code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
from typing import Any
import numpy as np
def lowercase__ ( lowercase_ ) -> Dict:
"""simple docstring"""
return np.array_equal(lowercase__ ,matrix.conjugate().T )
def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : Tuple = v.conjugate().T
_UpperCamelCase : Optional[Any] = v_star.dot(lowercase__ )
assert isinstance(lowercase__ ,np.ndarray )
return (v_star_dot.dot(lowercase__ )) / (v_star.dot(lowercase__ ))
def lowercase__ ( ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : int = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] )
_UpperCamelCase : Any = np.array([[1], [2], [3]] )
assert is_hermitian(lowercase__ ), F'''{a} is not hermitian.'''
print(rayleigh_quotient(lowercase__ ,lowercase__ ) )
_UpperCamelCase : str = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(lowercase__ ), F'''{a} is not hermitian.'''
assert rayleigh_quotient(lowercase__ ,lowercase__ ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| 719
|
"""simple docstring"""
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
lowerCamelCase__ = "src/transformers"
lowerCamelCase__ = "docs/source/en"
lowerCamelCase__ = "."
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]:
"""simple docstring"""
with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f:
_UpperCamelCase : Union[str, Any] = f.readlines()
# Find the start prompt.
_UpperCamelCase : Dict = 0
while not lines[start_index].startswith(lowercase_ ):
start_index += 1
start_index += 1
_UpperCamelCase : Optional[int] = start_index
while not lines[end_index].startswith(lowercase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH)
def lowercase__ ( lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ )
return [m.group(0 ) for m in matches]
def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ )
_UpperCamelCase : Union[str, Any] = (width - text_length) // 2
_UpperCamelCase : Dict = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowercase__ ( ) -> str:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
_UpperCamelCase : str = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
_UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
_UpperCamelCase : int = collections.defaultdict(lowercase_ )
_UpperCamelCase : Dict = collections.defaultdict(lowercase_ )
_UpperCamelCase : Dict = collections.defaultdict(lowercase_ )
_UpperCamelCase : int = collections.defaultdict(lowercase_ )
_UpperCamelCase : str = collections.defaultdict(lowercase_ )
# Let's lookup through all transformers object (once).
for attr_name in dir(lowercase_ ):
_UpperCamelCase : List[str] = None
if attr_name.endswith("Tokenizer" ):
_UpperCamelCase : Tuple = slow_tokenizers
_UpperCamelCase : Any = attr_name[:-9]
elif attr_name.endswith("TokenizerFast" ):
_UpperCamelCase : Optional[Any] = fast_tokenizers
_UpperCamelCase : List[str] = attr_name[:-13]
elif _re_tf_models.match(lowercase_ ) is not None:
_UpperCamelCase : List[Any] = tf_models
_UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0]
elif _re_flax_models.match(lowercase_ ) is not None:
_UpperCamelCase : Dict = flax_models
_UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0]
elif _re_pt_models.match(lowercase_ ) is not None:
_UpperCamelCase : Optional[int] = pt_models
_UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0]
if lookup_dict is not None:
while len(lowercase_ ) > 0:
if attr_name in model_name_to_prefix.values():
_UpperCamelCase : Dict = True
break
# Try again after removing the last word in the name
_UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] )
# Let's build that table!
_UpperCamelCase : Any = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
_UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
_UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns]
_UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2
# Build the table per se
_UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n"
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n"
_UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"}
for name in model_names:
_UpperCamelCase : Optional[int] = model_name_to_prefix[name]
_UpperCamelCase : Tuple = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n"
return table
def lowercase__ ( lowercase_=False ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file(
filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,)
_UpperCamelCase : Any = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCamelCase__ = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 51
| 0
|
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :List[str] = AudioLDMPipeline
SCREAMING_SNAKE_CASE__ :int = TEXT_TO_AUDIO_PARAMS
SCREAMING_SNAKE_CASE__ :Dict = TEXT_TO_AUDIO_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ :Optional[Any] = frozenset(
[
"num_inference_steps",
"num_waveforms_per_prompt",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
] )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]:
torch.manual_seed(0 )
_UpperCamelCase : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=(32, 64) , class_embed_type="simple_projection" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__a , )
_UpperCamelCase : List[str] = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=__a , set_alpha_to_one=__a , )
torch.manual_seed(0 )
_UpperCamelCase : Any = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
torch.manual_seed(0 )
_UpperCamelCase : List[Any] = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , )
_UpperCamelCase : Union[str, Any] = ClapTextModelWithProjection(__a )
_UpperCamelCase : List[Any] = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" , model_max_length=77 )
_UpperCamelCase : List[Any] = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__a , )
_UpperCamelCase : Optional[Any] = SpeechTaHifiGan(__a )
_UpperCamelCase : int = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""vocoder""": vocoder,
}
return components
def __SCREAMING_SNAKE_CASE ( self : Any , __a : Optional[Any] , __a : List[str]=0 ) -> Union[str, Any]:
if str(__a ).startswith("mps" ):
_UpperCamelCase : List[str] = torch.manual_seed(__a )
else:
_UpperCamelCase : Optional[Any] = torch.Generator(device=__a ).manual_seed(__a )
_UpperCamelCase : Dict = {
"""prompt""": """A hammer hitting a wooden surface""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
}
return inputs
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]:
_UpperCamelCase : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
_UpperCamelCase : Optional[int] = self.get_dummy_components()
_UpperCamelCase : List[str] = AudioLDMPipeline(**__a )
_UpperCamelCase : Tuple = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
_UpperCamelCase : Optional[int] = self.get_dummy_inputs(__a )
_UpperCamelCase : List[Any] = audioldm_pipe(**__a )
_UpperCamelCase : Optional[Any] = output.audios[0]
assert audio.ndim == 1
assert len(__a ) == 256
_UpperCamelCase : str = audio[:10]
_UpperCamelCase : Any = np.array(
[-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict:
_UpperCamelCase : str = self.get_dummy_components()
_UpperCamelCase : int = AudioLDMPipeline(**__a )
_UpperCamelCase : Tuple = audioldm_pipe.to(__a )
_UpperCamelCase : int = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
_UpperCamelCase : int = self.get_dummy_inputs(__a )
_UpperCamelCase : Optional[int] = 3 * [inputs["""prompt"""]]
# forward
_UpperCamelCase : Union[str, Any] = audioldm_pipe(**__a )
_UpperCamelCase : List[Any] = output.audios[0]
_UpperCamelCase : Optional[int] = self.get_dummy_inputs(__a )
_UpperCamelCase : Tuple = 3 * [inputs.pop("prompt" )]
_UpperCamelCase : Dict = audioldm_pipe.tokenizer(
__a , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__a , return_tensors="pt" , )
_UpperCamelCase : List[Any] = text_inputs["""input_ids"""].to(__a )
_UpperCamelCase : List[str] = audioldm_pipe.text_encoder(
__a , )
_UpperCamelCase : Any = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
_UpperCamelCase : List[str] = F.normalize(__a , dim=-1 )
_UpperCamelCase : str = prompt_embeds
# forward
_UpperCamelCase : Dict = audioldm_pipe(**__a )
_UpperCamelCase : List[Any] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]:
_UpperCamelCase : str = self.get_dummy_components()
_UpperCamelCase : List[Any] = AudioLDMPipeline(**__a )
_UpperCamelCase : List[Any] = audioldm_pipe.to(__a )
_UpperCamelCase : Tuple = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
_UpperCamelCase : Optional[int] = self.get_dummy_inputs(__a )
_UpperCamelCase : Optional[Any] = 3 * ["""this is a negative prompt"""]
_UpperCamelCase : int = negative_prompt
_UpperCamelCase : Optional[int] = 3 * [inputs["""prompt"""]]
# forward
_UpperCamelCase : Any = audioldm_pipe(**__a )
_UpperCamelCase : Optional[Any] = output.audios[0]
_UpperCamelCase : Any = self.get_dummy_inputs(__a )
_UpperCamelCase : List[Any] = 3 * [inputs.pop("prompt" )]
_UpperCamelCase : int = []
for p in [prompt, negative_prompt]:
_UpperCamelCase : Any = audioldm_pipe.tokenizer(
__a , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__a , return_tensors="pt" , )
_UpperCamelCase : Dict = text_inputs["""input_ids"""].to(__a )
_UpperCamelCase : List[Any] = audioldm_pipe.text_encoder(
__a , )
_UpperCamelCase : Union[str, Any] = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
_UpperCamelCase : str = F.normalize(__a , dim=-1 )
embeds.append(__a )
_UpperCamelCase : Union[str, Any] = embeds
# forward
_UpperCamelCase : List[str] = audioldm_pipe(**__a )
_UpperCamelCase : List[str] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]:
_UpperCamelCase : int = """cpu""" # ensure determinism for the device-dependent torch.Generator
_UpperCamelCase : Dict = self.get_dummy_components()
_UpperCamelCase : List[Any] = PNDMScheduler(skip_prk_steps=__a )
_UpperCamelCase : Optional[Any] = AudioLDMPipeline(**__a )
_UpperCamelCase : int = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
_UpperCamelCase : List[Any] = self.get_dummy_inputs(__a )
_UpperCamelCase : Any = """egg cracking"""
_UpperCamelCase : str = audioldm_pipe(**__a , negative_prompt=__a )
_UpperCamelCase : Optional[Any] = output.audios[0]
assert audio.ndim == 1
assert len(__a ) == 256
_UpperCamelCase : int = audio[:10]
_UpperCamelCase : List[Any] = np.array(
[-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]:
_UpperCamelCase : int = """cpu""" # ensure determinism for the device-dependent torch.Generator
_UpperCamelCase : Tuple = self.get_dummy_components()
_UpperCamelCase : Dict = PNDMScheduler(skip_prk_steps=__a )
_UpperCamelCase : Any = AudioLDMPipeline(**__a )
_UpperCamelCase : List[Any] = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
_UpperCamelCase : Optional[Any] = """A hammer hitting a wooden surface"""
# test num_waveforms_per_prompt=1 (default)
_UpperCamelCase : Dict = audioldm_pipe(__a , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
_UpperCamelCase : List[Any] = 2
_UpperCamelCase : Tuple = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
_UpperCamelCase : Optional[int] = 2
_UpperCamelCase : Dict = audioldm_pipe(__a , num_inference_steps=2 , num_waveforms_per_prompt=__a ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
_UpperCamelCase : str = 2
_UpperCamelCase : Union[str, Any] = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__a ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator
_UpperCamelCase : str = self.get_dummy_components()
_UpperCamelCase : str = AudioLDMPipeline(**__a )
_UpperCamelCase : Any = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
_UpperCamelCase : List[Any] = audioldm_pipe.vocoder.config.sampling_rate
_UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(__a )
_UpperCamelCase : str = audioldm_pipe(audio_length_in_s=0.0_16 , **__a )
_UpperCamelCase : int = output.audios[0]
assert audio.ndim == 1
assert len(__a ) / vocoder_sampling_rate == 0.0_16
_UpperCamelCase : int = audioldm_pipe(audio_length_in_s=0.0_32 , **__a )
_UpperCamelCase : Any = output.audios[0]
assert audio.ndim == 1
assert len(__a ) / vocoder_sampling_rate == 0.0_32
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int:
_UpperCamelCase : Tuple = self.get_dummy_components()
_UpperCamelCase : int = AudioLDMPipeline(**__a )
_UpperCamelCase : List[str] = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
_UpperCamelCase : int = ["""hey"""]
_UpperCamelCase : str = audioldm_pipe(__a , num_inference_steps=1 )
_UpperCamelCase : Optional[Any] = output.audios.shape
assert audio_shape == (1, 256)
_UpperCamelCase : Optional[int] = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
_UpperCamelCase : Optional[Any] = SpeechTaHifiGan(__a ).to(__a )
_UpperCamelCase : Dict = audioldm_pipe(__a , num_inference_steps=1 )
_UpperCamelCase : List[str] = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__a )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str:
self._test_inference_batch_single_identical(test_mean_pixel_difference=__a )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__a )
@slow
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : str , __a : List[str]="cpu" , __a : Optional[int]=torch.floataa , __a : Optional[Any]=0 ) -> List[Any]:
_UpperCamelCase : Tuple = torch.Generator(device=__a ).manual_seed(__a )
_UpperCamelCase : Optional[Any] = np.random.RandomState(__a ).standard_normal((1, 8, 128, 16) )
_UpperCamelCase : str = torch.from_numpy(__a ).to(device=__a , dtype=__a )
_UpperCamelCase : Optional[int] = {
"""prompt""": """A hammer hitting a wooden surface""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 2.5,
}
return inputs
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]:
_UpperCamelCase : Dict = AudioLDMPipeline.from_pretrained("cvssp/audioldm" )
_UpperCamelCase : Optional[Any] = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
_UpperCamelCase : int = self.get_inputs(__a )
_UpperCamelCase : Optional[Any] = 25
_UpperCamelCase : Tuple = audioldm_pipe(**__a ).audios[0]
assert audio.ndim == 1
assert len(__a ) == 8_1920
_UpperCamelCase : Any = audio[7_7230:7_7240]
_UpperCamelCase : Any = np.array(
[-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15] )
_UpperCamelCase : int = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1e-2
def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]:
_UpperCamelCase : Dict = AudioLDMPipeline.from_pretrained("cvssp/audioldm" )
_UpperCamelCase : str = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
_UpperCamelCase : Optional[int] = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
_UpperCamelCase : Tuple = self.get_inputs(__a )
_UpperCamelCase : int = audioldm_pipe(**__a ).audios[0]
assert audio.ndim == 1
assert len(__a ) == 8_1920
_UpperCamelCase : List[str] = audio[2_7780:2_7790]
_UpperCamelCase : Tuple = np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12] )
_UpperCamelCase : int = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3e-2
| 720
|
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
lowerCamelCase__ = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
lowerCamelCase__ = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
lowerCamelCase__ = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]:
"""simple docstring"""
_UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] )
return (item, float(lowercase_ ))
def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]:
"""simple docstring"""
_UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 )
_UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:]
_UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def lowercase__ ( lowercase_ ,lowercase_ ) -> str:
"""simple docstring"""
_UpperCamelCase : int = list(lowercase_ )
if random.uniform(0 ,1 ) < MUTATION_PROBABILITY:
_UpperCamelCase : int = random.choice(lowercase_ )
return "".join(lowercase_ )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = []
# Generate more children proportionally to the fitness score.
_UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1
_UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n
for _ in range(lowercase_ ):
_UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0]
_UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ )
# Append new string to the population list.
pop.append(mutate(lowercase_ ,lowercase_ ) )
pop.append(mutate(lowercase_ ,lowercase_ ) )
return pop
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]:
"""simple docstring"""
if N_POPULATION < N_SELECTED:
_UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(lowercase_ )
# Verify that the target contains no genes besides the ones inside genes variable.
_UpperCamelCase : int = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
_UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(lowercase_ )
# Generate random starting population.
_UpperCamelCase : Union[str, Any] = []
for _ in range(lowercase_ ):
population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) )
# Just some logs to know what the algorithms is doing.
_UpperCamelCase, _UpperCamelCase : str = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowercase_ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
_UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population]
# Check if there is a matching evolution.
_UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'''\nGeneration: {generation}'''
F'''\nTotal Population:{total_population}'''
F'''\nBest score: {population_score[0][1]}'''
F'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
_UpperCamelCase : str = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowercase_ )
# Normalize population score to be between 0 and 1.
_UpperCamelCase : str = [
(item, score / len(lowercase_ )) for item, score in population_score
]
# This is selection
for i in range(lowercase_ ):
population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowercase_ ) > N_POPULATION:
break
if __name__ == "__main__":
lowerCamelCase__ = (
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
)
lowerCamelCase__ = list(
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list)
print(
f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"""
)
| 51
| 0
|
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
lowerCamelCase__ = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :int = "upernet"
def __init__( self : Optional[Any] , __a : Optional[Any]=None , __a : List[str]=512 , __a : List[Any]=0.02 , __a : Any=[1, 2, 3, 6] , __a : int=True , __a : Optional[Any]=0.4 , __a : List[Any]=384 , __a : Optional[Any]=256 , __a : Dict=1 , __a : Optional[int]=False , __a : List[str]=255 , **__a : Optional[Any] , ) -> Optional[int]:
super().__init__(**UpperCAmelCase__ )
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
_UpperCamelCase : int = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] )
elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
_UpperCamelCase : Union[str, Any] = backbone_config.get("model_type" )
_UpperCamelCase : Dict = CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase : int = config_class.from_dict(UpperCAmelCase__ )
_UpperCamelCase : List[str] = backbone_config
_UpperCamelCase : int = hidden_size
_UpperCamelCase : Optional[int] = initializer_range
_UpperCamelCase : str = pool_scales
_UpperCamelCase : List[Any] = use_auxiliary_head
_UpperCamelCase : List[str] = auxiliary_loss_weight
_UpperCamelCase : Optional[Any] = auxiliary_in_channels
_UpperCamelCase : Dict = auxiliary_channels
_UpperCamelCase : List[Any] = auxiliary_num_convs
_UpperCamelCase : Tuple = auxiliary_concat_input
_UpperCamelCase : Optional[int] = loss_ignore_index
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple:
_UpperCamelCase : Tuple = copy.deepcopy(self.__dict__ )
_UpperCamelCase : Dict = self.backbone_config.to_dict()
_UpperCamelCase : int = self.__class__.model_type
return output
| 721
|
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = ["model.decoder.embed_positions.weights"]
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
if "emb" in name:
_UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" )
if "transformer" in name:
_UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" )
if "cross_attention" in name:
_UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" )
if "linear1" in name:
_UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" )
if "linear2" in name:
_UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" )
if "norm1" in name:
_UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" )
if "norm_cross" in name:
_UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" )
if "norm2" in name:
_UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" )
if "out_norm" in name:
_UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" )
if "linears" in name:
_UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
_UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" )
return name
def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]:
"""simple docstring"""
_UpperCamelCase : str = list(state_dict.keys() )
_UpperCamelCase : Optional[Any] = {}
for key in keys:
_UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ )
_UpperCamelCase : List[Any] = rename_keys(lowercase_ )
if "in_proj_weight" in key:
# split fused qkv proj
_UpperCamelCase : Tuple = val[:hidden_size, :]
_UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :]
_UpperCamelCase : Optional[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
_UpperCamelCase : Optional[Any] = val
else:
_UpperCamelCase : List[str] = val
return state_dict, enc_dec_proj_state_dict
def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
_UpperCamelCase : List[Any] = 1_024
_UpperCamelCase : List[str] = 24
_UpperCamelCase : Any = 16
elif checkpoint == "medium":
_UpperCamelCase : Tuple = 1_536
_UpperCamelCase : Dict = 48
_UpperCamelCase : Tuple = 24
elif checkpoint == "large":
_UpperCamelCase : int = 2_048
_UpperCamelCase : Optional[int] = 48
_UpperCamelCase : Dict = 32
else:
raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' )
_UpperCamelCase : str = MusicgenDecoderConfig(
hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,)
return config
@torch.no_grad()
def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ )
_UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ )
_UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict()
_UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict(
lowercase_ ,hidden_size=decoder_config.hidden_size )
_UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" )
_UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" )
_UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
_UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' )
if len(lowercase_ ) > 0:
raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' )
# init the composite model
_UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowercase_ )
# check we can do a forward pass
_UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 )
_UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 )
with torch.no_grad():
_UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
_UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" )
_UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" )
_UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ )
# set the appropriate bos/pad token ids
_UpperCamelCase : str = 2_048
_UpperCamelCase : str = 2_048
# set other default generation config params
_UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate )
_UpperCamelCase : List[str] = True
_UpperCamelCase : int = 3.0
if pytorch_dump_folder is not None:
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' )
model.save_pretrained(lowercase_ )
processor.save_pretrained(lowercase_ )
if repo_id:
logger.info(F'''Pushing model {checkpoint} to {repo_id}''' )
model.push_to_hub(lowercase_ )
processor.push_to_hub(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
lowerCamelCase__ = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 51
| 0
|
"""simple docstring"""
from argparse import ArgumentParser
from .add_new_model import AddNewModelCommand
from .add_new_model_like import AddNewModelLikeCommand
from .convert import ConvertCommand
from .download import DownloadCommand
from .env import EnvironmentCommand
from .lfs import LfsCommands
from .pt_to_tf import PTtoTFCommand
from .run import RunCommand
from .serving import ServeCommand
from .user import UserCommands
def lowercase__ ( ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = ArgumentParser("Transformers CLI tool" ,usage="transformers-cli <command> [<args>]" )
_UpperCamelCase : int = parser.add_subparsers(help="transformers-cli command helpers" )
# Register commands
ConvertCommand.register_subcommand(lowercase_ )
DownloadCommand.register_subcommand(lowercase_ )
EnvironmentCommand.register_subcommand(lowercase_ )
RunCommand.register_subcommand(lowercase_ )
ServeCommand.register_subcommand(lowercase_ )
UserCommands.register_subcommand(lowercase_ )
AddNewModelCommand.register_subcommand(lowercase_ )
AddNewModelLikeCommand.register_subcommand(lowercase_ )
LfsCommands.register_subcommand(lowercase_ )
PTtoTFCommand.register_subcommand(lowercase_ )
# Let's go
_UpperCamelCase : List[Any] = parser.parse_args()
if not hasattr(lowercase_ ,"func" ):
parser.print_help()
exit(1 )
# Run
_UpperCamelCase : List[str] = args.func(lowercase_ )
service.run()
if __name__ == "__main__":
main()
| 700
|
"""simple docstring"""
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
lowerCamelCase__ = input("Enter image url: ").strip()
print(f"""Downloading image from {url} ...""")
lowerCamelCase__ = BeautifulSoup(requests.get(url).content, "html.parser")
# The image URL is in the content field of the first meta tag with property og:image
lowerCamelCase__ = soup.find("meta", {"property": "og:image"})["content"]
lowerCamelCase__ = requests.get(image_url).content
lowerCamelCase__ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"""
with open(file_name, "wb") as fp:
fp.write(image_data)
print(f"""Done. Image saved to disk as {file_name}.""")
| 51
| 0
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertConfig,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : str , __a : Optional[int] , ) -> str:
_UpperCamelCase : List[str] = parent
_UpperCamelCase : List[str] = 13
_UpperCamelCase : List[Any] = 7
_UpperCamelCase : List[Any] = True
_UpperCamelCase : List[Any] = True
_UpperCamelCase : List[Any] = True
_UpperCamelCase : int = True
_UpperCamelCase : Optional[Any] = True
_UpperCamelCase : Dict = False
_UpperCamelCase : List[str] = False
_UpperCamelCase : Dict = False
_UpperCamelCase : Dict = 2
_UpperCamelCase : Any = 99
_UpperCamelCase : Optional[Any] = 0
_UpperCamelCase : Union[str, Any] = 32
_UpperCamelCase : int = 2
_UpperCamelCase : List[str] = 4
_UpperCamelCase : Dict = 0.1
_UpperCamelCase : Any = 0.1
_UpperCamelCase : Tuple = 512
_UpperCamelCase : Optional[Any] = 16
_UpperCamelCase : Union[str, Any] = 2
_UpperCamelCase : str = 0.02
_UpperCamelCase : List[Any] = 3
_UpperCamelCase : Union[str, Any] = 4
_UpperCamelCase : Optional[int] = "last"
_UpperCamelCase : int = True
_UpperCamelCase : Optional[Any] = None
_UpperCamelCase : Optional[int] = 0
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]:
_UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa )
_UpperCamelCase : List[str] = None
if self.use_input_lengths:
_UpperCamelCase : List[Any] = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
_UpperCamelCase : str = None
if self.use_token_type_ids:
_UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
_UpperCamelCase : int = None
_UpperCamelCase : List[Any] = None
_UpperCamelCase : Tuple = None
if self.use_labels:
_UpperCamelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCamelCase : Tuple = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa )
_UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices )
_UpperCamelCase : Dict = FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , )
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def __SCREAMING_SNAKE_CASE ( self : int , __a : str , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : Union[str, Any] , __a : Any , __a : Union[str, Any] , __a : int , __a : Optional[int] , ) -> Optional[int]:
_UpperCamelCase : Tuple = TFFlaubertModel(config=__a )
_UpperCamelCase : Dict = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
_UpperCamelCase : Optional[int] = model(__a )
_UpperCamelCase : Optional[Any] = [input_ids, input_mask]
_UpperCamelCase : str = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __SCREAMING_SNAKE_CASE ( self : str , __a : str , __a : Tuple , __a : List[str] , __a : List[Any] , __a : Optional[Any] , __a : Dict , __a : Optional[int] , __a : Optional[Any] , __a : Union[str, Any] , ) -> int:
_UpperCamelCase : str = TFFlaubertWithLMHeadModel(__a )
_UpperCamelCase : Optional[int] = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
_UpperCamelCase : Union[str, Any] = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __SCREAMING_SNAKE_CASE ( self : str , __a : Optional[int] , __a : Tuple , __a : int , __a : Tuple , __a : Optional[Any] , __a : List[str] , __a : List[Any] , __a : Optional[int] , __a : int , ) -> List[str]:
_UpperCamelCase : Dict = TFFlaubertForQuestionAnsweringSimple(__a )
_UpperCamelCase : int = {"input_ids": input_ids, "lengths": input_lengths}
_UpperCamelCase : List[str] = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : List[str] , __a : str , __a : int , __a : str , __a : Tuple , __a : str , ) -> Dict:
_UpperCamelCase : Any = TFFlaubertForSequenceClassification(__a )
_UpperCamelCase : Optional[int] = {"input_ids": input_ids, "lengths": input_lengths}
_UpperCamelCase : Union[str, Any] = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Tuple , __a : Dict , __a : Any , __a : List[str] , __a : Union[str, Any] , __a : int , __a : Optional[Any] , __a : Dict , __a : Tuple , ) -> Optional[Any]:
_UpperCamelCase : Dict = self.num_labels
_UpperCamelCase : int = TFFlaubertForTokenClassification(config=__a )
_UpperCamelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_UpperCamelCase : Dict = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[int] , __a : Optional[Any] , __a : Tuple , __a : Tuple , __a : Any , __a : Union[str, Any] , __a : int , __a : Tuple , __a : str , ) -> List[str]:
_UpperCamelCase : int = self.num_choices
_UpperCamelCase : str = TFFlaubertForMultipleChoice(config=__a )
_UpperCamelCase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
_UpperCamelCase : Any = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
_UpperCamelCase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
_UpperCamelCase : List[str] = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
_UpperCamelCase : Tuple = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict:
_UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
), (
_UpperCamelCase
), (
_UpperCamelCase
), (
_UpperCamelCase
), (
_UpperCamelCase
), (
_UpperCamelCase
), (
_UpperCamelCase
), (
_UpperCamelCase
), (
_UpperCamelCase
),
) : int = config_and_inputs
_UpperCamelCase : Dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"langs": token_type_ids,
"lengths": input_lengths,
}
return config, inputs_dict
@require_tf
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :List[Any] = (
(
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
TFFlaubertForSequenceClassification,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForTokenClassification,
TFFlaubertForMultipleChoice,
)
if is_tf_available()
else ()
)
SCREAMING_SNAKE_CASE__ :List[str] = (
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
SCREAMING_SNAKE_CASE__ :List[str] = (
{
'feature-extraction': TFFlaubertModel,
'fill-mask': TFFlaubertWithLMHeadModel,
'question-answering': TFFlaubertForQuestionAnsweringSimple,
'text-classification': TFFlaubertForSequenceClassification,
'token-classification': TFFlaubertForTokenClassification,
'zero-shot': TFFlaubertForSequenceClassification,
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ :Optional[Any] = False
SCREAMING_SNAKE_CASE__ :Union[str, Any] = False
def __SCREAMING_SNAKE_CASE ( self : int , __a : List[str] , __a : Dict , __a : Optional[int] , __a : Union[str, Any] , __a : List[Any] ) -> Optional[Any]:
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : List[Any] = TFFlaubertModelTester(self )
_UpperCamelCase : Any = ConfigTester(self , config_class=__a , emb_dim=37 )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]:
_UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__a )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]:
_UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__a )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict:
_UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any:
_UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__a )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]:
_UpperCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_token_classification(*__a )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]:
_UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_multiple_choice(*__a )
@slow
def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]:
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase : Union[str, Any] = TFFlaubertModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@require_tf
@require_sentencepiece
@require_tokenizers
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]:
_UpperCamelCase : int = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" )
_UpperCamelCase : Optional[Any] = tf.convert_to_tensor(
[[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !"
_UpperCamelCase : Optional[Any] = model(__a )[0]
_UpperCamelCase : Optional[int] = tf.TensorShape((1, 8, 512) )
self.assertEqual(output.shape , __a )
# compare the actual values for a slice.
_UpperCamelCase : Union[str, Any] = tf.convert_to_tensor(
[
[
[-1.8_76_87_73, -1.56_65_55, 0.27_07_24_18],
[-1.6_92_00_38, -0.5_87_35_05, 1.9_32_95_99],
[-2.9_56_39_85, -1.6_99_38_35, 1.7_97_20_52],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 701
|
"""simple docstring"""
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(".")
