCase : Tuple = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
51
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase__ = input("Enter image url: ").strip() print(f"""Downloading image from {url} ...""") lowerCamelCase__ = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase__ = soup.find("meta", {"property": "og:image"})["content"] lowerCamelCase__ = requests.get(image_url).content lowerCamelCase__ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, "wb") as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ) -> None: """simple docstring""" _UpperCamelCase : List[Any] = len(lowercase_ ) print("The following activities are selected:" ) # The first activity is always selected _UpperCamelCase : List[Any] = 0 print(lowercase_ ,end="," ) # Consider rest of the activities for j in range(lowercase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase_ ,end="," ) _UpperCamelCase : Optional[Any] = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = [1, 3, 0, 5, 8, 5] lowerCamelCase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
51
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) _UpperCamelCase : str = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )] _UpperCamelCase : List[str] = ".".join(lowercase_ ) return test_module_path def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_module_path(lowercase_ ) _UpperCamelCase : str = importlib.import_module(lowercase_ ) return test_module def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[Any] = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowercase_ ,lowercase_ ) ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Any = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): _UpperCamelCase : int = getattr(lowercase_ ,lowercase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] ) if len(lowercase_ ) > 0: test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Dict = get_test_classes(lowercase_ ) _UpperCamelCase : int = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = test_class() if hasattr(lowercase_ ,"setUp" ): test.setUp() _UpperCamelCase : Tuple = None if hasattr(lowercase_ ,"model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCamelCase : Tuple = test.model_tester.__class__ return model_tester def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = get_test_classes(lowercase_ ) _UpperCamelCase : Dict = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = [] for test_class in test_classes: _UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ ) if tester_class is not None: tester_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Any = get_test_classes(lowercase_ ) _UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes} return test_tester_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Optional[int] = { model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_test_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Tuple = { model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_to_tester_mapping def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" if isinstance(lowercase_ ,lowercase_ ): return o elif isinstance(lowercase_ ,lowercase_ ): return o.__name__ elif isinstance(lowercase_ ,(list, tuple) ): return [to_json(lowercase_ ) for x in o] elif isinstance(lowercase_ ,lowercase_ ): return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()} else: return o
51
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , __a : int = 16 , __a : int = 88 , __a : Optional[int] = None , __a : Optional[int] = None , __a : int = 1 , __a : float = 0.0 , __a : int = 32 , __a : Optional[int] = None , __a : bool = False , __a : Optional[int] = None , __a : str = "geglu" , __a : bool = True , __a : bool = True , ) -> str: super().__init__() _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : List[str] = attention_head_dim _UpperCamelCase : Optional[int] = num_attention_heads * attention_head_dim _UpperCamelCase : List[str] = in_channels _UpperCamelCase : str = torch.nn.GroupNorm(num_groups=__a , num_channels=__a , eps=1e-6 , affine=__a ) _UpperCamelCase : List[str] = nn.Linear(__a , __a ) # 3. Define transformers blocks _UpperCamelCase : str = nn.ModuleList( [ BasicTransformerBlock( __a , __a , __a , dropout=__a , cross_attention_dim=__a , activation_fn=__a , attention_bias=__a , double_self_attention=__a , norm_elementwise_affine=__a , ) for d in range(__a ) ] ) _UpperCamelCase : List[Any] = nn.Linear(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Optional[int] , __a : str=None , __a : Tuple=None , __a : List[str]=None , __a : List[str]=1 , __a : Union[str, Any]=None , __a : bool = True , ) -> Dict: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = hidden_states.shape _UpperCamelCase : Optional[Any] = batch_frames // num_frames _UpperCamelCase : int = hidden_states _UpperCamelCase : Any = hidden_states[None, :].reshape(__a , __a , __a , __a , __a ) _UpperCamelCase : List[Any] = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) _UpperCamelCase : str = self.norm(__a ) _UpperCamelCase : Union[str, Any] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , __a , __a ) _UpperCamelCase : Optional[Any] = self.proj_in(__a ) # 2. Blocks for block in self.transformer_blocks: _UpperCamelCase : int = block( __a , encoder_hidden_states=__a , timestep=__a , cross_attention_kwargs=__a , class_labels=__a , ) # 3. Output _UpperCamelCase : Any = self.proj_out(__a ) _UpperCamelCase : Optional[Any] = ( hidden_states[None, None, :] .reshape(__a , __a , __a , __a , __a ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) _UpperCamelCase : Any = hidden_states.reshape(__a , __a , __a , __a ) _UpperCamelCase : Optional[int] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__a )
51
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
51
1
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowercase__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase : int = ArgumentParser("Transformers CLI tool" ,usage="transformers-cli <command> [<args>]" ) _UpperCamelCase : List[Any] = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(lowercase_ ) DownloadCommand.register_subcommand(lowercase_ ) EnvironmentCommand.register_subcommand(lowercase_ ) RunCommand.register_subcommand(lowercase_ ) ServeCommand.register_subcommand(lowercase_ ) UserCommands.register_subcommand(lowercase_ ) AddNewModelCommand.register_subcommand(lowercase_ ) AddNewModelLikeCommand.register_subcommand(lowercase_ ) LfsCommands.register_subcommand(lowercase_ ) PTtoTFCommand.register_subcommand(lowercase_ ) # Let's go _UpperCamelCase : Optional[Any] = parser.parse_args() if not hasattr(lowercase_ ,"func" ): parser.print_help() exit(1 ) # Run _UpperCamelCase : str = args.func(lowercase_ ) service.run() if __name__ == "__main__": main()
51
"""simple docstring""" lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
51
1
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __a : Optional[int] ) -> Union[str, Any]: _UpperCamelCase : List[Any] = val _UpperCamelCase : str = None _UpperCamelCase : int = None def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> Optional[int]: if self.val: if val < self.val: if self.left is None: _UpperCamelCase : Tuple = Node(__a ) else: self.left.insert(__a ) elif val > self.val: if self.right is None: _UpperCamelCase : List[str] = Node(__a ) else: self.right.insert(__a ) else: _UpperCamelCase : str = val def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" if root: inorder(root.left ,lowercase_ ) res.append(root.val ) inorder(root.right ,lowercase_ ) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if len(lowercase_ ) == 0: return arr _UpperCamelCase : Optional[int] = Node(arr[0] ) for i in range(1 ,len(lowercase_ ) ): root.insert(arr[i] ) # Traverse BST in order. _UpperCamelCase : List[Any] = [] inorder(lowercase_ ,lowercase_ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
51
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: _UpperCamelCase : Tuple = tempfile.mkdtemp() _UpperCamelCase : str = 5 # Realm tok _UpperCamelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) _UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : Any = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : int = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=__a , ) return block_records def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : Tuple = self.get_config() _UpperCamelCase : int = self.get_dummy_retriever() _UpperCamelCase : Tuple = retriever.tokenizer _UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" ) _UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : List[str] = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : str = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Any = self.get_config() _UpperCamelCase : Dict = self.get_dummy_retriever() _UpperCamelCase : Dict = retriever.tokenizer _UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" ) _UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : str = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : Union[str, Any] = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCamelCase : List[Any] = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
51
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : int ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: torch.manual_seed(0 ) _UpperCamelCase : Dict = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) _UpperCamelCase : int = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCamelCase : Any = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) _UpperCamelCase : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _UpperCamelCase : Union[str, Any] = DDPMScheduler() _UpperCamelCase : int = AudioDiffusionPipeline(vqvae=__a , unet=self.dummy_unet , mel=__a , scheduler=__a ) _UpperCamelCase : Optional[int] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _UpperCamelCase : List[str] = torch.Generator(device=__a ).manual_seed(42 ) _UpperCamelCase : List[str] = pipe(generator=__a , steps=4 ) _UpperCamelCase : int = output.audios[0] _UpperCamelCase : Tuple = output.images[0] _UpperCamelCase : str = torch.Generator(device=__a ).manual_seed(42 ) _UpperCamelCase : str = pipe(generator=__a , steps=4 , return_dict=__a ) _UpperCamelCase : Optional[int] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _UpperCamelCase : Tuple = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] _UpperCamelCase : Union[str, Any] = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] _UpperCamelCase : List[Any] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _UpperCamelCase : Optional[Any] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _UpperCamelCase : Tuple = DDIMScheduler() _UpperCamelCase : Any = self.dummy_vqvae_and_unet _UpperCamelCase : str = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__a , scheduler=__a ) _UpperCamelCase : Union[str, Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) np.random.seed(0 ) _UpperCamelCase : Optional[Any] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _UpperCamelCase : Dict = torch.Generator(device=__a ).manual_seed(42 ) _UpperCamelCase : Dict = pipe(raw_audio=__a , generator=__a , start_step=5 , steps=10 ) _UpperCamelCase : Optional[int] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _UpperCamelCase : int = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] _UpperCamelCase : int = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _UpperCamelCase : int = self.dummy_unet_condition _UpperCamelCase : Optional[Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__a , mel=__a , scheduler=__a ) _UpperCamelCase : str = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) np.random.seed(0 ) _UpperCamelCase : Optional[int] = torch.rand((1, 1, 10) ) _UpperCamelCase : Any = pipe(generator=__a , encoding=__a ) _UpperCamelCase : int = output.images[0] _UpperCamelCase : str = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] _UpperCamelCase : Dict = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : Any = torch_device _UpperCamelCase : Optional[Any] = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) _UpperCamelCase : Any = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _UpperCamelCase : Any = torch.Generator(device=__a ).manual_seed(42 ) _UpperCamelCase : List[str] = pipe(generator=__a ) _UpperCamelCase : Any = output.audios[0] _UpperCamelCase : Optional[int] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _UpperCamelCase : List[Any] = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] _UpperCamelCase : int = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
51
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = LEDConfig SCREAMING_SNAKE_CASE__ :str = {} SCREAMING_SNAKE_CASE__ :List[str] = "gelu" def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]: _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : List[str] = batch_size _UpperCamelCase : str = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : str = max_position_embeddings _UpperCamelCase : int = eos_token_id _UpperCamelCase : Dict = pad_token_id _UpperCamelCase : Optional[Any] = bos_token_id _UpperCamelCase : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCamelCase : List[str] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a ) _UpperCamelCase : Union[str, Any] = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) _UpperCamelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple: _UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder() _UpperCamelCase : Tuple = inputs_dict["input_ids"] _UpperCamelCase : int = input_ids[:1, :] _UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :] _UpperCamelCase : List[Any] = 1 # first forward pass _UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0] _UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict: """simple docstring""" if attention_mask is None: _UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :Tuple = True SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : int = TFLEDModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] ) _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : str = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) _UpperCamelCase : Dict = True _UpperCamelCase : str = self.model_tester.seq_length _UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a : Optional[int] ): _UpperCamelCase : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a : Optional[Any] ): _UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] _UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCamelCase : Dict = True _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Any = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: _UpperCamelCase : Optional[Any] = model_class(__a ) _UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase : int = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine _UpperCamelCase : Any = True _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: # TODO: Head-masking not yet implement pass def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return tf.constant(lowercase_ ,dtype=tf.intaa ) lowerCamelCase__ = 1E-4 @slow @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Optional[int] = model(**__a )[0] _UpperCamelCase : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Tuple = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Union[str, Any] = model(**__a )[0] _UpperCamelCase : int = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Optional[int] = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
51
1
"""simple docstring""" def lowercase__ ( lowercase_ = 50 ) -> int: """simple docstring""" _UpperCamelCase : Union[str, Any] = [1] * (length + 1) for row_length in range(3 ,length + 1 ): for block_length in range(3 ,row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
51
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer SCREAMING_SNAKE_CASE__ :Dict = None SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = True SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().setUp() _UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] _UpperCamelCase : List[str] = {} _UpperCamelCase : Tuple = {} for i, value in enumerate(__a ): _UpperCamelCase : List[str] = i _UpperCamelCase : Optional[Any] = i _UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) _UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(__a , __a , ensure_ascii=__a ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(__a , __a , ensure_ascii=__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: _UpperCamelCase : Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: _UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _UpperCamelCase : Any = {} for i, token in enumerate(__a ): _UpperCamelCase : str = i _UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: _UpperCamelCase : Tuple = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) _UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False _UpperCamelCase : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = ["的", "人", "有"] _UpperCamelCase : int = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = True _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Any = False _UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". _UpperCamelCase : Any = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a ) _UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a ) _UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : int = "你好,你是谁" _UpperCamelCase : Any = tokenizer.tokenize(__a ) _UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a ) _UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a ) _UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a ) _UpperCamelCase : Optional[int] = tokenizer.prepare_for_model( __a , __a , __a , add_special_tokens=__a ) _UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a ) self.assertEqual(__a , __a )
51
1
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = "EncodecFeatureExtractor" SCREAMING_SNAKE_CASE__ :Union[str, Any] = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : int , __a : Union[str, Any] , __a : Tuple ) -> Union[str, Any]: super().__init__(__a , __a ) _UpperCamelCase : str = self.feature_extractor _UpperCamelCase : int = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Any=None , __a : Any=None , __a : Any=True ) -> Dict: return self.tokenizer.get_decoder_prompt_ids(task=__a , language=__a , no_timestamps=__a ) def __call__( self : Optional[Any] , *__a : Union[str, Any] , **__a : str ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__a , **__a ) _UpperCamelCase : Optional[int] = kwargs.pop("audio" , __a ) _UpperCamelCase : str = kwargs.pop("sampling_rate" , __a ) _UpperCamelCase : str = kwargs.pop("text" , __a ) if len(__a ) > 0: _UpperCamelCase : Dict = args[0] _UpperCamelCase : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: _UpperCamelCase : List[str] = self.tokenizer(__a , **__a ) if audio is not None: _UpperCamelCase : Optional[Any] = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) if audio is None: return inputs elif text is None: return audio_inputs else: _UpperCamelCase : Dict = audio_inputs["input_values"] if "padding_mask" in audio_inputs: _UpperCamelCase : Optional[Any] = audio_inputs["padding_mask"] return inputs def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , *__a : List[str] , **__a : Any ) -> Optional[Any]: _UpperCamelCase : Dict = kwargs.pop("audio" , __a ) _UpperCamelCase : List[Any] = kwargs.pop("padding_mask" , __a ) if len(__a ) > 0: _UpperCamelCase : List[str] = args[0] _UpperCamelCase : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__a , padding_mask=__a ) else: return self.tokenizer.batch_decode(*__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Any , *__a : List[Any] , **__a : List[str] ) -> Union[str, Any]: return self.tokenizer.decode(*__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Union[str, Any] , __a : Optional = None ) -> List[np.ndarray]: _UpperCamelCase : str = to_numpy(__a ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = audio_values.shape if padding_mask is None: return list(__a ) _UpperCamelCase : Optional[int] = to_numpy(__a ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _UpperCamelCase : List[str] = seq_len - padding_mask.shape[-1] _UpperCamelCase : List[str] = 1 - self.feature_extractor.padding_value _UpperCamelCase : Optional[Any] = np.pad(__a , ((0, 0), (0, difference)) , "constant" , constant_values=__a ) _UpperCamelCase : Union[str, Any] = audio_values.tolist() for i in range(__a ): _UpperCamelCase : Optional[int] = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _UpperCamelCase : Any = sliced_audio.reshape(__a , -1 ) return audio_values
51
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = "yolos" def __init__( self : Dict , __a : Optional[Any]=768 , __a : List[Any]=12 , __a : Any=12 , __a : List[Any]=3072 , __a : Optional[int]="gelu" , __a : Dict=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.02 , __a : Optional[int]=1e-1_2 , __a : List[Any]=[512, 864] , __a : List[str]=16 , __a : str=3 , __a : Optional[Any]=True , __a : Optional[Any]=100 , __a : List[str]=True , __a : Any=False , __a : List[str]=1 , __a : str=5 , __a : Optional[Any]=2 , __a : Tuple=5 , __a : Any=2 , __a : Union[str, Any]=0.1 , **__a : List[str] , ) -> List[str]: super().__init__(**__a ) _UpperCamelCase : Dict = hidden_size _UpperCamelCase : Any = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Tuple = image_size _UpperCamelCase : Tuple = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : Any = qkv_bias _UpperCamelCase : str = num_detection_tokens _UpperCamelCase : str = use_mid_position_embeddings _UpperCamelCase : List[str] = auxiliary_loss # Hungarian matcher _UpperCamelCase : List[Any] = class_cost _UpperCamelCase : int = bbox_cost _UpperCamelCase : Optional[int] = giou_cost # Loss coefficients _UpperCamelCase : List[Any] = bbox_loss_coefficient _UpperCamelCase : str = giou_loss_coefficient _UpperCamelCase : Dict = eos_coefficient class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float: return 1e-4 @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return 12
51
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = "canine" def __init__( self : Tuple , __a : Dict=768 , __a : Dict=12 , __a : int=12 , __a : str=3072 , __a : str="gelu" , __a : List[str]=0.1 , __a : Optional[Any]=0.1 , __a : int=1_6384 , __a : Dict=16 , __a : Optional[Any]=0.02 , __a : Any=1e-1_2 , __a : Union[str, Any]=0 , __a : Optional[int]=0Xe000 , __a : Union[str, Any]=0Xe001 , __a : str=4 , __a : str=4 , __a : Union[str, Any]=8 , __a : int=1_6384 , __a : Optional[Any]=128 , **__a : Dict , ) -> Optional[int]: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) _UpperCamelCase : List[str] = max_position_embeddings _UpperCamelCase : int = hidden_size _UpperCamelCase : List[str] = num_hidden_layers _UpperCamelCase : int = num_attention_heads _UpperCamelCase : Tuple = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_act _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Any = initializer_range _UpperCamelCase : Optional[int] = type_vocab_size _UpperCamelCase : str = layer_norm_eps # Character config: _UpperCamelCase : Optional[int] = downsampling_rate _UpperCamelCase : Optional[int] = upsampling_kernel_size _UpperCamelCase : List[Any] = num_hash_functions _UpperCamelCase : List[Any] = num_hash_buckets _UpperCamelCase : Tuple = local_transformer_stride