def lowercase__ ( lowercase_ ) -> int:
"""simple docstring"""
_UpperCamelCase : Any = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
"`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got "
F'''{test_file} instead.''' )
_UpperCamelCase : str = components[-1]
if not test_fn.endswith("py" ):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith("test_modeling_" ):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
_UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )]
_UpperCamelCase : List[str] = ".".join(lowercase_ )
return test_module_path
def lowercase__ ( lowercase_ ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = get_module_path(lowercase_ )
_UpperCamelCase : str = importlib.import_module(lowercase_ )
return test_module
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = []
_UpperCamelCase : List[Any] = get_test_module(lowercase_ )
for attr in dir(lowercase_ ):
if attr.endswith("ModelTester" ):
tester_classes.append(getattr(lowercase_ ,lowercase_ ) )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = []
_UpperCamelCase : Any = get_test_module(lowercase_ )
for attr in dir(lowercase_ ):
_UpperCamelCase : int = getattr(lowercase_ ,lowercase_ )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
_UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] )
if len(lowercase_ ) > 0:
test_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Dict = get_test_classes(lowercase_ )
_UpperCamelCase : int = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : List[str] = test_class()
if hasattr(lowercase_ ,"setUp" ):
test.setUp()
_UpperCamelCase : Tuple = None
if hasattr(lowercase_ ,"model_tester" ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
_UpperCamelCase : Tuple = test.model_tester.__class__
return model_tester
def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : str = get_test_classes(lowercase_ )
_UpperCamelCase : Dict = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict:
"""simple docstring"""
_UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ )
_UpperCamelCase : List[Any] = []
for test_class in test_classes:
_UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ )
if tester_class is not None:
tester_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Any = get_test_classes(lowercase_ )
_UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes}
return test_tester_mapping
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : List[Any] = get_model_classes(lowercase_ )
_UpperCamelCase : Optional[int] = {
model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes
}
return model_test_mapping
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ )
_UpperCamelCase : Tuple = {
model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes
}
return model_to_tester_mapping
def lowercase__ ( lowercase_ ) -> Optional[int]:
"""simple docstring"""
if isinstance(lowercase_ ,lowercase_ ):
return o
elif isinstance(lowercase_ ,lowercase_ ):
return o.__name__
elif isinstance(lowercase_ ,(list, tuple) ):
return [to_json(lowercase_ ) for x in o]
elif isinstance(lowercase_ ,lowercase_ ):
return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()}
else:
return o
| 51
| 0
|
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Tuple = LEDConfig
SCREAMING_SNAKE_CASE__ :int = {}
SCREAMING_SNAKE_CASE__ :List[Any] = "gelu"
def __init__( self : Optional[Any] , __a : int , __a : Any=13 , __a : Any=7 , __a : str=True , __a : Dict=False , __a : Any=99 , __a : str=32 , __a : Optional[Any]=2 , __a : str=4 , __a : Dict=37 , __a : str=0.1 , __a : List[Any]=0.1 , __a : Union[str, Any]=20 , __a : List[Any]=2 , __a : Tuple=1 , __a : str=0 , __a : Optional[int]=4 , ) -> Optional[Any]:
_UpperCamelCase : Dict = parent
_UpperCamelCase : Union[str, Any] = batch_size
_UpperCamelCase : Any = seq_length
_UpperCamelCase : Union[str, Any] = is_training
_UpperCamelCase : int = use_labels
_UpperCamelCase : List[Any] = vocab_size
_UpperCamelCase : str = hidden_size
_UpperCamelCase : Optional[int] = num_hidden_layers
_UpperCamelCase : Union[str, Any] = num_attention_heads
_UpperCamelCase : str = intermediate_size
_UpperCamelCase : Optional[Any] = hidden_dropout_prob
_UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob
_UpperCamelCase : Optional[Any] = max_position_embeddings
_UpperCamelCase : int = eos_token_id
_UpperCamelCase : List[str] = pad_token_id
_UpperCamelCase : List[Any] = bos_token_id
_UpperCamelCase : List[Any] = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_UpperCamelCase : str = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_UpperCamelCase : str = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int:
_UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCamelCase : List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
_UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase : Optional[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_UpperCamelCase : List[str] = prepare_led_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_UpperCamelCase : List[Any] = tf.concat(
[tf.zeros_like(__UpperCamelCase )[:, :-1], tf.ones_like(__UpperCamelCase )[:, -1:]] , axis=-1 , )
_UpperCamelCase : int = global_attention_mask
return config, inputs_dict
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[Any] , __a : Tuple ) -> int:
_UpperCamelCase : Union[str, Any] = TFLEDModel(config=__UpperCamelCase ).get_decoder()
_UpperCamelCase : Dict = inputs_dict["input_ids"]
_UpperCamelCase : Optional[int] = input_ids[:1, :]
_UpperCamelCase : Dict = inputs_dict["attention_mask"][:1, :]
_UpperCamelCase : List[Any] = 1
# first forward pass
_UpperCamelCase : Union[str, Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase )
_UpperCamelCase, _UpperCamelCase : Optional[int] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCamelCase : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_UpperCamelCase : int = tf.concat([input_ids, next_tokens] , axis=-1 )
_UpperCamelCase : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_UpperCamelCase : str = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0]
_UpperCamelCase : Optional[int] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_UpperCamelCase : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_UpperCamelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx]
_UpperCamelCase : Tuple = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , rtol=1e-3 )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Optional[Any]:
"""simple docstring"""
if attention_mask is None:
_UpperCamelCase : Dict = tf.cast(tf.math.not_equal(lowercase__ ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
_UpperCamelCase : List[Any] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
_UpperCamelCase : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCamelCase : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class __SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :Tuple = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :Dict = (
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ :List[str] = True
SCREAMING_SNAKE_CASE__ :Any = False
SCREAMING_SNAKE_CASE__ :str = False
SCREAMING_SNAKE_CASE__ :Any = False
def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]:
_UpperCamelCase : Union[str, Any] = TFLEDModelTester(self )
_UpperCamelCase : str = ConfigTester(self , config_class=__UpperCamelCase )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple:
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]:
_UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__UpperCamelCase )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]:
_UpperCamelCase, _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCamelCase : int = tf.zeros_like(inputs_dict["attention_mask"] )
_UpperCamelCase : Union[str, Any] = 2
_UpperCamelCase : Union[str, Any] = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , )
_UpperCamelCase : str = True
_UpperCamelCase : Union[str, Any] = self.model_tester.seq_length
_UpperCamelCase : Any = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(__a : str ):
_UpperCamelCase : str = outputs.decoder_attentions
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(__a : str ):
_UpperCamelCase : Optional[Any] = [t.numpy() for t in outputs.encoder_attentions]
_UpperCamelCase : Any = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_UpperCamelCase : int = True
_UpperCamelCase : Any = False
_UpperCamelCase : List[str] = False
_UpperCamelCase : Any = model_class(__UpperCamelCase )
_UpperCamelCase : List[Any] = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
_UpperCamelCase : str = len(__UpperCamelCase )
self.assertEqual(config.output_hidden_states , __UpperCamelCase )
check_encoder_attentions_output(__UpperCamelCase )
if self.is_encoder_decoder:
_UpperCamelCase : Any = model_class(__UpperCamelCase )
_UpperCamelCase : Dict = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
self.assertEqual(config.output_hidden_states , __UpperCamelCase )
check_decoder_attentions_output(__UpperCamelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_UpperCamelCase : Dict = True
_UpperCamelCase : str = model_class(__UpperCamelCase )
_UpperCamelCase : List[str] = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
self.assertEqual(config.output_hidden_states , __UpperCamelCase )
check_encoder_attentions_output(__UpperCamelCase )
# Check attention is always last and order is fine
_UpperCamelCase : Optional[Any] = True
_UpperCamelCase : Optional[Any] = True
_UpperCamelCase : Dict = model_class(__UpperCamelCase )
_UpperCamelCase : Optional[Any] = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCamelCase ) )
self.assertEqual(model.config.output_hidden_states , __UpperCamelCase )
check_encoder_attentions_output(__UpperCamelCase )
@unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple:
pass
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]:
pass
def lowercase__ ( lowercase_ ) -> int:
"""simple docstring"""
return tf.constant(lowercase__ ,dtype=tf.intaa )
lowerCamelCase__ = 1E-4
@slow
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]:
_UpperCamelCase : int = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led
# change to intended input here
_UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Any = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : List[Any] = prepare_led_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase )
_UpperCamelCase : Union[str, Any] = model(**__UpperCamelCase )[0]
_UpperCamelCase : List[str] = (1, 1024, 768)
self.assertEqual(output.shape , __UpperCamelCase )
# change to expected output here
_UpperCamelCase : List[Any] = tf.convert_to_tensor(
[[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , )
tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-3 )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
_UpperCamelCase : Optional[Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" )
# change to intended input here
_UpperCamelCase : List[str] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : str = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Any = prepare_led_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase )
_UpperCamelCase : Optional[Any] = model(**__UpperCamelCase )[0]
_UpperCamelCase : Union[str, Any] = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , __UpperCamelCase )
# change to expected output here
_UpperCamelCase : List[Any] = tf.convert_to_tensor(
[[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , )
tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-3 , rtol=1e-3 )
| 702
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCamelCase__ = {
"configuration_mask2former": [
"MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Mask2FormerConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["Mask2FormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"Mask2FormerForUniversalSegmentation",
"Mask2FormerModel",
"Mask2FormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 51
| 0
|
"""simple docstring"""
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
lowerCamelCase__ = TypeVar("T")
def lowercase__ ( lowercase_ ) -> Dict:
"""simple docstring"""
return (position - 1) // 2
def lowercase__ ( lowercase_ ) -> Tuple:
"""simple docstring"""
return (2 * position) + 1
def lowercase__ ( lowercase_ ) -> Dict:
"""simple docstring"""
return (2 * position) + 2
class __SCREAMING_SNAKE_CASE ( Generic[T] ):
def __init__( self : str ) -> None:
_UpperCamelCase : list[tuple[T, int]] = []
_UpperCamelCase : dict[T, int] = {}
_UpperCamelCase : int = 0
def __len__( self : Any ) -> int:
return self.elements
def __repr__( self : Union[str, Any] ) -> str:
return str(self.heap )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> bool:
return self.elements == 0
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Union[str, Any] , __a : str ) -> None:
self.heap.append((elem, weight) )
_UpperCamelCase : Optional[Any] = self.elements
self.elements += 1
self._bubble_up(lowercase__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> T:
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
_UpperCamelCase : List[str] = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
_UpperCamelCase : Tuple = self.heap[0]
self._bubble_down(lowercase__ )
return elem
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[str] , __a : int ) -> None:
_UpperCamelCase : List[str] = self.position_map[elem]
_UpperCamelCase : Any = (elem, weight)
if position > 0:
_UpperCamelCase : Optional[int] = get_parent_position(lowercase__ )
_UpperCamelCase : Tuple = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(lowercase__ )
else:
self._bubble_down(lowercase__ )
else:
self._bubble_down(lowercase__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : str ) -> None:
_UpperCamelCase : Tuple = self.position_map[elem]
if curr_pos == 0:
return None
_UpperCamelCase : Optional[int] = get_parent_position(lowercase__ )
_UpperCamelCase : Optional[Any] = self.heap[curr_pos]
_UpperCamelCase : int = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(lowercase__ , lowercase__ )
return self._bubble_up(lowercase__ )
return None
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : List[Any] ) -> None:
_UpperCamelCase : Any = self.position_map[elem]
_UpperCamelCase : List[Any] = self.heap[curr_pos]
_UpperCamelCase : Dict = get_child_left_position(lowercase__ )
_UpperCamelCase : Optional[int] = get_child_right_position(lowercase__ )
if child_left_position < self.elements and child_right_position < self.elements:
_UpperCamelCase : Any = self.heap[child_left_position]
_UpperCamelCase : str = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(lowercase__ , lowercase__ )
return self._bubble_down(lowercase__ )
if child_left_position < self.elements:
_UpperCamelCase : List[str] = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(lowercase__ , lowercase__ )
return self._bubble_down(lowercase__ )
else:
return None
if child_right_position < self.elements:
_UpperCamelCase : Optional[int] = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(lowercase__ , lowercase__ )
return self._bubble_down(lowercase__ )
return None
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[str] , __a : Dict ) -> None:
_UpperCamelCase : List[Any] = self.heap[nodea_pos][0]
_UpperCamelCase : str = self.heap[nodea_pos][0]
_UpperCamelCase : Union[str, Any] = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
_UpperCamelCase : Dict = nodea_pos
_UpperCamelCase : Any = nodea_pos
class __SCREAMING_SNAKE_CASE ( Generic[T] ):
def __init__( self : Dict ) -> None:
_UpperCamelCase : dict[T, dict[T, int]] = {}
_UpperCamelCase : int = 0
def __repr__( self : str ) -> str:
return str(self.connections )
def __len__( self : Tuple ) -> int:
return self.nodes
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Any ) -> None:
if node not in self.connections:
_UpperCamelCase : Optional[int] = {}
self.nodes += 1
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : str , __a : Tuple , __a : Tuple ) -> None:
self.add_node(lowercase__ )
self.add_node(lowercase__ )
_UpperCamelCase : Union[str, Any] = weight
_UpperCamelCase : Any = weight
def lowercase__ ( lowercase_ ,) -> Tuple:
"""simple docstring"""
_UpperCamelCase : dict[T, int] = {node: maxsize for node in graph.connections}
_UpperCamelCase : dict[T, T | None] = {node: None for node in graph.connections}
_UpperCamelCase : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(lowerCAmelCase_ ,lowerCAmelCase_ )
if priority_queue.is_empty():
return dist, parent
# initialization
_UpperCamelCase : str = priority_queue.extract_min()
_UpperCamelCase : Optional[int] = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
_UpperCamelCase : Dict = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCAmelCase_ ,dist[neighbour] )
_UpperCamelCase : int = node
# running prim's algorithm
while not priority_queue.is_empty():
_UpperCamelCase : Any = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
_UpperCamelCase : int = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCAmelCase_ ,dist[neighbour] )
_UpperCamelCase : List[str] = node
return dist, parent
| 703
|
"""simple docstring"""
lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCamelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 51
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[Any] = """trocr"""
SCREAMING_SNAKE_CASE__ :Union[str, Any] = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ :str = {
"""num_attention_heads""": """decoder_attention_heads""",
"""hidden_size""": """d_model""",
"""num_hidden_layers""": """decoder_layers""",
}
def __init__( self : Union[str, Any] , __a : Tuple=5_0265 , __a : Union[str, Any]=1024 , __a : str=12 , __a : Tuple=16 , __a : Union[str, Any]=4096 , __a : Any="gelu" , __a : Union[str, Any]=512 , __a : str=0.1 , __a : str=0.0 , __a : Union[str, Any]=0.0 , __a : Dict=2 , __a : Optional[int]=0.02 , __a : List[str]=0.0 , __a : Any=True , __a : Optional[int]=False , __a : Optional[Any]=True , __a : Dict=True , __a : int=1 , __a : List[Any]=0 , __a : Tuple=2 , **__a : Optional[Any] , ) -> str:
_UpperCamelCase : Union[str, Any] = vocab_size
_UpperCamelCase : int = d_model
_UpperCamelCase : Any = decoder_layers
_UpperCamelCase : str = decoder_attention_heads
_UpperCamelCase : Optional[Any] = decoder_ffn_dim
_UpperCamelCase : str = activation_function
_UpperCamelCase : Dict = max_position_embeddings
_UpperCamelCase : Dict = dropout
_UpperCamelCase : Optional[int] = attention_dropout
_UpperCamelCase : Dict = activation_dropout
_UpperCamelCase : Tuple = init_std
_UpperCamelCase : Optional[int] = decoder_layerdrop
_UpperCamelCase : Optional[int] = use_cache
_UpperCamelCase : Union[str, Any] = scale_embedding
_UpperCamelCase : Optional[Any] = use_learned_position_embeddings
_UpperCamelCase : Dict = layernorm_embedding
super().__init__(
pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , )
| 704
|
"""simple docstring"""
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
_UpperCamelCase : Tuple = tempfile.mkdtemp()
_UpperCamelCase : str = 5
# Realm tok
_UpperCamelCase : Tuple = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"test",
"question",
"this",
"is",
"the",
"first",
"second",
"third",
"fourth",
"fifth",
"record",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
_UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" )
os.makedirs(__a , exist_ok=__a )
_UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
_UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" )
os.makedirs(__a , exist_ok=__a )
def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer:
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict:
shutil.rmtree(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]:
_UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records )
return config
def __SCREAMING_SNAKE_CASE ( self : int ) -> int:
_UpperCamelCase : Any = Dataset.from_dict(
{
"id": ["0", "1"],
"question": ["foo", "bar"],
"answers": [["Foo", "Bar"], ["Bar"]],
} )
return dataset
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str:
_UpperCamelCase : int = np.array(
[
b"This is the first record",
b"This is the second record",
b"This is the third record",
b"This is the fourth record",
b"This is the fifth record",
b"This is a longer longer longer record",
] , dtype=__a , )
return block_records
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]:
_UpperCamelCase : List[str] = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple:
_UpperCamelCase : Tuple = self.get_config()
_UpperCamelCase : int = self.get_dummy_retriever()
_UpperCamelCase : Tuple = retriever.tokenizer
_UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" )
_UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids
_UpperCamelCase : List[str] = tokenizer(
["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids
_UpperCamelCase : str = config.reader_seq_len
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = retriever(
__a , __a , answer_ids=__a , max_length=__a , return_tensors="np" )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]:
_UpperCamelCase : Any = self.get_config()
_UpperCamelCase : Dict = self.get_dummy_retriever()
_UpperCamelCase : Dict = retriever.tokenizer
_UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" )
_UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids
_UpperCamelCase : str = tokenizer(
["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids
_UpperCamelCase : Union[str, Any] = config.reader_seq_len
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = retriever(
__a , __a , answer_ids=__a , max_length=__a , return_tensors="np" )
self.assertEqual([False, True, True] , __a )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]:
_UpperCamelCase : List[Any] = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) )
# Test local path
_UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) )
self.assertEqual(retriever.block_records[0] , b"This is the first record" )
# Test mocked remote path
with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download:
_UpperCamelCase : List[Any] = os.path.join(
os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME )
_UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" )
self.assertEqual(retriever.block_records[0] , b"This is the first record" )
| 51
| 0
|
"""simple docstring"""
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def lowercase__ ( lowercase_ ) -> str:
"""simple docstring"""
_UpperCamelCase : List[str] = args.pruning_method
_UpperCamelCase : Tuple = args.threshold
_UpperCamelCase : List[str] = args.model_name_or_path.rstrip("/" )
_UpperCamelCase : Optional[int] = args.target_model_path
print(F'''Load fine-pruned model from {model_name_or_path}''' )
_UpperCamelCase : Optional[int] = torch.load(os.path.join(a_ ,"pytorch_model.bin" ) )
_UpperCamelCase : List[str] = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
_UpperCamelCase : int = tensor
print(F'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
_UpperCamelCase : int = tensor
print(F'''Copied layer {name}''' )
elif "bias" in name:
_UpperCamelCase : Optional[int] = tensor
print(F'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
_UpperCamelCase : List[Any] = MagnitudeBinarizer.apply(inputs=a_ ,threshold=a_ )
_UpperCamelCase : Optional[Any] = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
_UpperCamelCase : Any = name[:-6]
_UpperCamelCase : int = model[F'''{prefix_}mask_scores''']
_UpperCamelCase : List[str] = TopKBinarizer.apply(a_ ,a_ )
_UpperCamelCase : Optional[int] = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
_UpperCamelCase : List[Any] = name[:-6]
_UpperCamelCase : Optional[Any] = model[F'''{prefix_}mask_scores''']
_UpperCamelCase : Any = ThresholdBinarizer.apply(a_ ,a_ ,a_ )
_UpperCamelCase : Optional[int] = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
_UpperCamelCase : List[str] = name[:-6]
_UpperCamelCase : Optional[Any] = model[F'''{prefix_}mask_scores''']
_UpperCamelCase : Optional[Any] = -0.1, 1.1
_UpperCamelCase : int = torch.sigmoid(a_ )
_UpperCamelCase : Any = s * (r - l) + l
_UpperCamelCase : List[str] = s_bar.clamp(min=0.0 ,max=1.0 )
_UpperCamelCase : Optional[Any] = tensor * mask
print(F'''Pruned layer {name}''' )
else:
raise ValueError("Unknown pruning method" )
if target_model_path is None:
_UpperCamelCase : int = os.path.join(
os.path.dirname(a_ ) ,F'''bertarized_{os.path.basename(a_ )}''' )
if not os.path.isdir(a_ ):
shutil.copytree(a_ ,a_ )
print(F'''\nCreated folder {target_model_path}''' )
torch.save(a_ ,os.path.join(a_ ,"pytorch_model.bin" ) )
print("\nPruned model saved! See you later!" )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--pruning_method",
choices=["l0", "magnitude", "topK", "sigmoied_threshold"],
type=str,
required=True,
help=(
"Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,"
" sigmoied_threshold = Soft movement pruning)"
),
)
parser.add_argument(
"--threshold",
type=float,
required=False,
help=(
"For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."
"For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."
"Not needed for `l0`"
),
)
parser.add_argument(
"--model_name_or_path",
type=str,
required=True,
help="Folder containing the model that was previously fine-pruned",
)
parser.add_argument(
"--target_model_path",
default=None,
type=str,
required=False,
help="Folder containing the model that was previously fine-pruned",
)
lowerCamelCase__ = parser.parse_args()
main(args)
| 705
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Any = LEDConfig
SCREAMING_SNAKE_CASE__ :str = {}
SCREAMING_SNAKE_CASE__ :List[str] = "gelu"
def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]:
_UpperCamelCase : Optional[Any] = parent
_UpperCamelCase : List[str] = batch_size
_UpperCamelCase : str = seq_length
_UpperCamelCase : str = is_training
_UpperCamelCase : Any = use_labels
_UpperCamelCase : Any = vocab_size
_UpperCamelCase : List[str] = hidden_size
_UpperCamelCase : Optional[Any] = num_hidden_layers
_UpperCamelCase : Dict = num_attention_heads
_UpperCamelCase : Optional[Any] = intermediate_size
_UpperCamelCase : int = hidden_dropout_prob
_UpperCamelCase : Dict = attention_probs_dropout_prob
_UpperCamelCase : str = max_position_embeddings
_UpperCamelCase : int = eos_token_id
_UpperCamelCase : Dict = pad_token_id
_UpperCamelCase : Optional[Any] = bos_token_id
_UpperCamelCase : str = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_UpperCamelCase : List[str] = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_UpperCamelCase : int = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __SCREAMING_SNAKE_CASE ( self : int ) -> str:
_UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 )
_UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase : List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a )
_UpperCamelCase : Union[str, Any] = tf.concat(
[tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , )
_UpperCamelCase : Union[str, Any] = global_attention_mask
return config, inputs_dict
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple:
_UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder()
_UpperCamelCase : Tuple = inputs_dict["input_ids"]
_UpperCamelCase : int = input_ids[:1, :]
_UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :]
_UpperCamelCase : List[Any] = 1
# first forward pass
_UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a )
_UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 )
_UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0]
_UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx]
_UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__a , __a , rtol=1e-3 )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict:
"""simple docstring"""
if attention_mask is None:
_UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
_UpperCamelCase : str = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
_UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :List[str] = (
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ :Tuple = True
SCREAMING_SNAKE_CASE__ :str = False
SCREAMING_SNAKE_CASE__ :Optional[Any] = False
SCREAMING_SNAKE_CASE__ :int = False
def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]:
_UpperCamelCase : int = TFLEDModelTester(self )
_UpperCamelCase : Any = ConfigTester(self , config_class=__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]:
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int:
_UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__a )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
_UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] )
_UpperCamelCase : Union[str, Any] = 2
_UpperCamelCase : str = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , )
_UpperCamelCase : Dict = True
_UpperCamelCase : str = self.model_tester.seq_length
_UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(__a : Optional[int] ):
_UpperCamelCase : Optional[int] = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(__a : Optional[Any] ):
_UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions]
_UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_UpperCamelCase : Dict = True
_UpperCamelCase : Optional[Any] = False
_UpperCamelCase : int = False
_UpperCamelCase : Optional[int] = model_class(__a )
_UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) )
_UpperCamelCase : Any = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
_UpperCamelCase : Optional[Any] = model_class(__a )
_UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_UpperCamelCase : int = True
_UpperCamelCase : Tuple = model_class(__a )
_UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
_UpperCamelCase : Any = True
_UpperCamelCase : List[str] = True
_UpperCamelCase : Tuple = model_class(__a )
_UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
pass
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple:
# TODO: Head-masking not yet implement
pass
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
return tf.constant(lowercase_ ,dtype=tf.intaa )
lowerCamelCase__ = 1E-4
@slow
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]:
_UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led
# change to intended input here
_UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a )
_UpperCamelCase : Optional[int] = model(**__a )[0]
_UpperCamelCase : Optional[int] = (1, 1024, 768)
self.assertEqual(output.shape , __a )
# change to expected output here
_UpperCamelCase : Tuple = tf.convert_to_tensor(
[[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
_UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" )
# change to intended input here
_UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a )
_UpperCamelCase : Union[str, Any] = model(**__a )[0]
_UpperCamelCase : int = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , __a )
# change to expected output here
_UpperCamelCase : Optional[int] = tf.convert_to_tensor(
[[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
| 51
| 0
|
"""simple docstring"""
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
lowerCamelCase__ = [
# tf -> hf
("""/""", """."""),
("""layer_""", """layers."""),
("""kernel""", """weight"""),
("""beta""", """bias"""),
("""gamma""", """weight"""),
("""pegasus""", """model"""),
]
lowerCamelCase__ = [
(""".output.dense""", """.fc2"""),
("""intermediate.LayerNorm""", """final_layer_norm"""),
("""intermediate.dense""", """fc1"""),
]
lowerCamelCase__ = (
INIT_COMMON
+ [
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.out_proj"""),
("""attention.self""", """self_attn"""),
("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""),
("""attention.encdec_output.dense""", """encoder_attn.out_proj"""),
("""attention.encdec""", """encoder_attn"""),
("""key""", """k_proj"""),
("""value""", """v_proj"""),
("""query""", """q_proj"""),
("""decoder.LayerNorm""", """decoder.layernorm_embedding"""),
]
+ END_COMMON
)
lowerCamelCase__ = (
INIT_COMMON
+ [
("""embeddings.word_embeddings""", """shared.weight"""),
("""embeddings.position_embeddings""", """embed_positions.weight"""),
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.output"""),
("""attention.self""", """self_attn.self"""),
("""encoder.LayerNorm""", """encoder.layernorm_embedding"""),
]
+ END_COMMON
)
lowerCamelCase__ = [
"""encdec/key/bias""",
"""encdec/query/bias""",
"""encdec/value/bias""",
"""self/key/bias""",
"""self/query/bias""",
"""self/value/bias""",
"""encdec_output/dense/bias""",
"""attention/output/dense/bias""",
]
def lowercase__ ( lowercase_ ,lowercase_ ) -> List[Any]:
"""simple docstring"""
for tf_name, hf_name in patterns:
_UpperCamelCase : List[Any] = k.replace(lowercase_ ,lowercase_ )
return k
def lowercase__ ( lowercase_ ,lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = BigBirdPegasusConfig(**lowercase_ )
_UpperCamelCase : Tuple = BigBirdPegasusForConditionalGeneration(lowercase_ )
_UpperCamelCase : List[str] = torch_model.state_dict()
_UpperCamelCase : int = {}
# separating decoder weights
_UpperCamelCase : Any = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )}
_UpperCamelCase : Optional[Any] = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )}
for k, v in tqdm(decoder_weights.items() ,"tf -> hf conversion" ):
_UpperCamelCase : Tuple = [k.endswith(lowercase_ ) for ending in KEYS_TO_IGNORE]
if any(lowercase_ ):
continue
_UpperCamelCase : Tuple = DECODER_PATTERNS
_UpperCamelCase : List[Any] = rename_state_dict_key(lowercase_ ,lowercase_ )
if new_k not in state_dict:
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
_UpperCamelCase : Dict = v.T
_UpperCamelCase : str = torch.from_numpy(lowercase_ )
assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
for k, v in tqdm(remaining_weights.items() ,"tf -> hf conversion" ):
_UpperCamelCase : Tuple = [k.endswith(lowercase_ ) for ending in KEYS_TO_IGNORE]
if any(lowercase_ ):
continue
_UpperCamelCase : Union[str, Any] = REMAINING_PATTERNS
_UpperCamelCase : Union[str, Any] = rename_state_dict_key(lowercase_ ,lowercase_ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
_UpperCamelCase : List[str] = v.T
_UpperCamelCase : Union[str, Any] = torch.from_numpy(lowercase_ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
_UpperCamelCase : List[Any] = mapping["model.embed_positions.weight"]
_UpperCamelCase : Dict = mapping.pop("model.embed_positions.weight" )
_UpperCamelCase, _UpperCamelCase : Tuple = torch_model.load_state_dict(lowercase_ ,strict=lowercase_ )
_UpperCamelCase : List[Any] = [
k
for k in missing
if k
not in [
"final_logits_bias",
"model.encoder.embed_tokens.weight",
"model.decoder.embed_tokens.weight",
"lm_head.weight",
]
]
assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], F'''no matches found for the following tf keys {extra}'''
return torch_model
def lowercase__ ( lowercase_ ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = tf.train.list_variables(lowercase_ )
_UpperCamelCase : Tuple = {}
_UpperCamelCase : List[Any] = ["global_step"]
for name, shape in tqdm(lowercase_ ,desc="converting tf checkpoint to dict" ):
_UpperCamelCase : Tuple = any(pat in name for pat in ignore_name )
if skip_key:
continue
_UpperCamelCase : List[str] = tf.train.load_variable(lowercase_ ,lowercase_ )
_UpperCamelCase : Tuple = array
return tf_weights
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = get_tf_weights_as_numpy(lowercase_ )
_UpperCamelCase : Optional[Any] = convert_bigbird_pegasus(lowercase_ ,lowercase_ )
torch_model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.")
lowerCamelCase__ = parser.parse_args()
lowerCamelCase__ = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 706
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer
SCREAMING_SNAKE_CASE__ :Dict = None
SCREAMING_SNAKE_CASE__ :List[Any] = False
SCREAMING_SNAKE_CASE__ :Union[str, Any] = True
SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english
def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
super().setUp()
_UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"]
_UpperCamelCase : List[str] = {}
_UpperCamelCase : Tuple = {}
for i, value in enumerate(__a ):
_UpperCamelCase : List[str] = i
_UpperCamelCase : Optional[Any] = i
_UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] )
_UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer:
json.dump(__a , __a , ensure_ascii=__a )
with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer:
json.dump(__a , __a , ensure_ascii=__a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]:
_UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
_UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" )
self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
_UpperCamelCase : Dict = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
_UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple:
_UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
_UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]:
_UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]:
_UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
_UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]:
_UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]:
_UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
_UpperCamelCase : Any = {}
for i, token in enumerate(__a ):
_UpperCamelCase : str = i
_UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) , [] )
self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] )
self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
self.assertTrue(_is_whitespace(" " ) )
self.assertTrue(_is_whitespace("\t" ) )
self.assertTrue(_is_whitespace("\r" ) )
self.assertTrue(_is_whitespace("\n" ) )
self.assertTrue(_is_whitespace("\u00A0" ) )
self.assertFalse(_is_whitespace("A" ) )
self.assertFalse(_is_whitespace("-" ) )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict:
self.assertTrue(_is_control("\u0005" ) )
self.assertFalse(_is_control("A" ) )
self.assertFalse(_is_control(" " ) )
self.assertFalse(_is_control("\t" ) )
self.assertFalse(_is_control("\r" ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]:
self.assertTrue(_is_punctuation("-" ) )
self.assertTrue(_is_punctuation("$" ) )
self.assertTrue(_is_punctuation("`" ) )
self.assertTrue(_is_punctuation("." ) )
self.assertFalse(_is_punctuation("A" ) )
self.assertFalse(_is_punctuation(" " ) )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
_UpperCamelCase : Optional[Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
if self.test_rust_tokenizer:
_UpperCamelCase : Tuple = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
_UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus(
__a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , )
_UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False
_UpperCamelCase : Dict = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
_UpperCamelCase : Optional[Any] = ["的", "人", "有"]
_UpperCamelCase : int = "".join(__a )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_UpperCamelCase : int = True
_UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a )
_UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a )
_UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a )
_UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(__a , __a )
self.assertListEqual(__a , __a )
_UpperCamelCase : Any = False
_UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a )
_UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a )
_UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a )
_UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a )