51
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCamelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase] lowerCamelCase__ = {ord(char) for char in VALID_CHARS} lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None: """simple docstring""" _UpperCamelCase : str = "" _UpperCamelCase : int _UpperCamelCase : int _UpperCamelCase : int for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ): _UpperCamelCase : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase_ ) return decoded def lowercase__ ( lowercase_ ) -> list[str]: """simple docstring""" _UpperCamelCase : list[str] = [] for key in product(lowercase_ ,repeat=3 ): _UpperCamelCase : int = try_key(lowercase_ ,lowercase_ ) if encoded is not None: possibles.append(lowercase_ ) return possibles def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int: """simple docstring""" _UpperCamelCase : list[int] _UpperCamelCase : list[str] _UpperCamelCase : str _UpperCamelCase : str _UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" ) _UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )] _UpperCamelCase : List[str] = filter_valid_chars(lowercase_ ) for common_word in COMMON_WORDS: _UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ ) if len(lowercase_ ) == 1: break _UpperCamelCase : Union[str, Any] = possibles[0] return sum(ord(lowercase_ ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
51
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = "biogpt" def __init__( self : List[Any] , __a : List[Any]=4_2384 , __a : Optional[Any]=1024 , __a : Dict=24 , __a : List[str]=16 , __a : Any=4096 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Optional[int]=0.1 , __a : Any=1024 , __a : Dict=0.02 , __a : str=1e-1_2 , __a : Optional[int]=True , __a : Union[str, Any]=True , __a : Optional[int]=0.0 , __a : Dict=0.0 , __a : List[str]=1 , __a : Dict=0 , __a : Any=2 , **__a : int , ) -> Dict: _UpperCamelCase : Union[str, Any] = vocab_size _UpperCamelCase : Optional[Any] = max_position_embeddings _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : int = num_hidden_layers _UpperCamelCase : Optional[Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Tuple = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : Optional[int] = attention_probs_dropout_prob _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = scale_embedding _UpperCamelCase : List[str] = use_cache _UpperCamelCase : Any = layerdrop _UpperCamelCase : Optional[Any] = activation_dropout super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
51
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ) -> None: """simple docstring""" _UpperCamelCase : List[Any] = len(lowercase_ ) print("The following activities are selected:" ) # The first activity is always selected _UpperCamelCase : List[Any] = 0 print(lowercase_ ,end="," ) # Consider rest of the activities for j in range(lowercase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase_ ,end="," ) _UpperCamelCase : Optional[Any] = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = [1, 3, 0, 5, 8, 5] lowerCamelCase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
51
1
"""simple docstring""" from __future__ import annotations import requests def lowercase__ ( lowercase_ ) -> dict: """simple docstring""" _UpperCamelCase : List[Any] = F'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowercase_ ).json() def lowercase__ ( lowercase_ = 10 ) -> list[dict]: """simple docstring""" _UpperCamelCase : Optional[int] = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" _UpperCamelCase : List[Any] = requests.get(lowercase_ ).json()[:max_stories] return [get_hackernews_story(lowercase_ ) for story_id in story_ids] def lowercase__ ( lowercase_ = 10 ) -> str: """simple docstring""" _UpperCamelCase : List[Any] = hackernews_top_stories(lowercase_ ) return "\n".join("* [{title}]({url})".format(**lowercase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
51
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict: super().__init__() _UpperCamelCase : List[str] = layers_per_block _UpperCamelCase : Dict = torch.nn.Convad( __a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : int = None _UpperCamelCase : Any = nn.ModuleList([] ) # down _UpperCamelCase : List[str] = block_out_channels[0] for i, down_block_type in enumerate(__a ): _UpperCamelCase : Tuple = output_channel _UpperCamelCase : int = block_out_channels[i] _UpperCamelCase : int = i == len(__a ) - 1 _UpperCamelCase : Dict = get_down_block( __a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , ) self.down_blocks.append(__a ) # mid _UpperCamelCase : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # out _UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : Any = nn.SiLU() _UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels _UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 ) _UpperCamelCase : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]: _UpperCamelCase : int = x _UpperCamelCase : Optional[int] = self.conv_in(__a ) if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Tuple ): def custom_forward(*__a : Any ): return module(*__a ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , use_reentrant=__a ) # middle _UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , use_reentrant=__a ) else: for down_block in self.down_blocks: _UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a ) # middle _UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a ) else: # down for down_block in self.down_blocks: _UpperCamelCase : int = down_block(__a ) # middle _UpperCamelCase : int = self.mid_block(__a ) # post-process _UpperCamelCase : Any = self.conv_norm_out(__a ) _UpperCamelCase : Any = self.conv_act(__a ) _UpperCamelCase : Optional[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str: super().__init__() _UpperCamelCase : List[Any] = layers_per_block _UpperCamelCase : Tuple = nn.Convad( __a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = nn.ModuleList([] ) _UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None # mid _UpperCamelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # up _UpperCamelCase : List[str] = list(reversed(__a ) ) _UpperCamelCase : int = reversed_block_out_channels[0] for i, up_block_type in enumerate(__a ): _UpperCamelCase : int = output_channel _UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i] _UpperCamelCase : Optional[Any] = i == len(__a ) - 1 _UpperCamelCase : Union[str, Any] = get_up_block( __a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , ) self.up_blocks.append(__a ) _UpperCamelCase : Optional[Any] = output_channel # out if norm_type == "spatial": _UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a ) else: _UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : str = nn.SiLU() _UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 ) _UpperCamelCase : Dict = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple: _UpperCamelCase : List[str] = z _UpperCamelCase : Dict = self.conv_in(__a ) _UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Any ): def custom_forward(*__a : Tuple ): return module(*__a ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle _UpperCamelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a ) _UpperCamelCase : Optional[int] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , __a , use_reentrant=__a ) else: # middle _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a ) _UpperCamelCase : Union[str, Any] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a ) else: # middle _UpperCamelCase : str = self.mid_block(__a , __a ) _UpperCamelCase : int = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : Any = up_block(__a , __a ) # post-process if latent_embeds is None: _UpperCamelCase : List[str] = self.conv_norm_out(__a ) else: _UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a ) _UpperCamelCase : Tuple = self.conv_act(__a ) _UpperCamelCase : List[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]: super().__init__() _UpperCamelCase : Tuple = n_e _UpperCamelCase : Tuple = vq_embed_dim _UpperCamelCase : Union[str, Any] = beta _UpperCamelCase : str = legacy _UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCamelCase : Any = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) _UpperCamelCase : Dict = self.used.shape[0] _UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase : Optional[int] = self.re_embed _UpperCamelCase : Any = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: _UpperCamelCase : Union[str, Any] = n_e _UpperCamelCase : List[str] = sane_index_shape def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]: _UpperCamelCase : str = inds.shape assert len(__a ) > 1 _UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[Any] = self.used.to(__a ) _UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase : Optional[Any] = match.argmax(-1 ) _UpperCamelCase : Any = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCamelCase : Dict = self.unknown_index return new.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]: _UpperCamelCase : int = inds.shape assert len(__a ) > 1 _UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[int] = self.used.to(__a ) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase : int = 0 # simply set to zero _UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a ) return back.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]: # reshape z -> (batch, height, width, channel) and flatten _UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCamelCase : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 ) _UpperCamelCase : int = self.embedding(__a ).view(z.shape ) _UpperCamelCase : str = None _UpperCamelCase : Any = None # compute loss for embedding if not self.legacy: _UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCamelCase : List[str] = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCamelCase : Dict = self.remap_to_used(__a ) _UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: _UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCamelCase : str = self.unmap_to_all(__a ) _UpperCamelCase : int = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCamelCase : Optional[int] = self.embedding(__a ) if shape is not None: _UpperCamelCase : Tuple = z_q.view(__a ) # reshape back to match original input shape _UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int: _UpperCamelCase : Dict = parameters _UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 ) _UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 ) _UpperCamelCase : Union[str, Any] = deterministic _UpperCamelCase : Dict = torch.exp(0.5 * self.logvar ) _UpperCamelCase : Any = torch.exp(self.logvar ) if self.deterministic: _UpperCamelCase : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype _UpperCamelCase : List[Any] = randn_tensor( self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCamelCase : List[Any] = self.mean + self.std * sample return x def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int: if self.deterministic: return torch.Tensor([0.0] ) _UpperCamelCase : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: return self.mean
51
1
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCamelCase__ = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[Any] , __a : str , __a : Union[str, Any] , __a : Optional[Any]=None , __a : Any=1 ) -> Tuple: _UpperCamelCase : Union[str, Any] = tokenizer _UpperCamelCase : Tuple = dataset _UpperCamelCase : str = len(__a ) if n_tasks is None else n_tasks _UpperCamelCase : Union[str, Any] = n_copies def __iter__( self : str ) -> Optional[int]: _UpperCamelCase : Optional[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) _UpperCamelCase : Dict = self.tokenizer(__a , padding=__a , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : int , __a : Optional[int] ) -> int: _UpperCamelCase : Union[str, Any] = start_length _UpperCamelCase : Union[str, Any] = eof_strings _UpperCamelCase : Tuple = tokenizer def __call__( self : Optional[Any] , __a : Any , __a : Optional[int] , **__a : List[Any] ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _UpperCamelCase : Any = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__a ) def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : List[Any] = re.split("(%s)" % "|".join(lowercase_ ) ,lowercase_ ) # last string should be "" return "".join(string_list[:-2] ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=20 ,**lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : List[Any] = defaultdict(lowercase_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(lowercase_ ) ): with torch.no_grad(): _UpperCamelCase : Optional[int] = batch["ids"].shape[-1] _UpperCamelCase : int = accelerator.unwrap_model(lowercase_ ).generate( input_ids=batch["ids"][:, : batch["input_len"]] ,num_return_sequences=lowercase_ ,**lowercase_ ) # each task is generated batch_size times _UpperCamelCase : Optional[Any] = batch["task_id"].repeat(lowercase_ ) _UpperCamelCase : Any = accelerator.pad_across_processes( lowercase_ ,dim=1 ,pad_index=tokenizer.pad_token_id ) _UpperCamelCase, _UpperCamelCase : Dict = accelerator.gather((generated_tokens, generated_tasks) ) _UpperCamelCase : Any = generated_tokens.cpu().numpy() _UpperCamelCase : Optional[int] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(lowercase_ ,lowercase_ ): gen_token_dict[task].append(lowercase_ ) _UpperCamelCase : Tuple = [[] for _ in range(lowercase_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _UpperCamelCase : Optional[int] = tokenizer.decode(lowercase_ ,skip_special_tokens=lowercase_ ,clean_up_tokenization_spaces=lowercase_ ) code_gens[task].append(remove_last_block(lowercase_ ) ) return code_gens def lowercase__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase : Union[str, Any] = HfArgumentParser(lowercase_ ) _UpperCamelCase : str = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _UpperCamelCase : str = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _UpperCamelCase : int = "false" if args.num_workers is None: _UpperCamelCase : Optional[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _UpperCamelCase : Optional[Any] = Accelerator() set_seed(args.seed ,device_specific=lowercase_ ) # Load model and tokenizer _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCamelCase : List[Any] = tokenizer.eos_token _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _UpperCamelCase : Optional[int] = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 ,lowercase_ ,lowercase_ )] ), } # Load evaluation dataset and metric _UpperCamelCase : List[Any] = load_dataset("openai_humaneval" ) _UpperCamelCase : int = load_metric("code_eval" ) _UpperCamelCase : Optional[int] = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) _UpperCamelCase : List[str] = args.n_samples // args.batch_size _UpperCamelCase : Tuple = TokenizedDataset(lowercase_ ,human_eval["test"] ,n_copies=lowercase_ ,n_tasks=lowercase_ ) # do not confuse args.batch_size, which is actually the num_return_sequences _UpperCamelCase : List[Any] = DataLoader(lowercase_ ,batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _UpperCamelCase : Union[str, Any] = code_eval_metric.compute(references=[""] ,predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception _UpperCamelCase, _UpperCamelCase : Tuple = accelerator.prepare(lowercase_ ,lowercase_ ) _UpperCamelCase : Union[str, Any] = complete_code( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,n_tasks=lowercase_ ,batch_size=args.batch_size ,**lowercase_ ,) if accelerator.is_main_process: _UpperCamelCase : Union[str, Any] = [] for task in tqdm(range(lowercase_ ) ): _UpperCamelCase : List[Any] = human_eval["test"][task]["test"] _UpperCamelCase : List[str] = F'''check({human_eval['test'][task]['entry_point']})''' references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric _UpperCamelCase, _UpperCamelCase : List[str] = code_eval_metric.compute( references=lowercase_ ,predictions=lowercase_ ,num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file ,"w" ) as fp: json.dump(lowercase_ ,lowercase_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
51
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"summary": Value("string" )} ) SCREAMING_SNAKE_CASE__ :str = "text" SCREAMING_SNAKE_CASE__ :str = "summary" @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
51
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Dict , *__a : Optional[int] , **__a : Dict ) -> None: warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
51
"""simple docstring""" def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : Union[str, Any] = set() # edges = list of graph's edges _UpperCamelCase : Union[str, Any] = get_edges(lowercase_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCamelCase, _UpperCamelCase : str = edges.pop() chosen_vertices.add(lowercase_ ) chosen_vertices.add(lowercase_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase_ ) return chosen_vertices def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" _UpperCamelCase : List[str] = [] if len(lowercase_ ) == 1: return [nums.copy()] for _ in range(len(lowercase_ ) ): _UpperCamelCase : Dict = nums.pop(0 ) _UpperCamelCase : Any = permute(lowercase_ ) for perm in permutations: perm.append(lowercase_ ) result.extend(lowercase_ ) nums.append(lowercase_ ) return result def lowercase__ ( lowercase_ ) -> int: """simple docstring""" def backtrack(lowercase_ ): if start == len(lowercase_ ) - 1: output.append(nums[:] ) else: for i in range(lowercase_ ,len(lowercase_ ) ): _UpperCamelCase, _UpperCamelCase : Tuple = nums[i], nums[start] backtrack(start + 1 ) _UpperCamelCase, _UpperCamelCase : Any = nums[i], nums[start] # backtrack _UpperCamelCase : str = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCamelCase__ = permutea([1, 2, 3]) print(res) doctest.testmod()
51
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["OwlViTFeatureExtractor"] lowerCamelCase__ = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> int: """simple docstring""" if not isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : List[str] = F'''Input value of [number={number}] must be an integer''' raise TypeError(lowercase_ ) if number < 1: _UpperCamelCase : List[Any] = F'''Input value of [number={number}] must be > 0''' raise ValueError(lowercase_ ) _UpperCamelCase : Tuple = 1 for i in range(1 ,lowercase_ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int: """simple docstring""" _UpperCamelCase : defaultdict = defaultdict(lowercase_ ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _UpperCamelCase : Any = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: _UpperCamelCase : str = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
51
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = LEDConfig SCREAMING_SNAKE_CASE__ :str = {} SCREAMING_SNAKE_CASE__ :List[str] = "gelu" def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]: _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : List[str] = batch_size _UpperCamelCase : str = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : str = max_position_embeddings _UpperCamelCase : int = eos_token_id _UpperCamelCase : Dict = pad_token_id _UpperCamelCase : Optional[Any] = bos_token_id _UpperCamelCase : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCamelCase : List[str] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a ) _UpperCamelCase : Union[str, Any] = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) _UpperCamelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple: _UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder() _UpperCamelCase : Tuple = inputs_dict["input_ids"] _UpperCamelCase : int = input_ids[:1, :] _UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :] _UpperCamelCase : List[Any] = 1 # first forward pass _UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0] _UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict: """simple docstring""" if attention_mask is None: _UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :Tuple = True SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : int = TFLEDModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] ) _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : str = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) _UpperCamelCase : Dict = True _UpperCamelCase : str = self.model_tester.seq_length _UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a : Optional[int] ): _UpperCamelCase : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a : Optional[Any] ): _UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] _UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCamelCase : Dict = True _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Any = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: _UpperCamelCase : Optional[Any] = model_class(__a ) _UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase : int = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine _UpperCamelCase : Any = True _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: # TODO: Head-masking not yet implement pass def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return tf.constant(lowercase_ ,dtype=tf.intaa ) lowerCamelCase__ = 1E-4 @slow @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Optional[int] = model(**__a )[0] _UpperCamelCase : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Tuple = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Union[str, Any] = model(**__a )[0] _UpperCamelCase : int = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Optional[int] = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
51
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("KEY") lowerCamelCase__ = TypeVar("VAL") @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :KEY SCREAMING_SNAKE_CASE__ :VAL class __SCREAMING_SNAKE_CASE ( _Item ): '''simple docstring''' def __init__( self : List[str] ) -> None: super().__init__(__a , __a ) def __bool__( self : Dict ) -> bool: return False lowerCamelCase__ = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None: _UpperCamelCase : str = initial_block_size _UpperCamelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCamelCase : List[str] = capacity_factor _UpperCamelCase : Dict = 0 def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int: return hash(__a ) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int: return (ind + 1) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool: _UpperCamelCase : List[Any] = self._buckets[ind] if not stored: _UpperCamelCase : Tuple = _Item(__a , __a ) self._len += 1 return True elif stored.key == key: _UpperCamelCase : Union[str, Any] = _Item(__a , __a ) return True else: return False def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: _UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False _UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None: _UpperCamelCase : Any = self._buckets _UpperCamelCase : List[Any] = [None] * new_size _UpperCamelCase : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: self._resize(len(self._buckets ) * 2 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: self._resize(len(self._buckets ) // 2 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]: _UpperCamelCase : str = self._get_bucket_index(__a ) for _ in range(len(self._buckets ) ): yield ind _UpperCamelCase : Tuple = self._get_next_ind(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None: for ind in self._iterate_buckets(__a ): if self._try_set(__a , __a , __a ): break def __setitem__( self : int , __a : KEY , __a : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(__a , __a ) def __delitem__( self : str , __a : KEY ) -> None: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: raise KeyError(__a ) if item is _deleted: continue if item.key == key: _UpperCamelCase : List[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , __a : KEY ) -> VAL: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__a ) def __len__( self : List[Any] ) -> int: return self._len def __iter__( self : List[str] ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ) -> str: _UpperCamelCase : Optional[int] = " ,".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