# it is expected that only the first Chinese character is not preceded by "##".
_UpperCamelCase : Any = [
F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a )
]
self.assertListEqual(__a , __a )
self.assertListEqual(__a , __a )
@slow
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any:
_UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
_UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a )
_UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a )
_UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a )
_UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_UpperCamelCase : int = "你好,你是谁"
_UpperCamelCase : Any = tokenizer.tokenize(__a )
_UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a )
_UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a )
_UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a )
_UpperCamelCase : Optional[int] = tokenizer.prepare_for_model(
__a , __a , __a , add_special_tokens=__a )
_UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a )
self.assertEqual(__a , __a )
| 51
| 0
|
"""simple docstring"""
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :int = 0
SCREAMING_SNAKE_CASE__ :bool = False
SCREAMING_SNAKE_CASE__ :float = 3.0
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any:
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} )
self.assertDictEqual(MockClass(a=2 , b=_snake_case ).to_kwargs() , {"a": 2, "b": True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} )
@require_cuda
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any:
_UpperCamelCase : List[str] = GradScalerKwargs(init_scale=1024 , growth_factor=2 )
AcceleratorState._reset_state()
_UpperCamelCase : List[Any] = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
_UpperCamelCase : Union[str, Any] = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 10_24.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2000 )
self.assertEqual(scaler._enabled , _snake_case )
@require_multi_gpu
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]:
_UpperCamelCase : Tuple = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(_snake_case , env=os.environ.copy() )
if __name__ == "__main__":
lowerCamelCase__ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
lowerCamelCase__ = Accelerator(kwargs_handlers=[ddp_scaler])
lowerCamelCase__ = torch.nn.Linear(100, 200)
lowerCamelCase__ = accelerator.prepare(model)
# Check the values changed in kwargs
lowerCamelCase__ = ""
lowerCamelCase__ = model.bucket_bytes_cap // (1024 * 1024)
if observed_bucket_cap_map != 15:
error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 707
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Tuple = "yolos"
def __init__( self : Dict , __a : Optional[Any]=768 , __a : List[Any]=12 , __a : Any=12 , __a : List[Any]=3072 , __a : Optional[int]="gelu" , __a : Dict=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.02 , __a : Optional[int]=1e-1_2 , __a : List[Any]=[512, 864] , __a : List[str]=16 , __a : str=3 , __a : Optional[Any]=True , __a : Optional[Any]=100 , __a : List[str]=True , __a : Any=False , __a : List[str]=1 , __a : str=5 , __a : Optional[Any]=2 , __a : Tuple=5 , __a : Any=2 , __a : Union[str, Any]=0.1 , **__a : List[str] , ) -> List[str]:
super().__init__(**__a )
_UpperCamelCase : Dict = hidden_size
_UpperCamelCase : Any = num_hidden_layers
_UpperCamelCase : str = num_attention_heads
_UpperCamelCase : Dict = intermediate_size
_UpperCamelCase : List[str] = hidden_act
_UpperCamelCase : List[str] = hidden_dropout_prob
_UpperCamelCase : str = attention_probs_dropout_prob
_UpperCamelCase : Tuple = initializer_range
_UpperCamelCase : List[str] = layer_norm_eps
_UpperCamelCase : Tuple = image_size
_UpperCamelCase : Tuple = patch_size
_UpperCamelCase : Dict = num_channels
_UpperCamelCase : Any = qkv_bias
_UpperCamelCase : str = num_detection_tokens
_UpperCamelCase : str = use_mid_position_embeddings
_UpperCamelCase : List[str] = auxiliary_loss
# Hungarian matcher
_UpperCamelCase : List[Any] = class_cost
_UpperCamelCase : int = bbox_cost
_UpperCamelCase : Optional[int] = giou_cost
# Loss coefficients
_UpperCamelCase : List[Any] = bbox_loss_coefficient
_UpperCamelCase : str = giou_loss_coefficient
_UpperCamelCase : Dict = eos_coefficient
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :List[str] = version.parse("1.11" )
@property
def __SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float:
return 1e-4
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int:
return 12
| 51
| 0
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Any = StableUnCLIPImgaImgPipeline
SCREAMING_SNAKE_CASE__ :List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
SCREAMING_SNAKE_CASE__ :Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ :List[Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
SCREAMING_SNAKE_CASE__ :Dict = frozenset([] )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str:
_UpperCamelCase : Optional[Any] = 32
_UpperCamelCase : Union[str, Any] = embedder_hidden_size
# image encoding components
_UpperCamelCase : int = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
_UpperCamelCase : List[Any] = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=_lowerCAmelCase , projection_dim=_lowerCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
_UpperCamelCase : Optional[Any] = StableUnCLIPImageNormalizer(embedding_dim=_lowerCAmelCase )
_UpperCamelCase : List[Any] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
_UpperCamelCase : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
_UpperCamelCase : Any = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCamelCase : Optional[int] = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCAmelCase , layers_per_block=1 , upcast_attention=_lowerCAmelCase , use_linear_projection=_lowerCAmelCase , )
torch.manual_seed(0 )
_UpperCamelCase : Union[str, Any] = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , )
torch.manual_seed(0 )
_UpperCamelCase : Optional[Any] = AutoencoderKL()
_UpperCamelCase : Union[str, Any] = {
# image encoding components
"feature_extractor": feature_extractor,
"image_encoder": image_encoder.eval(),
# image noising components
"image_normalizer": image_normalizer.eval(),
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder.eval(),
"unet": unet.eval(),
"scheduler": scheduler,
"vae": vae.eval(),
}
return components
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int , __a : Union[str, Any]=0 , __a : Optional[int]=True ) -> Tuple:
if str(_lowerCAmelCase ).startswith("mps" ):
_UpperCamelCase : str = torch.manual_seed(_lowerCAmelCase )
else:
_UpperCamelCase : str = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
_UpperCamelCase : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
if pil_image:
_UpperCamelCase : List[str] = input_image * 0.5 + 0.5
_UpperCamelCase : Tuple = input_image.clamp(0 , 1 )
_UpperCamelCase : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
_UpperCamelCase : str = DiffusionPipeline.numpy_to_pil(_lowerCAmelCase )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def __SCREAMING_SNAKE_CASE ( self : str ) -> Any:
_UpperCamelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator
_UpperCamelCase : Dict = self.get_dummy_components()
_UpperCamelCase : Dict = StableUnCLIPImgaImgPipeline(**_lowerCAmelCase )
_UpperCamelCase : Dict = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_UpperCamelCase : List[Any] = self.get_dummy_inputs(_lowerCAmelCase )
inputs.update({"image_embeds": None} )
_UpperCamelCase : Tuple = sd_pipe(**_lowerCAmelCase ).images
_UpperCamelCase : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_UpperCamelCase : int = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]:
_UpperCamelCase : Tuple = torch_device in ["cpu", "mps"]
self._test_attention_slicing_forward_pass(test_max_difference=_lowerCAmelCase )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]:
_UpperCamelCase : List[str] = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=_lowerCAmelCase )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def __SCREAMING_SNAKE_CASE ( self : int ) -> Tuple:
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCAmelCase )
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int:
_UpperCamelCase : List[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
_UpperCamelCase : List[Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" )
_UpperCamelCase : Dict = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 )
_UpperCamelCase : List[Any] = pipe(_lowerCAmelCase , "anime turle" , generator=_lowerCAmelCase , output_type="np" )
_UpperCamelCase : Optional[int] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple:
_UpperCamelCase : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
_UpperCamelCase : int = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" )
_UpperCamelCase : str = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase : List[str] = torch.Generator(device="cpu" ).manual_seed(0 )
_UpperCamelCase : Optional[Any] = pipe(_lowerCAmelCase , "anime turle" , generator=_lowerCAmelCase , output_type="np" )
_UpperCamelCase : List[str] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]:
_UpperCamelCase : Any = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_UpperCamelCase : Tuple = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
_UpperCamelCase : Any = pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase : List[Any] = pipe(
_lowerCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , )
_UpperCamelCase : Dict = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 708
|
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
lowerCamelCase__ = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase]
lowerCamelCase__ = {ord(char) for char in VALID_CHARS}
lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"]
def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None:
"""simple docstring"""
_UpperCamelCase : str = ""
_UpperCamelCase : int
_UpperCamelCase : int
_UpperCamelCase : int
for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ):
_UpperCamelCase : Dict = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(lowercase_ )
return decoded
def lowercase__ ( lowercase_ ) -> list[str]:
"""simple docstring"""
_UpperCamelCase : list[str] = []
for key in product(lowercase_ ,repeat=3 ):
_UpperCamelCase : int = try_key(lowercase_ ,lowercase_ )
if encoded is not None:
possibles.append(lowercase_ )
return possibles
def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]:
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int:
"""simple docstring"""
_UpperCamelCase : list[int]
_UpperCamelCase : list[str]
_UpperCamelCase : str
_UpperCamelCase : str
_UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" )
_UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )]
_UpperCamelCase : List[str] = filter_valid_chars(lowercase_ )
for common_word in COMMON_WORDS:
_UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ )
if len(lowercase_ ) == 1:
break
_UpperCamelCase : Union[str, Any] = possibles[0]
return sum(ord(lowercase_ ) for char in decoded_text )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 51
| 0
|
from __future__ import annotations
import inspect
import unittest
from math import floor
import numpy as np
from transformers import CvtConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFCvtForImageClassification, TFCvtModel
from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int:
_UpperCamelCase : List[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_a , "embed_dim" ) )
self.parent.assertTrue(hasattr(_a , "num_heads" ) )
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Union[str, Any] , __a : Optional[int] , __a : Optional[int]=13 , __a : Optional[Any]=64 , __a : int=3 , __a : Tuple=[16, 48, 96] , __a : Union[str, Any]=[1, 3, 6] , __a : str=[1, 2, 10] , __a : Tuple=[7, 3, 3] , __a : List[str]=[4, 2, 2] , __a : Union[str, Any]=[2, 1, 1] , __a : Tuple=[2, 2, 2] , __a : Optional[int]=[False, False, True] , __a : Dict=[0.0, 0.0, 0.0] , __a : Union[str, Any]=0.02 , __a : Optional[Any]=1e-1_2 , __a : List[str]=True , __a : str=True , __a : Dict=2 , ) -> Optional[int]:
_UpperCamelCase : str = parent
_UpperCamelCase : Union[str, Any] = batch_size
_UpperCamelCase : int = image_size
_UpperCamelCase : Optional[int] = patch_sizes
_UpperCamelCase : List[str] = patch_stride
_UpperCamelCase : Any = patch_padding
_UpperCamelCase : int = is_training
_UpperCamelCase : List[str] = use_labels
_UpperCamelCase : Tuple = num_labels
_UpperCamelCase : Tuple = num_channels
_UpperCamelCase : Optional[int] = embed_dim
_UpperCamelCase : List[str] = num_heads
_UpperCamelCase : Union[str, Any] = stride_kv
_UpperCamelCase : Union[str, Any] = depth
_UpperCamelCase : Dict = cls_token
_UpperCamelCase : Dict = attention_drop_rate
_UpperCamelCase : List[Any] = initializer_range
_UpperCamelCase : Any = layer_norm_eps
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict:
_UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCamelCase : Union[str, Any] = None
if self.use_labels:
# create a random int32 tensor of given shape
_UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
_UpperCamelCase : List[str] = self.get_config()
return config, pixel_values, labels
def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]:
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict ) -> Optional[Any]:
_UpperCamelCase : Dict = TFCvtModel(config=_a )
_UpperCamelCase : int = model(_a , training=_a )
_UpperCamelCase : Union[str, Any] = (self.image_size, self.image_size)
_UpperCamelCase : Union[str, Any] = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
_UpperCamelCase : Optional[int] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
_UpperCamelCase : Dict = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def __SCREAMING_SNAKE_CASE ( self : Any , __a : Dict , __a : Any , __a : Optional[int] ) -> List[str]:
_UpperCamelCase : Any = self.num_labels
_UpperCamelCase : str = TFCvtForImageClassification(_a )
_UpperCamelCase : List[Any] = model(_a , labels=_a , training=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple:
_UpperCamelCase : List[Any] = self.prepare_config_and_inputs()
_UpperCamelCase : Tuple = config_and_inputs
_UpperCamelCase : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :Tuple = (
{"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ :Dict = False
SCREAMING_SNAKE_CASE__ :List[str] = False
SCREAMING_SNAKE_CASE__ :List[str] = False
SCREAMING_SNAKE_CASE__ :Any = False
SCREAMING_SNAKE_CASE__ :Union[str, Any] = False
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]:
_UpperCamelCase : Union[str, Any] = TFCvtModelTester(self )
_UpperCamelCase : str = TFCvtConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> str:
self.config_tester.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
@unittest.skip(reason="Cvt does not output attentions" )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]:
pass
@unittest.skip(reason="Cvt does not use inputs_embeds" )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]:
pass
@unittest.skip(reason="Cvt does not support input and output embeddings" )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str:
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]:
super().test_dataset_conversion()
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , )
@slow
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
super().test_keras_fit()
@unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8" )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : Any = tf.keras.mixed_precision.Policy("mixed_float16" )
tf.keras.mixed_precision.set_global_policy(_a )
super().test_keras_fit()
tf.keras.mixed_precision.set_global_policy("float32" )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]:
_UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase : List[Any] = model_class(_a )
_UpperCamelCase : str = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCamelCase : List[Any] = [*signature.parameters.keys()]
_UpperCamelCase : Dict = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]:
def check_hidden_states_output(__a : List[Any] , __a : Union[str, Any] , __a : Any ):
_UpperCamelCase : Union[str, Any] = model_class(_a )
_UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) )
_UpperCamelCase : Optional[int] = outputs.hidden_states
_UpperCamelCase : Optional[Any] = len(self.model_tester.depth )
self.assertEqual(len(_a ) , _a )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
_UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase : Any = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCamelCase : Optional[Any] = True
check_hidden_states_output(_a , _a , _a )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict:
_UpperCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple:
_UpperCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def __SCREAMING_SNAKE_CASE ( self : int ) -> Any:
for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase : Optional[Any] = TFCvtModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowercase__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int:
return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple:
_UpperCamelCase : Dict = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
_UpperCamelCase : Optional[Any] = self.default_image_processor
_UpperCamelCase : Tuple = prepare_img()
_UpperCamelCase : Optional[Any] = image_processor(images=_a , return_tensors="tf" )
# forward pass
_UpperCamelCase : int = model(**_a )
# verify the logits
_UpperCamelCase : Dict = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_UpperCamelCase : Union[str, Any] = tf.constant([0.92_85, 0.90_15, -0.31_50] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _a , atol=1e-4 ) )
| 709
|
"""simple docstring"""
def lowercase__ ( lowercase_ ,lowercase_ ) -> None:
"""simple docstring"""
_UpperCamelCase : List[Any] = len(lowercase_ )
print("The following activities are selected:" )
# The first activity is always selected
_UpperCamelCase : List[Any] = 0
print(lowercase_ ,end="," )
# Consider rest of the activities
for j in range(lowercase_ ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(lowercase_ ,end="," )
_UpperCamelCase : Optional[Any] = j
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase__ = [1, 3, 0, 5, 8, 5]
lowerCamelCase__ = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 51
| 0
|
"""simple docstring"""
from collections import Counter
from timeit import timeit
def lowercase__ ( lowercase_ = "" ,) -> bool:
"""simple docstring"""
return sum(c % 2 for c in Counter(input_str.replace(" " ,"" ).lower() ).values() ) < 2
def lowercase__ ( lowercase_ = "" ) -> bool:
"""simple docstring"""
if len(__UpperCamelCase ) == 0:
return True
_UpperCamelCase : Tuple = input_str.replace(" " ,"" ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
_UpperCamelCase : dict[str, int] = {}
for character in lower_case_input_str:
_UpperCamelCase : Union[str, Any] = character_freq_dict.get(__UpperCamelCase ,0 ) + 1
_UpperCamelCase : str = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def lowercase__ ( lowercase_ = "" ) -> None:
"""simple docstring"""
print("\nFor string = " ,__UpperCamelCase ,":" )
print(
"> can_string_be_rearranged_as_palindrome_counter()" ,"\tans =" ,can_string_be_rearranged_as_palindrome_counter(__UpperCamelCase ) ,"\ttime =" ,timeit(
"z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" ,setup="import __main__ as z" ,) ,"seconds" ,)
print(
"> can_string_be_rearranged_as_palindrome()" ,"\tans =" ,can_string_be_rearranged_as_palindrome(__UpperCamelCase ) ,"\ttime =" ,timeit(
"z.can_string_be_rearranged_as_palindrome(z.check_str)" ,setup="import __main__ as z" ,) ,"seconds" ,)
if __name__ == "__main__":
lowerCamelCase__ = input(
"Enter string to determine if it can be rearranged as a palindrome or not: "
).strip()
benchmark(check_str)
lowerCamelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str)
print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
| 710
|
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :torch.FloatTensor
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict:
super().__init__()
_UpperCamelCase : List[str] = layers_per_block
_UpperCamelCase : Dict = torch.nn.Convad(
__a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
_UpperCamelCase : int = None
_UpperCamelCase : Any = nn.ModuleList([] )
# down
_UpperCamelCase : List[str] = block_out_channels[0]
for i, down_block_type in enumerate(__a ):
_UpperCamelCase : Tuple = output_channel
_UpperCamelCase : int = block_out_channels[i]
_UpperCamelCase : int = i == len(__a ) - 1
_UpperCamelCase : Dict = get_down_block(
__a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , )
self.down_blocks.append(__a )
# mid
_UpperCamelCase : Union[str, Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , )
# out
_UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 )
_UpperCamelCase : Any = nn.SiLU()
_UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels
_UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 )
_UpperCamelCase : Optional[int] = False
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]:
_UpperCamelCase : int = x
_UpperCamelCase : Optional[int] = self.conv_in(__a )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__a : Tuple ):
def custom_forward(*__a : Any ):
return module(*__a )
return custom_forward
# down
if is_torch_version(">=" , "1.11.0" ):
for down_block in self.down_blocks:
_UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__a ) , __a , use_reentrant=__a )
# middle
_UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __a , use_reentrant=__a )
else:
for down_block in self.down_blocks:
_UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a )
# middle
_UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a )
else:
# down
for down_block in self.down_blocks:
_UpperCamelCase : int = down_block(__a )
# middle
_UpperCamelCase : int = self.mid_block(__a )
# post-process
_UpperCamelCase : Any = self.conv_norm_out(__a )
_UpperCamelCase : Any = self.conv_act(__a )
_UpperCamelCase : Optional[Any] = self.conv_out(__a )
return sample
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str:
super().__init__()
_UpperCamelCase : List[Any] = layers_per_block
_UpperCamelCase : Tuple = nn.Convad(
__a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
_UpperCamelCase : List[str] = None
_UpperCamelCase : Dict = nn.ModuleList([] )
_UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None
# mid
_UpperCamelCase : Optional[Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , )
# up
_UpperCamelCase : List[str] = list(reversed(__a ) )
_UpperCamelCase : int = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__a ):
_UpperCamelCase : int = output_channel
_UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i]
_UpperCamelCase : Optional[Any] = i == len(__a ) - 1
_UpperCamelCase : Union[str, Any] = get_up_block(
__a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , )
self.up_blocks.append(__a )
_UpperCamelCase : Optional[Any] = output_channel
# out
if norm_type == "spatial":
_UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a )
else:
_UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 )
_UpperCamelCase : str = nn.SiLU()
_UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 )
_UpperCamelCase : Dict = False
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple:
_UpperCamelCase : List[str] = z
_UpperCamelCase : Dict = self.conv_in(__a )
_UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__a : Any ):
def custom_forward(*__a : Tuple ):
return module(*__a )
return custom_forward
if is_torch_version(">=" , "1.11.0" ):
# middle
_UpperCamelCase : str = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a )
_UpperCamelCase : Optional[int] = sample.to(__a )
# up
for up_block in self.up_blocks:
_UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__a ) , __a , __a , use_reentrant=__a )
else:
# middle
_UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __a , __a )
_UpperCamelCase : Union[str, Any] = sample.to(__a )
# up
for up_block in self.up_blocks:
_UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a )
else:
# middle
_UpperCamelCase : str = self.mid_block(__a , __a )
_UpperCamelCase : int = sample.to(__a )
# up
for up_block in self.up_blocks:
_UpperCamelCase : Any = up_block(__a , __a )
# post-process
if latent_embeds is None:
_UpperCamelCase : List[str] = self.conv_norm_out(__a )
else:
_UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a )
_UpperCamelCase : Tuple = self.conv_act(__a )
_UpperCamelCase : List[Any] = self.conv_out(__a )
return sample
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]:
super().__init__()
_UpperCamelCase : Tuple = n_e
_UpperCamelCase : Tuple = vq_embed_dim
_UpperCamelCase : Union[str, Any] = beta
_UpperCamelCase : str = legacy
_UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
_UpperCamelCase : Any = remap
if self.remap is not None:
self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) )
_UpperCamelCase : Dict = self.used.shape[0]
_UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
_UpperCamelCase : Optional[int] = self.re_embed
_UpperCamelCase : Any = self.re_embed + 1
print(
F'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
F'''Using {self.unknown_index} for unknown indices.''' )
else:
_UpperCamelCase : Union[str, Any] = n_e
_UpperCamelCase : List[str] = sane_index_shape
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]:
_UpperCamelCase : str = inds.shape
assert len(__a ) > 1
_UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 )
_UpperCamelCase : Optional[Any] = self.used.to(__a )
_UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long()
_UpperCamelCase : Optional[Any] = match.argmax(-1 )
_UpperCamelCase : Any = match.sum(2 ) < 1
if self.unknown_index == "random":
_UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
_UpperCamelCase : Dict = self.unknown_index
return new.reshape(__a )
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]:
_UpperCamelCase : int = inds.shape
assert len(__a ) > 1
_UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 )
_UpperCamelCase : Optional[int] = self.used.to(__a )
if self.re_embed > self.used.shape[0]: # extra token
_UpperCamelCase : int = 0 # simply set to zero
_UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a )
return back.reshape(__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]:
# reshape z -> (batch, height, width, channel) and flatten
_UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous()
_UpperCamelCase : int = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
_UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 )
_UpperCamelCase : int = self.embedding(__a ).view(z.shape )
_UpperCamelCase : str = None
_UpperCamelCase : Any = None
# compute loss for embedding
if not self.legacy:
_UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
_UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
_UpperCamelCase : List[str] = z + (z_q - z).detach()
# reshape back to match original input shape
_UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
_UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
_UpperCamelCase : Dict = self.remap_to_used(__a )
_UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
_UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any:
# shape specifying (batch, height, width, channel)
if self.remap is not None:
_UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis
_UpperCamelCase : str = self.unmap_to_all(__a )
_UpperCamelCase : int = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
_UpperCamelCase : Optional[int] = self.embedding(__a )
if shape is not None:
_UpperCamelCase : Tuple = z_q.view(__a )
# reshape back to match original input shape
_UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int:
_UpperCamelCase : Dict = parameters
_UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 )
_UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 )
_UpperCamelCase : Union[str, Any] = deterministic
_UpperCamelCase : Dict = torch.exp(0.5 * self.logvar )
_UpperCamelCase : Any = torch.exp(self.logvar )
if self.deterministic:
_UpperCamelCase : List[Any] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor:
# make sure sample is on the same device as the parameters and has same dtype
_UpperCamelCase : List[Any] = randn_tensor(
self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype )
_UpperCamelCase : List[Any] = self.mean + self.std * sample
return x
def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]:
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int:
if self.deterministic:
return torch.Tensor([0.0] )
_UpperCamelCase : List[str] = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]:
return self.mean
| 51
| 0
|
"""simple docstring"""
import math
import unittest
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
assert isinstance(lowerCamelCase_ ,lowerCamelCase_ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(lowerCamelCase_ ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict:
self.assertTrue(is_prime(2 ) )
self.assertTrue(is_prime(3 ) )
self.assertTrue(is_prime(5 ) )
self.assertTrue(is_prime(7 ) )
self.assertTrue(is_prime(11 ) )
self.assertTrue(is_prime(13 ) )
self.assertTrue(is_prime(17 ) )
self.assertTrue(is_prime(19 ) )
self.assertTrue(is_prime(23 ) )
self.assertTrue(is_prime(29 ) )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int:
with self.assertRaises(_lowerCamelCase ):
is_prime(-19 )
self.assertFalse(
is_prime(0 ) , "Zero doesn\'t have any positive factors, primes must have exactly two." , )
self.assertFalse(
is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , )
self.assertFalse(is_prime(2 * 2 ) )
self.assertFalse(is_prime(2 * 3 ) )
self.assertFalse(is_prime(3 * 3 ) )
self.assertFalse(is_prime(3 * 5 ) )
self.assertFalse(is_prime(3 * 5 * 7 ) )
if __name__ == "__main__":
unittest.main()
| 711
|
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=_UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} )
SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} )
SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"summary": Value("string" )} )
SCREAMING_SNAKE_CASE__ :str = "text"
SCREAMING_SNAKE_CASE__ :str = "summary"
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict[str, str]:
return {self.text_column: "text", self.summary_column: "summary"}
| 51
| 0
|
"""simple docstring"""
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
def get_masked_lm_array(lowercase_ ):
_UpperCamelCase : Tuple = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
_UpperCamelCase : Tuple = tf.train.load_variable(__snake_case ,__snake_case )
if "kernel" in name:
_UpperCamelCase : List[str] = array.transpose()
return torch.from_numpy(__snake_case )
def get_encoder_array(lowercase_ ):
_UpperCamelCase : Optional[Any] = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
_UpperCamelCase : Union[str, Any] = tf.train.load_variable(__snake_case ,__snake_case )
if "kernel" in name:
_UpperCamelCase : Optional[int] = array.transpose()
return torch.from_numpy(__snake_case )
def get_encoder_layer_array(lowercase_ ,lowercase_ ):
_UpperCamelCase : Dict = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
_UpperCamelCase : Optional[int] = tf.train.load_variable(__snake_case ,__snake_case )
if "kernel" in name:
_UpperCamelCase : Any = array.transpose()
return torch.from_numpy(__snake_case )
def get_encoder_attention_layer_array(lowercase_ ,lowercase_ ,lowercase_ ):
_UpperCamelCase : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
_UpperCamelCase : Optional[Any] = tf.train.load_variable(__snake_case ,__snake_case )
_UpperCamelCase : Union[str, Any] = array.reshape(__snake_case )
if "kernel" in name:
_UpperCamelCase : Optional[Any] = array.transpose()
return torch.from_numpy(__snake_case )
print(F'''Loading model based on config from {config_path}...''' )
_UpperCamelCase : Optional[Any] = BertConfig.from_json_file(__snake_case )
_UpperCamelCase : Any = BertForMaskedLM(__snake_case )
# Layers
for layer_index in range(0 ,config.num_hidden_layers ):
_UpperCamelCase : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
_UpperCamelCase : BertSelfAttention = layer.attention.self
_UpperCamelCase : Union[str, Any] = get_encoder_attention_layer_array(
__snake_case ,"_query_dense/kernel" ,self_attn.query.weight.data.shape )
_UpperCamelCase : Any = get_encoder_attention_layer_array(
__snake_case ,"_query_dense/bias" ,self_attn.query.bias.data.shape )
_UpperCamelCase : Optional[Any] = get_encoder_attention_layer_array(
__snake_case ,"_key_dense/kernel" ,self_attn.key.weight.data.shape )
_UpperCamelCase : Tuple = get_encoder_attention_layer_array(
__snake_case ,"_key_dense/bias" ,self_attn.key.bias.data.shape )
_UpperCamelCase : Any = get_encoder_attention_layer_array(
__snake_case ,"_value_dense/kernel" ,self_attn.value.weight.data.shape )
_UpperCamelCase : Optional[Any] = get_encoder_attention_layer_array(
__snake_case ,"_value_dense/bias" ,self_attn.value.bias.data.shape )
# Self-attention Output
_UpperCamelCase : BertSelfOutput = layer.attention.output
_UpperCamelCase : Optional[Any] = get_encoder_attention_layer_array(
__snake_case ,"_output_dense/kernel" ,self_output.dense.weight.data.shape )
_UpperCamelCase : Tuple = get_encoder_attention_layer_array(
__snake_case ,"_output_dense/bias" ,self_output.dense.bias.data.shape )
_UpperCamelCase : Any = get_encoder_layer_array(__snake_case ,"_attention_layer_norm/gamma" )
_UpperCamelCase : Dict = get_encoder_layer_array(__snake_case ,"_attention_layer_norm/beta" )
# Intermediate
_UpperCamelCase : BertIntermediate = layer.intermediate
_UpperCamelCase : Optional[int] = get_encoder_layer_array(__snake_case ,"_intermediate_dense/kernel" )
_UpperCamelCase : Union[str, Any] = get_encoder_layer_array(__snake_case ,"_intermediate_dense/bias" )
# Output
_UpperCamelCase : BertOutput = layer.output
_UpperCamelCase : Any = get_encoder_layer_array(__snake_case ,"_output_dense/kernel" )
_UpperCamelCase : Any = get_encoder_layer_array(__snake_case ,"_output_dense/bias" )
_UpperCamelCase : Any = get_encoder_layer_array(__snake_case ,"_output_layer_norm/gamma" )
_UpperCamelCase : Any = get_encoder_layer_array(__snake_case ,"_output_layer_norm/beta" )
# Embeddings
_UpperCamelCase : Dict = get_encoder_array("_position_embedding_layer/embeddings" )
_UpperCamelCase : Any = get_encoder_array("_type_embedding_layer/embeddings" )
_UpperCamelCase : Dict = get_encoder_array("_embedding_norm_layer/gamma" )
_UpperCamelCase : List[str] = get_encoder_array("_embedding_norm_layer/beta" )
# LM Head
_UpperCamelCase : Any = model.cls.predictions.transform
_UpperCamelCase : List[str] = get_masked_lm_array("dense/kernel" )
_UpperCamelCase : Optional[int] = get_masked_lm_array("dense/bias" )
_UpperCamelCase : List[Any] = get_masked_lm_array("layer_norm/gamma" )
_UpperCamelCase : Optional[Any] = get_masked_lm_array("layer_norm/beta" )
_UpperCamelCase : Optional[Any] = get_masked_lm_array("embedding_table" )
# Pooling
_UpperCamelCase : Union[str, Any] = BertPooler(config=__snake_case )
_UpperCamelCase : BertPooler = get_encoder_array("_pooler_layer/kernel" )
_UpperCamelCase : BertPooler = get_encoder_array("_pooler_layer/bias" )
# Export final model
model.save_pretrained(__snake_case )
# Integration test - should load without any errors ;)
_UpperCamelCase : str = BertForMaskedLM.from_pretrained(__snake_case )
print(new_model.eval() )
print("Model conversion was done sucessfully!" )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
lowerCamelCase__ = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 712
|
"""simple docstring"""
def lowercase__ ( lowercase_ ) -> set:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = set()
# edges = list of graph's edges
_UpperCamelCase : Union[str, Any] = get_edges(lowercase_ )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
_UpperCamelCase, _UpperCamelCase : str = edges.pop()
chosen_vertices.add(lowercase_ )
chosen_vertices.add(lowercase_ )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(lowercase_ )
return chosen_vertices
def lowercase__ ( lowercase_ ) -> set:
"""simple docstring"""
_UpperCamelCase : List[str] = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 51
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ = {
"configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"],
"processing_mgp_str": ["MgpstrProcessor"],
"tokenization_mgp_str": ["MgpstrTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST",
"MgpstrModel",
"MgpstrPreTrainedModel",
"MgpstrForSceneTextRecognition",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 713
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase__ = {
"configuration_owlvit": [
"OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"OwlViTConfig",
"OwlViTOnnxConfig",
"OwlViTTextConfig",
"OwlViTVisionConfig",
],
"processing_owlvit": ["OwlViTProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["OwlViTFeatureExtractor"]
lowerCamelCase__ = ["OwlViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OwlViTModel",
"OwlViTPreTrainedModel",
"OwlViTTextModel",
"OwlViTVisionModel",
"OwlViTForObjectDetection",
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 51
| 0
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
lowerCamelCase__ = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
lowerCamelCase__ = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :List[Any] = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ :List[str] = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ :List[Any] = ["input_ids", "attention_mask"]
SCREAMING_SNAKE_CASE__ :Any = BartTokenizer
def __init__( self : str , __a : Optional[Any]=None , __a : List[Any]=None , __a : Optional[int]=None , __a : int="replace" , __a : str="<s>" , __a : Tuple="</s>" , __a : Dict="</s>" , __a : Union[str, Any]="<s>" , __a : int="<unk>" , __a : Tuple="<pad>" , __a : Union[str, Any]="<mask>" , __a : Any=False , __a : Optional[int]=True , **__a : List[str] , ) -> str:
super().__init__(
__A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , )
_UpperCamelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , __A ) != add_prefix_space:
_UpperCamelCase : Optional[Any] = getattr(__A , pre_tok_state.pop("type" ) )
_UpperCamelCase : List[Any] = add_prefix_space
_UpperCamelCase : List[Any] = pre_tok_class(**__A )
_UpperCamelCase : int = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
_UpperCamelCase : Optional[int] = "post_processor"
_UpperCamelCase : Union[str, Any] = getattr(self.backend_tokenizer , __A , __A )
if tokenizer_component_instance:
_UpperCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_UpperCamelCase : Dict = tuple(state["sep"] )
if "cls" in state:
_UpperCamelCase : List[str] = tuple(state["cls"] )
_UpperCamelCase : Union[str, Any] = False
if state.get("add_prefix_space" , __A ) != add_prefix_space:
_UpperCamelCase : str = add_prefix_space
_UpperCamelCase : Optional[Any] = True
if state.get("trim_offsets" , __A ) != trim_offsets:
_UpperCamelCase : Union[str, Any] = trim_offsets
_UpperCamelCase : List[str] = True
if changes_to_apply:
_UpperCamelCase : str = getattr(__A , state.pop("type" ) )
_UpperCamelCase : List[Any] = component_class(**__A )
setattr(self.backend_tokenizer , __A , __A )
@property
def __SCREAMING_SNAKE_CASE ( self : int ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet." )
return None
return str(self._mask_token )
@mask_token.setter
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : List[str] ) -> str:
_UpperCamelCase : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value
_UpperCamelCase : str = value
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , *__a : Any , **__a : Tuple ) -> BatchEncoding:
_UpperCamelCase : Dict = kwargs.get("is_split_into_words" , __A )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs." )
return super()._batch_encode_plus(*__A , **__A )
def __SCREAMING_SNAKE_CASE ( self : str , *__a : List[Any] , **__a : str ) -> BatchEncoding:
_UpperCamelCase : Union[str, Any] = kwargs.get("is_split_into_words" , __A )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs." )
return super()._encode_plus(*__A , **__A )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str , __a : Optional[str] = None ) -> Tuple[str]:
_UpperCamelCase : List[Any] = self._tokenizer.model.save(__A , name=__A )
return tuple(__A )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Dict , __a : int=None ) -> Any:
_UpperCamelCase : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]:
_UpperCamelCase : Any = [self.sep_token_id]
_UpperCamelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 714
|
"""simple docstring"""
from collections import defaultdict
from math import ceil, sqrt
def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int:
"""simple docstring"""
_UpperCamelCase : defaultdict = defaultdict(lowercase_ )
for outer_width in range(3 ,(t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
_UpperCamelCase : Any = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 )
else:
_UpperCamelCase : str = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(lowercase_ ,outer_width - 1 ,2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 51
| 0
|
"""simple docstring"""
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :int = (DDIMParallelScheduler,)
SCREAMING_SNAKE_CASE__ :Optional[Any] = (('''eta''', 0.0), ('''num_inference_steps''', 50))
def __SCREAMING_SNAKE_CASE ( self : List[str] , **__a : Optional[Any] ) -> Any:
_UpperCamelCase : Tuple = {
"num_train_timesteps": 1000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**__SCREAMING_SNAKE_CASE )
return config
def __SCREAMING_SNAKE_CASE ( self : Dict , **__a : Dict ) -> List[str]:
_UpperCamelCase : Union[str, Any] = self.scheduler_classes[0]
_UpperCamelCase : List[str] = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
_UpperCamelCase : int = scheduler_class(**__SCREAMING_SNAKE_CASE )
_UpperCamelCase, _UpperCamelCase : Optional[Any] = 10, 0.0
_UpperCamelCase : Any = self.dummy_model()
_UpperCamelCase : List[Any] = self.dummy_sample_deter
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
for t in scheduler.timesteps:
_UpperCamelCase : Any = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
_UpperCamelCase : List[Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample
return sample
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Any:
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__SCREAMING_SNAKE_CASE )
_UpperCamelCase : Optional[Any] = self.scheduler_classes[0]
_UpperCamelCase : Union[str, Any] = self.get_scheduler_config(steps_offset=1 )
_UpperCamelCase : Any = scheduler_class(**__SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]:
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self : str ) -> int:
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]:
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple:
self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]:
for t in [1, 10, 49]:
self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple:
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE , num_inference_steps=__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]:
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE , eta=__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
_UpperCamelCase : List[Any] = self.scheduler_classes[0]
_UpperCamelCase : Tuple = self.get_scheduler_config()
_UpperCamelCase : Tuple = scheduler_class(**__SCREAMING_SNAKE_CASE )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5
def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]:
_UpperCamelCase : Optional[Any] = self.scheduler_classes[0]
_UpperCamelCase : int = self.get_scheduler_config()
_UpperCamelCase : Optional[Any] = scheduler_class(**__SCREAMING_SNAKE_CASE )
_UpperCamelCase, _UpperCamelCase : Dict = 10, 0.0
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
_UpperCamelCase : Any = self.dummy_model()
_UpperCamelCase : Dict = self.dummy_sample_deter
_UpperCamelCase : Optional[Any] = self.dummy_sample_deter + 0.1
_UpperCamelCase : Dict = self.dummy_sample_deter - 0.1
_UpperCamelCase : Optional[int] = samplea.shape[0]
_UpperCamelCase : Tuple = torch.stack([samplea, samplea, samplea] , dim=0 )
_UpperCamelCase : str = torch.arange(__SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 , __SCREAMING_SNAKE_CASE )
_UpperCamelCase : List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_UpperCamelCase : List[str] = scheduler.batch_step_no_noise(__SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __SCREAMING_SNAKE_CASE )
_UpperCamelCase : List[Any] = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) )
_UpperCamelCase : str = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 1147.7904 ) < 1e-2
assert abs(result_mean.item() - 0.49_82 ) < 1e-3
def __SCREAMING_SNAKE_CASE ( self : Any ) -> str:
_UpperCamelCase : Optional[Any] = self.full_loop()
_UpperCamelCase : Tuple = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) )
_UpperCamelCase : str = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 172.0067 ) < 1e-2
assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int:
_UpperCamelCase : Optional[int] = self.full_loop(prediction_type="v_prediction" )
_UpperCamelCase : str = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) )
_UpperCamelCase : List[Any] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 52.53_02 ) < 1e-2
assert abs(result_mean.item() - 0.06_84 ) < 1e-3
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any:
_UpperCamelCase : Dict = self.full_loop(set_alpha_to_one=__SCREAMING_SNAKE_CASE , beta_start=0.01 )
_UpperCamelCase : Optional[int] = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) )
_UpperCamelCase : Any = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 149.8295 ) < 1e-2
assert abs(result_mean.item() - 0.19_51 ) < 1e-3
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
_UpperCamelCase : List[str] = self.full_loop(set_alpha_to_one=__SCREAMING_SNAKE_CASE , beta_start=0.01 )
_UpperCamelCase : Optional[Any] = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) )
_UpperCamelCase : str = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 149.0784 ) < 1e-2
assert abs(result_mean.item() - 0.19_41 ) < 1e-3
| 715
|
"""simple docstring"""
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowerCamelCase__ = TypeVar("KEY")
lowerCamelCase__ = TypeVar("VAL")
@dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :KEY
SCREAMING_SNAKE_CASE__ :VAL
class __SCREAMING_SNAKE_CASE ( _Item ):
'''simple docstring'''
def __init__( self : List[str] ) -> None:
super().__init__(__a , __a )
def __bool__( self : Dict ) -> bool:
return False
lowerCamelCase__ = _DeletedItem()
class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ):
'''simple docstring'''
def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None:
_UpperCamelCase : str = initial_block_size
_UpperCamelCase : list[_Item | None] = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
_UpperCamelCase : List[str] = capacity_factor
_UpperCamelCase : Dict = 0
def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int:
return hash(__a ) % len(self._buckets )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int:
return (ind + 1) % len(self._buckets )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool:
_UpperCamelCase : List[Any] = self._buckets[ind]
if not stored:
_UpperCamelCase : Tuple = _Item(__a , __a )
self._len += 1
return True
elif stored.key == key:
_UpperCamelCase : Union[str, Any] = _Item(__a , __a )
return True
else:
return False
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool:
_UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(__a )
def __SCREAMING_SNAKE_CASE ( self : str ) -> bool:
if len(self._buckets ) <= self._initial_block_size:
return False
_UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None:
_UpperCamelCase : Any = self._buckets
_UpperCamelCase : List[Any] = [None] * new_size
_UpperCamelCase : List[str] = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def __SCREAMING_SNAKE_CASE ( self : int ) -> None:
self._resize(len(self._buckets ) * 2 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None:
self._resize(len(self._buckets ) // 2 )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]:
_UpperCamelCase : str = self._get_bucket_index(__a )
for _ in range(len(self._buckets ) ):
yield ind
_UpperCamelCase : Tuple = self._get_next_ind(__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None:
for ind in self._iterate_buckets(__a ):
if self._try_set(__a , __a , __a ):
break
def __setitem__( self : int , __a : KEY , __a : VAL ) -> None:
if self._is_full():
self._size_up()
self._add_item(__a , __a )
def __delitem__( self : str , __a : KEY ) -> None:
for ind in self._iterate_buckets(__a ):
_UpperCamelCase : Tuple = self._buckets[ind]
if item is None:
raise KeyError(__a )
if item is _deleted:
continue
if item.key == key:
_UpperCamelCase : List[Any] = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : str , __a : KEY ) -> VAL:
for ind in self._iterate_buckets(__a ):
_UpperCamelCase : Tuple = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(__a )
def __len__( self : List[Any] ) -> int:
return self._len
def __iter__( self : List[str] ) -> Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self : List[str] ) -> str:
_UpperCamelCase : Optional[int] = " ,".join(
F'''{item.key}: {item.val}''' for item in self._buckets if item )
return F'''HashMap({val_string})'''
| 51
| 0
|
"""simple docstring"""
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class __SCREAMING_SNAKE_CASE ( UpperCamelCase_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Any = (DPMSolverSDEScheduler,)
SCREAMING_SNAKE_CASE__ :Dict = 10
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__a : List[Any] ) -> int:
_UpperCamelCase : Optional[int] = {
'num_train_timesteps': 1100,
'beta_start': 0.00_01,
'beta_end': 0.02,
'beta_schedule': 'linear',
'noise_sampler_seed': 0,
}
config.update(**__a )
return config
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int:
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=__a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> Dict:
for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ):
self.check_over_configs(beta_start=__a , beta_end=__a )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=__a )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str:
_UpperCamelCase : Tuple = self.scheduler_classes[0]
_UpperCamelCase : Optional[int] = self.get_scheduler_config()
_UpperCamelCase : Dict = scheduler_class(**__a )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCamelCase : Dict = self.dummy_model()
_UpperCamelCase : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCamelCase : int = sample.to(__a )
for i, t in enumerate(scheduler.timesteps ):
_UpperCamelCase : List[str] = scheduler.scale_model_input(__a , __a )
_UpperCamelCase : Optional[int] = model(__a , __a )
_UpperCamelCase : List[Any] = scheduler.step(__a , __a , __a )
_UpperCamelCase : str = output.prev_sample
_UpperCamelCase : Any = torch.sum(torch.abs(__a ) )
_UpperCamelCase : int = torch.mean(torch.abs(__a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_67.47_82_10_44_92_18_75 ) < 1e-2
assert abs(result_mean.item() - 0.21_78_70_59_64_56_52_77 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_71.59_35_21_11_81_64_06 ) < 1e-2
assert abs(result_mean.item() - 0.2_23_42_90_68_92_29_96_52 ) < 1e-3
else:
assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1e-2
assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1e-3
def __SCREAMING_SNAKE_CASE ( self : int ) -> Tuple:
_UpperCamelCase : Tuple = self.scheduler_classes[0]
_UpperCamelCase : int = self.get_scheduler_config(prediction_type="v_prediction" )
_UpperCamelCase : Dict = scheduler_class(**__a )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCamelCase : Union[str, Any] = self.dummy_model()
_UpperCamelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCamelCase : Dict = sample.to(__a )
for i, t in enumerate(scheduler.timesteps ):
_UpperCamelCase : int = scheduler.scale_model_input(__a , __a )
_UpperCamelCase : Optional[Any] = model(__a , __a )
_UpperCamelCase : Tuple = scheduler.step(__a , __a , __a )
_UpperCamelCase : Optional[int] = output.prev_sample
_UpperCamelCase : Optional[int] = torch.sum(torch.abs(__a ) )
_UpperCamelCase : Tuple = torch.mean(torch.abs(__a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_24.77_14_92_00_43_94_53 ) < 1e-2
assert abs(result_mean.item() - 0.1_62_26_28_90_14_81_62_84 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_28.1_66_33_60_59_57_03 ) < 1e-2
assert abs(result_mean.item() - 0.1_66_88_32_60_01_16_72_97 ) < 1e-3
else:
assert abs(result_sum.item() - 1_19.8_48_75_48_82_81_25 ) < 1e-2
assert abs(result_mean.item() - 0.15_60_53_06_62_53_66_21 ) < 1e-3
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : Dict = self.scheduler_classes[0]
_UpperCamelCase : Dict = self.get_scheduler_config()
_UpperCamelCase : List[str] = scheduler_class(**__a )
scheduler.set_timesteps(self.num_inference_steps , device=__a )
_UpperCamelCase : Dict = self.dummy_model()
_UpperCamelCase : str = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_UpperCamelCase : Optional[int] = scheduler.scale_model_input(__a , __a )
_UpperCamelCase : Tuple = model(__a , __a )
_UpperCamelCase : Dict = scheduler.step(__a , __a , __a )
_UpperCamelCase : Union[str, Any] = output.prev_sample
_UpperCamelCase : Tuple = torch.sum(torch.abs(__a ) )
_UpperCamelCase : Optional[int] = torch.mean(torch.abs(__a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_67.46_95_73_97_46_09_38 ) < 1e-2
assert abs(result_mean.item() - 0.2_18_05_93_46_07_98_26_35 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_71.59_35_36_37_69_53_12 ) < 1e-2
assert abs(result_mean.item() - 0.2_23_42_90_83_82_41_57_71 ) < 1e-3
else:
assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1e-2
assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1e-3
def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
_UpperCamelCase : Union[str, Any] = self.scheduler_classes[0]
_UpperCamelCase : str = self.get_scheduler_config()
_UpperCamelCase : Optional[int] = scheduler_class(**__a , use_karras_sigmas=__a )
scheduler.set_timesteps(self.num_inference_steps , device=__a )
_UpperCamelCase : int = self.dummy_model()
_UpperCamelCase : List[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma
_UpperCamelCase : Any = sample.to(__a )
for t in scheduler.timesteps:
_UpperCamelCase : List[Any] = scheduler.scale_model_input(__a , __a )
_UpperCamelCase : Optional[Any] = model(__a , __a )
_UpperCamelCase : Union[str, Any] = scheduler.step(__a , __a , __a )
_UpperCamelCase : List[Any] = output.prev_sample
_UpperCamelCase : Optional[Any] = torch.sum(torch.abs(__a ) )
_UpperCamelCase : Tuple = torch.mean(torch.abs(__a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_76.66_97_41_35_74_21_88 ) < 1e-2
assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_77.63_65_35_64_45_31_25 ) < 1e-2
assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2
else:
assert abs(result_sum.item() - 1_70.3_13_52_23_38_86_72 ) < 1e-2
assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2
| 716
|
"""simple docstring"""
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Optional[Any] , __a : list[int] ) -> None:
_UpperCamelCase : Tuple = len(__a )
_UpperCamelCase : Dict = [0] * len_array
if len_array > 0:
_UpperCamelCase : Optional[Any] = array[0]
for i in range(1 , __a ):
_UpperCamelCase : Tuple = self.prefix_sum[i - 1] + array[i]
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : int ) -> int:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> bool:
_UpperCamelCase : int = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(__a )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51
| 0
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Union[str, Any] = ["image_processor", "feature_extractor"]
SCREAMING_SNAKE_CASE__ :List[str] = "TvltImageProcessor"
SCREAMING_SNAKE_CASE__ :List[Any] = "TvltFeatureExtractor"
def __init__( self : List[str] , __a : List[Any] , __a : List[str] ) -> List[str]:
super().__init__(image_processor=__A , feature_extractor=__A )
_UpperCamelCase : Optional[Any] = image_processor
_UpperCamelCase : Any = feature_extractor
def __call__( self : List[str] , __a : Any=None , __a : Any=None , __a : Optional[int]=None , __a : str=None , __a : List[Any]=False , __a : Tuple=False , *__a : List[str] , **__a : Optional[Any] , ) -> Optional[Any]:
if images is None and audio is None:
raise ValueError("You need to specify either an `images` or `audio` input to process." )
_UpperCamelCase : int = None
if images is not None:
_UpperCamelCase : Optional[int] = self.image_processor(__A , mask_pixel=__A , *__A , **__A )
if images_mixed is not None:
_UpperCamelCase : Optional[Any] = self.image_processor(__A , is_mixed=__A , *__A , **__A )
if audio is not None:
_UpperCamelCase : Dict = self.feature_extractor(
__A , *__A , sampling_rate=__A , mask_audio=__A , **__A )
_UpperCamelCase : Optional[int] = {}
if audio is not None:
output_dict.update(__A )
if images is not None:
output_dict.update(__A )
if images_mixed_dict is not None:
output_dict.update(__A )
return output_dict
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : Any = self.image_processor.model_input_names
_UpperCamelCase : Tuple = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 717
|
"""simple docstring"""
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : Optional[int] = None
if token is not None:
_UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
_UpperCamelCase : Any = "636036"
_UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
_UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json()
return result["workflow_runs"]
def lowercase__ ( lowercase_ ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ )
_UpperCamelCase : Tuple = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
_UpperCamelCase : Union[str, Any] = workflow_run["id"]
break
return workflow_run_id
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ )
if workflow_run_id is not None:
_UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
_UpperCamelCase : Dict = artifacts_links[artifact_name]
download_artifact(
artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int:
"""simple docstring"""
get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ )
_UpperCamelCase : Dict = {}
for artifact_name in artifact_names:
_UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' )
if os.path.isfile(lowercase_ ):
_UpperCamelCase : int = {}
with zipfile.ZipFile(lowercase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowercase_ ):
# read the file
with z.open(lowercase_ ) as f:
_UpperCamelCase : int = f.read().decode("UTF-8" )
return results
| 51
| 0
|
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 718
|
"""simple docstring"""
import math
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int:
_UpperCamelCase : List[Any] = 0.0
_UpperCamelCase : Union[str, Any] = 0.0
for i in range(len(__a ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]:
for i in range(len(__a ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def lowercase__ ( ) -> None:
"""simple docstring"""
_UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
_UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
_UpperCamelCase : List[Any] = SelfOrganizingMap()
_UpperCamelCase : int = 3
_UpperCamelCase : List[Any] = 0.5
for _ in range(lowercase_ ):
for j in range(len(lowercase_ ) ):
# training sample
_UpperCamelCase : int = training_samples[j]
# Compute the winning vector
_UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ )
# Update the winning vector
_UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ )
# classify test sample
_UpperCamelCase : Optional[int] = [0, 0, 0, 1]
_UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ )
# results
print(F'''Clusters that the test sample belongs to : {winner}''' )
print(F'''Weights that have been trained : {weights}''' )
# running the main() function
if __name__ == "__main__":
main()
| 51
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCamelCase__ = {
'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'GraphormerForGraphClassification',
'GraphormerModel',
'GraphormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 719
|
"""simple docstring"""
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
lowerCamelCase__ = "src/transformers"
lowerCamelCase__ = "docs/source/en"
lowerCamelCase__ = "."