51
1
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __a : Any , __a : Dict=13 , __a : Optional[Any]=32 , __a : Union[str, Any]=2 , __a : Optional[int]=3 , __a : List[Any]=16 , __a : List[Any]=[1, 2, 1] , __a : List[Any]=[2, 2, 4] , __a : Any=2 , __a : Optional[Any]=2.0 , __a : Optional[Any]=True , __a : Union[str, Any]=0.0 , __a : int=0.0 , __a : Dict=0.1 , __a : str="gelu" , __a : int=False , __a : Any=True , __a : int=0.02 , __a : Optional[int]=1e-5 , __a : List[str]=True , __a : List[str]=None , __a : Tuple=True , __a : Tuple=10 , __a : Tuple=8 , ) -> Dict: _UpperCamelCase : Union[str, Any] = parent _UpperCamelCase : str = batch_size _UpperCamelCase : List[str] = image_size _UpperCamelCase : str = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : List[str] = embed_dim _UpperCamelCase : str = depths _UpperCamelCase : Optional[int] = num_heads _UpperCamelCase : List[Any] = window_size _UpperCamelCase : List[Any] = mlp_ratio _UpperCamelCase : Optional[Any] = qkv_bias _UpperCamelCase : Any = hidden_dropout_prob _UpperCamelCase : List[str] = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = drop_path_rate _UpperCamelCase : Optional[int] = hidden_act _UpperCamelCase : Optional[Any] = use_absolute_embeddings _UpperCamelCase : Tuple = patch_norm _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : List[str] = is_training _UpperCamelCase : Any = scope _UpperCamelCase : List[Any] = use_labels _UpperCamelCase : str = type_sequence_label_size _UpperCamelCase : List[str] = encoder_stride def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: _UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Optional[int] = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : int = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict ) -> Optional[Any]: _UpperCamelCase : List[Any] = SwinvaModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[Any] = model(__a ) _UpperCamelCase : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCamelCase : int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Dict , __a : Union[str, Any] , __a : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Tuple = SwinvaForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Tuple = SwinvaForMaskedImageModeling(__a ) model.to(__a ) model.eval() _UpperCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : int = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , __a : Optional[int] , __a : str ) -> List[Any]: _UpperCamelCase : int = self.type_sequence_label_size _UpperCamelCase : Any = SwinvaForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[str] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: _UpperCamelCase : Dict = self.prepare_config_and_inputs() _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Any = config_and_inputs _UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :List[Any] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = False SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :Dict = False def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: _UpperCamelCase : List[str] = SwinvaModelTester(self ) _UpperCamelCase : List[Any] = ConfigTester(self , config_class=__a , embed_dim=37 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: _UpperCamelCase, _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : str = model_class(__a ) _UpperCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : str = [*signature.parameters.keys()] _UpperCamelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase, _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : int = True for model_class in self.all_model_classes: _UpperCamelCase : Any = True _UpperCamelCase : Tuple = False _UpperCamelCase : Optional[Any] = True _UpperCamelCase : Dict = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : List[str] = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Optional[Any] = outputs.attentions _UpperCamelCase : str = len(self.model_tester.depths ) self.assertEqual(len(__a ) , __a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : str = config.window_size**2 _UpperCamelCase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : Optional[Any] = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Union[str, Any] = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _UpperCamelCase : Any = len(__a ) # Check attention is always last and order is fine _UpperCamelCase : Dict = True _UpperCamelCase : List[str] = True _UpperCamelCase : int = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : str = model(**self._prepare_for_class(__a , __a ) ) if hasattr(self.model_tester , "num_hidden_states_types" ): _UpperCamelCase : Optional[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _UpperCamelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__a ) ) _UpperCamelCase : Optional[Any] = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : str , __a : List[str] , __a : int , __a : str ) -> int: _UpperCamelCase : Optional[int] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : List[str] = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Tuple = outputs.hidden_states _UpperCamelCase : Optional[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swinv2 has a different seq_length _UpperCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _UpperCamelCase : List[str] = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[str] = reshaped_hidden_states[0].shape _UpperCamelCase : Dict = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : Tuple = True self.check_hidden_states_output(__a , __a , __a , __a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase, _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[Any] = 3 _UpperCamelCase : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCamelCase : Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCamelCase : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCamelCase : Dict = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : Optional[Any] = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Tuple = SwinvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: _UpperCamelCase, _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = _config_zero_init(__a ) for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: _UpperCamelCase : Optional[Any] = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( __a ) _UpperCamelCase : Optional[int] = self.default_image_processor _UpperCamelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCamelCase : Any = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__a ) # verify the logits _UpperCamelCase : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : Tuple = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
51
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , __a : list[int] ) -> None: _UpperCamelCase : Tuple = len(__a ) _UpperCamelCase : Dict = [0] * len_array if len_array > 0: _UpperCamelCase : Optional[Any] = array[0] for i in range(1 , __a ): _UpperCamelCase : Tuple = self.prefix_sum[i - 1] + array[i] def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> bool: _UpperCamelCase : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__a ) return False if __name__ == "__main__": import doctest doctest.testmod()
51
1
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ ) -> list[int]: """simple docstring""" _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : List[str] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowercase_ ) if n > 1: factors.append(lowercase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[int] = None if token is not None: _UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) _UpperCamelCase : Any = "636036" _UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' _UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json() return result["workflow_runs"] def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ ) _UpperCamelCase : Tuple = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCamelCase : Union[str, Any] = workflow_run["id"] break return workflow_run_id def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: _UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCamelCase : Dict = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = {} for artifact_name in artifact_names: _UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' ) if os.path.isfile(lowercase_ ): _UpperCamelCase : int = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: _UpperCamelCase : int = f.read().decode("UTF-8" ) return results
51
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 100 ,) -> float: """simple docstring""" _UpperCamelCase : List[Any] = x_start _UpperCamelCase : Union[str, Any] = fnc(lowercase_ ) _UpperCamelCase : Optional[Any] = 0.0 for _ in range(lowercase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCamelCase : int = (x_end - x_start) / steps + xa _UpperCamelCase : List[str] = fnc(lowercase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCamelCase : Optional[Any] = xa _UpperCamelCase : Tuple = fxa return area if __name__ == "__main__": def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowerCamelCase__ = 10 while i <= 10_0000: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
51
"""simple docstring""" import math class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int: _UpperCamelCase : List[Any] = 0.0 _UpperCamelCase : Union[str, Any] = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]: for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase : List[Any] = SelfOrganizingMap() _UpperCamelCase : int = 3 _UpperCamelCase : List[Any] = 0.5 for _ in range(lowercase_ ): for j in range(len(lowercase_ ) ): # training sample _UpperCamelCase : int = training_samples[j] # Compute the winning vector _UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # Update the winning vector _UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) # classify test sample _UpperCamelCase : Optional[int] = [0, 0, 0, 1] _UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
51
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = "megatron-bert" def __init__( self : int , __a : List[str]=2_9056 , __a : Dict=1024 , __a : Optional[Any]=24 , __a : str=16 , __a : List[Any]=4096 , __a : str="gelu" , __a : Optional[Any]=0.1 , __a : Any=0.1 , __a : Optional[int]=512 , __a : int=2 , __a : Tuple=0.02 , __a : str=1e-1_2 , __a : Optional[int]=0 , __a : Optional[Any]="absolute" , __a : Any=True , **__a : List[Any] , ) -> Tuple: super().__init__(pad_token_id=__a , **__a ) _UpperCamelCase : Any = vocab_size _UpperCamelCase : int = hidden_size _UpperCamelCase : int = num_hidden_layers _UpperCamelCase : List[Any] = num_attention_heads _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : List[Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Optional[Any] = type_vocab_size _UpperCamelCase : Dict = initializer_range _UpperCamelCase : Union[str, Any] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Optional[int] = use_cache
51
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase__ = "src/transformers" lowerCamelCase__ = "docs/source/en" lowerCamelCase__ = "." def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f: _UpperCamelCase : Union[str, Any] = f.readlines() # Find the start prompt. _UpperCamelCase : Dict = 0 while not lines[start_index].startswith(lowercase_ ): start_index += 1 start_index += 1 _UpperCamelCase : Optional[int] = start_index while not lines[end_index].startswith(lowercase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ ) return [m.group(0 ) for m in matches] def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ ) _UpperCamelCase : Union[str, Any] = (width - text_length) // 2 _UpperCamelCase : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : str = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : str = collections.defaultdict(lowercase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowercase_ ): _UpperCamelCase : List[str] = None if attr_name.endswith("Tokenizer" ): _UpperCamelCase : Tuple = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _UpperCamelCase : Optional[Any] = fast_tokenizers _UpperCamelCase : List[str] = attr_name[:-13] elif _re_tf_models.match(lowercase_ ) is not None: _UpperCamelCase : List[Any] = tf_models _UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0] elif _re_flax_models.match(lowercase_ ) is not None: _UpperCamelCase : Dict = flax_models _UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0] elif _re_pt_models.match(lowercase_ ) is not None: _UpperCamelCase : Optional[int] = pt_models _UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0] if lookup_dict is not None: while len(lowercase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Dict = True break # Try again after removing the last word in the name _UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] ) # Let's build that table! _UpperCamelCase : Any = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns] _UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"} for name in model_names: _UpperCamelCase : Optional[int] = model_name_to_prefix[name] _UpperCamelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" return table def lowercase__ ( lowercase_=False ) -> List[Any]: """simple docstring""" _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file( filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,) _UpperCamelCase : Any = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
51
1
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") lowerCamelCase__ = get_tests_dir("fixtures/test_sentencepiece_bpe.model") lowerCamelCase__ = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = CamembertTokenizer SCREAMING_SNAKE_CASE__ :List[Any] = CamembertTokenizerFast SCREAMING_SNAKE_CASE__ :Optional[Any] = True SCREAMING_SNAKE_CASE__ :int = True def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase : Optional[int] = CamembertTokenizer(__a ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Any = "<pad>" _UpperCamelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__a ) , 1004 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : Tuple = CamembertTokenizer(__a ) tokenizer.save_pretrained(self.tmpdirname ) _UpperCamelCase : int = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _UpperCamelCase : str = "I was born in 92000, and this is falsé." _UpperCamelCase : Tuple = tokenizer.encode(__a ) _UpperCamelCase : Any = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Union[str, Any] = tokenizer.encode(__a , add_special_tokens=__a ) _UpperCamelCase : List[str] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__a ) _UpperCamelCase : Tuple = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: if not self.test_rust_tokenizer: return _UpperCamelCase : Union[str, Any] = self.get_tokenizer() _UpperCamelCase : int = self.get_rust_tokenizer() _UpperCamelCase : Optional[int] = "I was born in 92000, and this is falsé." _UpperCamelCase : Dict = tokenizer.tokenize(__a ) _UpperCamelCase : Optional[Any] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Optional[Any] = tokenizer.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Any = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCamelCase : Any = tokenizer.encode(__a ) _UpperCamelCase : str = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: # fmt: off _UpperCamelCase : Union[str, Any] = {"input_ids": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _UpperCamelCase : List[Any] = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=__a , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=__a , )
51
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]: """simple docstring""" _UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] ) return (item, float(lowercase_ )) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]: """simple docstring""" _UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 ) _UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] _UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = list(lowercase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _UpperCamelCase : int = random.choice(lowercase_ ) return "".join(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]: """simple docstring""" _UpperCamelCase : Optional[Any] = [] # Generate more children proportionally to the fitness score. _UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1 _UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n for _ in range(lowercase_ ): _UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0] _UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ ) # Append new string to the population list. pop.append(mutate(lowercase_ ,lowercase_ ) ) pop.append(mutate(lowercase_ ,lowercase_ ) ) return pop def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowercase_ ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCamelCase : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowercase_ ) # Generate random starting population. _UpperCamelCase : Union[str, Any] = [] for _ in range(lowercase_ ): population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCamelCase, _UpperCamelCase : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population] # Check if there is a matching evolution. _UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCamelCase : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase_ ) # Normalize population score to be between 0 and 1. _UpperCamelCase : str = [ (item, score / len(lowercase_ )) for item, score in population_score ] # This is selection for i in range(lowercase_ ): population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase__ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase__ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
51
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ,lowercase_=False ) -> Any: """simple docstring""" _UpperCamelCase : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=False ) -> Any: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCamelCase : Union[str, Any] = "" else: _UpperCamelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase : Any = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _UpperCamelCase : List[str] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : List[Any] = in_proj_weight[ : config.hidden_size, : ] _UpperCamelCase : Tuple = in_proj_bias[: config.hidden_size] _UpperCamelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase : Dict = in_proj_weight[ -config.hidden_size :, : ] _UpperCamelCase : Any = in_proj_bias[-config.hidden_size :] def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowercase_ ,lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : Dict = dct.pop(lowercase_ ) _UpperCamelCase : List[str] = val def lowercase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCamelCase : Any = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw ) return im @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=True ) -> List[str]: """simple docstring""" _UpperCamelCase : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _UpperCamelCase : List[Any] = 8 # set labels if required if not base_model: _UpperCamelCase : Tuple = 1_000 _UpperCamelCase : Union[str, Any] = "huggingface/label-files" _UpperCamelCase : Optional[Any] = "imagenet-1k-id2label.json" _UpperCamelCase : int = json.load(open(hf_hub_download(lowercase_ ,lowercase_ ,repo_type="dataset" ) ,"r" ) ) _UpperCamelCase : int = {int(lowercase_ ): v for k, v in idalabel.items()} _UpperCamelCase : int = idalabel _UpperCamelCase : List[str] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _UpperCamelCase : Dict = 384 _UpperCamelCase : Any = 1_536 _UpperCamelCase : List[Any] = 12 _UpperCamelCase : Union[str, Any] = 6 # load original model from torch hub _UpperCamelCase : List[str] = torch.hub.load("facebookresearch/dino:main" ,lowercase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys _UpperCamelCase : int = original_model.state_dict() if base_model: remove_classification_head_(lowercase_ ) _UpperCamelCase : Optional[Any] = create_rename_keys(lowercase_ ,base_model=lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ ,lowercase_ ,lowercase_ ) read_in_q_k_v(lowercase_ ,lowercase_ ,lowercase_ ) # load HuggingFace model if base_model: _UpperCamelCase : Dict = ViTModel(lowercase_ ,add_pooling_layer=lowercase_ ).eval() else: _UpperCamelCase : List[str] = ViTForImageClassification(lowercase_ ).eval() model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by ViTImageProcessor _UpperCamelCase : Tuple = ViTImageProcessor() _UpperCamelCase : str = image_processor(images=prepare_img() ,return_tensors="pt" ) _UpperCamelCase : str = encoding["pixel_values"] _UpperCamelCase : Union[str, Any] = model(lowercase_ ) if base_model: _UpperCamelCase : Union[str, Any] = original_model(lowercase_ ) assert torch.allclose(lowercase_ ,outputs.last_hidden_state[:, 0, :] ,atol=1e-1 ) else: _UpperCamelCase : str = original_model(lowercase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase_ ,outputs.logits ,atol=1e-3 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) lowerCamelCase__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
51
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ["model.decoder.embed_positions.weights"] def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if "emb" in name: _UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" ) if "transformer" in name: _UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" ) if "cross_attention" in name: _UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" ) if "linear1" in name: _UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" ) if "linear2" in name: _UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" ) if "norm1" in name: _UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" ) if "norm_cross" in name: _UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" ) if "norm2" in name: _UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" ) if "out_norm" in name: _UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" ) if "linears" in name: _UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]: """simple docstring""" _UpperCamelCase : str = list(state_dict.keys() ) _UpperCamelCase : Optional[Any] = {} for key in keys: _UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ ) _UpperCamelCase : List[Any] = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCamelCase : Tuple = val[:hidden_size, :] _UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _UpperCamelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCamelCase : Optional[Any] = val else: _UpperCamelCase : List[str] = val return state_dict, enc_dec_proj_state_dict def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values _UpperCamelCase : List[Any] = 1_024 _UpperCamelCase : List[str] = 24 _UpperCamelCase : Any = 16 elif checkpoint == "medium": _UpperCamelCase : Tuple = 1_536 _UpperCamelCase : Dict = 48 _UpperCamelCase : Tuple = 24 elif checkpoint == "large": _UpperCamelCase : int = 2_048 _UpperCamelCase : Optional[int] = 48 _UpperCamelCase : Dict = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _UpperCamelCase : str = MusicgenDecoderConfig( hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,) return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]: """simple docstring""" _UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ ) _UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ ) _UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict() _UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict( lowercase_ ,hidden_size=decoder_config.hidden_size ) _UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" ) _UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowercase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass _UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) _UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): _UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" ) _UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) # set the appropriate bos/pad token ids _UpperCamelCase : str = 2_048 _UpperCamelCase : str = 2_048 # set other default generation config params _UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate ) _UpperCamelCase : List[str] = True _UpperCamelCase : int = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowerCamelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
51
1
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __a : Dict , __a : Union[str, Any]=99 , __a : Union[str, Any]=13 , __a : Tuple=7 , __a : List[Any]=9 , __a : Any=True , __a : List[Any]=True , __a : Optional[int]=False , __a : List[Any]=32 , __a : int=5 , __a : Dict=4 , __a : Any=37 , __a : int=8 , __a : List[str]=0.1 , __a : Optional[Any]=0.0_02 , __a : Optional[int]=1 , __a : List[Any]=0 , __a : int=0 , __a : Optional[int]=None , __a : int=None , ) -> Optional[Any]: _UpperCamelCase : int = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Any = encoder_seq_length _UpperCamelCase : Union[str, Any] = decoder_seq_length # For common tests _UpperCamelCase : List[Any] = self.decoder_seq_length _UpperCamelCase : Dict = is_training _UpperCamelCase : Optional[Any] = use_attention_mask _UpperCamelCase : Tuple = use_labels _UpperCamelCase : Union[str, Any] = vocab_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Union[str, Any] = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Optional[int] = d_ff _UpperCamelCase : Any = relative_attention_num_buckets _UpperCamelCase : Union[str, Any] = dropout_rate _UpperCamelCase : Dict = initializer_factor _UpperCamelCase : Optional[Any] = eos_token_id _UpperCamelCase : Optional[int] = pad_token_id _UpperCamelCase : Union[str, Any] = decoder_start_token_id _UpperCamelCase : Optional[int] = None _UpperCamelCase : int = decoder_layers def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: return TaConfig.from_pretrained("google/umt5-base" ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Optional[int] , __a : str , __a : Any , __a : Dict=None , __a : Optional[int]=None , __a : Tuple=None , __a : Optional[int]=None , __a : Tuple=None , ) -> str: if attention_mask is None: _UpperCamelCase : List[str] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _UpperCamelCase : List[str] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _UpperCamelCase : Optional[Any] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__a ) if decoder_head_mask is None: _UpperCamelCase : str = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__a ) if cross_attn_head_mask is None: _UpperCamelCase : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : str = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCamelCase : int = input_ids.clamp(self.pad_token_id + 1 ) _UpperCamelCase : str = decoder_input_ids.clamp(self.pad_token_id + 1 ) _UpperCamelCase : Optional[Any] = self.get_config() _UpperCamelCase : Dict = config.num_attention_heads _UpperCamelCase : Optional[Any] = self.prepare_inputs_dict(__a , __a , __a ) return config, input_dict def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase, _UpperCamelCase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str , __a : Optional[Any] , __a : List[str] , __a : List[str] , __a : List[str] , __a : List[Any] , ) -> Union[str, Any]: _UpperCamelCase : Optional[int] = UMTaModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Dict = model( input_ids=__a , decoder_input_ids=__a , attention_mask=__a , decoder_attention_mask=__a , ) _UpperCamelCase : Dict = model(input_ids=__a , decoder_input_ids=__a ) _UpperCamelCase : List[str] = result.last_hidden_state _UpperCamelCase : str = result.past_key_values _UpperCamelCase : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__a ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : Optional[int] , ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = UMTaModel(config=__a ).get_decoder().to(__a ).eval() # first forward pass _UpperCamelCase : Dict = model(__a , use_cache=__a ) _UpperCamelCase : Dict = model(__a ) _UpperCamelCase : str = model(__a , use_cache=__a ) self.parent.assertTrue(len(__a ) == len(__a ) ) self.parent.assertTrue(len(__a ) == len(__a ) + 1 ) _UpperCamelCase, _UpperCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _UpperCamelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCamelCase : Optional[Any] = model(__a )["last_hidden_state"] _UpperCamelCase : Union[str, Any] = model(__a , past_key_values=__a )["last_hidden_state"] # select random slice _UpperCamelCase : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCamelCase : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCamelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : Union[str, Any] , ) -> Dict: _UpperCamelCase : Tuple = UMTaModel(config=__a ).to(__a ).half().eval() _UpperCamelCase : List[Any] = model(**__a )["last_hidden_state"] self.parent.assertFalse(torch.isnan(__a ).any().item() ) @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Dict = (UMTaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ :int = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :Dict = True SCREAMING_SNAKE_CASE__ :Dict = False SCREAMING_SNAKE_CASE__ :Optional[int] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = True SCREAMING_SNAKE_CASE__ :List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests SCREAMING_SNAKE_CASE__ :Union[str, Any] = [0.8, 0.9] def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Optional[int] = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() _UpperCamelCase : int = UMTaModel(config_and_inputs[0] ).to(__a ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=__a , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: _UpperCamelCase : int = ["encoder_attentions", "decoder_attentions", "cross_attentions"] _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() _UpperCamelCase : List[Any] = config_and_inputs[0] _UpperCamelCase : Optional[Any] = UMTaForConditionalGeneration(__a ).eval() model.to(__a ) _UpperCamelCase : Dict = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=__a ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=__a ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=__a ), } for attn_name, (name, mask) in zip(__a , head_masking.items() ): _UpperCamelCase : List[Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _UpperCamelCase : int = torch.ones( config.num_decoder_layers , config.num_heads , device=__a ) _UpperCamelCase : Any = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=__a , return_dict_in_generate=__a , **__a , ) # We check the state of decoder_attentions and cross_attentions just from the last step _UpperCamelCase : Dict = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: pass @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: _UpperCamelCase : Dict = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=__a ).to(__a ) _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=__a , legacy=__a ) _UpperCamelCase : List[Any] = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] _UpperCamelCase : Tuple = tokenizer(__a , return_tensors="pt" , padding=__a ).input_ids # fmt: off _UpperCamelCase : Tuple = torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__a , __a ) _UpperCamelCase : Tuple = model.generate(input_ids.to(__a ) ) _UpperCamelCase : Union[str, Any] = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] _UpperCamelCase : List[str] = tokenizer.batch_decode(__a ) self.assertEqual(__a , __a )
51
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase__ = input("Enter image url: ").strip() print(f"""Downloading image from {url} ...""") lowerCamelCase__ = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase__ = soup.find("meta", {"property": "og:image"})["content"] lowerCamelCase__ = requests.get(image_url).content lowerCamelCase__ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, "wb") as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
51
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __a : Any , ) -> Tuple: _UpperCamelCase : Dict = parent _UpperCamelCase : Dict = 13 _UpperCamelCase : Dict = 7 _UpperCamelCase : List[Any] = True _UpperCamelCase : List[Any] = True _UpperCamelCase : str = True _UpperCamelCase : Optional[Any] = True _UpperCamelCase : Optional[int] = True _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[str] = False _UpperCamelCase : List[str] = False _UpperCamelCase : List[Any] = 2 _UpperCamelCase : int = 99 _UpperCamelCase : str = 0 _UpperCamelCase : Tuple = 32 _UpperCamelCase : Tuple = 2 _UpperCamelCase : str = 4 _UpperCamelCase : int = 0.1 _UpperCamelCase : List[Any] = 0.1 _UpperCamelCase : Any = 512 _UpperCamelCase : Dict = 16 _UpperCamelCase : Dict = 2 _UpperCamelCase : Tuple = 0.02 _UpperCamelCase : Any = 3 _UpperCamelCase : Optional[int] = 4 _UpperCamelCase : Tuple = "last" _UpperCamelCase : List[str] = True _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : Optional[int] = 0 def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) _UpperCamelCase : Any = None if self.use_input_lengths: _UpperCamelCase : Any = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase : str = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase : Dict = None _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : int = None if self.use_labels: _UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase : Dict = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase : Optional[int] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Dict , __a : int , __a : Optional[Any] , __a : Any , __a : Optional[int] , __a : Tuple , __a : Any , __a : Optional[Any] , __a : Union[str, Any] , ) -> Any: _UpperCamelCase : List[Any] = TFFlaubertModel(config=__a ) _UpperCamelCase : Any = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} _UpperCamelCase : List[Any] = model(__a ) _UpperCamelCase : Tuple = [input_ids, input_mask] _UpperCamelCase : Dict = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Any , __a : List[str] , __a : Optional[Any] , __a : Dict , __a : Optional[int] , __a : List[Any] , __a : Optional[Any] , __a : Any , __a : Any , ) -> Dict: _UpperCamelCase : Optional[int] = TFFlaubertWithLMHeadModel(__a ) _UpperCamelCase : List[Any] = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} _UpperCamelCase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Any , __a : Tuple , __a : List[str] , __a : Tuple , __a : List[str] , __a : Optional[Any] , __a : List[Any] , __a : List[str] , __a : List[str] , ) -> List[str]: _UpperCamelCase : str = TFFlaubertForQuestionAnsweringSimple(__a ) _UpperCamelCase : Optional[Any] = {"input_ids": input_ids, "lengths": input_lengths} _UpperCamelCase : Union[str, Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : Dict , __a : Union[str, Any] , __a : int , __a : Tuple , ) -> Optional[Any]: _UpperCamelCase : Optional[int] = TFFlaubertForSequenceClassification(__a ) _UpperCamelCase : int = {"input_ids": input_ids, "lengths": input_lengths} _UpperCamelCase : Optional[int] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Union[str, Any] , __a : str , __a : List[Any] , __a : int , __a : Any , __a : Union[str, Any] , __a : List[Any] , __a : Union[str, Any] , __a : str , ) -> Any: _UpperCamelCase : Optional[Any] = self.num_labels _UpperCamelCase : List[str] = TFFlaubertForTokenClassification(config=__a ) _UpperCamelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCamelCase : int = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Tuple , __a : Tuple , __a : Union[str, Any] , __a : Optional[int] , __a : Tuple , __a : Any , __a : int , __a : List[Any] , __a : List[str] , ) -> str: _UpperCamelCase : str = self.num_choices _UpperCamelCase : Union[str, Any] = TFFlaubertForMultipleChoice(config=__a ) _UpperCamelCase : Optional[Any] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase : List[Any] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase : Optional[int] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _UpperCamelCase : Optional[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: _UpperCamelCase : str = self.prepare_config_and_inputs() ( ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ) : Tuple = config_and_inputs _UpperCamelCase : Any = { "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ :Any = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE__ :List[Any] = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :List[str] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = False def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Union[str, Any] , __a : Dict , __a : str , __a : List[Any] , __a : Dict ) -> Optional[int]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: _UpperCamelCase : Union[str, Any] = TFFlaubertModelTester(self ) _UpperCamelCase : Tuple = ConfigTester(self , config_class=__a , emb_dim=37 ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Any: _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Union[str, Any] = TFFlaubertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: _UpperCamelCase : Union[str, Any] = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" ) _UpperCamelCase : List[Any] = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" _UpperCamelCase : Union[str, Any] = model(__a )[0] _UpperCamelCase : int = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. _UpperCamelCase : Tuple = tf.convert_to_tensor( [ [ [-1.8_76_87_73, -1.56_65_55, 0.27_07_24_18], [-1.6_92_00_38, -0.5_87_35_05, 1.9_32_95_99], [-2.9_56_39_85, -1.6_99_38_35, 1.7_97_20_52], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
51
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) _UpperCamelCase : str = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )] _UpperCamelCase : List[str] = ".".join(lowercase_ ) return test_module_path def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_module_path(lowercase_ ) _UpperCamelCase : str = importlib.import_module(lowercase_ ) return test_module def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[Any] = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowercase_ ,lowercase_ ) ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Any = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): _UpperCamelCase : int = getattr(lowercase_ ,lowercase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] ) if len(lowercase_ ) > 0: test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Dict = get_test_classes(lowercase_ ) _UpperCamelCase : int = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = test_class() if hasattr(lowercase_ ,"setUp" ): test.setUp() _UpperCamelCase : Tuple = None if hasattr(lowercase_ ,"model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCamelCase : Tuple = test.model_tester.__class__ return model_tester def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = get_test_classes(lowercase_ ) _UpperCamelCase : Dict = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = [] for test_class in test_classes: _UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ ) if tester_class is not None: tester_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Any = get_test_classes(lowercase_ ) _UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes} return test_tester_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Optional[int] = { model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_test_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Tuple = { model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_to_tester_mapping def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" if isinstance(lowercase_ ,lowercase_ ): return o elif isinstance(lowercase_ ,lowercase_ ): return o.__name__ elif isinstance(lowercase_ ,(list, tuple) ): return [to_json(lowercase_ ) for x in o] elif isinstance(lowercase_ ,lowercase_ ): return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()} else: return o
51
1
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = MgpstrTokenizer SCREAMING_SNAKE_CASE__ :Tuple = False SCREAMING_SNAKE_CASE__ :Tuple = {} SCREAMING_SNAKE_CASE__ :Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: super().setUp() # fmt: off _UpperCamelCase : Tuple = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _UpperCamelCase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , **__a : Any ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Optional[int] ) -> Tuple: _UpperCamelCase : Tuple = "tester" _UpperCamelCase : Optional[int] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Optional[int] = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _UpperCamelCase : List[str] = tokenizer.encode([special_token] , add_special_tokens=__a ) self.assertEqual(len(__a ) , 1 ) _UpperCamelCase : str = tokenizer.decode(__a , skip_special_tokens=__a ) self.assertTrue(special_token not in decoded ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: _UpperCamelCase : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase, _UpperCamelCase : Dict = self.get_input_output_texts(__a ) _UpperCamelCase : Tuple = tokenizer.tokenize(__a ) _UpperCamelCase : Dict = tokenizer.convert_tokens_to_ids(__a ) _UpperCamelCase : str = tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Dict = tokenizer.convert_ids_to_tokens(__a ) self.assertNotEqual(len(__a ) , 0 ) _UpperCamelCase : Dict = tokenizer.decode(__a ) self.assertIsInstance(__a , __a ) self.assertEqual(text_a.replace(" " , "" ) , __a ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: pass
51
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
51
1
"""simple docstring""" from __future__ import annotations import math lowerCamelCase__ = "2020.9.26" lowerCamelCase__ = "xcodz-dot, cclaus, dhruvmanila" def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> tuple[float, float]: """simple docstring""" if not all(isinstance(lowercase_ ,(float, int) ) for val in locals().values() ): _UpperCamelCase : Any = F'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(lowercase_ ) _UpperCamelCase : Tuple = ((x * distance) / (z + distance)) * scale _UpperCamelCase : Union[str, Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> tuple[float, float, float]: """simple docstring""" if not isinstance(lowercase_ ,lowercase_ ): raise TypeError("Axis must be a str" ) _UpperCamelCase : List[str] = locals() del input_variables["axis"] if not all(isinstance(lowercase_ ,(float, int) ) for val in input_variables.values() ): _UpperCamelCase : Any = ( "Input values except axis must either be float or int: " F'''{list(input_variables.values() )}''' ) raise TypeError(lowercase_ ) _UpperCamelCase : List[str] = (angle % 360) / 450 * 180 / math.pi if axis == "z": _UpperCamelCase : Tuple = x * math.cos(lowercase_ ) - y * math.sin(lowercase_ ) _UpperCamelCase : str = y * math.cos(lowercase_ ) + x * math.sin(lowercase_ ) _UpperCamelCase : Union[str, Any] = z elif axis == "x": _UpperCamelCase : Any = y * math.cos(lowercase_ ) - z * math.sin(lowercase_ ) _UpperCamelCase : List[Any] = z * math.cos(lowercase_ ) + y * math.sin(lowercase_ ) _UpperCamelCase : Optional[Any] = x elif axis == "y": _UpperCamelCase : Any = x * math.cos(lowercase_ ) - z * math.sin(lowercase_ ) _UpperCamelCase : Dict = z * math.cos(lowercase_ ) + x * math.sin(lowercase_ ) _UpperCamelCase : List[Any] = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, "y", 9_0.0) = }""")
51
"""simple docstring""" lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCamelCase : Any = "" while len(lowercase_ ) % 3 != 0: _UpperCamelCase : Any = "0" + bin_string _UpperCamelCase : Optional[Any] = [ bin_string[index : index + 3] for index in range(len(lowercase_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCamelCase : str = 0 for index, val in enumerate(lowercase_ ): oct_val += int(2 ** (2 - index) * int(lowercase_ ) ) oct_string += str(lowercase_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
51
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: _UpperCamelCase : Tuple = tempfile.mkdtemp() _UpperCamelCase : str = 5 # Realm tok _UpperCamelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) _UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : Any = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : int = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=__a , ) return block_records def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : Tuple = self.get_config() _UpperCamelCase : int = self.get_dummy_retriever() _UpperCamelCase : Tuple = retriever.tokenizer _UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" ) _UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : List[str] = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : str = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Any = self.get_config() _UpperCamelCase : Dict = self.get_dummy_retriever() _UpperCamelCase : Dict = retriever.tokenizer _UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" ) _UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : str = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : Union[str, Any] = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCamelCase : List[Any] = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
51
1