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]:
"""simple docstring"""
with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f:
_UpperCamelCase : Union[str, Any] = f.readlines()
# Find the start prompt.
_UpperCamelCase : Dict = 0
while not lines[start_index].startswith(lowercase_ ):
start_index += 1
start_index += 1
_UpperCamelCase : Optional[int] = start_index
while not lines[end_index].startswith(lowercase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH)
def lowercase__ ( lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ )
return [m.group(0 ) for m in matches]
def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ )
_UpperCamelCase : Union[str, Any] = (width - text_length) // 2
_UpperCamelCase : Dict = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowercase__ ( ) -> str:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
_UpperCamelCase : str = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
_UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
_UpperCamelCase : int = collections.defaultdict(lowercase_ )
_UpperCamelCase : Dict = collections.defaultdict(lowercase_ )
_UpperCamelCase : Dict = collections.defaultdict(lowercase_ )
_UpperCamelCase : int = collections.defaultdict(lowercase_ )
_UpperCamelCase : str = collections.defaultdict(lowercase_ )
# Let's lookup through all transformers object (once).
for attr_name in dir(lowercase_ ):
_UpperCamelCase : List[str] = None
if attr_name.endswith("Tokenizer" ):
_UpperCamelCase : Tuple = slow_tokenizers
_UpperCamelCase : Any = attr_name[:-9]
elif attr_name.endswith("TokenizerFast" ):
_UpperCamelCase : Optional[Any] = fast_tokenizers
_UpperCamelCase : List[str] = attr_name[:-13]
elif _re_tf_models.match(lowercase_ ) is not None:
_UpperCamelCase : List[Any] = tf_models
_UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0]
elif _re_flax_models.match(lowercase_ ) is not None:
_UpperCamelCase : Dict = flax_models
_UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0]
elif _re_pt_models.match(lowercase_ ) is not None:
_UpperCamelCase : Optional[int] = pt_models
_UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0]
if lookup_dict is not None:
while len(lowercase_ ) > 0:
if attr_name in model_name_to_prefix.values():
_UpperCamelCase : Dict = True
break
# Try again after removing the last word in the name
_UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] )
# Let's build that table!
_UpperCamelCase : Any = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
_UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
_UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns]
_UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2
# Build the table per se
_UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n"
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n"
_UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"}
for name in model_names:
_UpperCamelCase : Optional[int] = model_name_to_prefix[name]
_UpperCamelCase : Tuple = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n"
return table
def lowercase__ ( lowercase_=False ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file(
filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,)
_UpperCamelCase : Any = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCamelCase__ = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 51
| 0
|
"""simple docstring"""
import argparse
import torch
# Step 1. clone https://github.com/microsoft/unilm
# Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd
# Step 3. cd unilm
# Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink
# import classes
from unilm.wavlm.WavLM import WavLM as WavLMOrig
from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig
from transformers import WavLMConfig, WavLMModel, logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear",
"self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed",
"self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "ctc_proj",
"mask_emb": "masked_spec_embed",
}
lowerCamelCase__ = [
"ctc_proj",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> int:
"""simple docstring"""
for attribute in key.split("." ):
_UpperCamelCase : Tuple = getattr(lowerCAmelCase__ ,lowerCAmelCase__ )
if weight_type is not None:
_UpperCamelCase : Union[str, Any] = getattr(lowerCAmelCase__ ,lowerCAmelCase__ ).shape
else:
_UpperCamelCase : List[Any] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
_UpperCamelCase : Optional[Any] = value
elif weight_type == "weight_g":
_UpperCamelCase : int = value
elif weight_type == "weight_v":
_UpperCamelCase : Dict = value
elif weight_type == "bias":
_UpperCamelCase : Optional[Any] = value
else:
_UpperCamelCase : str = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Optional[int] = []
_UpperCamelCase : List[str] = fairseq_model.state_dict()
_UpperCamelCase : List[Any] = hf_model.feature_extractor
for name, value in fairseq_dict.items():
_UpperCamelCase : List[Any] = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,hf_model.config.feat_extract_norm == "group" ,)
_UpperCamelCase : int = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
_UpperCamelCase : List[Any] = True
if "*" in mapped_key:
_UpperCamelCase : List[Any] = name.split(lowerCAmelCase__ )[0].split("." )[-2]
_UpperCamelCase : Union[str, Any] = mapped_key.replace("*" ,lowerCAmelCase__ )
if "weight_g" in name:
_UpperCamelCase : int = "weight_g"
elif "weight_v" in name:
_UpperCamelCase : List[str] = "weight_v"
elif "bias" in name and "relative_attention_bias" not in name:
_UpperCamelCase : Any = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_UpperCamelCase : Optional[int] = "weight"
else:
_UpperCamelCase : List[Any] = None
set_recursively(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : Any = full_name.split("conv_layers." )[-1]
_UpperCamelCase : Any = name.split("." )
_UpperCamelCase : Union[str, Any] = int(items[0] )
_UpperCamelCase : int = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
_UpperCamelCase : List[str] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
_UpperCamelCase : List[Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
_UpperCamelCase : Optional[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
_UpperCamelCase : Any = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(lowerCAmelCase__ )
@torch.no_grad()
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ) -> str:
"""simple docstring"""
_UpperCamelCase : List[str] = torch.load(lowerCAmelCase__ )
_UpperCamelCase : List[Any] = WavLMConfigOrig(checkpoint["cfg"] )
_UpperCamelCase : Tuple = WavLMOrig(lowerCAmelCase__ )
model.load_state_dict(checkpoint["model"] )
model.eval()
if config_path is not None:
_UpperCamelCase : int = WavLMConfig.from_pretrained(lowerCAmelCase__ )
else:
_UpperCamelCase : List[str] = WavLMConfig()
_UpperCamelCase : Union[str, Any] = WavLMModel(lowerCAmelCase__ )
recursively_load_weights(lowerCAmelCase__ ,lowerCAmelCase__ )
hf_wavlm.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
lowerCamelCase__ = parser.parse_args()
convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 720
|
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
lowerCamelCase__ = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
lowerCamelCase__ = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
lowerCamelCase__ = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]:
"""simple docstring"""
_UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] )
return (item, float(lowercase_ ))
def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]:
"""simple docstring"""
_UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 )
_UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:]
_UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def lowercase__ ( lowercase_ ,lowercase_ ) -> str:
"""simple docstring"""
_UpperCamelCase : int = list(lowercase_ )
if random.uniform(0 ,1 ) < MUTATION_PROBABILITY:
_UpperCamelCase : int = random.choice(lowercase_ )
return "".join(lowercase_ )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = []
# Generate more children proportionally to the fitness score.
_UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1
_UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n
for _ in range(lowercase_ ):
_UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0]
_UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ )
# Append new string to the population list.
pop.append(mutate(lowercase_ ,lowercase_ ) )
pop.append(mutate(lowercase_ ,lowercase_ ) )
return pop
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]:
"""simple docstring"""
if N_POPULATION < N_SELECTED:
_UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(lowercase_ )
# Verify that the target contains no genes besides the ones inside genes variable.
_UpperCamelCase : int = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
_UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(lowercase_ )
# Generate random starting population.
_UpperCamelCase : Union[str, Any] = []
for _ in range(lowercase_ ):
population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) )
# Just some logs to know what the algorithms is doing.
_UpperCamelCase, _UpperCamelCase : str = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowercase_ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
_UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population]
# Check if there is a matching evolution.
_UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'''\nGeneration: {generation}'''
F'''\nTotal Population:{total_population}'''
F'''\nBest score: {population_score[0][1]}'''
F'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
_UpperCamelCase : str = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowercase_ )
# Normalize population score to be between 0 and 1.
_UpperCamelCase : str = [
(item, score / len(lowercase_ )) for item, score in population_score
]
# This is selection
for i in range(lowercase_ ):
population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowercase_ ) > N_POPULATION:
break
if __name__ == "__main__":
lowerCamelCase__ = (
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
)
lowerCamelCase__ = list(
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list)
print(
f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"""
)
| 51
| 0
|
"""simple docstring"""
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
lowerCamelCase__ = (
"""This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """
"""library. You can have a look at this example script for pointers: """
"""https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py"""
)
def lowercase__ ( lowercase_ ,lowercase_ ) -> int:
"""simple docstring"""
warnings.warn(_lowerCamelCase ,_lowerCamelCase )
requires_backends(_lowerCamelCase ,"sklearn" )
return (preds == labels).mean()
def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict:
"""simple docstring"""
warnings.warn(_lowerCamelCase ,_lowerCamelCase )
requires_backends(_lowerCamelCase ,"sklearn" )
_UpperCamelCase : Optional[int] = simple_accuracy(_lowerCamelCase ,_lowerCamelCase )
_UpperCamelCase : str = fa_score(y_true=_lowerCamelCase ,y_pred=_lowerCamelCase )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]:
"""simple docstring"""
warnings.warn(_lowerCamelCase ,_lowerCamelCase )
requires_backends(_lowerCamelCase ,"sklearn" )
_UpperCamelCase : Union[str, Any] = pearsonr(_lowerCamelCase ,_lowerCamelCase )[0]
_UpperCamelCase : Tuple = spearmanr(_lowerCamelCase ,_lowerCamelCase )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Tuple:
"""simple docstring"""
warnings.warn(_lowerCamelCase ,_lowerCamelCase )
requires_backends(_lowerCamelCase ,"sklearn" )
assert len(_lowerCamelCase ) == len(_lowerCamelCase ), F'''Predictions and labels have mismatched lengths {len(_lowerCamelCase )} and {len(_lowerCamelCase )}'''
if task_name == "cola":
return {"mcc": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )}
elif task_name == "mrpc":
return acc_and_fa(_lowerCamelCase ,_lowerCamelCase )
elif task_name == "sts-b":
return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase )
elif task_name == "qqp":
return acc_and_fa(_lowerCamelCase ,_lowerCamelCase )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )}
elif task_name == "qnli":
return {"acc": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )}
elif task_name == "rte":
return {"acc": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )}
elif task_name == "wnli":
return {"acc": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )}
elif task_name == "hans":
return {"acc": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )}
else:
raise KeyError(_lowerCamelCase )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Tuple:
"""simple docstring"""
warnings.warn(_lowerCamelCase ,_lowerCamelCase )
requires_backends(_lowerCamelCase ,"sklearn" )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError(F'''Predictions and labels have mismatched lengths {len(_lowerCamelCase )} and {len(_lowerCamelCase )}''' )
if task_name == "xnli":
return {"acc": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )}
else:
raise KeyError(_lowerCamelCase )
| 721
|
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = ["model.decoder.embed_positions.weights"]
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
if "emb" in name:
_UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" )
if "transformer" in name:
_UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" )
if "cross_attention" in name:
_UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" )
if "linear1" in name:
_UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" )
if "linear2" in name:
_UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" )
if "norm1" in name:
_UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" )
if "norm_cross" in name:
_UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" )
if "norm2" in name:
_UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" )
if "out_norm" in name:
_UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" )
if "linears" in name:
_UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
_UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" )
return name
def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]:
"""simple docstring"""
_UpperCamelCase : str = list(state_dict.keys() )
_UpperCamelCase : Optional[Any] = {}
for key in keys:
_UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ )
_UpperCamelCase : List[Any] = rename_keys(lowercase_ )
if "in_proj_weight" in key:
# split fused qkv proj
_UpperCamelCase : Tuple = val[:hidden_size, :]
_UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :]
_UpperCamelCase : Optional[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
_UpperCamelCase : Optional[Any] = val
else:
_UpperCamelCase : List[str] = val
return state_dict, enc_dec_proj_state_dict
def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
_UpperCamelCase : List[Any] = 1_024
_UpperCamelCase : List[str] = 24
_UpperCamelCase : Any = 16
elif checkpoint == "medium":
_UpperCamelCase : Tuple = 1_536
_UpperCamelCase : Dict = 48
_UpperCamelCase : Tuple = 24
elif checkpoint == "large":
_UpperCamelCase : int = 2_048
_UpperCamelCase : Optional[int] = 48
_UpperCamelCase : Dict = 32
else:
raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' )
_UpperCamelCase : str = MusicgenDecoderConfig(
hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,)
return config
@torch.no_grad()
def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ )
_UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ )
_UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict()
_UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict(
lowercase_ ,hidden_size=decoder_config.hidden_size )
_UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" )
_UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" )
_UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
_UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' )
if len(lowercase_ ) > 0:
raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' )
# init the composite model
_UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowercase_ )
# check we can do a forward pass
_UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 )
_UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 )
with torch.no_grad():
_UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
_UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" )
_UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" )
_UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ )
# set the appropriate bos/pad token ids
_UpperCamelCase : str = 2_048
_UpperCamelCase : str = 2_048
# set other default generation config params
_UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate )
_UpperCamelCase : List[str] = True
_UpperCamelCase : int = 3.0
if pytorch_dump_folder is not None:
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' )
model.save_pretrained(lowercase_ )
processor.save_pretrained(lowercase_ )
if repo_id:
logger.info(F'''Pushing model {checkpoint} to {repo_id}''' )
model.push_to_hub(lowercase_ )
processor.push_to_hub(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
lowerCamelCase__ = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 51
| 0
|
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpta import GPTaTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase__ = {
"""vocab_file""": {
"""gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""",
"""gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""",
"""gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""",
"""gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""",
"""distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""",
},
"""merges_file""": {
"""gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""",
"""gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""",
"""gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""",
"""gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""",
"""distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""",
"""gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""",
"""gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""",
"""gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""",
"""distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""",
},
}
lowerCamelCase__ = {
"""gpt2""": 1024,
"""gpt2-medium""": 1024,
"""gpt2-large""": 1024,
"""gpt2-xl""": 1024,
"""distilgpt2""": 1024,
}
class __SCREAMING_SNAKE_CASE ( snake_case_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Tuple = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ :str = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ :List[str] = ["""input_ids""", """attention_mask"""]
SCREAMING_SNAKE_CASE__ :Dict = GPTaTokenizer
def __init__( self : List[Any] , __a : int=None , __a : Any=None , __a : Tuple=None , __a : Optional[int]="<|endoftext|>" , __a : str="<|endoftext|>" , __a : List[str]="<|endoftext|>" , __a : Optional[Any]=False , **__a : Optional[int] , ) -> Optional[int]:
super().__init__(
__a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , add_prefix_space=__a , **__a , )
_UpperCamelCase : Union[str, Any] = kwargs.pop("add_bos_token" , __a )
_UpperCamelCase : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , __a ) != add_prefix_space:
_UpperCamelCase : Optional[Any] = getattr(__a , pre_tok_state.pop("type" ) )
_UpperCamelCase : Optional[Any] = add_prefix_space
_UpperCamelCase : Optional[int] = pre_tok_class(**__a )
_UpperCamelCase : Optional[int] = add_prefix_space
def __SCREAMING_SNAKE_CASE ( self : Tuple , *__a : Union[str, Any] , **__a : Any ) -> Union[str, Any]:
_UpperCamelCase : int = kwargs.get("is_split_into_words" , __a )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__a , **__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , *__a : List[Any] , **__a : Optional[Any] ) -> Dict:
_UpperCamelCase : List[Any] = kwargs.get("is_split_into_words" , __a )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__a , **__a )
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str , __a : Any = None ) -> Tuple:
_UpperCamelCase : Optional[int] = self._tokenizer.model.save(__a , name=__a )
return tuple(__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[Any] ) -> List[Any]:
_UpperCamelCase : List[Any] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] )
if len(__a ) > self.model_max_length:
_UpperCamelCase : Optional[Any] = input_ids[-self.model_max_length :]
return input_ids
| 700
|
"""simple docstring"""
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
lowerCamelCase__ = input("Enter image url: ").strip()
print(f"""Downloading image from {url} ...""")
lowerCamelCase__ = BeautifulSoup(requests.get(url).content, "html.parser")
# The image URL is in the content field of the first meta tag with property og:image
lowerCamelCase__ = soup.find("meta", {"property": "og:image"})["content"]
lowerCamelCase__ = requests.get(image_url).content
lowerCamelCase__ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"""
with open(file_name, "wb") as fp:
fp.write(image_data)
print(f"""Done. Image saved to disk as {file_name}.""")
| 51
| 0
|
"""simple docstring"""
def lowercase__ ( lowercase_ ,lowercase_ ) -> List[str]:
"""simple docstring"""
assert x is not None
assert y is not None
_UpperCamelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE_ )
_UpperCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ )
# declaring the array for storing the dp values
_UpperCamelCase : int = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1 ,m + 1 ):
for j in range(1 ,n + 1 ):
_UpperCamelCase : Any = 1 if x[i - 1] == y[j - 1] else 0
_UpperCamelCase : Optional[Any] = max(l[i - 1][j] ,l[i][j - 1] ,l[i - 1][j - 1] + match )
_UpperCamelCase : Optional[int] = ""
_UpperCamelCase : int = m, n
while i > 0 and j > 0:
_UpperCamelCase : Any = 1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
_UpperCamelCase : List[str] = x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
lowerCamelCase__ = "AGGTAB"
lowerCamelCase__ = "GXTXAYB"
lowerCamelCase__ = 4
lowerCamelCase__ = "GTAB"
lowerCamelCase__ , lowerCamelCase__ = longest_common_subsequence(a, b)
print("len =", ln, ", sub-sequence =", subseq)
import doctest
doctest.testmod()
| 701
|
"""simple docstring"""
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(".")
def lowercase__ ( lowercase_ ) -> int:
"""simple docstring"""
_UpperCamelCase : Any = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
"`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got "
F'''{test_file} instead.''' )
_UpperCamelCase : str = components[-1]
if not test_fn.endswith("py" ):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith("test_modeling_" ):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
_UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )]
_UpperCamelCase : List[str] = ".".join(lowercase_ )
return test_module_path
def lowercase__ ( lowercase_ ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = get_module_path(lowercase_ )
_UpperCamelCase : str = importlib.import_module(lowercase_ )
return test_module
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = []
_UpperCamelCase : List[Any] = get_test_module(lowercase_ )
for attr in dir(lowercase_ ):
if attr.endswith("ModelTester" ):
tester_classes.append(getattr(lowercase_ ,lowercase_ ) )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = []
_UpperCamelCase : Any = get_test_module(lowercase_ )
for attr in dir(lowercase_ ):
_UpperCamelCase : int = getattr(lowercase_ ,lowercase_ )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
_UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] )
if len(lowercase_ ) > 0:
test_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Dict = get_test_classes(lowercase_ )
_UpperCamelCase : int = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : List[str] = test_class()
if hasattr(lowercase_ ,"setUp" ):
test.setUp()
_UpperCamelCase : Tuple = None
if hasattr(lowercase_ ,"model_tester" ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
_UpperCamelCase : Tuple = test.model_tester.__class__
return model_tester
def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : str = get_test_classes(lowercase_ )
_UpperCamelCase : Dict = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict:
"""simple docstring"""
_UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ )
_UpperCamelCase : List[Any] = []
for test_class in test_classes:
_UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ )
if tester_class is not None:
tester_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Any = get_test_classes(lowercase_ )
_UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes}
return test_tester_mapping
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : List[Any] = get_model_classes(lowercase_ )
_UpperCamelCase : Optional[int] = {
model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes
}
return model_test_mapping
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ )
_UpperCamelCase : Tuple = {
model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes
}
return model_to_tester_mapping
def lowercase__ ( lowercase_ ) -> Optional[int]:
"""simple docstring"""
if isinstance(lowercase_ ,lowercase_ ):
return o
elif isinstance(lowercase_ ,lowercase_ ):
return o.__name__
elif isinstance(lowercase_ ,(list, tuple) ):
return [to_json(lowercase_ ) for x in o]
elif isinstance(lowercase_ ,lowercase_ ):
return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()}
else:
return o
| 51
| 0
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
lowerCamelCase__ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine"
def lowercase__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase : Dict = _ask_options(
"In which compute environment are you running?" ,["This machine", "AWS (Amazon SageMaker)"] ,_convert_compute_environment ,)
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
_UpperCamelCase : Dict = get_sagemaker_input()
else:
_UpperCamelCase : Tuple = get_cluster_input()
return config
def lowercase__ ( lowercase_=None ) -> Optional[int]:
"""simple docstring"""
if subparsers is not None:
_UpperCamelCase : Any = subparsers.add_parser("config" ,description=SCREAMING_SNAKE_CASE_ )
else:
_UpperCamelCase : Optional[Any] = argparse.ArgumentParser("Accelerate config command" ,description=SCREAMING_SNAKE_CASE_ )
parser.add_argument(
"--config_file" ,default=SCREAMING_SNAKE_CASE_ ,help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have "
"such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed "
"with \'huggingface\'."
) ,)
if subparsers is not None:
parser.set_defaults(func=SCREAMING_SNAKE_CASE_ )
return parser
def lowercase__ ( lowercase_ ) -> int:
"""simple docstring"""
_UpperCamelCase : List[Any] = get_user_input()
if args.config_file is not None:
_UpperCamelCase : Union[str, Any] = args.config_file
else:
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
os.makedirs(SCREAMING_SNAKE_CASE_ )
_UpperCamelCase : Optional[Any] = default_yaml_config_file
if config_file.endswith(".json" ):
config.to_json_file(SCREAMING_SNAKE_CASE_ )
else:
config.to_yaml_file(SCREAMING_SNAKE_CASE_ )
print(F'''accelerate configuration saved at {config_file}''' )
def lowercase__ ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = config_command_parser()
_UpperCamelCase : Tuple = parser.parse_args()
config_command(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main()
| 702
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCamelCase__ = {
"configuration_mask2former": [
"MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Mask2FormerConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["Mask2FormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"Mask2FormerForUniversalSegmentation",
"Mask2FormerModel",
"Mask2FormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 51
| 0
|
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax.numpy as jnp
from jax import random
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils_flax import FlaxSchedulerMixin
@flax.struct.dataclass
class __SCREAMING_SNAKE_CASE :
SCREAMING_SNAKE_CASE__ :Optional[Any] = None
SCREAMING_SNAKE_CASE__ :Optional[Any] = None
SCREAMING_SNAKE_CASE__ :Optional[int] = None # sigma(t_i)
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : Optional[int] ) -> List[str]:
return cls()
@dataclass
class __SCREAMING_SNAKE_CASE ( __A ):
SCREAMING_SNAKE_CASE__ :Any = 42
SCREAMING_SNAKE_CASE__ :List[Any] = 42
SCREAMING_SNAKE_CASE__ :str = 42
class __SCREAMING_SNAKE_CASE ( __A , __A ):
@property
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple:
return True
@register_to_config
def __init__( self : Any , __a : Any = 0.02 , __a : Dict = 100 , __a : Tuple = 1.0_07 , __a : Optional[int] = 80 , __a : Dict = 0.05 , __a : int = 50 , ) -> Optional[int]:
pass
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]:
return KarrasVeSchedulerState.create()
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Tuple , __a : int , __a : List[Any] = () ) -> List[str]:
_UpperCamelCase : Optional[Any] = jnp.arange(0 , __a )[::-1].copy()
_UpperCamelCase : Union[str, Any] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in timesteps
]
return state.replace(
num_inference_steps=__a , schedule=jnp.array(__a , dtype=jnp.floataa ) , timesteps=__a , )
def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[Any] , __a : Optional[Any] , __a : Optional[int] , ) -> Tuple:
if self.config.s_min <= sigma <= self.config.s_max:
_UpperCamelCase : Optional[Any] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 )
else:
_UpperCamelCase : int = 0
# sample eps ~ N(0, S_noise^2 * I)
_UpperCamelCase : List[Any] = random.split(__a , num=1 )
_UpperCamelCase : Tuple = self.config.s_noise * random.normal(key=__a , shape=sample.shape )
_UpperCamelCase : Optional[int] = sigma + gamma * sigma
_UpperCamelCase : int = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def __SCREAMING_SNAKE_CASE ( self : str , __a : Dict , __a : List[str] , __a : Dict , __a : List[Any] , __a : Any , __a : List[Any] = True , ) -> Tuple:
_UpperCamelCase : List[str] = sample_hat + sigma_hat * model_output
_UpperCamelCase : str = (sample_hat - pred_original_sample) / sigma_hat
_UpperCamelCase : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=__a , derivative=__a , state=__a )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Optional[Any] , __a : Dict , __a : Optional[Any] , __a : int , __a : List[str] , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] = True , ) -> Dict:
_UpperCamelCase : Any = sample_prev + sigma_prev * model_output
_UpperCamelCase : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev
_UpperCamelCase : List[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=__a , derivative=__a , state=__a )
def __SCREAMING_SNAKE_CASE ( self : int , __a : Any , __a : Tuple , __a : List[Any] , __a : Any ) -> List[Any]:
raise NotImplementedError()
| 703
|
"""simple docstring"""
lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCamelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 51
| 0
|
"""simple docstring"""
import unittest
from dataclasses import dataclass
import pytest
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.utils import ComputeEnvironment
from accelerate.utils.launch import _convert_nargs_to_dict
@dataclass
class __SCREAMING_SNAKE_CASE ( __lowercase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[int] = ComputeEnvironment.AMAZON_SAGEMAKER
SCREAMING_SNAKE_CASE__ :Any = True
SCREAMING_SNAKE_CASE__ :List[Any] = "ml.p3.2xlarge"
SCREAMING_SNAKE_CASE__ :int = "accelerate_sagemaker_execution_role"
SCREAMING_SNAKE_CASE__ :List[str] = "hf-sm"
SCREAMING_SNAKE_CASE__ :Dict = "us-east-1"
SCREAMING_SNAKE_CASE__ :Optional[int] = 1
SCREAMING_SNAKE_CASE__ :Tuple = "accelerate-sagemaker-1"
SCREAMING_SNAKE_CASE__ :str = "1.6"
SCREAMING_SNAKE_CASE__ :Tuple = "4.4"
SCREAMING_SNAKE_CASE__ :str = "train.py"
SCREAMING_SNAKE_CASE__ :Tuple = [
"--model_name_or_path",
"bert",
"--do_train",
"False",
"--epochs",
"3",
"--learning_rate",
"5e-5",
"--max_steps",
"50.5",
]
SCREAMING_SNAKE_CASE__ :Any = [
"--model_name_or_path",
"bert",
"--do_train",
"--do_test",
"False",
"--do_predict",
"--epochs",
"3",
"--learning_rate",
"5e-5",
"--max_steps",
"50.5",
]
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]:
# If no defaults are changed, `to_kwargs` returns an empty dict.
_UpperCamelCase : List[str] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args )
assert isinstance(converted_args["model_name_or_path"] , _A )
assert isinstance(converted_args["do_train"] , _A )
assert isinstance(converted_args["epochs"] , _A )
assert isinstance(converted_args["learning_rate"] , _A )
assert isinstance(converted_args["max_steps"] , _A )
with pytest.raises(_A ):
_convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
| 704
|
"""simple docstring"""
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
_UpperCamelCase : Tuple = tempfile.mkdtemp()
_UpperCamelCase : str = 5
# Realm tok
_UpperCamelCase : Tuple = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"test",
"question",
"this",
"is",
"the",
"first",
"second",
"third",
"fourth",
"fifth",
"record",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
_UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" )
os.makedirs(__a , exist_ok=__a )
_UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
_UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" )
os.makedirs(__a , exist_ok=__a )
def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer:
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict:
shutil.rmtree(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]:
_UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records )
return config
def __SCREAMING_SNAKE_CASE ( self : int ) -> int:
_UpperCamelCase : Any = Dataset.from_dict(
{
"id": ["0", "1"],
"question": ["foo", "bar"],
"answers": [["Foo", "Bar"], ["Bar"]],
} )
return dataset
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str:
_UpperCamelCase : int = np.array(
[
b"This is the first record",
b"This is the second record",
b"This is the third record",
b"This is the fourth record",
b"This is the fifth record",
b"This is a longer longer longer record",
] , dtype=__a , )
return block_records
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]:
_UpperCamelCase : List[str] = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple:
_UpperCamelCase : Tuple = self.get_config()
_UpperCamelCase : int = self.get_dummy_retriever()
_UpperCamelCase : Tuple = retriever.tokenizer
_UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" )
_UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids
_UpperCamelCase : List[str] = tokenizer(
["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids
_UpperCamelCase : str = config.reader_seq_len
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = retriever(
__a , __a , answer_ids=__a , max_length=__a , return_tensors="np" )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]:
_UpperCamelCase : Any = self.get_config()
_UpperCamelCase : Dict = self.get_dummy_retriever()
_UpperCamelCase : Dict = retriever.tokenizer
_UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" )
_UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids
_UpperCamelCase : str = tokenizer(
["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids
_UpperCamelCase : Union[str, Any] = config.reader_seq_len
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = retriever(
__a , __a , answer_ids=__a , max_length=__a , return_tensors="np" )
self.assertEqual([False, True, True] , __a )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]:
_UpperCamelCase : List[Any] = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) )
# Test local path
_UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) )
self.assertEqual(retriever.block_records[0] , b"This is the first record" )
# Test mocked remote path
with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download:
_UpperCamelCase : List[Any] = os.path.join(
os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME )
_UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" )
self.assertEqual(retriever.block_records[0] , b"This is the first record" )
| 51
| 0
|
"""simple docstring"""
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Any:
"""simple docstring"""
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
_UpperCamelCase : Tuple = np.full((len(lowerCAmelCase__ ), sequence_length, 2) ,lowerCAmelCase__ )
else:
_UpperCamelCase : str = np.full((len(lowerCAmelCase__ ), sequence_length) ,lowerCAmelCase__ )
for i, tensor in enumerate(lowerCAmelCase__ ):
if padding_side == "right":
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
_UpperCamelCase : Optional[int] = tensor[:sequence_length]
else:
_UpperCamelCase : Union[str, Any] = tensor[:sequence_length]
else:
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
_UpperCamelCase : List[Any] = tensor[:sequence_length]
else:
_UpperCamelCase : Union[str, Any] = tensor[:sequence_length]
return out_tensor.tolist()
def lowercase__ ( lowercase_ ) -> str:
"""simple docstring"""
_UpperCamelCase : Dict = ord(lowerCAmelCase__ )
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
_UpperCamelCase : Optional[Any] = unicodedata.category(lowerCAmelCase__ )
if cat.startswith("P" ):
return True
return False
@dataclass
class __SCREAMING_SNAKE_CASE ( __a ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :PreTrainedTokenizerBase
SCREAMING_SNAKE_CASE__ :Union[bool, str, PaddingStrategy] = True
SCREAMING_SNAKE_CASE__ :Optional[int] = None
SCREAMING_SNAKE_CASE__ :Optional[int] = None
SCREAMING_SNAKE_CASE__ :int = -100
SCREAMING_SNAKE_CASE__ :str = "pt"
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[str] ) -> List[str]:
import torch
_UpperCamelCase : Tuple = "label" if "label" in features[0].keys() else "labels"
_UpperCamelCase : Optional[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
_UpperCamelCase : Dict = self.tokenizer.pad(
snake_case__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , )
if labels is None:
return batch
_UpperCamelCase : Any = torch.tensor(batch["entity_ids"] ).shape[1]
_UpperCamelCase : Union[str, Any] = self.tokenizer.padding_side
if padding_side == "right":
_UpperCamelCase : Dict = [
list(snake_case__ ) + [self.label_pad_token_id] * (sequence_length - len(snake_case__ )) for label in labels
]
else:
_UpperCamelCase : int = [
[self.label_pad_token_id] * (sequence_length - len(snake_case__ )) + list(snake_case__ ) for label in labels
]
_UpperCamelCase : Any = [feature["ner_tags"] for feature in features]
_UpperCamelCase : List[Any] = padding_tensor(snake_case__ , -1 , snake_case__ , snake_case__ )
_UpperCamelCase : str = [feature["original_entity_spans"] for feature in features]
_UpperCamelCase : List[str] = padding_tensor(snake_case__ , (-1, -1) , snake_case__ , snake_case__ )
_UpperCamelCase : Optional[int] = {k: torch.tensor(snake_case__ , dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 705
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Any = LEDConfig
SCREAMING_SNAKE_CASE__ :str = {}
SCREAMING_SNAKE_CASE__ :List[str] = "gelu"
def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]:
_UpperCamelCase : Optional[Any] = parent
_UpperCamelCase : List[str] = batch_size
_UpperCamelCase : str = seq_length
_UpperCamelCase : str = is_training
_UpperCamelCase : Any = use_labels
_UpperCamelCase : Any = vocab_size
_UpperCamelCase : List[str] = hidden_size
_UpperCamelCase : Optional[Any] = num_hidden_layers
_UpperCamelCase : Dict = num_attention_heads
_UpperCamelCase : Optional[Any] = intermediate_size
_UpperCamelCase : int = hidden_dropout_prob
_UpperCamelCase : Dict = attention_probs_dropout_prob
_UpperCamelCase : str = max_position_embeddings
_UpperCamelCase : int = eos_token_id
_UpperCamelCase : Dict = pad_token_id
_UpperCamelCase : Optional[Any] = bos_token_id
_UpperCamelCase : str = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_UpperCamelCase : List[str] = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_UpperCamelCase : int = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __SCREAMING_SNAKE_CASE ( self : int ) -> str:
_UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 )
_UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase : List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a )
_UpperCamelCase : Union[str, Any] = tf.concat(
[tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , )
_UpperCamelCase : Union[str, Any] = global_attention_mask
return config, inputs_dict
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple:
_UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder()
_UpperCamelCase : Tuple = inputs_dict["input_ids"]
_UpperCamelCase : int = input_ids[:1, :]
_UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :]
_UpperCamelCase : List[Any] = 1
# first forward pass
_UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a )
_UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 )
_UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0]
_UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx]
_UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__a , __a , rtol=1e-3 )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict:
"""simple docstring"""
if attention_mask is None:
_UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
_UpperCamelCase : str = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
_UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :List[str] = (
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ :Tuple = True
SCREAMING_SNAKE_CASE__ :str = False
SCREAMING_SNAKE_CASE__ :Optional[Any] = False
SCREAMING_SNAKE_CASE__ :int = False
def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]:
_UpperCamelCase : int = TFLEDModelTester(self )
_UpperCamelCase : Any = ConfigTester(self , config_class=__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]:
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int:
_UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__a )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
_UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] )
_UpperCamelCase : Union[str, Any] = 2
_UpperCamelCase : str = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , )
_UpperCamelCase : Dict = True
_UpperCamelCase : str = self.model_tester.seq_length
_UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(__a : Optional[int] ):
_UpperCamelCase : Optional[int] = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(__a : Optional[Any] ):
_UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions]
_UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_UpperCamelCase : Dict = True
_UpperCamelCase : Optional[Any] = False
_UpperCamelCase : int = False
_UpperCamelCase : Optional[int] = model_class(__a )
_UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) )
_UpperCamelCase : Any = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
_UpperCamelCase : Optional[Any] = model_class(__a )
_UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_UpperCamelCase : int = True
_UpperCamelCase : Tuple = model_class(__a )
_UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
_UpperCamelCase : Any = True
_UpperCamelCase : List[str] = True
_UpperCamelCase : Tuple = model_class(__a )
_UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
pass
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple:
# TODO: Head-masking not yet implement
pass
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
return tf.constant(lowercase_ ,dtype=tf.intaa )
lowerCamelCase__ = 1E-4
@slow
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]:
_UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led
# change to intended input here
_UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a )
_UpperCamelCase : Optional[int] = model(**__a )[0]
_UpperCamelCase : Optional[int] = (1, 1024, 768)
self.assertEqual(output.shape , __a )
# change to expected output here
_UpperCamelCase : Tuple = tf.convert_to_tensor(
[[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
_UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" )
# change to intended input here
_UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a )
_UpperCamelCase : Union[str, Any] = model(**__a )[0]
_UpperCamelCase : int = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , __a )
# change to expected output here
_UpperCamelCase : Optional[int] = tf.convert_to_tensor(
[[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
| 51
| 0
|
"""simple docstring"""
import json
import logging
import os
import sys
from time import time
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, require_torch_tpu
logging.basicConfig(level=logging.DEBUG)
lowerCamelCase__ = logging.getLogger()
def lowercase__ ( lowercase_ ) -> Dict:
"""simple docstring"""
_UpperCamelCase : Any = {}
_UpperCamelCase : Optional[Any] = os.path.join(lowerCAmelCase_ ,"all_results.json" )
if os.path.exists(lowerCAmelCase_ ):
with open(lowerCAmelCase_ ,"r" ) as f:
_UpperCamelCase : List[Any] = json.load(lowerCAmelCase_ )
else:
raise ValueError(F'''can\'t find {path}''' )
return results
lowerCamelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
@require_torch_tpu
class __SCREAMING_SNAKE_CASE ( __lowerCamelCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]:
import xla_spawn
_UpperCamelCase : Optional[int] = self.get_auto_remove_tmp_dir()
_UpperCamelCase : List[Any] = F'''
./examples/pytorch/text-classification/run_glue.py
--num_cores=8
./examples/pytorch/text-classification/run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--overwrite_output_dir
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--do_train
--do_eval
--debug tpu_metrics_debug
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--max_steps=10
--warmup_steps=2
--seed=42
--max_seq_length=128
'''.split()
with patch.object(a_ , "argv" , a_ ):
_UpperCamelCase : Union[str, Any] = time()
xla_spawn.main()
_UpperCamelCase : Optional[Any] = time()
_UpperCamelCase : int = get_results(a_ )
self.assertGreaterEqual(result["eval_accuracy"] , 0.75 )
# Assert that the script takes less than 500 seconds to make sure it doesn't hang.
self.assertLess(end - start , 500 )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]:
import xla_spawn
_UpperCamelCase : Optional[int] = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split()
with patch.object(a_ , "argv" , a_ ):
xla_spawn.main()
| 706
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer
SCREAMING_SNAKE_CASE__ :Dict = None
SCREAMING_SNAKE_CASE__ :List[Any] = False
SCREAMING_SNAKE_CASE__ :Union[str, Any] = True
SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english
def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
super().setUp()
_UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"]
_UpperCamelCase : List[str] = {}
_UpperCamelCase : Tuple = {}
for i, value in enumerate(__a ):
_UpperCamelCase : List[str] = i
_UpperCamelCase : Optional[Any] = i
_UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] )
_UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer:
json.dump(__a , __a , ensure_ascii=__a )
with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer:
json.dump(__a , __a , ensure_ascii=__a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]:
_UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
_UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" )
self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
_UpperCamelCase : Dict = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
_UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple:
_UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
_UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]:
_UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]:
_UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
_UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]:
_UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]:
_UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
_UpperCamelCase : Any = {}
for i, token in enumerate(__a ):
_UpperCamelCase : str = i
_UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) , [] )
self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] )
self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
self.assertTrue(_is_whitespace(" " ) )
self.assertTrue(_is_whitespace("\t" ) )
self.assertTrue(_is_whitespace("\r" ) )
self.assertTrue(_is_whitespace("\n" ) )
self.assertTrue(_is_whitespace("\u00A0" ) )
self.assertFalse(_is_whitespace("A" ) )
self.assertFalse(_is_whitespace("-" ) )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict:
self.assertTrue(_is_control("\u0005" ) )
self.assertFalse(_is_control("A" ) )
self.assertFalse(_is_control(" " ) )
self.assertFalse(_is_control("\t" ) )
self.assertFalse(_is_control("\r" ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]:
self.assertTrue(_is_punctuation("-" ) )
self.assertTrue(_is_punctuation("$" ) )
self.assertTrue(_is_punctuation("`" ) )
self.assertTrue(_is_punctuation("." ) )
self.assertFalse(_is_punctuation("A" ) )
self.assertFalse(_is_punctuation(" " ) )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
_UpperCamelCase : Optional[Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
if self.test_rust_tokenizer:
_UpperCamelCase : Tuple = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
_UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus(
__a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , )
_UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False
_UpperCamelCase : Dict = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
_UpperCamelCase : Optional[Any] = ["的", "人", "有"]
_UpperCamelCase : int = "".join(__a )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_UpperCamelCase : int = True
_UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a )
_UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a )
_UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a )
_UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(__a , __a )
self.assertListEqual(__a , __a )
_UpperCamelCase : Any = False
_UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a )
_UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a )
_UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a )
_UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a )
# it is expected that only the first Chinese character is not preceded by "##".
_UpperCamelCase : Any = [
F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a )
]
self.assertListEqual(__a , __a )
self.assertListEqual(__a , __a )
@slow
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any:
_UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
_UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a )
_UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a )
_UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a )
_UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_UpperCamelCase : int = "你好,你是谁"
_UpperCamelCase : Any = tokenizer.tokenize(__a )
_UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a )
_UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a )
_UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a )
_UpperCamelCase : Optional[int] = tokenizer.prepare_for_model(
__a , __a , __a , add_special_tokens=__a )
_UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a )
self.assertEqual(__a , __a )
| 51
| 0
|
"""simple docstring"""
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Optional[Any] , __a : Optional[Any] , ) -> Dict:
_UpperCamelCase : Any = parent
_UpperCamelCase : Union[str, Any] = 13
_UpperCamelCase : Union[str, Any] = 7
_UpperCamelCase : Tuple = 30
_UpperCamelCase : Dict = self.seq_length + self.mem_len
_UpperCamelCase : List[Any] = 15
_UpperCamelCase : Dict = True
_UpperCamelCase : Any = True
_UpperCamelCase : str = 99
_UpperCamelCase : List[Any] = [10, 50, 80]
_UpperCamelCase : List[Any] = 32
_UpperCamelCase : Optional[int] = 32
_UpperCamelCase : str = 4
_UpperCamelCase : Any = 8
_UpperCamelCase : Union[str, Any] = 128
_UpperCamelCase : int = 2
_UpperCamelCase : str = 2
_UpperCamelCase : Any = None
_UpperCamelCase : Tuple = 1
_UpperCamelCase : Optional[Any] = 0
_UpperCamelCase : Any = 3
_UpperCamelCase : Dict = self.vocab_size - 1
_UpperCamelCase : Optional[Any] = 0.01
def __SCREAMING_SNAKE_CASE ( self : str ) -> int:
_UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase : Union[str, Any] = None
if self.use_labels:
_UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase : Dict = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple:
random.seed(self.seed )
tf.random.set_seed(self.seed )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int , __a : int , __a : Dict , __a : Tuple ) -> List[str]:
_UpperCamelCase : str = TFTransfoXLModel(__a )
_UpperCamelCase, _UpperCamelCase : Tuple = model(__a ).to_tuple()
_UpperCamelCase : Optional[int] = {"input_ids": input_ids_a, "mems": mems_a}
_UpperCamelCase, _UpperCamelCase : List[Any] = model(__a ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def __SCREAMING_SNAKE_CASE ( self : Any , __a : str , __a : Dict , __a : List[Any] , __a : List[str] ) -> List[Any]:
_UpperCamelCase : Tuple = TFTransfoXLLMHeadModel(__a )
_UpperCamelCase, _UpperCamelCase : int = model(__a ).to_tuple()
_UpperCamelCase : List[Any] = {"input_ids": input_ids_a, "labels": lm_labels}
_UpperCamelCase, _UpperCamelCase : List[Any] = model(__a ).to_tuple()
_UpperCamelCase, _UpperCamelCase : List[Any] = model([input_ids_a, mems_a] ).to_tuple()
_UpperCamelCase : Any = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels}
_UpperCamelCase, _UpperCamelCase : Any = model(__a ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def __SCREAMING_SNAKE_CASE ( self : int , __a : Any , __a : Optional[Any] , __a : Tuple , __a : List[str] ) -> Optional[int]:
_UpperCamelCase : List[Any] = TFTransfoXLForSequenceClassification(__a )
_UpperCamelCase : Optional[Any] = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]:
_UpperCamelCase : List[str] = self.prepare_config_and_inputs()
((_UpperCamelCase), (_UpperCamelCase), (_UpperCamelCase), (_UpperCamelCase)) : Optional[Any] = config_and_inputs
_UpperCamelCase : List[str] = {"input_ids": input_ids_a}
return config, inputs_dict
@require_tf
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :List[Any] = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
SCREAMING_SNAKE_CASE__ :Tuple = () if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :Dict = (
{
"feature-extraction": TFTransfoXLModel,
"text-classification": TFTransfoXLForSequenceClassification,
"text-generation": TFTransfoXLLMHeadModel,
"zero-shot": TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
SCREAMING_SNAKE_CASE__ :Union[str, Any] = False
SCREAMING_SNAKE_CASE__ :Tuple = False
SCREAMING_SNAKE_CASE__ :Any = False
SCREAMING_SNAKE_CASE__ :str = False
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] , __a : Dict , __a : int , __a : Tuple , __a : Dict ) -> int:
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
_UpperCamelCase : int = TFTransfoXLModelTester(self )
_UpperCamelCase : List[Any] = ConfigTester(self , config_class=__a , d_embed=37 )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]:
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]:
self.model_tester.set_seed()
_UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*__a )
def __SCREAMING_SNAKE_CASE ( self : str ) -> str:
self.model_tester.set_seed()
_UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*__a )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]:
_UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__a )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]:
_UpperCamelCase, _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCamelCase : Tuple = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
_UpperCamelCase : Any = model_class(__a )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
_UpperCamelCase : Union[str, Any] = model.get_output_embeddings()
assert isinstance(__a , tf.keras.layers.Layer )
_UpperCamelCase : Any = model.get_bias()
assert name is None
else:
_UpperCamelCase : Optional[int] = model.get_output_embeddings()
assert x is None
_UpperCamelCase : Optional[int] = model.get_bias()
assert name is None
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]:
# TODO JP: Make TransfoXL XLA compliant
pass
@slow
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase : Dict = TFTransfoXLModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]:
pass
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip("Skip test until #12651 is resolved." )
@slow
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str:
_UpperCamelCase : Union[str, Any] = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" )
# fmt: off
_UpperCamelCase : Tuple = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
_UpperCamelCase : str = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
_UpperCamelCase : Union[str, Any] = model.generate(__a , max_length=200 , do_sample=__a )
self.assertListEqual(output_ids[0].numpy().tolist() , __a )
| 707
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Tuple = "yolos"
def __init__( self : Dict , __a : Optional[Any]=768 , __a : List[Any]=12 , __a : Any=12 , __a : List[Any]=3072 , __a : Optional[int]="gelu" , __a : Dict=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.02 , __a : Optional[int]=1e-1_2 , __a : List[Any]=[512, 864] , __a : List[str]=16 , __a : str=3 , __a : Optional[Any]=True , __a : Optional[Any]=100 , __a : List[str]=True , __a : Any=False , __a : List[str]=1 , __a : str=5 , __a : Optional[Any]=2 , __a : Tuple=5 , __a : Any=2 , __a : Union[str, Any]=0.1 , **__a : List[str] , ) -> List[str]:
super().__init__(**__a )
_UpperCamelCase : Dict = hidden_size
_UpperCamelCase : Any = num_hidden_layers
_UpperCamelCase : str = num_attention_heads
_UpperCamelCase : Dict = intermediate_size
_UpperCamelCase : List[str] = hidden_act
_UpperCamelCase : List[str] = hidden_dropout_prob
_UpperCamelCase : str = attention_probs_dropout_prob
_UpperCamelCase : Tuple = initializer_range
_UpperCamelCase : List[str] = layer_norm_eps
_UpperCamelCase : Tuple = image_size
_UpperCamelCase : Tuple = patch_size
_UpperCamelCase : Dict = num_channels
_UpperCamelCase : Any = qkv_bias
_UpperCamelCase : str = num_detection_tokens
_UpperCamelCase : str = use_mid_position_embeddings
_UpperCamelCase : List[str] = auxiliary_loss
# Hungarian matcher
_UpperCamelCase : List[Any] = class_cost
_UpperCamelCase : int = bbox_cost
_UpperCamelCase : Optional[int] = giou_cost
# Loss coefficients
_UpperCamelCase : List[Any] = bbox_loss_coefficient
_UpperCamelCase : str = giou_loss_coefficient
_UpperCamelCase : Dict = eos_coefficient
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :List[str] = version.parse("1.11" )
@property
def __SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float:
return 1e-4
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int:
return 12
| 51
| 0
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {'vocab_file': 'sentencepiece.model'}
lowerCamelCase__ = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
}
lowerCamelCase__ = {
'google/rembert': 256,
}
class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :List[Any] = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ :Any = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ :Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Tuple , __a : List[Any] , __a : Optional[int]=False , __a : Dict=True , __a : Union[str, Any]=True , __a : Tuple="[CLS]" , __a : Optional[int]="[SEP]" , __a : Union[str, Any]="[UNK]" , __a : List[str]="[SEP]" , __a : Any="[PAD]" , __a : Any="[CLS]" , __a : Optional[int]="[MASK]" , **__a : Any , ) -> str:
super().__init__(
do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
_UpperCamelCase : List[str] = do_lower_case
_UpperCamelCase : List[Any] = remove_space
_UpperCamelCase : Tuple = keep_accents
_UpperCamelCase : str = vocab_file
_UpperCamelCase : int = spm.SentencePieceProcessor()
self.sp_model.Load(_SCREAMING_SNAKE_CASE )
@property
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict:
return len(self.sp_model )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]:
_UpperCamelCase : Optional[Any] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Any ) -> Optional[Any]:
_UpperCamelCase : Dict = self.__dict__.copy()
_UpperCamelCase : List[Any] = None
return state
def __setstate__( self : Any , __a : Union[str, Any] ) -> Optional[Any]:
_UpperCamelCase : List[Any] = d
_UpperCamelCase : int = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[int] , __a : Union[str, Any]=False ) -> Union[str, Any]:
_UpperCamelCase : int = self.sp_model.EncodeAsPieces(_SCREAMING_SNAKE_CASE )
return pieces
def __SCREAMING_SNAKE_CASE ( self : Any , __a : Optional[Any] ) -> Optional[int]:
return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Any ) -> Union[str, Any]:
return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[Any] ) -> List[str]:
_UpperCamelCase : Union[str, Any] = self.sp_model.decode_pieces(_SCREAMING_SNAKE_CASE )
return out_string
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Any , __a : List[Any] = None ) -> List[int]:
_UpperCamelCase : Dict = [self.sep_token_id]
_UpperCamelCase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Tuple , __a : Union[str, Any] = None , __a : List[Any] = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1]
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : Union[str, Any] = None ) -> List[int]:
_UpperCamelCase : Tuple = [self.sep_token_id]
_UpperCamelCase : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Tuple , __a : Optional[Any] = None ) -> Tuple[str]:
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
logger.error("Vocabulary path ({}) should be a directory".format(_SCREAMING_SNAKE_CASE ) )
return
_UpperCamelCase : Optional[int] = os.path.join(
_SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 708
|
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
lowerCamelCase__ = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase]
lowerCamelCase__ = {ord(char) for char in VALID_CHARS}
lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"]
def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None:
"""simple docstring"""
_UpperCamelCase : str = ""
_UpperCamelCase : int
_UpperCamelCase : int
_UpperCamelCase : int
for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ):
_UpperCamelCase : Dict = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(lowercase_ )
return decoded
def lowercase__ ( lowercase_ ) -> list[str]:
"""simple docstring"""
_UpperCamelCase : list[str] = []
for key in product(lowercase_ ,repeat=3 ):
_UpperCamelCase : int = try_key(lowercase_ ,lowercase_ )
if encoded is not None:
possibles.append(lowercase_ )
return possibles
def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]:
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int:
"""simple docstring"""
_UpperCamelCase : list[int]
_UpperCamelCase : list[str]
_UpperCamelCase : str
_UpperCamelCase : str
_UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" )
_UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )]
_UpperCamelCase : List[str] = filter_valid_chars(lowercase_ )
for common_word in COMMON_WORDS:
_UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ )
if len(lowercase_ ) == 1:
break
_UpperCamelCase : Union[str, Any] = possibles[0]
return sum(ord(lowercase_ ) for char in decoded_text )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 51
| 0
|
import argparse
import re
from flax.traverse_util import flatten_dict, unflatten_dict
from tax import checkpoints
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
from transformers.utils import logging
logging.set_verbosity_info()
# should not include what is already done by the `from_pt` argument
lowerCamelCase__ = {
'/attention/': '/0/SelfAttention/',
'/self_attention/': '/0/SelfAttention/',
'/encoder_decoder_attention/': '/1/EncDecAttention/',
'value': 'v',
'query': 'q',
'key': 'k',
'out': 'o',
'pre_self_attention_layer_norm': '0/layer_norm',
'pre_cross_attention_layer_norm': '1/layer_norm',
'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong
'token_embedder': 'shared',
'encoder_norm': 'final_layer_norm',
'decoder_norm': 'final_layer_norm',
'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight',
'router/router_weights/w/': 'router/classifier/',
'roer/roer_weights/w/': 'router/classifier/',
'logits_dense': 'lm_head',
}
def lowercase__ ( lowercase_ ) -> Dict:
"""simple docstring"""
_UpperCamelCase : str = list(s_dict.keys() )
for key in keys:
_UpperCamelCase : Any = r".*/layers_(\d+)"
_UpperCamelCase : Union[str, Any] = key
if re.match(A_ ,A_ ):
_UpperCamelCase : Optional[int] = re.sub(r"layers_(\d+)" ,r"block/\1/layer" ,A_ )
_UpperCamelCase : Optional[int] = r"(encoder|decoder)\/"
if re.match(A_ ,A_ ):
_UpperCamelCase : List[Any] = re.match(A_ ,A_ ).groups()
if groups[0] == "encoder":
_UpperCamelCase : int = re.sub(r"/mlp/" ,r"/1/mlp/" ,A_ )
_UpperCamelCase : Optional[int] = re.sub(r"/pre_mlp_layer_norm/" ,r"/1/layer_norm/" ,A_ )
elif groups[0] == "decoder":
_UpperCamelCase : List[Any] = re.sub(r"/mlp/" ,r"/2/mlp/" ,A_ )
_UpperCamelCase : Tuple = re.sub(r"/pre_mlp_layer_norm/" ,r"/2/layer_norm/" ,A_ )
# 2. Convert other classic mappings
for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items():
if old_key in new_key:
_UpperCamelCase : str = new_key.replace(A_ ,A_ )
print(F'''{key} -> {new_key}''' )
_UpperCamelCase : Union[str, Any] = s_dict.pop(A_ )
if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
_UpperCamelCase : str = s_dict[
"encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight"
].T
if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
_UpperCamelCase : Optional[int] = s_dict[
"decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight"
].T
# 3. Take extra care of the EXPERTS layer
for key in list(s_dict.keys() ):
if "expert" in key:
_UpperCamelCase : List[Any] = s_dict[key].shape[0]
_UpperCamelCase : Any = s_dict[key]
for idx in range(A_ ):
_UpperCamelCase : Union[str, Any] = expert_weihts[idx]
print(F'''{key} -> {key.replace('expert/' ,'nested fstring' )}''' )
s_dict.pop(A_ )
return s_dict
lowerCamelCase__ = {
'NUM_ENCODER_LAYERS': 'num_layers',
'NUM_DECODER_LAYERS': 'num_decoder_layers',
'NUM_HEADS': 'num_heads',
'HEAD_DIM': 'd_kv',
'EMBED_DIM': 'd_model',
'MLP_DIM': 'd_ff',
'NUM_SELECTED_EXPERTS': 'num_selected_experts',
'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers',
'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers',
'dense.MlpBlock.activations': 'feed_forward_proj',
}
def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]:
"""simple docstring"""
import regex as re
with open(A_ ,"r" ) as f:
_UpperCamelCase : List[str] = f.read()
_UpperCamelCase : Dict = re.findall(r"(.*) = ([0-9.]*)" ,A_ )
_UpperCamelCase : Union[str, Any] = {}
for param, value in regex_match:
if param in GIN_TO_CONFIG_MAPPING and value != "":
_UpperCamelCase : Optional[Any] = float(A_ ) if "." in value else int(A_ )
_UpperCamelCase : Tuple = re.findall(r"(.*activations) = \(\'(.*)\',\)" ,A_ )[0]
_UpperCamelCase : Tuple = str(activation[1] )
_UpperCamelCase : List[str] = num_experts
_UpperCamelCase : Tuple = SwitchTransformersConfig(**A_ )
return config
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_="./" ,lowercase_=8 ) -> str:
"""simple docstring"""
print(F'''Loading flax weights from : {flax_checkpoint_path}''' )
_UpperCamelCase : Optional[int] = checkpoints.load_tax_checkpoint(A_ )
if gin_file is not None:
_UpperCamelCase : Optional[int] = convert_gin_to_config(A_ ,A_ )
else:
_UpperCamelCase : Union[str, Any] = SwitchTransformersConfig.from_pretrained(A_ )
_UpperCamelCase : int = SwitchTransformersForConditionalGeneration(A_ )
_UpperCamelCase : Optional[Any] = flax_params["target"]
_UpperCamelCase : Optional[Any] = flatten_dict(A_ ,sep="/" )
_UpperCamelCase : Union[str, Any] = rename_keys(A_ )
_UpperCamelCase : Dict = unflatten_dict(A_ ,sep="/" )
# Load the flax params in the PT model
load_flax_weights_in_pytorch_model(A_ ,A_ )
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
pt_model.save_pretrained(A_ )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the"
" model architecture. If not provided, a `gin_file` has to be provided."
),
)
parser.add_argument(
"--gin_file",
default=None,
type=str,
required=False,
help="Path to the gin config file. If not provided, a `config_file` has to be passed ",
)
parser.add_argument(
"--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model."