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" print("Loading config file..." ) def flatten_yaml_as_dict(lowercase_ ,lowercase_="" ,lowercase_="." ): _UpperCamelCase : int = [] for k, v in d.items(): _UpperCamelCase : Optional[int] = parent_key + sep + k if parent_key else k if isinstance(lowercase_ ,collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(lowercase_ ,lowercase_ ,sep=lowercase_ ).items() ) else: items.append((new_key, v) ) return dict(lowercase_ ) _UpperCamelCase : Optional[int] = argparse.Namespace() with open(lowercase_ ,"r" ) as yaml_file: try: _UpperCamelCase : str = yaml.load(lowercase_ ,Loader=yaml.FullLoader ) _UpperCamelCase : Union[str, Any] = flatten_yaml_as_dict(lowercase_ ) for k, v in flat_cfg.items(): setattr(lowercase_ ,lowercase_ ,lowercase_ ) except yaml.YAMLError as exc: logger.error("Error while loading config file: {}. Error message: {}".format(lowercase_ ,str(lowercase_ ) ) ) return config def lowercase__ ( lowercase_ ,lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Union[str, Any] = MobileViTVaConfig() _UpperCamelCase : List[str] = False # dataset if task_name.startswith("imagenet1k_" ): _UpperCamelCase : List[str] = 1_000 if int(task_name.strip().split("_" )[-1] ) == 384: _UpperCamelCase : Optional[Any] = 384 else: _UpperCamelCase : Dict = 256 _UpperCamelCase : List[Any] = "imagenet-1k-id2label.json" elif task_name.startswith("imagenet21k_to_1k_" ): _UpperCamelCase : Tuple = 21_000 if int(task_name.strip().split("_" )[-1] ) == 384: _UpperCamelCase : int = 384 else: _UpperCamelCase : List[Any] = 256 _UpperCamelCase : Any = "imagenet-22k-id2label.json" elif task_name.startswith("ade20k_" ): _UpperCamelCase : Union[str, Any] = 151 _UpperCamelCase : List[str] = 512 _UpperCamelCase : int = "ade20k-id2label.json" _UpperCamelCase : Optional[Any] = True elif task_name.startswith("voc_" ): _UpperCamelCase : Any = 21 _UpperCamelCase : Any = 512 _UpperCamelCase : Dict = "pascal-voc-id2label.json" _UpperCamelCase : Union[str, Any] = True # orig_config _UpperCamelCase : Dict = load_orig_config_file(lowercase_ ) assert getattr(lowercase_ ,"model.classification.name" ,-1 ) == "mobilevit_v2", "Invalid model" _UpperCamelCase : Optional[int] = getattr(lowercase_ ,"model.classification.mitv2.width_multiplier" ,1.0 ) assert ( getattr(lowercase_ ,"model.classification.mitv2.attn_norm_layer" ,-1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _UpperCamelCase : List[str] = getattr(lowercase_ ,"model.classification.activation.name" ,"swish" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _UpperCamelCase : Optional[int] = getattr(lowercase_ ,"model.segmentation.output_stride" ,16 ) if "_deeplabv3" in task_name: _UpperCamelCase : Tuple = getattr(lowercase_ ,"model.segmentation.deeplabv3.aspp_rates" ,[12, 24, 36] ) _UpperCamelCase : Any = getattr(lowercase_ ,"model.segmentation.deeplabv3.aspp_out_channels" ,512 ) _UpperCamelCase : Dict = getattr(lowercase_ ,"model.segmentation.deeplabv3.aspp_dropout" ,0.1 ) # id2label _UpperCamelCase : List[str] = "huggingface/label-files" _UpperCamelCase : Dict = json.load(open(hf_hub_download(lowercase_ ,lowercase_ ,repo_type="dataset" ) ,"r" ) ) _UpperCamelCase : Any = {int(lowercase_ ): v for k, v in idalabel.items()} _UpperCamelCase : Any = idalabel _UpperCamelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : Any = dct.pop(lowercase_ ) _UpperCamelCase : Union[str, Any] = val def lowercase__ ( lowercase_ ,lowercase_=False ) -> Optional[int]: """simple docstring""" if base_model: _UpperCamelCase : Dict = "" else: _UpperCamelCase : str = "mobilevitv2." _UpperCamelCase : Any = [] for k in state_dict.keys(): if k[:8] == "encoder.": _UpperCamelCase : str = k[8:] else: _UpperCamelCase : Dict = k if ".block." in k: _UpperCamelCase : Union[str, Any] = k_new.replace(".block." ,"." ) if ".conv." in k: _UpperCamelCase : Tuple = k_new.replace(".conv." ,".convolution." ) if ".norm." in k: _UpperCamelCase : Tuple = k_new.replace(".norm." ,".normalization." ) if "conv_1." in k: _UpperCamelCase : Optional[Any] = k_new.replace("conv_1." ,F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: _UpperCamelCase : Any = k_new.replace(F'''layer_{i}.''' ,F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: _UpperCamelCase : Tuple = k_new.replace(".exp_1x1." ,".expand_1x1." ) if ".red_1x1." in k: _UpperCamelCase : Optional[int] = k_new.replace(".red_1x1." ,".reduce_1x1." ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: _UpperCamelCase : Any = k_new.replace(F'''layer_{i}.0.''' ,F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: _UpperCamelCase : List[str] = k_new.replace(F'''layer_{i}.1.local_rep.0.''' ,F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: _UpperCamelCase : int = k_new.replace(F'''layer_{i}.1.local_rep.1.''' ,F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: _UpperCamelCase : Union[str, Any] = [0, 1] elif i == 4: _UpperCamelCase : Tuple = [0, 1, 2, 3] elif i == 5: _UpperCamelCase : List[str] = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: _UpperCamelCase : str = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' ,F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: _UpperCamelCase : Dict = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' ,F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: _UpperCamelCase : Optional[Any] = k_new.replace(F'''layer_{i}.1.conv_proj.''' ,F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: _UpperCamelCase : Dict = k_new.replace("pre_norm_attn.0." ,"layernorm_before." ) if "pre_norm_attn.1." in k: _UpperCamelCase : List[str] = k_new.replace("pre_norm_attn.1." ,"attention." ) if "pre_norm_ffn.0." in k: _UpperCamelCase : Optional[int] = k_new.replace("pre_norm_ffn.0." ,"layernorm_after." ) if "pre_norm_ffn.1." in k: _UpperCamelCase : int = k_new.replace("pre_norm_ffn.1." ,"ffn.conv1." ) if "pre_norm_ffn.3." in k: _UpperCamelCase : Any = k_new.replace("pre_norm_ffn.3." ,"ffn.conv2." ) if "classifier.1." in k: _UpperCamelCase : int = k_new.replace("classifier.1." ,"classifier." ) if "seg_head." in k: _UpperCamelCase : Tuple = k_new.replace("seg_head." ,"segmentation_head." ) if ".aspp_layer." in k: _UpperCamelCase : List[Any] = k_new.replace(".aspp_layer." ,"." ) if ".aspp_pool." in k: _UpperCamelCase : Tuple = k_new.replace(".aspp_pool." ,"." ) rename_keys.append((k, k_new) ) return rename_keys def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : Dict = [] for k in state_dict.keys(): if k.startswith("seg_head.aux_head." ): keys_to_ignore.append(lowercase_ ) for k in keys_to_ignore: state_dict.pop(lowercase_ ,lowercase_ ) def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _UpperCamelCase : Union[str, Any] = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw ) return im @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : Union[str, Any] = get_mobilevitva_config(lowercase_ ,lowercase_ ) # load original state_dict _UpperCamelCase : str = torch.load(lowercase_ ,map_location="cpu" ) # load huggingface model if task_name.startswith("ade20k_" ) or task_name.startswith("voc_" ): _UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation(lowercase_ ).eval() _UpperCamelCase : Any = False else: _UpperCamelCase : List[Any] = MobileViTVaForImageClassification(lowercase_ ).eval() _UpperCamelCase : List[str] = False # remove and rename some keys of load the original model _UpperCamelCase : Dict = checkpoint remove_unused_keys(lowercase_ ) _UpperCamelCase : Optional[Any] = create_rename_keys(lowercase_ ,base_model=lowercase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase_ ,lowercase_ ,lowercase_ ) # load modified state_dict model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor _UpperCamelCase : Tuple = MobileViTImageProcessor(crop_size=config.image_size ,size=config.image_size + 32 ) _UpperCamelCase : Dict = image_processor(images=prepare_img() ,return_tensors="pt" ) _UpperCamelCase : int = model(**lowercase_ ) # verify classification model if task_name.startswith("imagenet" ): _UpperCamelCase : Tuple = outputs.logits _UpperCamelCase : Tuple = logits.argmax(-1 ).item() print("Predicted class:" ,model.config.idalabel[predicted_class_idx] ) if task_name.startswith("imagenet1k_256" ) and config.width_multiplier == 1.0: # expected_logits for base variant _UpperCamelCase : Optional[int] = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ) assert torch.allclose(logits[0, :3] ,lowercase_ ,atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) lowerCamelCase__ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
51
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = LEDConfig SCREAMING_SNAKE_CASE__ :str = {} SCREAMING_SNAKE_CASE__ :List[str] = "gelu" def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]: _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : List[str] = batch_size _UpperCamelCase : str = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : str = max_position_embeddings _UpperCamelCase : int = eos_token_id _UpperCamelCase : Dict = pad_token_id _UpperCamelCase : Optional[Any] = bos_token_id _UpperCamelCase : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCamelCase : List[str] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a ) _UpperCamelCase : Union[str, Any] = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) _UpperCamelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple: _UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder() _UpperCamelCase : Tuple = inputs_dict["input_ids"] _UpperCamelCase : int = input_ids[:1, :] _UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :] _UpperCamelCase : List[Any] = 1 # first forward pass _UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0] _UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict: """simple docstring""" if attention_mask is None: _UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :Tuple = True SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : int = TFLEDModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] ) _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : str = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) _UpperCamelCase : Dict = True _UpperCamelCase : str = self.model_tester.seq_length _UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a : Optional[int] ): _UpperCamelCase : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a : Optional[Any] ): _UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] _UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCamelCase : Dict = True _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Any = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: _UpperCamelCase : Optional[Any] = model_class(__a ) _UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase : int = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine _UpperCamelCase : Any = True _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: # TODO: Head-masking not yet implement pass def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return tf.constant(lowercase_ ,dtype=tf.intaa ) lowerCamelCase__ = 1E-4 @slow @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Optional[int] = model(**__a )[0] _UpperCamelCase : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Tuple = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Union[str, Any] = model(**__a )[0] _UpperCamelCase : int = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Optional[int] = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : int = [0] * len(lowercase_ ) _UpperCamelCase : List[str] = [] _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : str = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: _UpperCamelCase : Any = queue.pop(0 ) cnt += 1 topo.append(lowercase_ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(lowercase_ ) if cnt != len(lowercase_ ): print("Cycle exists" ) else: print(lowercase_ ) # Adjacency List of Graph lowerCamelCase__ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
51
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer SCREAMING_SNAKE_CASE__ :Dict = None SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = True SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().setUp() _UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] _UpperCamelCase : List[str] = {} _UpperCamelCase : Tuple = {} for i, value in enumerate(__a ): _UpperCamelCase : List[str] = i _UpperCamelCase : Optional[Any] = i _UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) _UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(__a , __a , ensure_ascii=__a ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(__a , __a , ensure_ascii=__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: _UpperCamelCase : Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: _UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _UpperCamelCase : Any = {} for i, token in enumerate(__a ): _UpperCamelCase : str = i _UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: _UpperCamelCase : Tuple = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) _UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False _UpperCamelCase : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = ["的", "人", "有"] _UpperCamelCase : int = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = True _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Any = False _UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". _UpperCamelCase : Any = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a ) _UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a ) _UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : int = "你好,你是谁" _UpperCamelCase : Any = tokenizer.tokenize(__a ) _UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a ) _UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a ) _UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a ) _UpperCamelCase : Optional[int] = tokenizer.prepare_for_model( __a , __a , __a , add_special_tokens=__a ) _UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a ) self.assertEqual(__a , __a )
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : List[Any] = [] _UpperCamelCase : str = [] _UpperCamelCase : Dict = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator _UpperCamelCase : Union[str, Any] = len(lowercase_ ) if (len(lowercase_ ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) ,"Stack".center(lowercase_ ) ,"Postfix".center(lowercase_ ) ,sep=" | " ,) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowercase_ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowercase_ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowercase_ ) == 0: stack.append(lowercase_ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowercase_ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowercase_ ) # push x to stack print( x.center(8 ) ,("".join(lowercase_ )).ljust(lowercase_ ) ,("".join(lowercase_ )).ljust(lowercase_ ) ,sep=" | " ,) # Output in tabular format while len(lowercase_ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) ,("".join(lowercase_ )).ljust(lowercase_ ) ,("".join(lowercase_ )).ljust(lowercase_ ) ,sep=" | " ,) # Output in tabular format return "".join(lowercase_ ) # return Postfix as str def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : str = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowercase_ ) ): if infix[i] == "(": _UpperCamelCase : Any = ")" # change "(" to ")" elif infix[i] == ")": _UpperCamelCase : Tuple = "(" # change ")" to "(" return (infix_2_postfix("".join(lowercase_ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": lowerCamelCase__ = input("\nEnter an Infix Equation = ") # Input an Infix equation lowerCamelCase__ = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
51
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = "yolos" def __init__( self : Dict , __a : Optional[Any]=768 , __a : List[Any]=12 , __a : Any=12 , __a : List[Any]=3072 , __a : Optional[int]="gelu" , __a : Dict=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.02 , __a : Optional[int]=1e-1_2 , __a : List[Any]=[512, 864] , __a : List[str]=16 , __a : str=3 , __a : Optional[Any]=True , __a : Optional[Any]=100 , __a : List[str]=True , __a : Any=False , __a : List[str]=1 , __a : str=5 , __a : Optional[Any]=2 , __a : Tuple=5 , __a : Any=2 , __a : Union[str, Any]=0.1 , **__a : List[str] , ) -> List[str]: super().__init__(**__a ) _UpperCamelCase : Dict = hidden_size _UpperCamelCase : Any = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Tuple = image_size _UpperCamelCase : Tuple = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : Any = qkv_bias _UpperCamelCase : str = num_detection_tokens _UpperCamelCase : str = use_mid_position_embeddings _UpperCamelCase : List[str] = auxiliary_loss # Hungarian matcher _UpperCamelCase : List[Any] = class_cost _UpperCamelCase : int = bbox_cost _UpperCamelCase : Optional[int] = giou_cost # Loss coefficients _UpperCamelCase : List[Any] = bbox_loss_coefficient _UpperCamelCase : str = giou_loss_coefficient _UpperCamelCase : Dict = eos_coefficient class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float: return 1e-4 @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return 12
51
1
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[int] = None if token is not None: _UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) _UpperCamelCase : Any = "636036" _UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' _UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json() return result["workflow_runs"] def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ ) _UpperCamelCase : Tuple = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCamelCase : Union[str, Any] = workflow_run["id"] break return workflow_run_id def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: _UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCamelCase : Dict = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = {} for artifact_name in artifact_names: _UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' ) if os.path.isfile(lowercase_ ): _UpperCamelCase : int = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: _UpperCamelCase : int = f.read().decode("UTF-8" ) return results
51
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCamelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase] lowerCamelCase__ = {ord(char) for char in VALID_CHARS} lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None: """simple docstring""" _UpperCamelCase : str = "" _UpperCamelCase : int _UpperCamelCase : int _UpperCamelCase : int for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ): _UpperCamelCase : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase_ ) return decoded def lowercase__ ( lowercase_ ) -> list[str]: """simple docstring""" _UpperCamelCase : list[str] = [] for key in product(lowercase_ ,repeat=3 ): _UpperCamelCase : int = try_key(lowercase_ ,lowercase_ ) if encoded is not None: possibles.append(lowercase_ ) return possibles def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int: """simple docstring""" _UpperCamelCase : list[int] _UpperCamelCase : list[str] _UpperCamelCase : str _UpperCamelCase : str _UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" ) _UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )] _UpperCamelCase : List[str] = filter_valid_chars(lowercase_ ) for common_word in COMMON_WORDS: _UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ ) if len(lowercase_ ) == 1: break _UpperCamelCase : Union[str, Any] = possibles[0] return sum(ord(lowercase_ ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> float: """simple docstring""" _UpperCamelCase : int = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowercase__ ( ) -> Any: """simple docstring""" print(sum_of_series(1 ,1 ,10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ) -> None: """simple docstring""" _UpperCamelCase : List[Any] = len(lowercase_ ) print("The following activities are selected:" ) # The first activity is always selected _UpperCamelCase : List[Any] = 0 print(lowercase_ ,end="," ) # Consider rest of the activities for j in range(lowercase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase_ ,end="," ) _UpperCamelCase : Optional[Any] = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = [1, 3, 0, 5, 8, 5] lowerCamelCase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
51
1
"""simple docstring""" from __future__ import annotations from typing import Any class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' pass class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , __a : Any ) -> None: _UpperCamelCase : Any = data _UpperCamelCase : Node | None = None def __iter__( self : Union[str, Any] ) -> int: _UpperCamelCase : Any = self _UpperCamelCase : Tuple = [] while node: if node in visited: raise ContainsLoopError visited.append(__a ) yield node.data _UpperCamelCase : List[Any] = node.next_node @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": lowerCamelCase__ = Node(1) lowerCamelCase__ = Node(2) lowerCamelCase__ = Node(3) lowerCamelCase__ = Node(4) print(root_node.has_loop) # False lowerCamelCase__ = root_node.next_node print(root_node.has_loop) # True lowerCamelCase__ = Node(5) lowerCamelCase__ = Node(6) lowerCamelCase__ = Node(5) lowerCamelCase__ = Node(6) print(root_node.has_loop) # False lowerCamelCase__ = Node(1) print(root_node.has_loop) # False
51
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict: super().__init__() _UpperCamelCase : List[str] = layers_per_block _UpperCamelCase : Dict = torch.nn.Convad( __a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : int = None _UpperCamelCase : Any = nn.ModuleList([] ) # down _UpperCamelCase : List[str] = block_out_channels[0] for i, down_block_type in enumerate(__a ): _UpperCamelCase : Tuple = output_channel _UpperCamelCase : int = block_out_channels[i] _UpperCamelCase : int = i == len(__a ) - 1 _UpperCamelCase : Dict = get_down_block( __a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , ) self.down_blocks.append(__a ) # mid _UpperCamelCase : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # out _UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : Any = nn.SiLU() _UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels _UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 ) _UpperCamelCase : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]: _UpperCamelCase : int = x _UpperCamelCase : Optional[int] = self.conv_in(__a ) if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Tuple ): def custom_forward(*__a : Any ): return module(*__a ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , use_reentrant=__a ) # middle _UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , use_reentrant=__a ) else: for down_block in self.down_blocks: _UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a ) # middle _UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a ) else: # down for down_block in self.down_blocks: _UpperCamelCase : int = down_block(__a ) # middle _UpperCamelCase : int = self.mid_block(__a ) # post-process _UpperCamelCase : Any = self.conv_norm_out(__a ) _UpperCamelCase : Any = self.conv_act(__a ) _UpperCamelCase : Optional[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str: super().__init__() _UpperCamelCase : List[Any] = layers_per_block _UpperCamelCase : Tuple = nn.Convad( __a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = nn.ModuleList([] ) _UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None # mid _UpperCamelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # up _UpperCamelCase : List[str] = list(reversed(__a ) ) _UpperCamelCase : int = reversed_block_out_channels[0] for i, up_block_type in enumerate(__a ): _UpperCamelCase : int = output_channel _UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i] _UpperCamelCase : Optional[Any] = i == len(__a ) - 1 _UpperCamelCase : Union[str, Any] = get_up_block( __a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , ) self.up_blocks.append(__a ) _UpperCamelCase : Optional[Any] = output_channel # out if norm_type == "spatial": _UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a ) else: _UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : str = nn.SiLU() _UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 ) _UpperCamelCase : Dict = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple: _UpperCamelCase : List[str] = z _UpperCamelCase : Dict = self.conv_in(__a ) _UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Any ): def custom_forward(*__a : Tuple ): return module(*__a ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle _UpperCamelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a ) _UpperCamelCase : Optional[int] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , __a , use_reentrant=__a ) else: # middle _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a ) _UpperCamelCase : Union[str, Any] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a ) else: # middle _UpperCamelCase : str = self.mid_block(__a , __a ) _UpperCamelCase : int = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : Any = up_block(__a , __a ) # post-process if latent_embeds is None: _UpperCamelCase : List[str] = self.conv_norm_out(__a ) else: _UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a ) _UpperCamelCase : Tuple = self.conv_act(__a ) _UpperCamelCase : List[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]: super().__init__() _UpperCamelCase : Tuple = n_e _UpperCamelCase : Tuple = vq_embed_dim _UpperCamelCase : Union[str, Any] = beta _UpperCamelCase : str = legacy _UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCamelCase : Any = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) _UpperCamelCase : Dict = self.used.shape[0] _UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase : Optional[int] = self.re_embed _UpperCamelCase : Any = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: _UpperCamelCase : Union[str, Any] = n_e _UpperCamelCase : List[str] = sane_index_shape def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]: _UpperCamelCase : str = inds.shape assert len(__a ) > 1 _UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[Any] = self.used.to(__a ) _UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase : Optional[Any] = match.argmax(-1 ) _UpperCamelCase : Any = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCamelCase : Dict = self.unknown_index return new.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]: _UpperCamelCase : int = inds.shape assert len(__a ) > 1 _UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[int] = self.used.to(__a ) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase : int = 0 # simply set to zero _UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a ) return back.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]: # reshape z -> (batch, height, width, channel) and flatten _UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCamelCase : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 ) _UpperCamelCase : int = self.embedding(__a ).view(z.shape ) _UpperCamelCase : str = None _UpperCamelCase : Any = None # compute loss for embedding if not self.legacy: _UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCamelCase : List[str] = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCamelCase : Dict = self.remap_to_used(__a ) _UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: _UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCamelCase : str = self.unmap_to_all(__a ) _UpperCamelCase : int = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCamelCase : Optional[int] = self.embedding(__a ) if shape is not None: _UpperCamelCase : Tuple = z_q.view(__a ) # reshape back to match original input shape _UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int: _UpperCamelCase : Dict = parameters _UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 ) _UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 ) _UpperCamelCase : Union[str, Any] = deterministic _UpperCamelCase : Dict = torch.exp(0.5 * self.logvar ) _UpperCamelCase : Any = torch.exp(self.logvar ) if self.deterministic: _UpperCamelCase : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype _UpperCamelCase : List[Any] = randn_tensor( self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCamelCase : List[Any] = self.mean + self.std * sample return x def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int: if self.deterministic: return torch.Tensor([0.0] ) _UpperCamelCase : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: return self.mean
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" _UpperCamelCase, _UpperCamelCase : Any = len(lowercase_ ), len(grid[0] ) if ( min(lowercase_ ,lowercase_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _UpperCamelCase : Union[str, Any] = 0 count += depth_first_search(lowercase_ ,row + 1 ,lowercase_ ,lowercase_ ) count += depth_first_search(lowercase_ ,row - 1 ,lowercase_ ,lowercase_ ) count += depth_first_search(lowercase_ ,lowercase_ ,col + 1 ,lowercase_ ) count += depth_first_search(lowercase_ ,lowercase_ ,col - 1 ,lowercase_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"summary": Value("string" )} ) SCREAMING_SNAKE_CASE__ :str = "text" SCREAMING_SNAKE_CASE__ :str = "summary" @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
51
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["ConvNextFeatureExtractor"] lowerCamelCase__ = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
51
"""simple docstring""" def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : Union[str, Any] = set() # edges = list of graph's edges _UpperCamelCase : Union[str, Any] = get_edges(lowercase_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCamelCase, _UpperCamelCase : str = edges.pop() chosen_vertices.add(lowercase_ ) chosen_vertices.add(lowercase_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase_ ) return chosen_vertices def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
51
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ["pixel_values"] def __init__( self : int , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: super().__init__(**__a ) _UpperCamelCase : Optional[Any] = size if size is not None else {"height": 384, "width": 384} _UpperCamelCase : str = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : Optional[Any] = do_resize _UpperCamelCase : List[str] = size _UpperCamelCase : Dict = resample _UpperCamelCase : List[str] = do_rescale _UpperCamelCase : str = rescale_factor _UpperCamelCase : Tuple = do_normalize _UpperCamelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCamelCase : str = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCamelCase : str = do_convert_rgb def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: _UpperCamelCase : int = get_size_dict(__a , default_to_square=__a ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) _UpperCamelCase : str = (size["height"], size["width"]) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> List[str]: return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : ImageInput , __a : Optional[bool] = None , __a : Optional[Dict[str, int]] = None , __a : PILImageResampling = None , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : bool = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : Tuple , ) -> PIL.Image.Image: _UpperCamelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Dict = resample if resample is not None else self.resample _UpperCamelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : int = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : List[Any] = image_std if image_std is not None else self.image_std _UpperCamelCase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCamelCase : Union[str, Any] = size if size is not None else self.size _UpperCamelCase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : List[Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCamelCase : List[Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. _UpperCamelCase : List[str] = [to_numpy_array(__a ) for image in images] if do_resize: _UpperCamelCase : List[str] = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_rescale: _UpperCamelCase : int = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: _UpperCamelCase : int = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] _UpperCamelCase : Union[str, Any] = [to_channel_dimension_format(__a , __a ) for image in images] _UpperCamelCase : Union[str, Any] = BatchFeature(data={"pixel_values": images} , tensor_type=__a ) return encoded_outputs
51
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["OwlViTFeatureExtractor"] lowerCamelCase__ = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
1
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : List[str] , __a : str , __a : Union[str, Any]=13 , __a : int=7 , __a : Optional[int]=True , __a : List[str]=True , __a : List[str]=False , __a : Optional[int]=True , __a : List[Any]=99 , __a : Union[str, Any]=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Optional[int]="gelu" , __a : Any=0.1 , __a : List[Any]=0.1 , __a : Union[str, Any]=512 , __a : Tuple=16 , __a : Union[str, Any]=2 , __a : List[Any]=0.02 , __a : Tuple=3 , __a : Dict=4 , __a : List[Any]=None , ) -> Any: _UpperCamelCase : List[Any] = parent _UpperCamelCase : Tuple = batch_size _UpperCamelCase : Optional[int] = seq_length _UpperCamelCase : Optional[Any] = is_training _UpperCamelCase : int = use_input_mask _UpperCamelCase : Any = use_token_type_ids _UpperCamelCase : Any = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : List[str] = max_position_embeddings _UpperCamelCase : Optional[int] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : Union[str, Any] = num_labels _UpperCamelCase : Optional[Any] = num_choices _UpperCamelCase : int = scope def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : Union[str, Any] = None if self.use_input_mask: _UpperCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : Any = None _UpperCamelCase : List[Any] = None _UpperCamelCase : Tuple = None if self.use_labels: _UpperCamelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Any , __a : str , __a : int , __a : List[Any] , __a : int , __a : Any ) -> str: _UpperCamelCase : Any = DistilBertModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Dict = model(__a , __a ) _UpperCamelCase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : Optional[Any] , __a : List[Any] , __a : List[str] , __a : Optional[Any] , __a : Any ) -> int: _UpperCamelCase : List[Any] = DistilBertForMaskedLM(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Tuple , __a : Tuple , __a : int , __a : Dict , __a : Tuple , __a : Optional[Any] ) -> Optional[Any]: _UpperCamelCase : Union[str, Any] = DistilBertForQuestionAnswering(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Union[str, Any] = model( __a , attention_mask=__a , start_positions=__a , end_positions=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int , __a : Any , __a : Optional[int] , __a : Optional[int] , __a : int , __a : List[str] ) -> Optional[int]: _UpperCamelCase : str = self.num_labels _UpperCamelCase : List[str] = DistilBertForSequenceClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[int] , __a : Any , __a : str , __a : Optional[Any] , __a : Tuple , __a : Dict ) -> str: _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Dict = DistilBertForTokenClassification(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : List[Any] , __a : int , __a : Dict , __a : str , __a : Union[str, Any] , __a : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : Tuple = self.num_choices _UpperCamelCase : List[Any] = DistilBertForMultipleChoice(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase : int = model( __a , attention_mask=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : Any = self.prepare_config_and_inputs() ((_UpperCamelCase), (_UpperCamelCase), (_UpperCamelCase), (_UpperCamelCase), (_UpperCamelCase), (_UpperCamelCase)) : List[str] = config_and_inputs _UpperCamelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE__ :Dict = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :List[str] = True SCREAMING_SNAKE_CASE__ :Optional[int] = True SCREAMING_SNAKE_CASE__ :Optional[Any] = True SCREAMING_SNAKE_CASE__ :str = True def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: _UpperCamelCase : Tuple = DistilBertModelTester(self ) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__a , dim=37 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[int] = DistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @slow @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase, _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _UpperCamelCase : Tuple = True _UpperCamelCase : Tuple = model_class(config=__a ) _UpperCamelCase : int = self._prepare_for_class(__a , __a ) _UpperCamelCase : str = torch.jit.trace( __a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__a , os.path.join(__a , "traced_model.pt" ) ) _UpperCamelCase : Optional[int] = torch.jit.load(os.path.join(__a , "traced_model.pt" ) , map_location=__a ) loaded(inputs_dict["input_ids"].to(__a ) , inputs_dict["attention_mask"].to(__a ) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: _UpperCamelCase : List[Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) _UpperCamelCase : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCamelCase : Any = model(__a , attention_mask=__a )[0] _UpperCamelCase : str = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __a ) _UpperCamelCase : Optional[int] = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4 ) )
51
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int: """simple docstring""" _UpperCamelCase : defaultdict = defaultdict(lowercase_ ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _UpperCamelCase : Any = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: _UpperCamelCase : str = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
51
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = DDIMPipeline SCREAMING_SNAKE_CASE__ :Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ :List[str] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } SCREAMING_SNAKE_CASE__ :Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ :List[Any] = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCamelCase : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) _UpperCamelCase : List[Any] = DDIMScheduler() _UpperCamelCase : Any = {"unet": unet, "scheduler": scheduler} return components def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Union[str, Any] , __a : int=0 ) -> Dict: if str(__a ).startswith("mps" ): _UpperCamelCase : List[str] = torch.manual_seed(__a ) else: _UpperCamelCase : Tuple = torch.Generator(device=__a ).manual_seed(__a ) _UpperCamelCase : Tuple = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = "cpu" _UpperCamelCase : Any = self.get_dummy_components() _UpperCamelCase : Any = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _UpperCamelCase : List[str] = self.get_dummy_inputs(__a ) _UpperCamelCase : Tuple = pipe(**__a ).images _UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _UpperCamelCase : List[Any] = np.array( [1.0_0_0e0_0, 5.7_1_7e-0_1, 4.7_1_7e-0_1, 1.0_0_0e0_0, 0.0_0_0e0_0, 1.0_0_0e0_0, 3.0_0_0e-0_4, 0.0_0_0e0_0, 9.0_0_0e-0_4] ) _UpperCamelCase : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1e-3 ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: super().test_save_load_local(expected_max_difference=3e-3 ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : List[Any] = "google/ddpm-cifar10-32" _UpperCamelCase : Tuple = UNetaDModel.from_pretrained(__a ) _UpperCamelCase : str = DDIMScheduler() _UpperCamelCase : Union[str, Any] = DDIMPipeline(unet=__a , scheduler=__a ) ddim.to(__a ) ddim.set_progress_bar_config(disable=__a ) _UpperCamelCase : Dict = torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = ddim(generator=__a , eta=0.0 , output_type="numpy" ).images _UpperCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase : Any = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Any = "google/ddpm-ema-bedroom-256" _UpperCamelCase : Optional[int] = UNetaDModel.from_pretrained(__a ) _UpperCamelCase : Optional[Any] = DDIMScheduler.from_pretrained(__a ) _UpperCamelCase : int = DDIMPipeline(unet=__a , scheduler=__a ) ddpm.to(__a ) ddpm.set_progress_bar_config(disable=__a ) _UpperCamelCase : int = torch.manual_seed(0 ) _UpperCamelCase : Tuple = ddpm(generator=__a , output_type="numpy" ).images _UpperCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _UpperCamelCase : int = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
51
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("KEY") lowerCamelCase__ = TypeVar("VAL") @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :KEY SCREAMING_SNAKE_CASE__ :VAL class __SCREAMING_SNAKE_CASE ( _Item ): '''simple docstring''' def __init__( self : List[str] ) -> None: super().__init__(__a , __a ) def __bool__( self : Dict ) -> bool: return False lowerCamelCase__ = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None: _UpperCamelCase : str = initial_block_size _UpperCamelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCamelCase : List[str] = capacity_factor _UpperCamelCase : Dict = 0 def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int: return hash(__a ) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int: return (ind + 1) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool: _UpperCamelCase : List[Any] = self._buckets[ind] if not stored: _UpperCamelCase : Tuple = _Item(__a , __a ) self._len += 1 return True elif stored.key == key: _UpperCamelCase : Union[str, Any] = _Item(__a , __a ) return True else: return False def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: _UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False _UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None: _UpperCamelCase : Any = self._buckets _UpperCamelCase : List[Any] = [None] * new_size _UpperCamelCase : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: self._resize(len(self._buckets ) * 2 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: self._resize(len(self._buckets ) // 2 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]: _UpperCamelCase : str = self._get_bucket_index(__a ) for _ in range(len(self._buckets ) ): yield ind _UpperCamelCase : Tuple = self._get_next_ind(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None: for ind in self._iterate_buckets(__a ): if self._try_set(__a , __a , __a ): break def __setitem__( self : int , __a : KEY , __a : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(__a , __a ) def __delitem__( self : str , __a : KEY ) -> None: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: raise KeyError(__a ) if item is _deleted: continue if item.key == key: _UpperCamelCase : List[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , __a : KEY ) -> VAL: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__a ) def __len__( self : List[Any] ) -> int: return self._len def __iter__( self : List[str] ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ) -> str: _UpperCamelCase : Optional[int] = " ,".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
51
1
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ = 4 ) -> list[list[int]]: """simple docstring""" _UpperCamelCase : Any = abs(lowercase_ ) or 4 return [[1 + x + y * row_size for x in range(lowercase_ )] for y in range(lowercase_ )] def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(lowercase_ ) ) # OR.. transpose(reverse_column(matrix)) def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(lowercase_ ) ) # OR.. reverse_column(reverse_row(matrix)) def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(lowercase_ ) ) # OR.. transpose(reverse_row(matrix)) def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" _UpperCamelCase : List[Any] = [list(lowercase_ ) for x in zip(*lowercase_ )] return matrix def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" _UpperCamelCase : Tuple = matrix[::-1] return matrix def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" _UpperCamelCase : List[str] = [x[::-1] for x in matrix] return matrix def lowercase__ ( lowercase_ ) -> None: """simple docstring""" for i in matrix: print(*lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) lowerCamelCase__ = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) lowerCamelCase__ = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
51
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , __a : list[int] ) -> None: _UpperCamelCase : Tuple = len(__a ) _UpperCamelCase : Dict = [0] * len_array if len_array > 0: _UpperCamelCase : Optional[Any] = array[0] for i in range(1 , __a ): _UpperCamelCase : Tuple = self.prefix_sum[i - 1] + array[i] def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> bool: _UpperCamelCase : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__a ) return False if __name__ == "__main__": import doctest doctest.testmod()
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" _UpperCamelCase : str = [int(lowercase_ ) for i in ip_va_address.split("." ) if i.isdigit()] return len(lowercase_ ) == 4 and all(0 <= int(lowercase_ ) <= 254 for octet in octets ) if __name__ == "__main__": lowerCamelCase__ = input().strip() lowerCamelCase__ = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
51
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[int] = None if token is not None: _UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) _UpperCamelCase : Any = "636036" _UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' _UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json() return result["workflow_runs"] def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ ) _UpperCamelCase : Tuple = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCamelCase : Union[str, Any] = workflow_run["id"] break return workflow_run_id def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: _UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCamelCase : Dict = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = {} for artifact_name in artifact_names: _UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' ) if os.path.isfile(lowercase_ ): _UpperCamelCase : int = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: _UpperCamelCase : int = f.read().decode("UTF-8" ) return results