)
parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts")
lowerCamelCase__ = parser.parse_args()
convert_flax_checkpoint_to_pytorch(
args.switch_tax_checkpoint_path,
args.config_name,
args.gin_file,
args.pytorch_dump_folder_path,
args.num_experts,
)
| 709
|
"""simple docstring"""
def lowercase__ ( lowercase_ ,lowercase_ ) -> None:
"""simple docstring"""
_UpperCamelCase : List[Any] = len(lowercase_ )
print("The following activities are selected:" )
# The first activity is always selected
_UpperCamelCase : List[Any] = 0
print(lowercase_ ,end="," )
# Consider rest of the activities
for j in range(lowercase_ ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(lowercase_ ,end="," )
_UpperCamelCase : Optional[Any] = j
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase__ = [1, 3, 0, 5, 8, 5]
lowerCamelCase__ = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 51
| 0
|
"""simple docstring"""
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
lowerCamelCase__ = logging.getLogger(__name__)
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Dict ) -> Dict:
_UpperCamelCase : Optional[int] = False
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Tuple , __a : Union[str, Any] , __a : Optional[Any] , __a : Tuple ) -> Tuple:
if not self.initialized:
_UpperCamelCase : List[str] = RagRetriever(
_A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , )
_UpperCamelCase : List[str] = True
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any:
self.retriever.index.init_index()
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[Any] , __a : str ) -> List[str]:
_UpperCamelCase : str = self.retriever._main_retrieve(_A , _A )
return doc_ids, retrieved_doc_embeds
class __SCREAMING_SNAKE_CASE ( snake_case__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , __a : Optional[Any] , __a : Any , __a : Dict , __a : List[Any] , __a : Any=None ) -> Optional[Any]:
if index is not None and index.is_initialized() and len(_A ) > 0:
raise ValueError(
"When using Ray for distributed fine-tuning, "
"you\'ll need to provide the paths instead, "
"as the dataset and the index are loaded "
"separately. More info in examples/rag/use_own_knowledge_dataset.py " )
super().__init__(
_A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , )
_UpperCamelCase : int = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(_A , _A , _A , _A )
for worker in self.retrieval_workers
] )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict:
logger.info("initializing retrieval" )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def __SCREAMING_SNAKE_CASE ( self : int , __a : str , __a : List[Any] ) -> int:
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
_UpperCamelCase : List[str] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
_UpperCamelCase : List[str] = ray.get(random_worker.retrieve.remote(_A , _A ) )
else:
_UpperCamelCase : Optional[int] = self._main_retrieve(_A , _A )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_A )
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , __a : Union[str, Any] , __a : List[Any]=None , **__a : Union[str, Any] ) -> List[str]:
return super(_A , cls ).get_tokenizers(_A , _A , **_A )
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , __a : Optional[int] , __a : int , __a : str=None , **__a : int ) -> List[str]:
_UpperCamelCase : List[str] = kwargs.pop("config" , _A ) or RagConfig.from_pretrained(_A , **_A )
_UpperCamelCase : str = RagTokenizer.from_pretrained(_A , config=_A )
_UpperCamelCase : Any = rag_tokenizer.question_encoder
_UpperCamelCase : List[Any] = rag_tokenizer.generator
if indexed_dataset is not None:
_UpperCamelCase : str = 'custom'
_UpperCamelCase : Dict = CustomHFIndex(config.retrieval_vector_size , _A )
else:
_UpperCamelCase : Any = cls._build_index(_A )
return cls(
_A , question_encoder_tokenizer=_A , generator_tokenizer=_A , retrieval_workers=_A , index=_A , )
| 710
|
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :torch.FloatTensor
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict:
super().__init__()
_UpperCamelCase : List[str] = layers_per_block
_UpperCamelCase : Dict = torch.nn.Convad(
__a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
_UpperCamelCase : int = None
_UpperCamelCase : Any = nn.ModuleList([] )
# down
_UpperCamelCase : List[str] = block_out_channels[0]
for i, down_block_type in enumerate(__a ):
_UpperCamelCase : Tuple = output_channel
_UpperCamelCase : int = block_out_channels[i]
_UpperCamelCase : int = i == len(__a ) - 1
_UpperCamelCase : Dict = get_down_block(
__a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , )
self.down_blocks.append(__a )
# mid
_UpperCamelCase : Union[str, Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , )
# out
_UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 )
_UpperCamelCase : Any = nn.SiLU()
_UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels
_UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 )
_UpperCamelCase : Optional[int] = False
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]:
_UpperCamelCase : int = x
_UpperCamelCase : Optional[int] = self.conv_in(__a )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__a : Tuple ):
def custom_forward(*__a : Any ):
return module(*__a )
return custom_forward
# down
if is_torch_version(">=" , "1.11.0" ):
for down_block in self.down_blocks:
_UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__a ) , __a , use_reentrant=__a )
# middle
_UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __a , use_reentrant=__a )
else:
for down_block in self.down_blocks:
_UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a )
# middle
_UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a )
else:
# down
for down_block in self.down_blocks:
_UpperCamelCase : int = down_block(__a )
# middle
_UpperCamelCase : int = self.mid_block(__a )
# post-process
_UpperCamelCase : Any = self.conv_norm_out(__a )
_UpperCamelCase : Any = self.conv_act(__a )
_UpperCamelCase : Optional[Any] = self.conv_out(__a )
return sample
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str:
super().__init__()
_UpperCamelCase : List[Any] = layers_per_block
_UpperCamelCase : Tuple = nn.Convad(
__a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
_UpperCamelCase : List[str] = None
_UpperCamelCase : Dict = nn.ModuleList([] )
_UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None
# mid
_UpperCamelCase : Optional[Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , )
# up
_UpperCamelCase : List[str] = list(reversed(__a ) )
_UpperCamelCase : int = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__a ):
_UpperCamelCase : int = output_channel
_UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i]
_UpperCamelCase : Optional[Any] = i == len(__a ) - 1
_UpperCamelCase : Union[str, Any] = get_up_block(
__a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , )
self.up_blocks.append(__a )
_UpperCamelCase : Optional[Any] = output_channel
# out
if norm_type == "spatial":
_UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a )
else:
_UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 )
_UpperCamelCase : str = nn.SiLU()
_UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 )
_UpperCamelCase : Dict = False
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple:
_UpperCamelCase : List[str] = z
_UpperCamelCase : Dict = self.conv_in(__a )
_UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__a : Any ):
def custom_forward(*__a : Tuple ):
return module(*__a )
return custom_forward
if is_torch_version(">=" , "1.11.0" ):
# middle
_UpperCamelCase : str = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a )
_UpperCamelCase : Optional[int] = sample.to(__a )
# up
for up_block in self.up_blocks:
_UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__a ) , __a , __a , use_reentrant=__a )
else:
# middle
_UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __a , __a )
_UpperCamelCase : Union[str, Any] = sample.to(__a )
# up
for up_block in self.up_blocks:
_UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a )
else:
# middle
_UpperCamelCase : str = self.mid_block(__a , __a )
_UpperCamelCase : int = sample.to(__a )
# up
for up_block in self.up_blocks:
_UpperCamelCase : Any = up_block(__a , __a )
# post-process
if latent_embeds is None:
_UpperCamelCase : List[str] = self.conv_norm_out(__a )
else:
_UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a )
_UpperCamelCase : Tuple = self.conv_act(__a )
_UpperCamelCase : List[Any] = self.conv_out(__a )
return sample
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]:
super().__init__()
_UpperCamelCase : Tuple = n_e
_UpperCamelCase : Tuple = vq_embed_dim
_UpperCamelCase : Union[str, Any] = beta
_UpperCamelCase : str = legacy
_UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
_UpperCamelCase : Any = remap
if self.remap is not None:
self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) )
_UpperCamelCase : Dict = self.used.shape[0]
_UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
_UpperCamelCase : Optional[int] = self.re_embed
_UpperCamelCase : Any = self.re_embed + 1
print(
F'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
F'''Using {self.unknown_index} for unknown indices.''' )
else:
_UpperCamelCase : Union[str, Any] = n_e
_UpperCamelCase : List[str] = sane_index_shape
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]:
_UpperCamelCase : str = inds.shape
assert len(__a ) > 1
_UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 )
_UpperCamelCase : Optional[Any] = self.used.to(__a )
_UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long()
_UpperCamelCase : Optional[Any] = match.argmax(-1 )
_UpperCamelCase : Any = match.sum(2 ) < 1
if self.unknown_index == "random":
_UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
_UpperCamelCase : Dict = self.unknown_index
return new.reshape(__a )
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]:
_UpperCamelCase : int = inds.shape
assert len(__a ) > 1
_UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 )
_UpperCamelCase : Optional[int] = self.used.to(__a )
if self.re_embed > self.used.shape[0]: # extra token
_UpperCamelCase : int = 0 # simply set to zero
_UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a )
return back.reshape(__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]:
# reshape z -> (batch, height, width, channel) and flatten
_UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous()
_UpperCamelCase : int = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
_UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 )
_UpperCamelCase : int = self.embedding(__a ).view(z.shape )
_UpperCamelCase : str = None
_UpperCamelCase : Any = None
# compute loss for embedding
if not self.legacy:
_UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
_UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
_UpperCamelCase : List[str] = z + (z_q - z).detach()
# reshape back to match original input shape
_UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
_UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
_UpperCamelCase : Dict = self.remap_to_used(__a )
_UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
_UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any:
# shape specifying (batch, height, width, channel)
if self.remap is not None:
_UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis
_UpperCamelCase : str = self.unmap_to_all(__a )
_UpperCamelCase : int = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
_UpperCamelCase : Optional[int] = self.embedding(__a )
if shape is not None:
_UpperCamelCase : Tuple = z_q.view(__a )
# reshape back to match original input shape
_UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int:
_UpperCamelCase : Dict = parameters
_UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 )
_UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 )
_UpperCamelCase : Union[str, Any] = deterministic
_UpperCamelCase : Dict = torch.exp(0.5 * self.logvar )
_UpperCamelCase : Any = torch.exp(self.logvar )
if self.deterministic:
_UpperCamelCase : List[Any] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor:
# make sure sample is on the same device as the parameters and has same dtype
_UpperCamelCase : List[Any] = randn_tensor(
self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype )
_UpperCamelCase : List[Any] = self.mean + self.std * sample
return x
def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]:
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int:
if self.deterministic:
return torch.Tensor([0.0] )
_UpperCamelCase : List[str] = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]:
return self.mean
| 51
| 0
|
"""simple docstring"""
def lowercase__ ( lowercase_ = 600_851_475_143 ) -> int:
"""simple docstring"""
try:
_UpperCamelCase : Dict = int(__snake_case )
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or castable to int." )
if n <= 0:
raise ValueError("Parameter n must be greater than or equal to one." )
_UpperCamelCase : int = 2
_UpperCamelCase : Union[str, Any] = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
_UpperCamelCase : List[Any] = i
while n % i == 0:
_UpperCamelCase : str = n // i
i += 1
return int(__snake_case )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 711
|
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=_UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} )
SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} )
SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"summary": Value("string" )} )
SCREAMING_SNAKE_CASE__ :str = "text"
SCREAMING_SNAKE_CASE__ :str = "summary"
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict[str, str]:
return {self.text_column: "text", self.summary_column: "summary"}
| 51
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json",
}
class __SCREAMING_SNAKE_CASE ( lowercase_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Tuple = "roc_bert"
def __init__( self : int , __a : str=3_0522 , __a : List[str]=768 , __a : Optional[Any]=12 , __a : str=12 , __a : Dict=3072 , __a : Dict="gelu" , __a : Tuple=0.1 , __a : Optional[int]=0.1 , __a : Union[str, Any]=512 , __a : int=2 , __a : Union[str, Any]=0.02 , __a : Any=1e-1_2 , __a : Any=True , __a : Dict=0 , __a : Union[str, Any]="absolute" , __a : List[str]=None , __a : Union[str, Any]=True , __a : Optional[Any]=True , __a : Dict=768 , __a : Optional[Any]=910 , __a : Optional[Any]=512 , __a : Optional[Any]=2_4858 , __a : str=True , **__a : Tuple , ) -> int:
_UpperCamelCase : List[Any] = vocab_size
_UpperCamelCase : List[str] = max_position_embeddings
_UpperCamelCase : Dict = hidden_size
_UpperCamelCase : Optional[Any] = num_hidden_layers
_UpperCamelCase : List[str] = num_attention_heads
_UpperCamelCase : Any = intermediate_size
_UpperCamelCase : Tuple = hidden_act
_UpperCamelCase : Optional[int] = hidden_dropout_prob
_UpperCamelCase : List[str] = attention_probs_dropout_prob
_UpperCamelCase : Optional[Any] = initializer_range
_UpperCamelCase : List[str] = type_vocab_size
_UpperCamelCase : Any = layer_norm_eps
_UpperCamelCase : str = use_cache
_UpperCamelCase : Optional[int] = enable_pronunciation
_UpperCamelCase : Dict = enable_shape
_UpperCamelCase : Optional[int] = pronunciation_embed_dim
_UpperCamelCase : List[str] = pronunciation_vocab_size
_UpperCamelCase : Optional[Any] = shape_embed_dim
_UpperCamelCase : Tuple = shape_vocab_size
_UpperCamelCase : List[str] = concat_input
_UpperCamelCase : Dict = position_embedding_type
_UpperCamelCase : List[str] = classifier_dropout
super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ )
| 712
|
"""simple docstring"""
def lowercase__ ( lowercase_ ) -> set:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = set()
# edges = list of graph's edges
_UpperCamelCase : Union[str, Any] = get_edges(lowercase_ )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
_UpperCamelCase, _UpperCamelCase : str = edges.pop()
chosen_vertices.add(lowercase_ )
chosen_vertices.add(lowercase_ )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(lowercase_ )
return chosen_vertices
def lowercase__ ( lowercase_ ) -> set:
"""simple docstring"""
_UpperCamelCase : List[str] = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 51
| 0
|
"""simple docstring"""
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class __SCREAMING_SNAKE_CASE ( __lowerCamelCase ):
'''simple docstring'''
@slow
@require_torch
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str:
_UpperCamelCase : Optional[int] = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" )
_UpperCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" )
_UpperCamelCase : List[str] = bertabert.config.encoder.vocab_size
_UpperCamelCase : List[Any] = tokenizer.sep_token_id
_UpperCamelCase : Union[str, Any] = tokenizer.cls_token_id
_UpperCamelCase : Dict = 128
_UpperCamelCase : List[Any] = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" )
_UpperCamelCase : str = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" )
_UpperCamelCase : Tuple = train_dataset.select(range(32 ) )
_UpperCamelCase : Tuple = val_dataset.select(range(16 ) )
_UpperCamelCase : Any = 4
def _map_to_encoder_decoder_inputs(__a : List[Any] ):
# Tokenizer will automatically set [BOS] <text> [EOS]
_UpperCamelCase : int = tokenizer(batch["article"] , padding="max_length" , truncation=UpperCamelCase_ , max_length=512 )
_UpperCamelCase : int = tokenizer(batch["highlights"] , padding="max_length" , truncation=UpperCamelCase_ , max_length=128 )
_UpperCamelCase : Tuple = inputs.input_ids
_UpperCamelCase : Any = inputs.attention_mask
_UpperCamelCase : Any = outputs.input_ids
_UpperCamelCase : Optional[Any] = outputs.input_ids.copy()
_UpperCamelCase : Union[str, Any] = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
_UpperCamelCase : Tuple = outputs.attention_mask
assert all(len(UpperCamelCase_ ) == 512 for x in inputs.input_ids )
assert all(len(UpperCamelCase_ ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__a : int ):
_UpperCamelCase : Tuple = pred.label_ids
_UpperCamelCase : Union[str, Any] = pred.predictions
# all unnecessary tokens are removed
_UpperCamelCase : Any = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
_UpperCamelCase : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
_UpperCamelCase : Dict = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCamelCase_ ) )] ) / len(UpperCamelCase_ )
return {"accuracy": accuracy}
# map train dataset
_UpperCamelCase : List[Any] = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=UpperCamelCase_ , batch_size=UpperCamelCase_ , remove_columns=["article", "highlights"] , )
train_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
# same for validation dataset
_UpperCamelCase : str = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=UpperCamelCase_ , batch_size=UpperCamelCase_ , remove_columns=["article", "highlights"] , )
val_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
_UpperCamelCase : int = self.get_auto_remove_tmp_dir()
_UpperCamelCase : Union[str, Any] = SeqaSeqTrainingArguments(
output_dir=UpperCamelCase_ , per_device_train_batch_size=UpperCamelCase_ , per_device_eval_batch_size=UpperCamelCase_ , predict_with_generate=UpperCamelCase_ , evaluation_strategy="steps" , do_train=UpperCamelCase_ , do_eval=UpperCamelCase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
_UpperCamelCase : List[Any] = SeqaSeqTrainer(
model=UpperCamelCase_ , args=UpperCamelCase_ , compute_metrics=_compute_metrics , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , tokenizer=UpperCamelCase_ , )
# start training
trainer.train()
| 713
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase__ = {
"configuration_owlvit": [
"OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"OwlViTConfig",
"OwlViTOnnxConfig",
"OwlViTTextConfig",
"OwlViTVisionConfig",
],
"processing_owlvit": ["OwlViTProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["OwlViTFeatureExtractor"]
lowerCamelCase__ = ["OwlViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OwlViTModel",
"OwlViTPreTrainedModel",
"OwlViTTextModel",
"OwlViTVisionModel",
"OwlViTForObjectDetection",
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 51
| 0
|
"""simple docstring"""
def lowercase__ ( lowercase_ = 10 ) -> List[str]:
"""simple docstring"""
if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ) or n < 0:
raise ValueError("Invalid input" )
_UpperCamelCase : List[str] = 10**n
_UpperCamelCase : Tuple = 28_433 * (pow(2 ,7_830_457 ,lowerCamelCase__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"""{solution(10) = }""")
| 714
|
"""simple docstring"""
from collections import defaultdict
from math import ceil, sqrt
def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int:
"""simple docstring"""
_UpperCamelCase : defaultdict = defaultdict(lowercase_ )
for outer_width in range(3 ,(t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
_UpperCamelCase : Any = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 )
else:
_UpperCamelCase : str = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(lowercase_ ,outer_width - 1 ,2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 51
| 0
|
"""simple docstring"""
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : List[Any] = StableDiffusionPipeline.from_pretrained(a__ ,torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
_UpperCamelCase : List[str] = load_file(a__ )
_UpperCamelCase : int = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
_UpperCamelCase : Optional[int] = key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" )
_UpperCamelCase : List[str] = pipeline.text_encoder
else:
_UpperCamelCase : Any = key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" )
_UpperCamelCase : Union[str, Any] = pipeline.unet
# find the target layer
_UpperCamelCase : List[Any] = layer_infos.pop(0 )
while len(a__ ) > -1:
try:
_UpperCamelCase : Any = curr_layer.__getattr__(a__ )
if len(a__ ) > 0:
_UpperCamelCase : Optional[int] = layer_infos.pop(0 )
elif len(a__ ) == 0:
break
except Exception:
if len(a__ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
_UpperCamelCase : int = layer_infos.pop(0 )
_UpperCamelCase : Optional[int] = []
if "lora_down" in key:
pair_keys.append(key.replace("lora_down" ,"lora_up" ) )
pair_keys.append(a__ )
else:
pair_keys.append(a__ )
pair_keys.append(key.replace("lora_up" ,"lora_down" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
_UpperCamelCase : List[str] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
_UpperCamelCase : Optional[int] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a__ ,a__ ).unsqueeze(2 ).unsqueeze(3 )
else:
_UpperCamelCase : Any = state_dict[pair_keys[0]].to(torch.floataa )
_UpperCamelCase : str = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a__ ,a__ )
# update visited list
for item in pair_keys:
visited.append(a__ )
return pipeline
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format."
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors"
)
parser.add_argument(
"--lora_prefix_text_encoder",
default="lora_te",
type=str,
help="The prefix of text encoder weight in safetensors",
)
parser.add_argument("--alpha", default=0.7_5, type=float, help="The merging ratio in W = W0 + alpha * deltaW")
parser.add_argument(
"--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not."
)
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
lowerCamelCase__ = parser.parse_args()
lowerCamelCase__ = args.base_model_path
lowerCamelCase__ = args.checkpoint_path
lowerCamelCase__ = args.dump_path
lowerCamelCase__ = args.lora_prefix_unet
lowerCamelCase__ = args.lora_prefix_text_encoder
lowerCamelCase__ = args.alpha
lowerCamelCase__ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
lowerCamelCase__ = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 715
|
"""simple docstring"""
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowerCamelCase__ = TypeVar("KEY")
lowerCamelCase__ = TypeVar("VAL")
@dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :KEY
SCREAMING_SNAKE_CASE__ :VAL
class __SCREAMING_SNAKE_CASE ( _Item ):
'''simple docstring'''
def __init__( self : List[str] ) -> None:
super().__init__(__a , __a )
def __bool__( self : Dict ) -> bool:
return False
lowerCamelCase__ = _DeletedItem()
class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ):
'''simple docstring'''
def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None:
_UpperCamelCase : str = initial_block_size
_UpperCamelCase : list[_Item | None] = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
_UpperCamelCase : List[str] = capacity_factor
_UpperCamelCase : Dict = 0
def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int:
return hash(__a ) % len(self._buckets )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int:
return (ind + 1) % len(self._buckets )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool:
_UpperCamelCase : List[Any] = self._buckets[ind]
if not stored:
_UpperCamelCase : Tuple = _Item(__a , __a )
self._len += 1
return True
elif stored.key == key:
_UpperCamelCase : Union[str, Any] = _Item(__a , __a )
return True
else:
return False
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool:
_UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(__a )
def __SCREAMING_SNAKE_CASE ( self : str ) -> bool:
if len(self._buckets ) <= self._initial_block_size:
return False
_UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None:
_UpperCamelCase : Any = self._buckets
_UpperCamelCase : List[Any] = [None] * new_size
_UpperCamelCase : List[str] = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def __SCREAMING_SNAKE_CASE ( self : int ) -> None:
self._resize(len(self._buckets ) * 2 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None:
self._resize(len(self._buckets ) // 2 )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]:
_UpperCamelCase : str = self._get_bucket_index(__a )
for _ in range(len(self._buckets ) ):
yield ind
_UpperCamelCase : Tuple = self._get_next_ind(__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None:
for ind in self._iterate_buckets(__a ):
if self._try_set(__a , __a , __a ):
break
def __setitem__( self : int , __a : KEY , __a : VAL ) -> None:
if self._is_full():
self._size_up()
self._add_item(__a , __a )
def __delitem__( self : str , __a : KEY ) -> None:
for ind in self._iterate_buckets(__a ):
_UpperCamelCase : Tuple = self._buckets[ind]
if item is None:
raise KeyError(__a )
if item is _deleted:
continue
if item.key == key:
_UpperCamelCase : List[Any] = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : str , __a : KEY ) -> VAL:
for ind in self._iterate_buckets(__a ):
_UpperCamelCase : Tuple = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(__a )
def __len__( self : List[Any] ) -> int:
return self._len
def __iter__( self : List[str] ) -> Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self : List[str] ) -> str:
_UpperCamelCase : Optional[int] = " ,".join(
F'''{item.key}: {item.val}''' for item in self._buckets if item )
return F'''HashMap({val_string})'''
| 51
| 0
|
"""simple docstring"""
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
lowerCamelCase__ = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
lowerCamelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS)
lowerCamelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING
lowerCamelCase__ = {
# used to compute the property `self.chunk_length`
"EncodecConfig": ["overlap"],
# used as `self.bert_model = BertModel(config, ...)`
"DPRConfig": True,
# not used in modeling files, but it's an important information
"FSMTConfig": ["langs"],
# used internally in the configuration class file
"GPTNeoConfig": ["attention_types"],
# used internally in the configuration class file
"EsmConfig": ["is_folding_model"],
# used during training (despite we don't have training script for these models yet)
"Mask2FormerConfig": ["ignore_value"],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
"OneFormerConfig": ["ignore_value", "norm"],
# used during preprocessing and collation, see `collating_graphormer.py`
"GraphormerConfig": ["spatial_pos_max"],
# used internally in the configuration class file
"T5Config": ["feed_forward_proj"],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
"MT5Config": ["feed_forward_proj", "tokenizer_class"],
"UMT5Config": ["feed_forward_proj", "tokenizer_class"],
# used internally in the configuration class file
"LongT5Config": ["feed_forward_proj"],
# used internally in the configuration class file
"SwitchTransformersConfig": ["feed_forward_proj"],
# having default values other than `1e-5` - we can't fix them without breaking
"BioGptConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"GLPNConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"SegformerConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"CvtConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"PerceiverConfig": ["layer_norm_eps"],
# used internally to calculate the feature size
"InformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"AutoformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate `mlp_dim`
"SamVisionConfig": ["mlp_ratio"],
# For (head) training, but so far not implemented
"ClapAudioConfig": ["num_classes"],
# Not used, but providing useful information to users
"SpeechT5HifiGanConfig": ["sampling_rate"],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
"CLIPSegConfig": True,
"DeformableDetrConfig": True,
"DetaConfig": True,
"DinatConfig": True,
"DonutSwinConfig": True,
"EfficientFormerConfig": True,
"FSMTConfig": True,
"JukeboxConfig": True,
"LayoutLMv2Config": True,
"MaskFormerSwinConfig": True,
"MT5Config": True,
"NatConfig": True,
"OneFormerConfig": True,
"PerceiverConfig": True,
"RagConfig": True,
"SpeechT5Config": True,
"SwinConfig": True,
"Swin2SRConfig": True,
"Swinv2Config": True,
"SwitchTransformersConfig": True,
"TableTransformerConfig": True,
"TapasConfig": True,
"TransfoXLConfig": True,
"UniSpeechConfig": True,
"UniSpeechSatConfig": True,
"WavLMConfig": True,
"WhisperConfig": True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
"JukeboxPriorConfig": True,
# TODO: @Younes (for `is_decoder`)
"Pix2StructTextConfig": True,
}
)
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : List[Any] = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
F'''config.{attribute}''' in modeling_source
or F'''getattr(config, "{attribute}"''' in modeling_source
or F'''getattr(self.config, "{attribute}"''' in modeling_source
):
_UpperCamelCase : Dict = True
# Deal with multi-line cases
elif (
re.search(
rF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' ,snake_case__ ,)
is not None
):
_UpperCamelCase : Any = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
_UpperCamelCase : Optional[int] = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
_UpperCamelCase : List[Any] = [
"bos_index",
"eos_index",
"pad_index",
"unk_index",
"mask_index",
"image_size",
"use_cache",
"out_features",
"out_indices",
]
_UpperCamelCase : int = ["encoder_no_repeat_ngram_size"]
# Special cases to be allowed
_UpperCamelCase : Tuple = True
if not attribute_used:
_UpperCamelCase : List[Any] = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
_UpperCamelCase : Optional[Any] = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
_UpperCamelCase : Optional[Any] = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
_UpperCamelCase : List[Any] = True
elif attribute.endswith("_token_id" ):
_UpperCamelCase : Dict = True
# configuration class specific cases
if not case_allowed:
_UpperCamelCase : Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ ,[] )
_UpperCamelCase : Optional[Any] = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def lowercase__ ( lowercase_ ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : Optional[int] = dict(inspect.signature(config_class.__init__ ).parameters )
_UpperCamelCase : Optional[int] = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]]
_UpperCamelCase : Tuple = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
_UpperCamelCase : Union[str, Any] = {}
if len(config_class.attribute_map ) > 0:
_UpperCamelCase : Dict = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
_UpperCamelCase : Optional[int] = inspect.getsourcefile(snake_case__ )
_UpperCamelCase : Union[str, Any] = os.path.dirname(snake_case__ )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
_UpperCamelCase : Optional[int] = [os.path.join(snake_case__ ,snake_case__ ) for fn in os.listdir(snake_case__ ) if fn.startswith("modeling_" )]
# Get the source code strings
_UpperCamelCase : Union[str, Any] = []
for path in modeling_paths:
if os.path.isfile(snake_case__ ):
with open(snake_case__ ) as fp:
modeling_sources.append(fp.read() )
_UpperCamelCase : Union[str, Any] = []
for config_param, default_value in zip(snake_case__ ,snake_case__ ):
# `attributes` here is all the variant names for `config_param`
_UpperCamelCase : Union[str, Any] = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ):
unused_attributes.append(attributes[0] )
return sorted(snake_case__ )
def lowercase__ ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Dict = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
_UpperCamelCase : Dict = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ) ,lambda lowercase_ : inspect.isclass(snake_case__ )
and issubclass(snake_case__ ,snake_case__ )
and inspect.getmodule(snake_case__ ) == inspect.getmodule(_config_class ) ,)
]
for config_class in config_classes_in_module:
_UpperCamelCase : int = check_config_attributes_being_used(snake_case__ )
if len(snake_case__ ) > 0:
_UpperCamelCase : str = unused_attributes
if len(snake_case__ ) > 0:
_UpperCamelCase : str = "The following configuration classes contain unused attributes in the corresponding modeling files:\n"
for name, attributes in configs_with_unused_attributes.items():
error += F'''{name}: {attributes}\n'''
raise ValueError(snake_case__ )
if __name__ == "__main__":
check_config_attributes()
| 716
|
"""simple docstring"""
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Optional[Any] , __a : list[int] ) -> None:
_UpperCamelCase : Tuple = len(__a )
_UpperCamelCase : Dict = [0] * len_array
if len_array > 0:
_UpperCamelCase : Optional[Any] = array[0]
for i in range(1 , __a ):
_UpperCamelCase : Tuple = self.prefix_sum[i - 1] + array[i]
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : int ) -> int:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> bool:
_UpperCamelCase : int = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(__a )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51
| 0
|
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
lowerCamelCase__ = TypeVar("T")
lowerCamelCase__ = TypeVar("U")
class __SCREAMING_SNAKE_CASE ( Generic[T, U] ):
'''simple docstring'''
def __init__( self : List[Any] , __a : T | None , __a : U | None ) -> Optional[Any]:
_UpperCamelCase : List[Any] = key
_UpperCamelCase : Union[str, Any] = val
_UpperCamelCase : DoubleLinkedListNode[T, U] | None = None
_UpperCamelCase : DoubleLinkedListNode[T, U] | None = None
def __repr__( self : int ) -> Dict:
return (
F'''Node: key: {self.key}, val: {self.val}, '''
F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}'''
)
class __SCREAMING_SNAKE_CASE ( Generic[T, U] ):
'''simple docstring'''
def __init__( self : Optional[Any] ) -> List[str]:
_UpperCamelCase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(UpperCAmelCase__ , UpperCAmelCase__ )
_UpperCamelCase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(UpperCAmelCase__ , UpperCAmelCase__ )
_UpperCamelCase : Any = self.rear, self.head
def __repr__( self : str ) -> int:
_UpperCamelCase : Optional[int] = ['''DoubleLinkedList''']
_UpperCamelCase : str = self.head
while node.next is not None:
rep.append(str(UpperCAmelCase__ ) )
_UpperCamelCase : Union[str, Any] = node.next
rep.append(str(self.rear ) )
return ",\n ".join(UpperCAmelCase__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : DoubleLinkedListNode[T, U] ) -> Optional[Any]:
_UpperCamelCase : Optional[Any] = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
_UpperCamelCase : Tuple = node
_UpperCamelCase : Union[str, Any] = previous
_UpperCamelCase : List[str] = node
_UpperCamelCase : Tuple = self.rear
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : DoubleLinkedListNode[T, U] ) -> Optional[int]:
if node.prev is None or node.next is None:
return None
_UpperCamelCase : Union[str, Any] = node.next
_UpperCamelCase : Dict = node.prev
_UpperCamelCase : List[str] = None
_UpperCamelCase : Optional[Any] = None
return node
class __SCREAMING_SNAKE_CASE ( Generic[T, U] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self : Dict , __a : int ) -> List[str]:
_UpperCamelCase : DoubleLinkedList[T, U] = DoubleLinkedList()
_UpperCamelCase : List[Any] = capacity
_UpperCamelCase : Tuple = 0
_UpperCamelCase : Union[str, Any] = 0
_UpperCamelCase : List[str] = 0
_UpperCamelCase : dict[T, DoubleLinkedListNode[T, U]] = {}
def __repr__( self : Tuple ) -> Optional[int]:
return (
F'''CacheInfo(hits={self.hits}, misses={self.miss}, '''
F'''capacity={self.capacity}, current size={self.num_keys})'''
)
def __contains__( self : Dict , __a : T ) -> Tuple:
return key in self.cache
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : T ) -> str:
# Note: pythonic interface would throw KeyError rather than return None
if key in self.cache:
self.hits += 1
_UpperCamelCase : DoubleLinkedListNode[T, U] = self.cache[key]
_UpperCamelCase : Optional[int] = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(UpperCAmelCase__ )
return node.val
self.miss += 1
return None
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : T , __a : U ) -> Any:
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
_UpperCamelCase : Dict = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(UpperCAmelCase__ ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
_UpperCamelCase : Dict = DoubleLinkedListNode(UpperCAmelCase__ , UpperCAmelCase__ )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
_UpperCamelCase : Dict = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
_UpperCamelCase : List[Any] = value
self.list.add(UpperCAmelCase__ )
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : Dict , __a : int = 128 ) -> int:
def cache_decorator_inner(__a : Callable[[T], U] ) -> Callable[..., U]:
def cache_decorator_wrapper(*__a : T ) -> U:
if func not in cls.decorator_function_to_instance_map:
_UpperCamelCase : str = LRUCache(UpperCAmelCase__ )
_UpperCamelCase : str = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
_UpperCamelCase : List[str] = func(*UpperCAmelCase__ )
cls.decorator_function_to_instance_map[func].put(args[0] , UpperCAmelCase__ )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(UpperCAmelCase__ , "cache_info" , UpperCAmelCase__ ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 717
|
"""simple docstring"""
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : Optional[int] = None
if token is not None:
_UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
_UpperCamelCase : Any = "636036"
_UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
_UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json()
return result["workflow_runs"]
def lowercase__ ( lowercase_ ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ )
_UpperCamelCase : Tuple = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
_UpperCamelCase : Union[str, Any] = workflow_run["id"]
break
return workflow_run_id
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ )
if workflow_run_id is not None:
_UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
_UpperCamelCase : Dict = artifacts_links[artifact_name]
download_artifact(
artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int:
"""simple docstring"""
get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ )
_UpperCamelCase : Dict = {}
for artifact_name in artifact_names:
_UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' )
if os.path.isfile(lowercase_ ):
_UpperCamelCase : int = {}
with zipfile.ZipFile(lowercase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowercase_ ):
# read the file
with z.open(lowercase_ ) as f:
_UpperCamelCase : int = f.read().decode("UTF-8" )
return results
| 51
| 0
|
"""simple docstring"""
def lowercase__ ( lowercase_ ,lowercase_ = False ) -> str:
"""simple docstring"""
if not isinstance(lowercase_ ,lowercase_ ):
_UpperCamelCase : Optional[int] = F'''Expected string as input, found {type(lowercase_ )}'''
raise ValueError(lowercase_ )
if not isinstance(lowercase_ ,lowercase_ ):
_UpperCamelCase : Union[str, Any] = F'''Expected boolean as use_pascal parameter, found {type(lowercase_ )}'''
raise ValueError(lowercase_ )
_UpperCamelCase : List[str] = input_str.split("_" )
_UpperCamelCase : Optional[int] = 0 if use_pascal else 1
_UpperCamelCase : List[str] = words[start_index:]
_UpperCamelCase : Any = [word[0].upper() + word[1:] for word in words_to_capitalize]
_UpperCamelCase : str = "" if use_pascal else words[0]
return "".join([initial_word, *capitalized_words] )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 718
|
"""simple docstring"""
import math
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int:
_UpperCamelCase : List[Any] = 0.0
_UpperCamelCase : Union[str, Any] = 0.0
for i in range(len(__a ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]:
for i in range(len(__a ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def lowercase__ ( ) -> None:
"""simple docstring"""
_UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
_UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
_UpperCamelCase : List[Any] = SelfOrganizingMap()
_UpperCamelCase : int = 3
_UpperCamelCase : List[Any] = 0.5
for _ in range(lowercase_ ):
for j in range(len(lowercase_ ) ):
# training sample
_UpperCamelCase : int = training_samples[j]
# Compute the winning vector
_UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ )
# Update the winning vector
_UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ )
# classify test sample
_UpperCamelCase : Optional[int] = [0, 0, 0, 1]
_UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ )
# results
print(F'''Clusters that the test sample belongs to : {winner}''' )
print(F'''Weights that have been trained : {weights}''' )
# running the main() function
if __name__ == "__main__":
main()
| 51
| 0
|
"""simple docstring"""
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]:
_UpperCamelCase : Tuple = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base" )
_UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("xlm-roberta-base" )
_UpperCamelCase : int = "The dog is cute and lives in the garden house"
_UpperCamelCase : Optional[Any] = jnp.array([tokenizer.encode(SCREAMING_SNAKE_CASE_ )] )
_UpperCamelCase : Optional[int] = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
_UpperCamelCase : Tuple = jnp.array(
[[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] )
_UpperCamelCase : str = model(SCREAMING_SNAKE_CASE_ )["last_hidden_state"]
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) )
| 719
|
"""simple docstring"""
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
lowerCamelCase__ = "src/transformers"
lowerCamelCase__ = "docs/source/en"
lowerCamelCase__ = "."