51
1
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowerCamelCase__ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowerCamelCase__ = logging.WARNING def lowercase__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = os.getenv("DATASETS_VERBOSITY" ,lowercase_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def lowercase__ ( ) -> str: """simple docstring""" return __name__.split("." )[0] def lowercase__ ( ) -> logging.Logger: """simple docstring""" return logging.getLogger(_get_library_name() ) def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : List[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : List[Any] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowercase__ ( lowercase_ = None ) -> logging.Logger: """simple docstring""" if name is None: _UpperCamelCase : int = _get_library_name() return logging.getLogger(lowercase_ ) def lowercase__ ( ) -> int: """simple docstring""" return _get_library_root_logger().getEffectiveLevel() def lowercase__ ( lowercase_ ) -> None: """simple docstring""" _get_library_root_logger().setLevel(lowercase_ ) def lowercase__ ( ) -> List[str]: """simple docstring""" return set_verbosity(lowercase_ ) def lowercase__ ( ) -> Optional[Any]: """simple docstring""" return set_verbosity(lowercase_ ) def lowercase__ ( ) -> List[str]: """simple docstring""" return set_verbosity(lowercase_ ) def lowercase__ ( ) -> Optional[int]: """simple docstring""" return set_verbosity(lowercase_ ) def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : str = False def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : str = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , *__a : int , **__a : List[str] ) -> Tuple: # pylint: disable=unused-argument _UpperCamelCase : Union[str, Any] = args[0] if args else None def __iter__( self : str ) -> List[str]: return iter(self._iterator ) def __getattr__( self : Any , __a : str ) -> Union[str, Any]: def empty_fn(*__a : Optional[int] , **__a : Tuple ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : str ) -> Dict: return self def __exit__( self : int , __a : Tuple , __a : Dict , __a : Dict ) -> Optional[Any]: return lowerCamelCase__ = True class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : Optional[Any] , *__a : int , __a : Optional[Any]=False , **__a : int ) -> List[Any]: if _tqdm_active and not disable: return tqdm_lib.tqdm(*__a , **__a ) else: return EmptyTqdm(*__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , *__a : List[str] , **__a : Any ) -> Optional[Any]: _UpperCamelCase : Union[str, Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Dict: if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCamelCase__ = _tqdm_cls() def lowercase__ ( ) -> bool: """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def lowercase__ ( ) -> str: """simple docstring""" global _tqdm_active _UpperCamelCase : Union[str, Any] = True def lowercase__ ( ) -> str: """simple docstring""" global _tqdm_active _UpperCamelCase : Tuple = False
51
"""simple docstring""" import math class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int: _UpperCamelCase : List[Any] = 0.0 _UpperCamelCase : Union[str, Any] = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]: for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase : List[Any] = SelfOrganizingMap() _UpperCamelCase : int = 3 _UpperCamelCase : List[Any] = 0.5 for _ in range(lowercase_ ): for j in range(len(lowercase_ ) ): # training sample _UpperCamelCase : int = training_samples[j] # Compute the winning vector _UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # Update the winning vector _UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) # classify test sample _UpperCamelCase : Optional[int] = [0, 0, 0, 1] _UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
51
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" if num < 0: return False _UpperCamelCase : int = num _UpperCamelCase : int = 0 while num > 0: _UpperCamelCase : Optional[Any] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase__ = "src/transformers" lowerCamelCase__ = "docs/source/en" lowerCamelCase__ = "." def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f: _UpperCamelCase : Union[str, Any] = f.readlines() # Find the start prompt. _UpperCamelCase : Dict = 0 while not lines[start_index].startswith(lowercase_ ): start_index += 1 start_index += 1 _UpperCamelCase : Optional[int] = start_index while not lines[end_index].startswith(lowercase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ ) return [m.group(0 ) for m in matches] def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ ) _UpperCamelCase : Union[str, Any] = (width - text_length) // 2 _UpperCamelCase : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : str = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : str = collections.defaultdict(lowercase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowercase_ ): _UpperCamelCase : List[str] = None if attr_name.endswith("Tokenizer" ): _UpperCamelCase : Tuple = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _UpperCamelCase : Optional[Any] = fast_tokenizers _UpperCamelCase : List[str] = attr_name[:-13] elif _re_tf_models.match(lowercase_ ) is not None: _UpperCamelCase : List[Any] = tf_models _UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0] elif _re_flax_models.match(lowercase_ ) is not None: _UpperCamelCase : Dict = flax_models _UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0] elif _re_pt_models.match(lowercase_ ) is not None: _UpperCamelCase : Optional[int] = pt_models _UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0] if lookup_dict is not None: while len(lowercase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Dict = True break # Try again after removing the last word in the name _UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] ) # Let's build that table! _UpperCamelCase : Any = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns] _UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"} for name in model_names: _UpperCamelCase : Optional[int] = model_name_to_prefix[name] _UpperCamelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" return table def lowercase__ ( lowercase_=False ) -> List[Any]: """simple docstring""" _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file( filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,) _UpperCamelCase : Any = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
51
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Union[str, Any] , __a : Tuple=13 , __a : str=7 , __a : Tuple=True , __a : Tuple=True , __a : int=False , __a : Optional[Any]=True , __a : Union[str, Any]=99 , __a : Tuple=32 , __a : List[Any]=5 , __a : Dict=4 , __a : Tuple=37 , __a : Tuple="gelu" , __a : Union[str, Any]=0.1 , __a : Dict=0.1 , __a : Optional[Any]=512 , __a : Tuple=16 , __a : Tuple=2 , __a : str=0.02 , __a : Optional[Any]=3 , __a : Optional[Any]=4 , __a : Tuple=None , ) -> List[str]: _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Any = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Optional[Any] = use_input_mask _UpperCamelCase : Optional[int] = use_token_type_ids _UpperCamelCase : Optional[Any] = use_labels _UpperCamelCase : Tuple = vocab_size _UpperCamelCase : str = hidden_size _UpperCamelCase : int = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Tuple = intermediate_size _UpperCamelCase : Dict = hidden_act _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : List[str] = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : List[Any] = type_vocab_size _UpperCamelCase : Any = type_sequence_label_size _UpperCamelCase : Union[str, Any] = initializer_range _UpperCamelCase : List[Any] = num_labels _UpperCamelCase : List[str] = num_choices _UpperCamelCase : Any = scope def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: _UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : Union[str, Any] = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : int = None if self.use_token_type_ids: _UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase : Optional[int] = None _UpperCamelCase : Optional[int] = None _UpperCamelCase : Tuple = None if self.use_labels: _UpperCamelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , use_stable_embedding=__a , ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : Tuple , __a : List[str] , __a : List[str] , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Any ) -> List[str]: _UpperCamelCase : List[Any] = OpenLlamaModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Dict = model(__a , attention_mask=__a ) _UpperCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[str] , __a : int , __a : Optional[int] , __a : Any , __a : str , __a : Optional[Any] , __a : str , ) -> List[Any]: _UpperCamelCase : Optional[Any] = True _UpperCamelCase : Dict = OpenLlamaModel(__a ) model.to(__a ) model.eval() _UpperCamelCase : Dict = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , ) _UpperCamelCase : List[Any] = model( __a , attention_mask=__a , encoder_hidden_states=__a , ) _UpperCamelCase : List[Any] = model(__a , attention_mask=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : int , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Dict , __a : str , __a : List[Any] , __a : Optional[int] , ) -> List[str]: _UpperCamelCase : List[str] = OpenLlamaForCausalLM(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Dict , __a : Optional[int] , __a : Any , __a : Optional[Any] , __a : Optional[Any] , __a : Optional[int] , __a : List[str] , __a : int , __a : int , ) -> List[Any]: _UpperCamelCase : str = True _UpperCamelCase : int = True _UpperCamelCase : Optional[Any] = OpenLlamaForCausalLM(config=__a ) model.to(__a ) model.eval() # first forward pass _UpperCamelCase : Dict = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , use_cache=__a , ) _UpperCamelCase : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCamelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _UpperCamelCase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCamelCase : str = torch.cat([input_mask, next_mask] , dim=-1 ) _UpperCamelCase : Tuple = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , output_hidden_states=__a , )["hidden_states"][0] _UpperCamelCase : List[Any] = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , past_key_values=__a , output_hidden_states=__a , )["hidden_states"][0] # select random slice _UpperCamelCase : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCamelCase : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ) : List[Any] = config_and_inputs _UpperCamelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Dict = (OpenLlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ :int = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :Dict = False SCREAMING_SNAKE_CASE__ :List[str] = False def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: _UpperCamelCase : List[Any] = OpenLlamaModelTester(self ) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCamelCase : Any = type self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: _UpperCamelCase, _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[int] = 3 _UpperCamelCase : Any = input_dict["input_ids"] _UpperCamelCase : Dict = input_ids.ne(1 ).to(__a ) _UpperCamelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCamelCase : List[str] = OpenLlamaForSequenceClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[str] = model(__a , attention_mask=__a , labels=__a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: _UpperCamelCase, _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[Any] = 3 _UpperCamelCase : Optional[Any] = "single_label_classification" _UpperCamelCase : Any = input_dict["input_ids"] _UpperCamelCase : List[str] = input_ids.ne(1 ).to(__a ) _UpperCamelCase : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCamelCase : Dict = OpenLlamaForSequenceClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : int = model(__a , attention_mask=__a , labels=__a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: _UpperCamelCase, _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Tuple = 3 _UpperCamelCase : Tuple = "multi_label_classification" _UpperCamelCase : List[Any] = input_dict["input_ids"] _UpperCamelCase : Tuple = input_ids.ne(1 ).to(__a ) _UpperCamelCase : Dict = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCamelCase : int = OpenLlamaForSequenceClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a , attention_mask=__a , labels=__a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: pass @parameterized.expand([("linear",), ("dynamic",)] ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[Any] ) -> str: _UpperCamelCase, _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[int] = ids_tensor([1, 10] , config.vocab_size ) _UpperCamelCase : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _UpperCamelCase : List[Any] = OpenLlamaModel(__a ) original_model.to(__a ) original_model.eval() _UpperCamelCase : List[Any] = original_model(__a ).last_hidden_state _UpperCamelCase : Dict = original_model(__a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _UpperCamelCase : Optional[int] = {"type": scaling_type, "factor": 10.0} _UpperCamelCase : Optional[Any] = OpenLlamaModel(__a ) scaled_model.to(__a ) scaled_model.eval() _UpperCamelCase : Union[str, Any] = scaled_model(__a ).last_hidden_state _UpperCamelCase : str = scaled_model(__a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__a , __a , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__a , __a , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__a , __a , atol=1e-5 ) )
51
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]: """simple docstring""" _UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] ) return (item, float(lowercase_ )) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]: """simple docstring""" _UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 ) _UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] _UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = list(lowercase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _UpperCamelCase : int = random.choice(lowercase_ ) return "".join(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]: """simple docstring""" _UpperCamelCase : Optional[Any] = [] # Generate more children proportionally to the fitness score. _UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1 _UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n for _ in range(lowercase_ ): _UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0] _UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ ) # Append new string to the population list. pop.append(mutate(lowercase_ ,lowercase_ ) ) pop.append(mutate(lowercase_ ,lowercase_ ) ) return pop def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowercase_ ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCamelCase : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowercase_ ) # Generate random starting population. _UpperCamelCase : Union[str, Any] = [] for _ in range(lowercase_ ): population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCamelCase, _UpperCamelCase : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population] # Check if there is a matching evolution. _UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCamelCase : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase_ ) # Normalize population score to be between 0 and 1. _UpperCamelCase : str = [ (item, score / len(lowercase_ )) for item, score in population_score ] # This is selection for i in range(lowercase_ ): population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase__ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase__ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
51
1
"""simple docstring""" import torch from transformers import AutoModel class __SCREAMING_SNAKE_CASE ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : List[Any]="sayef/fsner-bert-base-uncased" ) -> List[Any]: super(__a , self ).__init__() _UpperCamelCase : Union[str, Any] = AutoModel.from_pretrained(__a , return_dict=__a ) _UpperCamelCase : Optional[Any] = torch.nn.CosineSimilarity(3 , 1e-0_8 ) _UpperCamelCase : Optional[Any] = torch.nn.Softmax(dim=1 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__a : Optional[int] ) -> Optional[int]: return self.bert(**__a ).last_hidden_state def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Any ) -> Union[str, Any]: return token_embeddings.sum(2 , keepdim=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[Any] , __a : List[Any] , __a : int=1 ) -> str: return self.softmax(T * self.cos(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Optional[int] , __a : Dict ) -> Optional[int]: _UpperCamelCase : str = W_supports["sizes"].tolist() _UpperCamelCase : Union[str, Any] = W_supports["start_token_id"].item() _UpperCamelCase : Tuple = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCamelCase : List[str] = self.BERT(**__a ) _UpperCamelCase : int = self.BERT(**__a ) _UpperCamelCase : Dict = None _UpperCamelCase : int = None _UpperCamelCase : Tuple = W_supports["input_ids"] == start_token_id _UpperCamelCase : Optional[Any] = W_supports["input_ids"] == end_token_id for i, size in enumerate(__a ): if i == 0: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Tuple = support_sizes[i - 1] _UpperCamelCase : Dict = S[s : s + size][start_token_masks[s : s + size]] _UpperCamelCase : str = S[s : s + size][end_token_masks[s : s + size]] _UpperCamelCase : Optional[int] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _UpperCamelCase : str = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _UpperCamelCase : Any = torch.vstack((p_starts, p_start) ) _UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: _UpperCamelCase : List[str] = p_start _UpperCamelCase : Dict = p_end return p_starts, p_ends
51
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ["model.decoder.embed_positions.weights"] def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if "emb" in name: _UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" ) if "transformer" in name: _UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" ) if "cross_attention" in name: _UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" ) if "linear1" in name: _UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" ) if "linear2" in name: _UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" ) if "norm1" in name: _UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" ) if "norm_cross" in name: _UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" ) if "norm2" in name: _UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" ) if "out_norm" in name: _UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" ) if "linears" in name: _UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]: """simple docstring""" _UpperCamelCase : str = list(state_dict.keys() ) _UpperCamelCase : Optional[Any] = {} for key in keys: _UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ ) _UpperCamelCase : List[Any] = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCamelCase : Tuple = val[:hidden_size, :] _UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _UpperCamelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCamelCase : Optional[Any] = val else: _UpperCamelCase : List[str] = val return state_dict, enc_dec_proj_state_dict def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values _UpperCamelCase : List[Any] = 1_024 _UpperCamelCase : List[str] = 24 _UpperCamelCase : Any = 16 elif checkpoint == "medium": _UpperCamelCase : Tuple = 1_536 _UpperCamelCase : Dict = 48 _UpperCamelCase : Tuple = 24 elif checkpoint == "large": _UpperCamelCase : int = 2_048 _UpperCamelCase : Optional[int] = 48 _UpperCamelCase : Dict = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _UpperCamelCase : str = MusicgenDecoderConfig( hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,) return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]: """simple docstring""" _UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ ) _UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ ) _UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict() _UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict( lowercase_ ,hidden_size=decoder_config.hidden_size ) _UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" ) _UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowercase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass _UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) _UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): _UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" ) _UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) # set the appropriate bos/pad token ids _UpperCamelCase : str = 2_048 _UpperCamelCase : str = 2_048 # set other default generation config params _UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate ) _UpperCamelCase : List[str] = True _UpperCamelCase : int = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowerCamelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
51
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _UpperCamelCase : Tuple = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : str = TFAutoModel.from_pretrained(__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : List[str] = AutoModel.from_pretrained(__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _UpperCamelCase : Dict = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : Optional[int] = TFAutoModelForPreTraining.from_pretrained(__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : Dict = AutoModelForPreTraining.from_pretrained(__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Any = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(__a , from_pt=__a ) _UpperCamelCase, _UpperCamelCase : int = TFAutoModelForCausalLM.from_pretrained( __a , output_loading_info=__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained(__a , from_tf=__a ) _UpperCamelCase, _UpperCamelCase : str = AutoModelForCausalLM.from_pretrained( __a , output_loading_info=__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : int ) -> Any: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : str = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : List[str] = AutoModelWithLMHead.from_pretrained(__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(__a , from_pt=__a ) _UpperCamelCase, _UpperCamelCase : List[str] = TFAutoModelForMaskedLM.from_pretrained( __a , output_loading_info=__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : List[Any] = AutoModelForMaskedLM.from_pretrained(__a , from_tf=__a ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = AutoModelForMaskedLM.from_pretrained( __a , output_loading_info=__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : int = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : int = TFAutoModelForSeqaSeqLM.from_pretrained(__a , from_pt=__a ) _UpperCamelCase, _UpperCamelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained( __a , output_loading_info=__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : Tuple = AutoModelForSeqaSeqLM.from_pretrained(__a , from_tf=__a ) _UpperCamelCase, _UpperCamelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( __a , output_loading_info=__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : str = TFAutoModelForSequenceClassification.from_pretrained(__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained(__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _UpperCamelCase : int = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : List[Any] = TFAutoModelForQuestionAnswering.from_pretrained(__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : str = AutoModelForQuestionAnswering.from_pretrained(__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : List[str] = TFAutoModelWithLMHead.from_pretrained(__a , from_pt=__a ) self.assertIsInstance(__a , __a ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__a ) , 1_4410 ) _UpperCamelCase : Optional[int] = AutoModelWithLMHead.from_pretrained(__a , from_tf=__a ) self.assertIsInstance(__a , __a ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__a ) , 1_4410 ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Optional[int] = TFAutoModelWithLMHead.from_pretrained(__a , from_pt=__a ) self.assertIsInstance(__a , __a ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__a ) , 1_4410 ) _UpperCamelCase : Any = AutoModelWithLMHead.from_pretrained(__a , from_tf=__a ) self.assertIsInstance(__a , __a ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__a ) , 1_4410 )
51
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase__ = input("Enter image url: ").strip() print(f"""Downloading image from {url} ...""") lowerCamelCase__ = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase__ = soup.find("meta", {"property": "og:image"})["content"] lowerCamelCase__ = requests.get(image_url).content lowerCamelCase__ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, "wb") as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
51
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , __a : str , __a : Union[str, Any]=13 , __a : str=32 , __a : Any=3 , __a : List[str]=4 , __a : int=[10, 20, 30, 40] , __a : int=[2, 2, 3, 2] , __a : Union[str, Any]=True , __a : str=True , __a : Dict=37 , __a : Tuple="gelu" , __a : List[str]=10 , __a : List[str]=0.02 , __a : List[str]=["stage2", "stage3", "stage4"] , __a : Any=[2, 3, 4] , __a : List[Any]=None , ) -> Dict: _UpperCamelCase : str = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : Any = num_channels _UpperCamelCase : List[Any] = num_stages _UpperCamelCase : str = hidden_sizes _UpperCamelCase : Union[str, Any] = depths _UpperCamelCase : Union[str, Any] = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Optional[Any] = hidden_act _UpperCamelCase : List[str] = num_labels _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : List[Any] = out_features _UpperCamelCase : Any = out_indices _UpperCamelCase : Any = scope def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: _UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[Any] , __a : Union[str, Any] , __a : Any ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = ConvNextVaModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Union[str, Any] = model(__a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[Any] , __a : Tuple , __a : str ) -> Optional[int]: _UpperCamelCase : Tuple = ConvNextVaForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Tuple ) -> Tuple: _UpperCamelCase : Union[str, Any] = ConvNextVaBackbone(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : List[str] = model(__a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCamelCase : Dict = None _UpperCamelCase : str = ConvNextVaBackbone(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Union[str, Any] = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : int = self.prepare_config_and_inputs() _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : int = config_and_inputs _UpperCamelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: _UpperCamelCase : List[Any] = self.prepare_config_and_inputs() _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : int = config_and_inputs _UpperCamelCase : Optional[int] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :List[Any] = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :Dict = False SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :Dict = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = False def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : List[Any] = ConvNextVaModelTester(self ) _UpperCamelCase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: pass def __SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCamelCase, _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCamelCase : Any = True if model_class.__name__ in [ *get_values(__a ), *get_values(__a ), ]: continue _UpperCamelCase : Tuple = model_class(__a ) model.to(__a ) model.train() _UpperCamelCase : List[str] = self._prepare_for_class(__a , __a , return_labels=__a ) _UpperCamelCase : Optional[Any] = model(**__a ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCamelCase, _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCamelCase : Dict = False _UpperCamelCase : Optional[int] = True if ( model_class.__name__ in [*get_values(__a ), *get_values(__a )] or not model_class.supports_gradient_checkpointing ): continue _UpperCamelCase : List[Any] = model_class(__a ) model.to(__a ) model.gradient_checkpointing_enable() model.train() _UpperCamelCase : Optional[int] = self._prepare_for_class(__a , __a , return_labels=__a ) _UpperCamelCase : Optional[int] = model(**__a ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: _UpperCamelCase, _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[Any] = [*signature.parameters.keys()] _UpperCamelCase : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: def check_hidden_states_output(__a : Optional[Any] , __a : Optional[Any] , __a : List[Any] ): _UpperCamelCase : int = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase, _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Dict = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : Optional[int] = True check_hidden_states_output(__a , __a , __a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Any = ConvNextVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : Tuple = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__a ) _UpperCamelCase : List[Any] = self.default_image_processor _UpperCamelCase : Optional[Any] = prepare_img() _UpperCamelCase : List[Any] = preprocessor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : List[str] = model(**__a ) # verify the logits _UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : Union[str, Any] = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
51
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) _UpperCamelCase : str = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )] _UpperCamelCase : List[str] = ".".join(lowercase_ ) return test_module_path def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_module_path(lowercase_ ) _UpperCamelCase : str = importlib.import_module(lowercase_ ) return test_module def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[Any] = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowercase_ ,lowercase_ ) ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Any = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): _UpperCamelCase : int = getattr(lowercase_ ,lowercase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] ) if len(lowercase_ ) > 0: test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Dict = get_test_classes(lowercase_ ) _UpperCamelCase : int = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = test_class() if hasattr(lowercase_ ,"setUp" ): test.setUp() _UpperCamelCase : Tuple = None if hasattr(lowercase_ ,"model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCamelCase : Tuple = test.model_tester.__class__ return model_tester def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = get_test_classes(lowercase_ ) _UpperCamelCase : Dict = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = [] for test_class in test_classes: _UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ ) if tester_class is not None: tester_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Any = get_test_classes(lowercase_ ) _UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes} return test_tester_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Optional[int] = { model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_test_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Tuple = { model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_to_tester_mapping def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" if isinstance(lowercase_ ,lowercase_ ): return o elif isinstance(lowercase_ ,lowercase_ ): return o.__name__ elif isinstance(lowercase_ ,(list, tuple) ): return [to_json(lowercase_ ) for x in o] elif isinstance(lowercase_ ,lowercase_ ): return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()} else: return o
51
1
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if not is_accelerate_available(): return method _UpperCamelCase : str = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase_ ) < version.parse("0.17.0" ): return method def wrapper(self ,*lowercase_ ,**lowercase_ ): if hasattr(self ,"_hf_hook" ) and hasattr(self._hf_hook ,"pre_forward" ): self._hf_hook.pre_forward(self ) return method(self ,*lowercase_ ,**lowercase_ ) return wrapper
51
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
51
1
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = StableUnCLIPPipeline SCREAMING_SNAKE_CASE__ :Union[str, Any] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ :List[str] = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE__ :Any = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ :str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false SCREAMING_SNAKE_CASE__ :Union[str, Any] = False def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : Tuple = 32 _UpperCamelCase : List[str] = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) _UpperCamelCase : int = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__a , projection_dim=__a , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase : str = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__a , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase : List[Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=__a , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase : str = StableUnCLIPImageNormalizer(embedding_dim=__a ) _UpperCamelCase : Optional[Any] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) _UpperCamelCase : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) _UpperCamelCase : int = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__a , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__a , layers_per_block=1 , upcast_attention=__a , use_linear_projection=__a , ) torch.manual_seed(0 ) _UpperCamelCase : Optional[Any] = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=__a , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = AutoencoderKL() _UpperCamelCase : List[str] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : str , __a : List[str]=0 ) -> Tuple: if str(__a ).startswith("mps" ): _UpperCamelCase : Optional[Any] = torch.manual_seed(__a ) else: _UpperCamelCase : List[str] = torch.Generator(device=__a ).manual_seed(__a ) _UpperCamelCase : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : Optional[int] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: _UpperCamelCase : Optional[Any] = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=__a ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : int ) -> Any: _UpperCamelCase : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) _UpperCamelCase : Tuple = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) _UpperCamelCase : Optional[Any] = pipe("anime turle" , generator=__a , output_type="np" ) _UpperCamelCase : Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase : Optional[Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) _UpperCamelCase : Optional[int] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase : Dict = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
51
"""simple docstring""" lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
51
1
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase__ = logging.getLogger() def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("-f" ) _UpperCamelCase : Tuple = parser.parse_args() return args.f def lowercase__ ( lowercase_ ,lowercase_="eval" ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Dict = os.path.join(lowercase_ ,F'''{split}_results.json''' ) if os.path.exists(lowercase_ ): with open(lowercase_ ,"r" ) as f: return json.load(lowercase_ ) raise ValueError(F'''can\'t find {path}''' ) lowerCamelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: _UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() _UpperCamelCase : Tuple = F''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(__a , "argv" , __a ): run_flax_glue.main() _UpperCamelCase : Tuple = get_results(__a ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() _UpperCamelCase : List[str] = F''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(__a , "argv" , __a ): run_clm_flax.main() _UpperCamelCase : Tuple = get_results(__a ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() _UpperCamelCase : Any = F''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(__a , "argv" , __a ): run_summarization_flax.main() _UpperCamelCase : Tuple = get_results(__a , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: _UpperCamelCase : int = self.get_auto_remove_tmp_dir() _UpperCamelCase : Optional[Any] = F''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(__a , "argv" , __a ): run_mlm_flax.main() _UpperCamelCase : List[str] = get_results(__a ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: _UpperCamelCase : str = self.get_auto_remove_tmp_dir() _UpperCamelCase : Any = F''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(__a , "argv" , __a ): run_ta_mlm_flax.main() _UpperCamelCase : Optional[Any] = get_results(__a ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _UpperCamelCase : Tuple = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase : int = self.get_auto_remove_tmp_dir() _UpperCamelCase : Optional[int] = F''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(__a , "argv" , __a ): run_flax_ner.main() _UpperCamelCase : List[str] = get_results(__a ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _UpperCamelCase : List[str] = F''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(__a , "argv" , __a ): run_qa.main() _UpperCamelCase : List[Any] = get_results(__a ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
51
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: _UpperCamelCase : Tuple = tempfile.mkdtemp() _UpperCamelCase : str = 5 # Realm tok _UpperCamelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) _UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : Any = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : int = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=__a , ) return block_records def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : Tuple = self.get_config() _UpperCamelCase : int = self.get_dummy_retriever() _UpperCamelCase : Tuple = retriever.tokenizer _UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" ) _UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : List[str] = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : str = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Any = self.get_config() _UpperCamelCase : Dict = self.get_dummy_retriever() _UpperCamelCase : Dict = retriever.tokenizer _UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" ) _UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : str = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : Union[str, Any] = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCamelCase : List[Any] = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
51
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = "convnextv2" def __init__( self : List[Any] , __a : Optional[int]=3 , __a : str=4 , __a : Tuple=4 , __a : Dict=None , __a : Union[str, Any]=None , __a : List[Any]="gelu" , __a : Tuple=0.02 , __a : List[str]=1e-1_2 , __a : Optional[int]=0.0 , __a : int=224 , __a : List[Any]=None , __a : Tuple=None , **__a : Tuple , ) -> Optional[int]: super().__init__(**__a ) _UpperCamelCase : int = num_channels _UpperCamelCase : int = patch_size _UpperCamelCase : int = num_stages _UpperCamelCase : Tuple = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes _UpperCamelCase : Any = [3, 3, 9, 3] if depths is None else depths _UpperCamelCase : Any = hidden_act _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : List[Any] = drop_path_rate _UpperCamelCase : Tuple = image_size _UpperCamelCase : Optional[int] = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] _UpperCamelCase, _UpperCamelCase : str = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
51
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = LEDConfig SCREAMING_SNAKE_CASE__ :str = {} SCREAMING_SNAKE_CASE__ :List[str] = "gelu" def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]: _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : List[str] = batch_size _UpperCamelCase : str = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : str = max_position_embeddings _UpperCamelCase : int = eos_token_id _UpperCamelCase : Dict = pad_token_id _UpperCamelCase : Optional[Any] = bos_token_id _UpperCamelCase : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCamelCase : List[str] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a ) _UpperCamelCase : Union[str, Any] = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) _UpperCamelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple: _UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder() _UpperCamelCase : Tuple = inputs_dict["input_ids"] _UpperCamelCase : int = input_ids[:1, :] _UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :] _UpperCamelCase : List[Any] = 1 # first forward pass _UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0] _UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict: """simple docstring""" if attention_mask is None: _UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :Tuple = True SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : int = TFLEDModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] ) _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : str = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) _UpperCamelCase : Dict = True _UpperCamelCase : str = self.model_tester.seq_length _UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a : Optional[int] ): _UpperCamelCase : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a : Optional[Any] ): _UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] _UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCamelCase : Dict = True _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Any = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: _UpperCamelCase : Optional[Any] = model_class(__a ) _UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase : int = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine _UpperCamelCase : Any = True _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: # TODO: Head-masking not yet implement pass def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return tf.constant(lowercase_ ,dtype=tf.intaa ) lowerCamelCase__ = 1E-4 @slow @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Optional[int] = model(**__a )[0] _UpperCamelCase : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Tuple = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Union[str, Any] = model(**__a )[0] _UpperCamelCase : int = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Optional[int] = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
51
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :int SCREAMING_SNAKE_CASE__ :TreeNode | None = None SCREAMING_SNAKE_CASE__ :TreeNode | None = None lowerCamelCase__ = namedtuple("CoinsDistribResult", "moves excess") def lowercase__ ( lowercase_ ) -> int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(lowercase_ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase_ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase_ ) != count_coins(lowercase_ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(lowercase_ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 ,1 ) _UpperCamelCase, _UpperCamelCase : int = get_distrib(node.left ) _UpperCamelCase, _UpperCamelCase : List[str] = get_distrib(node.right ) _UpperCamelCase : Tuple = 1 - left_distrib_excess _UpperCamelCase : Union[str, Any] = 1 - right_distrib_excess _UpperCamelCase : List[Any] = ( left_distrib_moves + right_distrib_moves + abs(lowercase_ ) + abs(lowercase_ ) ) _UpperCamelCase : Optional[int] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase_ ,lowercase_ ) return get_distrib(lowercase_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer SCREAMING_SNAKE_CASE__ :Dict = None SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = True SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().setUp() _UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] _UpperCamelCase : List[str] = {} _UpperCamelCase : Tuple = {} for i, value in enumerate(__a ): _UpperCamelCase : List[str] = i _UpperCamelCase : Optional[Any] = i _UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) _UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(__a , __a , ensure_ascii=__a ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(__a , __a , ensure_ascii=__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: _UpperCamelCase : Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: _UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _UpperCamelCase : Any = {} for i, token in enumerate(__a ): _UpperCamelCase : str = i _UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: _UpperCamelCase : Tuple = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) _UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False _UpperCamelCase : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = ["的", "人", "有"] _UpperCamelCase : int = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = True _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Any = False _UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". _UpperCamelCase : Any = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a ) _UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a ) _UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : int = "你好,你是谁" _UpperCamelCase : Any = tokenizer.tokenize(__a ) _UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a ) _UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a ) _UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a ) _UpperCamelCase : Optional[int] = tokenizer.prepare_for_model( __a , __a , __a , add_special_tokens=__a ) _UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a ) self.assertEqual(__a , __a )
51
1