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]:
"""simple docstring"""
with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f:
_UpperCamelCase : Union[str, Any] = f.readlines()
# Find the start prompt.
_UpperCamelCase : Dict = 0
while not lines[start_index].startswith(lowercase_ ):
start_index += 1
start_index += 1
_UpperCamelCase : Optional[int] = start_index
while not lines[end_index].startswith(lowercase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH)
def lowercase__ ( lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ )
return [m.group(0 ) for m in matches]
def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ )
_UpperCamelCase : Union[str, Any] = (width - text_length) // 2
_UpperCamelCase : Dict = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowercase__ ( ) -> str:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
_UpperCamelCase : str = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
_UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
_UpperCamelCase : int = collections.defaultdict(lowercase_ )
_UpperCamelCase : Dict = collections.defaultdict(lowercase_ )
_UpperCamelCase : Dict = collections.defaultdict(lowercase_ )
_UpperCamelCase : int = collections.defaultdict(lowercase_ )
_UpperCamelCase : str = collections.defaultdict(lowercase_ )
# Let's lookup through all transformers object (once).
for attr_name in dir(lowercase_ ):
_UpperCamelCase : List[str] = None
if attr_name.endswith("Tokenizer" ):
_UpperCamelCase : Tuple = slow_tokenizers
_UpperCamelCase : Any = attr_name[:-9]
elif attr_name.endswith("TokenizerFast" ):
_UpperCamelCase : Optional[Any] = fast_tokenizers
_UpperCamelCase : List[str] = attr_name[:-13]
elif _re_tf_models.match(lowercase_ ) is not None:
_UpperCamelCase : List[Any] = tf_models
_UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0]
elif _re_flax_models.match(lowercase_ ) is not None:
_UpperCamelCase : Dict = flax_models
_UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0]
elif _re_pt_models.match(lowercase_ ) is not None:
_UpperCamelCase : Optional[int] = pt_models
_UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0]
if lookup_dict is not None:
while len(lowercase_ ) > 0:
if attr_name in model_name_to_prefix.values():
_UpperCamelCase : Dict = True
break
# Try again after removing the last word in the name
_UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] )
# Let's build that table!
_UpperCamelCase : Any = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
_UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
_UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns]
_UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2
# Build the table per se
_UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n"
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n"
_UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"}
for name in model_names:
_UpperCamelCase : Optional[int] = model_name_to_prefix[name]
_UpperCamelCase : Tuple = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n"
return table
def lowercase__ ( lowercase_=False ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file(
filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,)
_UpperCamelCase : Any = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCamelCase__ = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 51
| 0
|
"""simple docstring"""
from itertools import count
def lowercase__ ( lowercase_ = 50 ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Dict = [1] * min_block_length
for n in count(lowercase_ ):
fill_count_functions.append(1 )
for block_length in range(lowercase_ ,n + 1 ):
for block_start in range(n - block_length ):
fill_count_functions[n] += fill_count_functions[
n - block_start - block_length - 1
]
fill_count_functions[n] += 1
if fill_count_functions[n] > 1_000_000:
break
return n
if __name__ == "__main__":
print(f"""{solution() = }""")
| 720
|
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
lowerCamelCase__ = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
lowerCamelCase__ = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
lowerCamelCase__ = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]:
"""simple docstring"""
_UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] )
return (item, float(lowercase_ ))
def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]:
"""simple docstring"""
_UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 )
_UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:]
_UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def lowercase__ ( lowercase_ ,lowercase_ ) -> str:
"""simple docstring"""
_UpperCamelCase : int = list(lowercase_ )
if random.uniform(0 ,1 ) < MUTATION_PROBABILITY:
_UpperCamelCase : int = random.choice(lowercase_ )
return "".join(lowercase_ )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = []
# Generate more children proportionally to the fitness score.
_UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1
_UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n
for _ in range(lowercase_ ):
_UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0]
_UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ )
# Append new string to the population list.
pop.append(mutate(lowercase_ ,lowercase_ ) )
pop.append(mutate(lowercase_ ,lowercase_ ) )
return pop
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]:
"""simple docstring"""
if N_POPULATION < N_SELECTED:
_UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(lowercase_ )
# Verify that the target contains no genes besides the ones inside genes variable.
_UpperCamelCase : int = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
_UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(lowercase_ )
# Generate random starting population.
_UpperCamelCase : Union[str, Any] = []
for _ in range(lowercase_ ):
population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) )
# Just some logs to know what the algorithms is doing.
_UpperCamelCase, _UpperCamelCase : str = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowercase_ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
_UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population]
# Check if there is a matching evolution.
_UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'''\nGeneration: {generation}'''
F'''\nTotal Population:{total_population}'''
F'''\nBest score: {population_score[0][1]}'''
F'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
_UpperCamelCase : str = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowercase_ )
# Normalize population score to be between 0 and 1.
_UpperCamelCase : str = [
(item, score / len(lowercase_ )) for item, score in population_score
]
# This is selection
for i in range(lowercase_ ):
population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowercase_ ) > N_POPULATION:
break
if __name__ == "__main__":
lowerCamelCase__ = (
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
)
lowerCamelCase__ = list(
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list)
print(
f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"""
)
| 51
| 0
|
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Union[str, Any] = StableDiffusionSAGPipeline
SCREAMING_SNAKE_CASE__ :Dict = TEXT_TO_IMAGE_PARAMS
SCREAMING_SNAKE_CASE__ :Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ :Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE__ :Any = TEXT_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE__ :Union[str, Any] = False
def __SCREAMING_SNAKE_CASE ( self : int ) -> Tuple:
torch.manual_seed(0 )
_UpperCamelCase : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
_UpperCamelCase : Union[str, Any] = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , )
torch.manual_seed(0 )
_UpperCamelCase : Dict = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
torch.manual_seed(0 )
_UpperCamelCase : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
_UpperCamelCase : str = CLIPTextModel(UpperCAmelCase__ )
_UpperCamelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
_UpperCamelCase : int = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __SCREAMING_SNAKE_CASE ( self : Any , __a : Any , __a : List[str]=0 ) -> Tuple:
if str(UpperCAmelCase__ ).startswith("mps" ):
_UpperCamelCase : List[Any] = torch.manual_seed(UpperCAmelCase__ )
else:
_UpperCamelCase : Optional[Any] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
_UpperCamelCase : Any = {
'''prompt''': '''.''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 1.0,
'''sag_scale''': 1.0,
'''output_type''': '''numpy''',
}
return inputs
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int:
_UpperCamelCase : int = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" )
_UpperCamelCase : Tuple = sag_pipe.to(UpperCAmelCase__ )
sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_UpperCamelCase : str = '''.'''
_UpperCamelCase : int = torch.manual_seed(0 )
_UpperCamelCase : Optional[int] = sag_pipe(
[prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" )
_UpperCamelCase : str = output.images
_UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_UpperCamelCase : Optional[int] = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def __SCREAMING_SNAKE_CASE ( self : str ) -> int:
_UpperCamelCase : Any = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" )
_UpperCamelCase : Tuple = sag_pipe.to(UpperCAmelCase__ )
sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_UpperCamelCase : Optional[int] = '''.'''
_UpperCamelCase : List[Any] = torch.manual_seed(0 )
_UpperCamelCase : Optional[int] = sag_pipe(
[prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" )
_UpperCamelCase : List[Any] = output.images
_UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_UpperCamelCase : Any = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple:
_UpperCamelCase : List[str] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" )
_UpperCamelCase : List[str] = sag_pipe.to(UpperCAmelCase__ )
sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_UpperCamelCase : List[str] = '''.'''
_UpperCamelCase : List[str] = torch.manual_seed(0 )
_UpperCamelCase : List[Any] = sag_pipe(
[prompt] , width=768 , height=512 , generator=UpperCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , )
_UpperCamelCase : Any = output.images
assert image.shape == (1, 512, 768, 3)
| 721
|
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = ["model.decoder.embed_positions.weights"]
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
if "emb" in name:
_UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" )
if "transformer" in name:
_UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" )
if "cross_attention" in name:
_UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" )
if "linear1" in name:
_UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" )
if "linear2" in name:
_UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" )
if "norm1" in name:
_UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" )
if "norm_cross" in name:
_UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" )
if "norm2" in name:
_UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" )
if "out_norm" in name:
_UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" )
if "linears" in name:
_UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
_UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" )
return name
def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]:
"""simple docstring"""
_UpperCamelCase : str = list(state_dict.keys() )
_UpperCamelCase : Optional[Any] = {}
for key in keys:
_UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ )
_UpperCamelCase : List[Any] = rename_keys(lowercase_ )
if "in_proj_weight" in key:
# split fused qkv proj
_UpperCamelCase : Tuple = val[:hidden_size, :]
_UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :]
_UpperCamelCase : Optional[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
_UpperCamelCase : Optional[Any] = val
else:
_UpperCamelCase : List[str] = val
return state_dict, enc_dec_proj_state_dict
def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
_UpperCamelCase : List[Any] = 1_024
_UpperCamelCase : List[str] = 24
_UpperCamelCase : Any = 16
elif checkpoint == "medium":
_UpperCamelCase : Tuple = 1_536
_UpperCamelCase : Dict = 48
_UpperCamelCase : Tuple = 24
elif checkpoint == "large":
_UpperCamelCase : int = 2_048
_UpperCamelCase : Optional[int] = 48
_UpperCamelCase : Dict = 32
else:
raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' )
_UpperCamelCase : str = MusicgenDecoderConfig(
hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,)
return config
@torch.no_grad()
def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ )
_UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ )
_UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict()
_UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict(
lowercase_ ,hidden_size=decoder_config.hidden_size )
_UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" )
_UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" )
_UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
_UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' )
if len(lowercase_ ) > 0:
raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' )
# init the composite model
_UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowercase_ )
# check we can do a forward pass
_UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 )
_UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 )
with torch.no_grad():
_UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
_UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" )
_UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" )
_UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ )
# set the appropriate bos/pad token ids
_UpperCamelCase : str = 2_048
_UpperCamelCase : str = 2_048
# set other default generation config params
_UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate )
_UpperCamelCase : List[str] = True
_UpperCamelCase : int = 3.0
if pytorch_dump_folder is not None:
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' )
model.save_pretrained(lowercase_ )
processor.save_pretrained(lowercase_ )
if repo_id:
logger.info(F'''Pushing model {checkpoint} to {repo_id}''' )
model.push_to_hub(lowercase_ )
processor.push_to_hub(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
lowerCamelCase__ = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 51
| 0
|
"""simple docstring"""
import requests
def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = {"Content-Type": "application/json"}
_UpperCamelCase : List[str] = requests.post(_lowerCAmelCase ,json={"text": message_body} ,headers=_lowerCAmelCase )
if response.status_code != 200:
_UpperCamelCase : Any = (
"Request to slack returned an error "
F'''{response.status_code}, the response is:\n{response.text}'''
)
raise ValueError(_lowerCAmelCase )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
| 700
|
"""simple docstring"""
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
lowerCamelCase__ = input("Enter image url: ").strip()
print(f"""Downloading image from {url} ...""")
lowerCamelCase__ = BeautifulSoup(requests.get(url).content, "html.parser")
# The image URL is in the content field of the first meta tag with property og:image
lowerCamelCase__ = soup.find("meta", {"property": "og:image"})["content"]
lowerCamelCase__ = requests.get(image_url).content
lowerCamelCase__ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"""
with open(file_name, "wb") as fp:
fp.write(image_data)
print(f"""Done. Image saved to disk as {file_name}.""")
| 51
| 0
|
"""simple docstring"""
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :int = AutoencoderKL
SCREAMING_SNAKE_CASE__ :List[str] = "sample"
SCREAMING_SNAKE_CASE__ :List[Any] = 1e-2
@property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any:
_UpperCamelCase : str = 4
_UpperCamelCase : int = 3
_UpperCamelCase : List[Any] = (32, 32)
_UpperCamelCase : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase )
return {"sample": image}
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]:
return (3, 32, 32)
@property
def __SCREAMING_SNAKE_CASE ( self : str ) -> str:
return (3, 32, 32)
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict:
_UpperCamelCase : int = {
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 4,
}
_UpperCamelCase : str = self.dummy_input
return init_dict, inputs_dict
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
pass
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any:
pass
@unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict:
_UpperCamelCase : int = self.prepare_init_args_and_inputs_for_common()
_UpperCamelCase : Tuple = self.model_class(**__lowerCamelCase )
model.to(__lowerCamelCase )
assert not model.is_gradient_checkpointing and model.training
_UpperCamelCase : Tuple = model(**__lowerCamelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
_UpperCamelCase : Optional[Any] = torch.randn_like(__lowerCamelCase )
_UpperCamelCase : Tuple = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
_UpperCamelCase : str = self.model_class(**__lowerCamelCase )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(__lowerCamelCase )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
_UpperCamelCase : Dict = model_a(**__lowerCamelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
_UpperCamelCase : Any = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1e-5 )
_UpperCamelCase : List[str] = dict(model.named_parameters() )
_UpperCamelCase : Optional[Any] = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]:
_UpperCamelCase : str = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertEqual(len(loading_info["missing_keys"] ) , 0 )
model.to(__lowerCamelCase )
_UpperCamelCase : Optional[int] = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]:
_UpperCamelCase : str = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" )
_UpperCamelCase : Tuple = model.to(__lowerCamelCase )
model.eval()
if torch_device == "mps":
_UpperCamelCase : Union[str, Any] = torch.manual_seed(0 )
else:
_UpperCamelCase : Any = torch.Generator(device=__lowerCamelCase ).manual_seed(0 )
_UpperCamelCase : Optional[int] = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
_UpperCamelCase : Dict = image.to(__lowerCamelCase )
with torch.no_grad():
_UpperCamelCase : List[Any] = model(__lowerCamelCase , sample_posterior=__lowerCamelCase , generator=__lowerCamelCase ).sample
_UpperCamelCase : Optional[Any] = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
_UpperCamelCase : List[str] = torch.tensor(
[
-4.0_0_7_8e-0_1,
-3.8_3_2_3e-0_4,
-1.2_6_8_1e-0_1,
-1.1_4_6_2e-0_1,
2.0_0_9_5e-0_1,
1.0_8_9_3e-0_1,
-8.8_2_4_7e-0_2,
-3.0_3_6_1e-0_1,
-9.8_6_4_4e-0_3,
] )
elif torch_device == "cpu":
_UpperCamelCase : str = torch.tensor(
[-0.13_52, 0.08_78, 0.04_19, -0.08_18, -0.10_69, 0.06_88, -0.14_58, -0.44_46, -0.00_26] )
else:
_UpperCamelCase : Any = torch.tensor(
[-0.24_21, 0.46_42, 0.25_07, -0.04_38, 0.06_82, 0.31_60, -0.20_18, -0.07_27, 0.24_85] )
self.assertTrue(torch_all_close(__lowerCamelCase , __lowerCamelCase , rtol=1e-2 ) )
@slow
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Union[str, Any] , __a : str ) -> List[Any]:
return F'''gaussian_noise_s={seed}_shape={'_'.join([str(__lowerCamelCase ) for s in shape] )}.npy'''
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __SCREAMING_SNAKE_CASE ( self : int , __a : Union[str, Any]=0 , __a : Tuple=(4, 3, 512, 512) , __a : Tuple=False ) -> Any:
_UpperCamelCase : Optional[int] = torch.floataa if fpaa else torch.floataa
_UpperCamelCase : Dict = torch.from_numpy(load_hf_numpy(self.get_file_format(__lowerCamelCase , __lowerCamelCase ) ) ).to(__lowerCamelCase ).to(__lowerCamelCase )
return image
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict="CompVis/stable-diffusion-v1-4" , __a : int=False ) -> List[str]:
_UpperCamelCase : Dict = '''fp16''' if fpaa else None
_UpperCamelCase : Optional[Any] = torch.floataa if fpaa else torch.floataa
_UpperCamelCase : List[Any] = AutoencoderKL.from_pretrained(
__lowerCamelCase , subfolder="vae" , torch_dtype=__lowerCamelCase , revision=__lowerCamelCase , )
model.to(__lowerCamelCase ).eval()
return model
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[Any]=0 ) -> str:
if torch_device == "mps":
return torch.manual_seed(__lowerCamelCase )
return torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
@parameterized.expand(
[
# fmt: off
[33, [-0.16_03, 0.98_78, -0.04_95, -0.07_90, -0.27_09, 0.83_75, -0.20_60, -0.08_24], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]],
[47, [-0.23_76, 0.11_68, 0.13_32, -0.48_40, -0.25_08, -0.07_91, -0.04_93, -0.40_89], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]],
# fmt: on
] )
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : int , __a : List[Any] ) -> Union[str, Any]:
_UpperCamelCase : Optional[int] = self.get_sd_vae_model()
_UpperCamelCase : Any = self.get_sd_image(__lowerCamelCase )
_UpperCamelCase : List[str] = self.get_generator(__lowerCamelCase )
with torch.no_grad():
_UpperCamelCase : Dict = model(__lowerCamelCase , generator=__lowerCamelCase , sample_posterior=__lowerCamelCase ).sample
assert sample.shape == image.shape
_UpperCamelCase : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_UpperCamelCase : Any = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(__lowerCamelCase , __lowerCamelCase , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.05_13, 0.02_89, 1.37_99, 0.21_66, -0.25_73, -0.08_71, 0.51_03, -0.09_99]],
[47, [-0.41_28, -0.13_20, -0.37_04, 0.19_65, -0.41_16, -0.23_32, -0.33_40, 0.22_47]],
# fmt: on
] )
@require_torch_gpu
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[Any] , __a : str ) -> Dict:
_UpperCamelCase : Union[str, Any] = self.get_sd_vae_model(fpaa=__lowerCamelCase )
_UpperCamelCase : List[str] = self.get_sd_image(__lowerCamelCase , fpaa=__lowerCamelCase )
_UpperCamelCase : List[Any] = self.get_generator(__lowerCamelCase )
with torch.no_grad():
_UpperCamelCase : Optional[Any] = model(__lowerCamelCase , generator=__lowerCamelCase , sample_posterior=__lowerCamelCase ).sample
assert sample.shape == image.shape
_UpperCamelCase : Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_UpperCamelCase : Any = torch.tensor(__lowerCamelCase )
assert torch_all_close(__lowerCamelCase , __lowerCamelCase , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.16_09, 0.98_66, -0.04_87, -0.07_77, -0.27_16, 0.83_68, -0.20_55, -0.08_14], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]],
[47, [-0.23_77, 0.11_47, 0.13_33, -0.48_41, -0.25_06, -0.08_05, -0.04_91, -0.40_85], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]],
# fmt: on
] )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Tuple , __a : Any , __a : Any ) -> Optional[Any]:
_UpperCamelCase : int = self.get_sd_vae_model()
_UpperCamelCase : Dict = self.get_sd_image(__lowerCamelCase )
with torch.no_grad():
_UpperCamelCase : Tuple = model(__lowerCamelCase ).sample
assert sample.shape == image.shape
_UpperCamelCase : Dict = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_UpperCamelCase : List[Any] = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(__lowerCamelCase , __lowerCamelCase , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.20_51, -0.18_03, -0.23_11, -0.21_14, -0.32_92, -0.35_74, -0.29_53, -0.33_23]],
[37, [-0.26_32, -0.26_25, -0.21_99, -0.27_41, -0.45_39, -0.49_90, -0.37_20, -0.49_25]],
# fmt: on
] )
@require_torch_gpu
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Dict , __a : List[str] ) -> Any:
_UpperCamelCase : Tuple = self.get_sd_vae_model()
_UpperCamelCase : Union[str, Any] = self.get_sd_image(__lowerCamelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_UpperCamelCase : str = model.decode(__lowerCamelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
_UpperCamelCase : Dict = sample[-1, -2:, :2, -2:].flatten().cpu()
_UpperCamelCase : Any = torch.tensor(__lowerCamelCase )
assert torch_all_close(__lowerCamelCase , __lowerCamelCase , atol=1e-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.03_69, 0.02_07, -0.07_76, -0.06_82, -0.17_47, -0.19_30, -0.14_65, -0.20_39]],
[16, [-0.16_28, -0.21_34, -0.27_47, -0.26_42, -0.37_74, -0.44_04, -0.36_87, -0.42_77]],
# fmt: on
] )
@require_torch_gpu
def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : str ) -> Optional[int]:
_UpperCamelCase : Any = self.get_sd_vae_model(fpaa=__lowerCamelCase )
_UpperCamelCase : Dict = self.get_sd_image(__lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=__lowerCamelCase )
with torch.no_grad():
_UpperCamelCase : Optional[Any] = model.decode(__lowerCamelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
_UpperCamelCase : Dict = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_UpperCamelCase : Union[str, Any] = torch.tensor(__lowerCamelCase )
assert torch_all_close(__lowerCamelCase , __lowerCamelCase , atol=5e-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Union[str, Any] ) -> Any:
_UpperCamelCase : Any = self.get_sd_vae_model(fpaa=__lowerCamelCase )
_UpperCamelCase : str = self.get_sd_image(__lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=__lowerCamelCase )
with torch.no_grad():
_UpperCamelCase : Any = model.decode(__lowerCamelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_UpperCamelCase : Optional[Any] = model.decode(__lowerCamelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(__lowerCamelCase , __lowerCamelCase , atol=1e-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Tuple ) -> Optional[Any]:
_UpperCamelCase : Optional[int] = self.get_sd_vae_model()
_UpperCamelCase : Dict = self.get_sd_image(__lowerCamelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_UpperCamelCase : Tuple = model.decode(__lowerCamelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_UpperCamelCase : Optional[Any] = model.decode(__lowerCamelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(__lowerCamelCase , __lowerCamelCase , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.30_01, 0.09_18, -2.69_84, -3.97_20, -3.20_99, -5.03_53, 1.73_38, -0.20_65, 3.42_67]],
[47, [-1.50_30, -4.38_71, -6.03_55, -9.11_57, -1.66_61, -2.78_53, 2.16_07, -5.08_23, 2.56_33]],
# fmt: on
] )
def __SCREAMING_SNAKE_CASE ( self : str , __a : List[Any] , __a : Optional[int] ) -> List[str]:
_UpperCamelCase : Tuple = self.get_sd_vae_model()
_UpperCamelCase : Tuple = self.get_sd_image(__lowerCamelCase )
_UpperCamelCase : Optional[Any] = self.get_generator(__lowerCamelCase )
with torch.no_grad():
_UpperCamelCase : List[Any] = model.encode(__lowerCamelCase ).latent_dist
_UpperCamelCase : int = dist.sample(generator=__lowerCamelCase )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
_UpperCamelCase : Optional[int] = sample[0, -1, -3:, -3:].flatten().cpu()
_UpperCamelCase : int = torch.tensor(__lowerCamelCase )
_UpperCamelCase : Any = 3e-3 if torch_device != '''mps''' else 1e-2
assert torch_all_close(__lowerCamelCase , __lowerCamelCase , atol=__lowerCamelCase )
| 701
|
"""simple docstring"""
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(".")
def lowercase__ ( lowercase_ ) -> int:
"""simple docstring"""
_UpperCamelCase : Any = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
"`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got "
F'''{test_file} instead.''' )
_UpperCamelCase : str = components[-1]
if not test_fn.endswith("py" ):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith("test_modeling_" ):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
_UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )]
_UpperCamelCase : List[str] = ".".join(lowercase_ )
return test_module_path
def lowercase__ ( lowercase_ ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = get_module_path(lowercase_ )
_UpperCamelCase : str = importlib.import_module(lowercase_ )
return test_module
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = []
_UpperCamelCase : List[Any] = get_test_module(lowercase_ )
for attr in dir(lowercase_ ):
if attr.endswith("ModelTester" ):
tester_classes.append(getattr(lowercase_ ,lowercase_ ) )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = []
_UpperCamelCase : Any = get_test_module(lowercase_ )
for attr in dir(lowercase_ ):
_UpperCamelCase : int = getattr(lowercase_ ,lowercase_ )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
_UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] )
if len(lowercase_ ) > 0:
test_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Dict = get_test_classes(lowercase_ )
_UpperCamelCase : int = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : List[str] = test_class()
if hasattr(lowercase_ ,"setUp" ):
test.setUp()
_UpperCamelCase : Tuple = None
if hasattr(lowercase_ ,"model_tester" ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
_UpperCamelCase : Tuple = test.model_tester.__class__
return model_tester
def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : str = get_test_classes(lowercase_ )
_UpperCamelCase : Dict = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict:
"""simple docstring"""
_UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ )
_UpperCamelCase : List[Any] = []
for test_class in test_classes:
_UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ )
if tester_class is not None:
tester_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Any = get_test_classes(lowercase_ )
_UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes}
return test_tester_mapping
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : List[Any] = get_model_classes(lowercase_ )
_UpperCamelCase : Optional[int] = {
model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes
}
return model_test_mapping
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ )
_UpperCamelCase : Tuple = {
model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes
}
return model_to_tester_mapping
def lowercase__ ( lowercase_ ) -> Optional[int]:
"""simple docstring"""
if isinstance(lowercase_ ,lowercase_ ):
return o
elif isinstance(lowercase_ ,lowercase_ ):
return o.__name__
elif isinstance(lowercase_ ,(list, tuple) ):
return [to_json(lowercase_ ) for x in o]
elif isinstance(lowercase_ ,lowercase_ ):
return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()}
else:
return o
| 51
| 0
|
from queue import PriorityQueue
from typing import Any
import numpy as np
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,) -> float | int:
"""simple docstring"""
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
_UpperCamelCase : List[str] = cst_fwd.get(UpperCamelCase__ ,np.inf )
_UpperCamelCase : str = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
_UpperCamelCase : List[Any] = new_cost_f
_UpperCamelCase : Tuple = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
_UpperCamelCase : Any = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> int:
"""simple docstring"""
_UpperCamelCase : Any = -1
_UpperCamelCase : Dict = set()
_UpperCamelCase : int = set()
_UpperCamelCase : Tuple = {source: 0}
_UpperCamelCase : Optional[Any] = {destination: 0}
_UpperCamelCase : Dict = {source: None}
_UpperCamelCase : List[Any] = {destination: None}
_UpperCamelCase : List[Any] = PriorityQueue()
_UpperCamelCase : int = PriorityQueue()
_UpperCamelCase : Dict = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
_UpperCamelCase, _UpperCamelCase : Optional[int] = queue_forward.get()
visited_forward.add(UpperCamelCase__ )
_UpperCamelCase, _UpperCamelCase : str = queue_backward.get()
visited_backward.add(UpperCamelCase__ )
_UpperCamelCase : str = pass_and_relaxation(
UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,)
_UpperCamelCase : List[str] = pass_and_relaxation(
UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,)
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
_UpperCamelCase : Any = shortest_distance
return shortest_path_distance
lowerCamelCase__ = {
"B": [["C", 1]],
"C": [["D", 1]],
"D": [["F", 1]],
"E": [["B", 1], ["G", 2]],
"F": [],
"G": [["F", 1]],
}
lowerCamelCase__ = {
"B": [["E", 1]],
"C": [["B", 1]],
"D": [["C", 1]],
"F": [["D", 1], ["G", 1]],
"E": [[None, np.inf]],
"G": [["E", 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 702
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCamelCase__ = {
"configuration_mask2former": [
"MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Mask2FormerConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["Mask2FormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"Mask2FormerForUniversalSegmentation",
"Mask2FormerModel",
"Mask2FormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 51
| 0
|
"""simple docstring"""
def lowercase__ ( lowercase_ ) -> Dict:
"""simple docstring"""
_UpperCamelCase : Tuple = generate_pascal_triangle(__SCREAMING_SNAKE_CASE )
for row_idx in range(__SCREAMING_SNAKE_CASE ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=" " )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] ,end=" " )
else:
print(triangle[row_idx][col_idx] ,end="" )
print()
def lowercase__ ( lowercase_ ) -> Optional[int]:
"""simple docstring"""
if not isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ):
raise TypeError("The input value of 'num_rows' should be 'int'" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"The input value of 'num_rows' should be greater than or equal to 0" )
_UpperCamelCase : list[list[int]] = []
for current_row_idx in range(__SCREAMING_SNAKE_CASE ):
_UpperCamelCase : Dict = populate_current_row(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
triangle.append(__SCREAMING_SNAKE_CASE )
return triangle
def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : Dict = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
_UpperCamelCase : Union[str, Any] = 1, 1
for current_col_idx in range(1 ,__SCREAMING_SNAKE_CASE ):
calculate_current_element(
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
return current_row
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,) -> Dict:
"""simple docstring"""
_UpperCamelCase : Dict = triangle[current_row_idx - 1][current_col_idx - 1]
_UpperCamelCase : Optional[Any] = triangle[current_row_idx - 1][current_col_idx]
_UpperCamelCase : List[Any] = above_to_left_elt + above_to_right_elt
def lowercase__ ( lowercase_ ) -> Tuple:
"""simple docstring"""
if not isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ):
raise TypeError("The input value of 'num_rows' should be 'int'" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"The input value of 'num_rows' should be greater than or equal to 0" )
_UpperCamelCase : list[list[int]] = [[1]]
for row_index in range(1 ,__SCREAMING_SNAKE_CASE ):
_UpperCamelCase : Any = [0] + result[-1] + [0]
_UpperCamelCase : Dict = row_index + 1
# Calculate the number of distinct elements in a row
_UpperCamelCase : Any = sum(divmod(__SCREAMING_SNAKE_CASE ,2 ) )
_UpperCamelCase : Tuple = [
temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 )
]
_UpperCamelCase : Dict = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
_UpperCamelCase : Optional[int] = row_first_half + row_second_half
result.append(__SCREAMING_SNAKE_CASE )
return result
def lowercase__ ( ) -> Optional[int]:
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowercase_ ,lowercase_ ) -> None:
_UpperCamelCase : int = F'''{func.__name__}({value})'''
_UpperCamelCase : List[Any] = timeit(F'''__main__.{call}''' ,setup="import __main__" )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(F'''{call:38} -- {timing:.4f} seconds''' )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 703
|
"""simple docstring"""
lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCamelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 51
| 0
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any , __a : str , __a : Dict=7 , __a : Optional[int]=3 , __a : Optional[Any]=18 , __a : Union[str, Any]=30 , __a : Union[str, Any]=400 , __a : Tuple=True , __a : Union[str, Any]=None , __a : Any=True , ) -> Any:
_UpperCamelCase : Any = size if size is not None else {"height": 18, "width": 18}
_UpperCamelCase : List[Any] = parent
_UpperCamelCase : str = batch_size
_UpperCamelCase : Optional[int] = num_channels
_UpperCamelCase : Union[str, Any] = image_size
_UpperCamelCase : int = min_resolution
_UpperCamelCase : Dict = max_resolution
_UpperCamelCase : Union[str, Any] = do_resize
_UpperCamelCase : Optional[int] = size
_UpperCamelCase : Union[str, Any] = apply_ocr
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[int] = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def __SCREAMING_SNAKE_CASE ( self : str ) -> Any:
_UpperCamelCase : Optional[int] = LayoutLMvaImageProcessingTester(self )
@property
def __SCREAMING_SNAKE_CASE ( self : int ) -> Dict:
return self.image_processor_tester.prepare_image_processor_dict()
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict:
_UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , "do_resize" ) )
self.assertTrue(hasattr(A_ , "size" ) )
self.assertTrue(hasattr(A_ , "apply_ocr" ) )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]:
_UpperCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"height": 18, "width": 18} )
_UpperCamelCase : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"height": 42, "width": 42} )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]:
pass
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
# Initialize image_processing
_UpperCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
_UpperCamelCase : Tuple = image_processing(image_inputs[0] , return_tensors="pt" )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
self.assertIsInstance(encoding.words , A_ )
self.assertIsInstance(encoding.boxes , A_ )
# Test batched
_UpperCamelCase : Tuple = image_processing(A_ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple:
# Initialize image_processing
_UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
_UpperCamelCase : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
_UpperCamelCase : str = image_processing(A_ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple:
# Initialize image_processing
_UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
_UpperCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
_UpperCamelCase : Tuple = image_processing(A_ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int:
# with apply_OCR = True
_UpperCamelCase : int = LayoutLMvaImageProcessor()
from datasets import load_dataset
_UpperCamelCase : Optional[Any] = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" )
_UpperCamelCase : Union[str, Any] = Image.open(ds[0]["file"] ).convert("RGB" )
_UpperCamelCase : int = image_processing(A_ , return_tensors="pt" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
_UpperCamelCase : int = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231
_UpperCamelCase : int = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , A_ )
self.assertListEqual(encoding.boxes , A_ )
# with apply_OCR = False
_UpperCamelCase : Any = LayoutLMvaImageProcessor(apply_ocr=A_ )
_UpperCamelCase : Optional[int] = image_processing(A_ , return_tensors="pt" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
| 704
|
"""simple docstring"""
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
_UpperCamelCase : Tuple = tempfile.mkdtemp()
_UpperCamelCase : str = 5
# Realm tok
_UpperCamelCase : Tuple = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"test",
"question",
"this",
"is",
"the",
"first",
"second",
"third",
"fourth",
"fifth",
"record",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
_UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" )
os.makedirs(__a , exist_ok=__a )
_UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
_UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" )
os.makedirs(__a , exist_ok=__a )
def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer:
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict:
shutil.rmtree(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]:
_UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records )
return config
def __SCREAMING_SNAKE_CASE ( self : int ) -> int:
_UpperCamelCase : Any = Dataset.from_dict(
{
"id": ["0", "1"],
"question": ["foo", "bar"],
"answers": [["Foo", "Bar"], ["Bar"]],
} )
return dataset
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str:
_UpperCamelCase : int = np.array(
[
b"This is the first record",
b"This is the second record",
b"This is the third record",
b"This is the fourth record",
b"This is the fifth record",
b"This is a longer longer longer record",
] , dtype=__a , )
return block_records
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]:
_UpperCamelCase : List[str] = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple:
_UpperCamelCase : Tuple = self.get_config()
_UpperCamelCase : int = self.get_dummy_retriever()
_UpperCamelCase : Tuple = retriever.tokenizer
_UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" )
_UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids
_UpperCamelCase : List[str] = tokenizer(
["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids
_UpperCamelCase : str = config.reader_seq_len
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = retriever(
__a , __a , answer_ids=__a , max_length=__a , return_tensors="np" )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]:
_UpperCamelCase : Any = self.get_config()
_UpperCamelCase : Dict = self.get_dummy_retriever()
_UpperCamelCase : Dict = retriever.tokenizer
_UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" )
_UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids
_UpperCamelCase : str = tokenizer(
["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids
_UpperCamelCase : Union[str, Any] = config.reader_seq_len
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = retriever(
__a , __a , answer_ids=__a , max_length=__a , return_tensors="np" )
self.assertEqual([False, True, True] , __a )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]:
_UpperCamelCase : List[Any] = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) )
# Test local path
_UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) )
self.assertEqual(retriever.block_records[0] , b"This is the first record" )
# Test mocked remote path
with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download:
_UpperCamelCase : List[Any] = os.path.join(
os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME )
_UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" )
self.assertEqual(retriever.block_records[0] , b"This is the first record" )
| 51
| 0
|
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( lowercase_ ) -> list[int]:
"""simple docstring"""
if len(_lowerCamelCase ) == 0:
return array
_UpperCamelCase : Optional[int] = min(_lowerCamelCase ), max(_lowerCamelCase )
# Compute the variables
_UpperCamelCase : Any = _max - _min + 1
_UpperCamelCase : List[str] = [0] * holes_range, [0] * holes_range
# Make the sorting.
for i in array:
_UpperCamelCase : Union[str, Any] = i - _min
_UpperCamelCase : str = i
holes_repeat[index] += 1
# Makes the array back by replacing the numbers.
_UpperCamelCase : List[Any] = 0
for i in range(_lowerCamelCase ):
while holes_repeat[i] > 0:
_UpperCamelCase : Tuple = holes[i]
index += 1
holes_repeat[i] -= 1
# Returns the sorted array.
return array
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase__ = input("Enter numbers separated by comma:\n")
lowerCamelCase__ = [int(x) for x in user_input.split(",")]
print(pigeon_sort(unsorted))
| 705
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Any = LEDConfig
SCREAMING_SNAKE_CASE__ :str = {}
SCREAMING_SNAKE_CASE__ :List[str] = "gelu"
def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]:
_UpperCamelCase : Optional[Any] = parent
_UpperCamelCase : List[str] = batch_size
_UpperCamelCase : str = seq_length
_UpperCamelCase : str = is_training
_UpperCamelCase : Any = use_labels
_UpperCamelCase : Any = vocab_size
_UpperCamelCase : List[str] = hidden_size
_UpperCamelCase : Optional[Any] = num_hidden_layers
_UpperCamelCase : Dict = num_attention_heads
_UpperCamelCase : Optional[Any] = intermediate_size
_UpperCamelCase : int = hidden_dropout_prob
_UpperCamelCase : Dict = attention_probs_dropout_prob
_UpperCamelCase : str = max_position_embeddings
_UpperCamelCase : int = eos_token_id
_UpperCamelCase : Dict = pad_token_id
_UpperCamelCase : Optional[Any] = bos_token_id
_UpperCamelCase : str = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_UpperCamelCase : List[str] = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_UpperCamelCase : int = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __SCREAMING_SNAKE_CASE ( self : int ) -> str:
_UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 )
_UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase : List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a )
_UpperCamelCase : Union[str, Any] = tf.concat(
[tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , )
_UpperCamelCase : Union[str, Any] = global_attention_mask
return config, inputs_dict
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple:
_UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder()
_UpperCamelCase : Tuple = inputs_dict["input_ids"]
_UpperCamelCase : int = input_ids[:1, :]
_UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :]
_UpperCamelCase : List[Any] = 1
# first forward pass
_UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a )
_UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 )
_UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0]
_UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx]
_UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__a , __a , rtol=1e-3 )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict:
"""simple docstring"""
if attention_mask is None:
_UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
_UpperCamelCase : str = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
_UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :List[str] = (
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ :Tuple = True
SCREAMING_SNAKE_CASE__ :str = False
SCREAMING_SNAKE_CASE__ :Optional[Any] = False
SCREAMING_SNAKE_CASE__ :int = False
def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]:
_UpperCamelCase : int = TFLEDModelTester(self )
_UpperCamelCase : Any = ConfigTester(self , config_class=__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]:
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int:
_UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__a )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
_UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] )
_UpperCamelCase : Union[str, Any] = 2
_UpperCamelCase : str = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , )
_UpperCamelCase : Dict = True
_UpperCamelCase : str = self.model_tester.seq_length
_UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(__a : Optional[int] ):
_UpperCamelCase : Optional[int] = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(__a : Optional[Any] ):
_UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions]
_UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_UpperCamelCase : Dict = True
_UpperCamelCase : Optional[Any] = False
_UpperCamelCase : int = False
_UpperCamelCase : Optional[int] = model_class(__a )
_UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) )
_UpperCamelCase : Any = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
_UpperCamelCase : Optional[Any] = model_class(__a )
_UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_UpperCamelCase : int = True
_UpperCamelCase : Tuple = model_class(__a )
_UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
_UpperCamelCase : Any = True
_UpperCamelCase : List[str] = True
_UpperCamelCase : Tuple = model_class(__a )
_UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
pass
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple:
# TODO: Head-masking not yet implement
pass
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
return tf.constant(lowercase_ ,dtype=tf.intaa )
lowerCamelCase__ = 1E-4
@slow
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]:
_UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led
# change to intended input here
_UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a )
_UpperCamelCase : Optional[int] = model(**__a )[0]
_UpperCamelCase : Optional[int] = (1, 1024, 768)
self.assertEqual(output.shape , __a )
# change to expected output here
_UpperCamelCase : Tuple = tf.convert_to_tensor(
[[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
_UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" )
# change to intended input here
_UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a )
_UpperCamelCase : Union[str, Any] = model(**__a )[0]
_UpperCamelCase : int = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , __a )
# change to expected output here
_UpperCamelCase : Optional[int] = tf.convert_to_tensor(
[[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
| 51
| 0
|
"""simple docstring"""
def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : Optional[int] = len(_SCREAMING_SNAKE_CASE )
_UpperCamelCase : Union[str, Any] = []
for i in range(len(_SCREAMING_SNAKE_CASE ) - pat_len + 1 ):
_UpperCamelCase : List[Any] = True
for j in range(_SCREAMING_SNAKE_CASE ):
if s[i + j] != pattern[j]:
_UpperCamelCase : List[str] = False
break
if match_found:
position.append(_SCREAMING_SNAKE_CASE )
return position
if __name__ == "__main__":
assert naive_pattern_search("ABCDEFG", "DE") == [3]
print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
| 706
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer
SCREAMING_SNAKE_CASE__ :Dict = None
SCREAMING_SNAKE_CASE__ :List[Any] = False
SCREAMING_SNAKE_CASE__ :Union[str, Any] = True
SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english
def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
super().setUp()
_UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"]
_UpperCamelCase : List[str] = {}
_UpperCamelCase : Tuple = {}
for i, value in enumerate(__a ):
_UpperCamelCase : List[str] = i
_UpperCamelCase : Optional[Any] = i
_UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] )
_UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer:
json.dump(__a , __a , ensure_ascii=__a )
with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer:
json.dump(__a , __a , ensure_ascii=__a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]:
_UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
_UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" )
self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
_UpperCamelCase : Dict = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
_UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple:
_UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
_UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]:
_UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]:
_UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
_UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]:
_UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]:
_UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
_UpperCamelCase : Any = {}
for i, token in enumerate(__a ):
_UpperCamelCase : str = i
_UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) , [] )
self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] )
self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
self.assertTrue(_is_whitespace(" " ) )
self.assertTrue(_is_whitespace("\t" ) )
self.assertTrue(_is_whitespace("\r" ) )
self.assertTrue(_is_whitespace("\n" ) )
self.assertTrue(_is_whitespace("\u00A0" ) )
self.assertFalse(_is_whitespace("A" ) )
self.assertFalse(_is_whitespace("-" ) )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict:
self.assertTrue(_is_control("\u0005" ) )
self.assertFalse(_is_control("A" ) )
self.assertFalse(_is_control(" " ) )
self.assertFalse(_is_control("\t" ) )
self.assertFalse(_is_control("\r" ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]:
self.assertTrue(_is_punctuation("-" ) )
self.assertTrue(_is_punctuation("$" ) )
self.assertTrue(_is_punctuation("`" ) )
self.assertTrue(_is_punctuation("." ) )
self.assertFalse(_is_punctuation("A" ) )
self.assertFalse(_is_punctuation(" " ) )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
_UpperCamelCase : Optional[Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
if self.test_rust_tokenizer:
_UpperCamelCase : Tuple = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
_UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus(
__a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , )
_UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False
_UpperCamelCase : Dict = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
_UpperCamelCase : Optional[Any] = ["的", "人", "有"]
_UpperCamelCase : int = "".join(__a )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_UpperCamelCase : int = True
_UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a )
_UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a )
_UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a )
_UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(__a , __a )
self.assertListEqual(__a , __a )
_UpperCamelCase : Any = False
_UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a )
_UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a )
_UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a )
_UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a )
# it is expected that only the first Chinese character is not preceded by "##".
_UpperCamelCase : Any = [
F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a )
]
self.assertListEqual(__a , __a )
self.assertListEqual(__a , __a )
@slow
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any:
_UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
_UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a )
_UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a )
_UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a )
_UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_UpperCamelCase : int = "你好,你是谁"
_UpperCamelCase : Any = tokenizer.tokenize(__a )
_UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a )
_UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a )
_UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a )
_UpperCamelCase : Optional[int] = tokenizer.prepare_for_model(
__a , __a , __a , add_special_tokens=__a )
_UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a )
self.assertEqual(__a , __a )
| 51
| 0
|
"""simple docstring"""
from random import randint
from tempfile import TemporaryFile
import numpy as np
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Dict:
"""simple docstring"""
_UpperCamelCase : List[Any] = 0
if start < end:
_UpperCamelCase : Optional[int] = randint(lowercase_ ,lowercase_ )
_UpperCamelCase : Union[str, Any] = a[end]
_UpperCamelCase : Optional[Any] = a[pivot]
_UpperCamelCase : Any = temp
_UpperCamelCase : List[str] = _in_place_partition(lowercase_ ,lowercase_ ,lowercase_ )
count += _in_place_quick_sort(lowercase_ ,lowercase_ ,p - 1 )
count += _in_place_quick_sort(lowercase_ ,p + 1 ,lowercase_ )
return count
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Dict:
"""simple docstring"""
_UpperCamelCase : Optional[int] = 0
_UpperCamelCase : List[Any] = randint(lowercase_ ,lowercase_ )
_UpperCamelCase : Optional[Any] = a[end]
_UpperCamelCase : Any = a[pivot]
_UpperCamelCase : Optional[int] = temp
_UpperCamelCase : int = start - 1
for index in range(lowercase_ ,lowercase_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_UpperCamelCase : List[str] = new_pivot_index + 1
_UpperCamelCase : Union[str, Any] = a[new_pivot_index]
_UpperCamelCase : Tuple = a[index]
_UpperCamelCase : Union[str, Any] = temp
_UpperCamelCase : List[str] = a[new_pivot_index + 1]
_UpperCamelCase : str = a[end]
_UpperCamelCase : Any = temp
return new_pivot_index + 1, count
lowerCamelCase__ = TemporaryFile()
lowerCamelCase__ = 100 # 1000 elements are to be sorted
lowerCamelCase__ , lowerCamelCase__ = 0, 1 # mean and standard deviation
lowerCamelCase__ = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
lowerCamelCase__ = np.load(outfile)
lowerCamelCase__ = len(M) - 1
lowerCamelCase__ = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 707
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Tuple = "yolos"
def __init__( self : Dict , __a : Optional[Any]=768 , __a : List[Any]=12 , __a : Any=12 , __a : List[Any]=3072 , __a : Optional[int]="gelu" , __a : Dict=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.02 , __a : Optional[int]=1e-1_2 , __a : List[Any]=[512, 864] , __a : List[str]=16 , __a : str=3 , __a : Optional[Any]=True , __a : Optional[Any]=100 , __a : List[str]=True , __a : Any=False , __a : List[str]=1 , __a : str=5 , __a : Optional[Any]=2 , __a : Tuple=5 , __a : Any=2 , __a : Union[str, Any]=0.1 , **__a : List[str] , ) -> List[str]:
super().__init__(**__a )
_UpperCamelCase : Dict = hidden_size
_UpperCamelCase : Any = num_hidden_layers
_UpperCamelCase : str = num_attention_heads
_UpperCamelCase : Dict = intermediate_size
_UpperCamelCase : List[str] = hidden_act
_UpperCamelCase : List[str] = hidden_dropout_prob
_UpperCamelCase : str = attention_probs_dropout_prob
_UpperCamelCase : Tuple = initializer_range
_UpperCamelCase : List[str] = layer_norm_eps
_UpperCamelCase : Tuple = image_size
_UpperCamelCase : Tuple = patch_size
_UpperCamelCase : Dict = num_channels
_UpperCamelCase : Any = qkv_bias
_UpperCamelCase : str = num_detection_tokens
_UpperCamelCase : str = use_mid_position_embeddings
_UpperCamelCase : List[str] = auxiliary_loss
# Hungarian matcher
_UpperCamelCase : List[Any] = class_cost
_UpperCamelCase : int = bbox_cost
_UpperCamelCase : Optional[int] = giou_cost
# Loss coefficients
_UpperCamelCase : List[Any] = bbox_loss_coefficient
_UpperCamelCase : str = giou_loss_coefficient
_UpperCamelCase : Dict = eos_coefficient
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :List[str] = version.parse("1.11" )
@property
def __SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float:
return 1e-4
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int:
return 12
| 51
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCamelCase__ = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["ConditionalDetrFeatureExtractor"]
lowerCamelCase__ = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 708
|
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
lowerCamelCase__ = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase]
lowerCamelCase__ = {ord(char) for char in VALID_CHARS}
lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"]
def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None:
"""simple docstring"""
_UpperCamelCase : str = ""
_UpperCamelCase : int
_UpperCamelCase : int
_UpperCamelCase : int
for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ):
_UpperCamelCase : Dict = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(lowercase_ )
return decoded
def lowercase__ ( lowercase_ ) -> list[str]:
"""simple docstring"""
_UpperCamelCase : list[str] = []
for key in product(lowercase_ ,repeat=3 ):
_UpperCamelCase : int = try_key(lowercase_ ,lowercase_ )
if encoded is not None:
possibles.append(lowercase_ )
return possibles
def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]:
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int:
"""simple docstring"""
_UpperCamelCase : list[int]
_UpperCamelCase : list[str]
_UpperCamelCase : str
_UpperCamelCase : str
_UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" )
_UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )]
_UpperCamelCase : List[str] = filter_valid_chars(lowercase_ )
for common_word in COMMON_WORDS:
_UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ )
if len(lowercase_ ) == 1:
break
_UpperCamelCase : Union[str, Any] = possibles[0]
return sum(ord(lowercase_ ) for char in decoded_text )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 51
| 0
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class __SCREAMING_SNAKE_CASE ( a__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :int = "vit_mae"
def __init__( self : Any , __a : List[str]=768 , __a : Tuple=12 , __a : List[str]=12 , __a : Tuple=3072 , __a : int="gelu" , __a : Any=0.0 , __a : List[Any]=0.0 , __a : List[Any]=0.02 , __a : Tuple=1e-1_2 , __a : Union[str, Any]=224 , __a : List[Any]=16 , __a : Any=3 , __a : Union[str, Any]=True , __a : Tuple=16 , __a : Optional[int]=512 , __a : Optional[Any]=8 , __a : Any=2048 , __a : Dict=0.75 , __a : str=False , **__a : Optional[Any] , ) -> List[str]:
super().__init__(**lowerCamelCase_ )
_UpperCamelCase : Any = hidden_size
_UpperCamelCase : str = num_hidden_layers
_UpperCamelCase : Any = num_attention_heads
_UpperCamelCase : Optional[Any] = intermediate_size
_UpperCamelCase : Any = hidden_act
_UpperCamelCase : List[str] = hidden_dropout_prob
_UpperCamelCase : List[str] = attention_probs_dropout_prob
_UpperCamelCase : Union[str, Any] = initializer_range
_UpperCamelCase : int = layer_norm_eps
_UpperCamelCase : Union[str, Any] = image_size
_UpperCamelCase : List[str] = patch_size
_UpperCamelCase : Any = num_channels
_UpperCamelCase : List[str] = qkv_bias
_UpperCamelCase : Union[str, Any] = decoder_num_attention_heads
_UpperCamelCase : str = decoder_hidden_size
_UpperCamelCase : Optional[int] = decoder_num_hidden_layers
_UpperCamelCase : str = decoder_intermediate_size
_UpperCamelCase : Tuple = mask_ratio
_UpperCamelCase : Union[str, Any] = norm_pix_loss
| 709
|
"""simple docstring"""
def lowercase__ ( lowercase_ ,lowercase_ ) -> None:
"""simple docstring"""
_UpperCamelCase : List[Any] = len(lowercase_ )
print("The following activities are selected:" )
# The first activity is always selected
_UpperCamelCase : List[Any] = 0
print(lowercase_ ,end="," )
# Consider rest of the activities
for j in range(lowercase_ ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(lowercase_ ,end="," )
_UpperCamelCase : Optional[Any] = j
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase__ = [1, 3, 0, 5, 8, 5]
lowerCamelCase__ = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 51
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json",
# See all PEGASUS models at https://huggingface.co/models?filter=pegasus
}
class __SCREAMING_SNAKE_CASE ( lowercase_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[Any] = '''pegasus'''
SCREAMING_SNAKE_CASE__ :Tuple = ['''past_key_values''']
SCREAMING_SNAKE_CASE__ :int = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : Optional[int] , __a : int=5_0265 , __a : Dict=1024 , __a : List[str]=12 , __a : str=4096 , __a : Union[str, Any]=16 , __a : Any=12 , __a : Tuple=4096 , __a : Union[str, Any]=16 , __a : Optional[int]=0.0 , __a : List[str]=0.0 , __a : Any=True , __a : Optional[Any]=True , __a : List[str]="gelu" , __a : Optional[int]=1024 , __a : Optional[Any]=0.1 , __a : Optional[int]=0.0 , __a : List[Any]=0.0 , __a : Optional[Any]=0.02 , __a : Any=0 , __a : Tuple=False , __a : List[Any]=0 , __a : str=1 , __a : Any=1 , **__a : str , ) -> Optional[Any]:
_UpperCamelCase : int = vocab_size
_UpperCamelCase : str = max_position_embeddings
_UpperCamelCase : Dict = d_model
_UpperCamelCase : str = encoder_ffn_dim
_UpperCamelCase : Union[str, Any] = encoder_layers
_UpperCamelCase : Optional[int] = encoder_attention_heads
_UpperCamelCase : str = decoder_ffn_dim
_UpperCamelCase : List[Any] = decoder_layers
_UpperCamelCase : str = decoder_attention_heads
_UpperCamelCase : str = dropout
_UpperCamelCase : Tuple = attention_dropout
_UpperCamelCase : int = activation_dropout
_UpperCamelCase : List[str] = activation_function
_UpperCamelCase : Tuple = init_std
_UpperCamelCase : int = encoder_layerdrop
_UpperCamelCase : str = decoder_layerdrop
_UpperCamelCase : Optional[Any] = use_cache
_UpperCamelCase : List[Any] = encoder_layers
_UpperCamelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]:
return self.encoder_attention_heads
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]:
return self.d_model
| 710
|
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :torch.FloatTensor
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict:
super().__init__()
_UpperCamelCase : List[str] = layers_per_block
_UpperCamelCase : Dict = torch.nn.Convad(
__a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
_UpperCamelCase : int = None
_UpperCamelCase : Any = nn.ModuleList([] )
# down
_UpperCamelCase : List[str] = block_out_channels[0]
for i, down_block_type in enumerate(__a ):
_UpperCamelCase : Tuple = output_channel
_UpperCamelCase : int = block_out_channels[i]
_UpperCamelCase : int = i == len(__a ) - 1
_UpperCamelCase : Dict = get_down_block(
__a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , )
self.down_blocks.append(__a )
# mid
_UpperCamelCase : Union[str, Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , )
# out
_UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 )
_UpperCamelCase : Any = nn.SiLU()
_UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels
_UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 )
_UpperCamelCase : Optional[int] = False
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]:
_UpperCamelCase : int = x
_UpperCamelCase : Optional[int] = self.conv_in(__a )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__a : Tuple ):
def custom_forward(*__a : Any ):
return module(*__a )
return custom_forward
# down
if is_torch_version(">=" , "1.11.0" ):
for down_block in self.down_blocks:
_UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__a ) , __a , use_reentrant=__a )
# middle
_UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __a , use_reentrant=__a )
else:
for down_block in self.down_blocks:
_UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a )
# middle
_UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a )
else:
# down
for down_block in self.down_blocks:
_UpperCamelCase : int = down_block(__a )
# middle
_UpperCamelCase : int = self.mid_block(__a )
# post-process
_UpperCamelCase : Any = self.conv_norm_out(__a )
_UpperCamelCase : Any = self.conv_act(__a )
_UpperCamelCase : Optional[Any] = self.conv_out(__a )
return sample
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str:
super().__init__()
_UpperCamelCase : List[Any] = layers_per_block
_UpperCamelCase : Tuple = nn.Convad(
__a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
_UpperCamelCase : List[str] = None
_UpperCamelCase : Dict = nn.ModuleList([] )
_UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None
# mid
_UpperCamelCase : Optional[Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , )
# up
_UpperCamelCase : List[str] = list(reversed(__a ) )
_UpperCamelCase : int = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__a ):
_UpperCamelCase : int = output_channel
_UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i]
_UpperCamelCase : Optional[Any] = i == len(__a ) - 1
_UpperCamelCase : Union[str, Any] = get_up_block(
__a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , )
self.up_blocks.append(__a )
_UpperCamelCase : Optional[Any] = output_channel
# out
if norm_type == "spatial":
_UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a )
else:
_UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 )
_UpperCamelCase : str = nn.SiLU()
_UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 )
_UpperCamelCase : Dict = False
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple:
_UpperCamelCase : List[str] = z
_UpperCamelCase : Dict = self.conv_in(__a )
_UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__a : Any ):
def custom_forward(*__a : Tuple ):
return module(*__a )
return custom_forward
if is_torch_version(">=" , "1.11.0" ):
# middle
_UpperCamelCase : str = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a )
_UpperCamelCase : Optional[int] = sample.to(__a )
# up
for up_block in self.up_blocks:
_UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__a ) , __a , __a , use_reentrant=__a )
else:
# middle
_UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __a , __a )
_UpperCamelCase : Union[str, Any] = sample.to(__a )
# up
for up_block in self.up_blocks:
_UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a )
else:
# middle
_UpperCamelCase : str = self.mid_block(__a , __a )
_UpperCamelCase : int = sample.to(__a )
# up
for up_block in self.up_blocks:
_UpperCamelCase : Any = up_block(__a , __a )
# post-process
if latent_embeds is None:
_UpperCamelCase : List[str] = self.conv_norm_out(__a )
else:
_UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a )
_UpperCamelCase : Tuple = self.conv_act(__a )
_UpperCamelCase : List[Any] = self.conv_out(__a )
return sample
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]:
super().__init__()
_UpperCamelCase : Tuple = n_e
_UpperCamelCase : Tuple = vq_embed_dim
_UpperCamelCase : Union[str, Any] = beta
_UpperCamelCase : str = legacy
_UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
_UpperCamelCase : Any = remap
if self.remap is not None:
self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) )
_UpperCamelCase : Dict = self.used.shape[0]
_UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
_UpperCamelCase : Optional[int] = self.re_embed
_UpperCamelCase : Any = self.re_embed + 1
print(
F'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
F'''Using {self.unknown_index} for unknown indices.''' )
else:
_UpperCamelCase : Union[str, Any] = n_e
_UpperCamelCase : List[str] = sane_index_shape
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]:
_UpperCamelCase : str = inds.shape
assert len(__a ) > 1
_UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 )
_UpperCamelCase : Optional[Any] = self.used.to(__a )
_UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long()
_UpperCamelCase : Optional[Any] = match.argmax(-1 )
_UpperCamelCase : Any = match.sum(2 ) < 1
if self.unknown_index == "random":
_UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
_UpperCamelCase : Dict = self.unknown_index
return new.reshape(__a )
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]:
_UpperCamelCase : int = inds.shape
assert len(__a ) > 1
_UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 )
_UpperCamelCase : Optional[int] = self.used.to(__a )
if self.re_embed > self.used.shape[0]: # extra token
_UpperCamelCase : int = 0 # simply set to zero
_UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a )
return back.reshape(__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]:
# reshape z -> (batch, height, width, channel) and flatten
_UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous()
_UpperCamelCase : int = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
_UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 )
_UpperCamelCase : int = self.embedding(__a ).view(z.shape )
_UpperCamelCase : str = None
_UpperCamelCase : Any = None
# compute loss for embedding
if not self.legacy:
_UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
_UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
_UpperCamelCase : List[str] = z + (z_q - z).detach()
# reshape back to match original input shape
_UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
_UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
_UpperCamelCase : Dict = self.remap_to_used(__a )
_UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
_UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any:
# shape specifying (batch, height, width, channel)
if self.remap is not None:
_UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis
_UpperCamelCase : str = self.unmap_to_all(__a )
_UpperCamelCase : int = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
_UpperCamelCase : Optional[int] = self.embedding(__a )
if shape is not None:
_UpperCamelCase : Tuple = z_q.view(__a )
# reshape back to match original input shape
_UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int:
_UpperCamelCase : Dict = parameters
_UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 )
_UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 )
_UpperCamelCase : Union[str, Any] = deterministic
_UpperCamelCase : Dict = torch.exp(0.5 * self.logvar )
_UpperCamelCase : Any = torch.exp(self.logvar )
if self.deterministic:
_UpperCamelCase : List[Any] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor:
# make sure sample is on the same device as the parameters and has same dtype
_UpperCamelCase : List[Any] = randn_tensor(
self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype )
_UpperCamelCase : List[Any] = self.mean + self.std * sample
return x
def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]:
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int:
if self.deterministic:
return torch.Tensor([0.0] )
_UpperCamelCase : List[str] = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]:
return self.mean
| 51
| 0
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = "▁"
lowerCamelCase__ = {"vocab_file": "spiece.model"}
lowerCamelCase__ = {
"vocab_file": {
"google/reformer-crime-and-punishment": (
"https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"
)
}
}
lowerCamelCase__ = {
"google/reformer-crime-and-punishment": 52_4288,
}
class __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
SCREAMING_SNAKE_CASE__ :str = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ :int = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ :Optional[int] = ["input_ids", "attention_mask"]
def __init__( self : int , __a : Any , __a : Dict="</s>" , __a : Dict="<unk>" , __a : Dict=[] , __a : Optional[Dict[str, Any]] = None , **__a : List[str] , ) -> Optional[int]:
_UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , )
_UpperCamelCase : Optional[int] = vocab_file
_UpperCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase_ )
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str:
return self.sp_model.get_piece_size()
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]:
_UpperCamelCase : List[str] = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ) -> int:
_UpperCamelCase : Tuple = self.__dict__.copy()
_UpperCamelCase : Optional[Any] = None
return state
def __setstate__( self : Optional[Any] , __a : int ) -> int:
_UpperCamelCase : List[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_UpperCamelCase : str = {}
_UpperCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : str ) -> Optional[Any]:
return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[str] ) -> Union[str, Any]:
return self.sp_model.piece_to_id(lowerCAmelCase_ )
def __SCREAMING_SNAKE_CASE ( self : str , __a : Any ) -> List[Any]:
if index < self.sp_model.get_piece_size():
_UpperCamelCase : List[str] = self.sp_model.IdToPiece(lowerCAmelCase_ )
return token
def __SCREAMING_SNAKE_CASE ( self : int , __a : Any ) -> Optional[int]:
_UpperCamelCase : Tuple = []
_UpperCamelCase : Union[str, Any] = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(lowerCAmelCase_ ) + token
_UpperCamelCase : int = []
else:
current_sub_tokens.append(lowerCAmelCase_ )
out_string += self.sp_model.decode(lowerCAmelCase_ )
return out_string.strip()
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str , __a : Optional[str] = None ) -> int:
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_UpperCamelCase : Union[str, Any] = os.path.join(
lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase_ , "wb" ) as fi:
_UpperCamelCase : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase_ )
return (out_vocab_file,)
| 711
|
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=_UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} )
SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} )
SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"summary": Value("string" )} )
SCREAMING_SNAKE_CASE__ :str = "text"
SCREAMING_SNAKE_CASE__ :str = "summary"
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict[str, str]:
return {self.text_column: "text", self.summary_column: "summary"}
| 51
| 0
|
"""simple docstring"""
from math import log
from scipy.constants import Boltzmann, physical_constants
lowerCamelCase__ = 300 # TEMPERATURE (unit = K)
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> float:
"""simple docstring"""
if donor_conc <= 0:
raise ValueError("Donor concentration should be positive" )
elif acceptor_conc <= 0:
raise ValueError("Acceptor concentration should be positive" )
elif intrinsic_conc <= 0:
raise ValueError("Intrinsic concentration should be positive" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"Donor concentration should be greater than intrinsic concentration" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"Acceptor concentration should be greater than intrinsic concentration" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 712
|
"""simple docstring"""
def lowercase__ ( lowercase_ ) -> set:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = set()
# edges = list of graph's edges
_UpperCamelCase : Union[str, Any] = get_edges(lowercase_ )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
_UpperCamelCase, _UpperCamelCase : str = edges.pop()
chosen_vertices.add(lowercase_ )
chosen_vertices.add(lowercase_ )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(lowercase_ )
return chosen_vertices
def lowercase__ ( lowercase_ ) -> set:
"""simple docstring"""
_UpperCamelCase : List[str] = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 51
| 0
|
"""simple docstring"""
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class __SCREAMING_SNAKE_CASE ( _a ):
'''simple docstring'''
def __init__( self : int , __a : Optional[Any] , __a : Optional[Any] , __a : Dict = None , __a : Union[str, Any] = None , __a : Dict = False , **__a : Union[str, Any] , ) -> Dict:
super().__init__(features=_A , cache_dir=_A , keep_in_memory=_A , **_A )
_UpperCamelCase : List[str] = Sql(
cache_dir=_A , features=_A , sql=_A , con=_A , **_A , )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str:
_UpperCamelCase : Any = None
_UpperCamelCase : Optional[int] = None
_UpperCamelCase : Optional[int] = None
_UpperCamelCase : int = None
self.builder.download_and_prepare(
download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , )
# Build dataset for splits
_UpperCamelCase : int = self.builder.as_dataset(
split="train" , verification_mode=_A , in_memory=self.keep_in_memory )
return dataset
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Union[str, Any] , __a : Dict , __a : Dict , __a : Any , __a : Union[str, Any] = None , __a : Optional[int] = None , **__a : int , ) -> Tuple:
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' )
_UpperCamelCase : List[Any] = dataset
_UpperCamelCase : List[str] = name
_UpperCamelCase : Any = con
_UpperCamelCase : Tuple = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_UpperCamelCase : List[str] = num_proc
_UpperCamelCase : Optional[int] = to_sql_kwargs
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple:
_UpperCamelCase : Optional[int] = self.to_sql_kwargs.pop("sql" , _A )
_UpperCamelCase : int = self.to_sql_kwargs.pop("con" , _A )
_UpperCamelCase : List[str] = self.to_sql_kwargs.pop("index" , _A )
_UpperCamelCase : Tuple = self._write(index=_A , **self.to_sql_kwargs )
return written
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[Any] ) -> List[Any]:
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = args
_UpperCamelCase : Optional[int] = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs
_UpperCamelCase : List[Any] = query_table(
table=self.dataset.data , key=slice(_A , offset + self.batch_size ) , indices=self.dataset._indices , )
_UpperCamelCase : List[Any] = batch.to_pandas()
_UpperCamelCase : Dict = df.to_sql(self.name , self.con , index=_A , **_A )
return num_rows or len(_A )
def __SCREAMING_SNAKE_CASE ( self : str , __a : Optional[Any] , **__a : Any ) -> Union[str, Any]:
_UpperCamelCase : Any = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
_UpperCamelCase, _UpperCamelCase : Optional[Any] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _A , _A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ):
written += num_rows
return written
| 713
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase__ = {
"configuration_owlvit": [
"OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"OwlViTConfig",
"OwlViTOnnxConfig",
"OwlViTTextConfig",
"OwlViTVisionConfig",
],
"processing_owlvit": ["OwlViTProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["OwlViTFeatureExtractor"]
lowerCamelCase__ = ["OwlViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OwlViTModel",
"OwlViTPreTrainedModel",
"OwlViTTextModel",
"OwlViTVisionModel",
"OwlViTForObjectDetection",
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 51
| 0
|
"""simple docstring"""
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Optional[int] , __a : str , __a : str=13 , __a : Any=64 , __a : List[str]=2 , __a : Dict=3 , __a : List[Any]=True , __a : Optional[Any]=True , __a : Optional[int]=32 , __a : List[str]=5 , __a : int=4 , __a : Dict=37 , __a : List[Any]="gelu" , __a : Any=0.1 , __a : Optional[Any]=0.1 , __a : int=10 , __a : Optional[int]=0.02 , __a : Dict=[1, 16, 4, 4] , __a : Optional[int]=None , ) -> str:
_UpperCamelCase : str = parent
_UpperCamelCase : Optional[Any] = batch_size
_UpperCamelCase : List[str] = image_size
_UpperCamelCase : Optional[int] = patch_size
_UpperCamelCase : Union[str, Any] = num_channels
_UpperCamelCase : Optional[int] = is_training
_UpperCamelCase : List[Any] = use_labels
_UpperCamelCase : Dict = hidden_size
_UpperCamelCase : List[str] = num_hidden_layers
_UpperCamelCase : Optional[int] = num_attention_heads
_UpperCamelCase : Union[str, Any] = intermediate_size
_UpperCamelCase : Optional[int] = hidden_act
_UpperCamelCase : Tuple = hidden_dropout_prob
_UpperCamelCase : Dict = attention_probs_dropout_prob
_UpperCamelCase : Optional[Any] = type_sequence_label_size
_UpperCamelCase : Optional[int] = initializer_range
_UpperCamelCase : Optional[Any] = scope
_UpperCamelCase : int = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
_UpperCamelCase : Dict = (self.image_size // 32) ** 2
_UpperCamelCase : str = num_patches + 1
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple:
_UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCamelCase : List[str] = None
if self.use_labels:
_UpperCamelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCamelCase : Any = self.get_config()
return config, pixel_values, labels
def __SCREAMING_SNAKE_CASE ( self : int ) -> Any:
_UpperCamelCase : Dict = {
"global_padding": "same",
"layer_type": "bottleneck",
"depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True,
"hidden_sizes": [4, 8, 16, 32],
"num_groups": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__UpperCamelCase , )
def __SCREAMING_SNAKE_CASE ( self : int , __a : List[Any] , __a : List[Any] , __a : Union[str, Any] ) -> int:
_UpperCamelCase : Any = ViTHybridModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCamelCase : Optional[Any] = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __SCREAMING_SNAKE_CASE ( self : Any , __a : str , __a : int , __a : Dict ) -> Dict:
_UpperCamelCase : Optional[Any] = self.type_sequence_label_size
_UpperCamelCase : Tuple = ViTHybridForImageClassification(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCamelCase : List[Any] = model(__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]:
_UpperCamelCase : str = self.prepare_config_and_inputs()
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Union[str, Any] = config_and_inputs
_UpperCamelCase : Optional[int] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
SCREAMING_SNAKE_CASE__ :Tuple = (
{"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE__ :List[str] = False
SCREAMING_SNAKE_CASE__ :int = False
SCREAMING_SNAKE_CASE__ :Union[str, Any] = False
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple:
_UpperCamelCase : int = ViTHybridModelTester(self )
_UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any:
pass
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]:
_UpperCamelCase, _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase : Optional[Any] = model_class(__UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCamelCase : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]:
_UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase : str = model_class(__UpperCamelCase )
_UpperCamelCase : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCamelCase : str = [*signature.parameters.keys()]
_UpperCamelCase : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]:
_UpperCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict:
_UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase )
def __SCREAMING_SNAKE_CASE ( self : str ) -> int:
_UpperCamelCase, _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCamelCase : Dict = _config_zero_init(__UpperCamelCase )
for model_class in self.all_model_classes:
_UpperCamelCase : str = model_class(config=__UpperCamelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
_UpperCamelCase : Optional[int] = [F'''{name}.{key}''' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple:
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase : Any = ViTHybridModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def lowercase__ ( ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __SCREAMING_SNAKE_CASE ( self : int ) -> Dict:
_UpperCamelCase : Any = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__UpperCamelCase )
_UpperCamelCase : Dict = self.default_image_processor
_UpperCamelCase : Optional[int] = prepare_img()
_UpperCamelCase : int = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCamelCase : Union[str, Any] = model(**__UpperCamelCase )
# verify the logits
_UpperCamelCase : Optional[int] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __UpperCamelCase )
_UpperCamelCase : str = torch.tensor([-1.90_90, -0.49_93, -0.23_89] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
@slow
@require_accelerate
def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]:
_UpperCamelCase : int = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" )
_UpperCamelCase : List[Any] = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" )
_UpperCamelCase : List[Any] = prepare_img()
_UpperCamelCase : Tuple = image_processor(images=__UpperCamelCase , return_tensors="pt" )
_UpperCamelCase : Dict = model(**__UpperCamelCase )
_UpperCamelCase : Union[str, Any] = outputs.logits
# model predicts one of the 1000 ImageNet classes
_UpperCamelCase : Union[str, Any] = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
| 714
|
"""simple docstring"""
from collections import defaultdict
from math import ceil, sqrt
def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int:
"""simple docstring"""
_UpperCamelCase : defaultdict = defaultdict(lowercase_ )
for outer_width in range(3 ,(t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
_UpperCamelCase : Any = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 )
else:
_UpperCamelCase : str = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(lowercase_ ,outer_width - 1 ,2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 51
| 0
|
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 715
|
"""simple docstring"""
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowerCamelCase__ = TypeVar("KEY")
lowerCamelCase__ = TypeVar("VAL")
@dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :KEY
SCREAMING_SNAKE_CASE__ :VAL
class __SCREAMING_SNAKE_CASE ( _Item ):
'''simple docstring'''
def __init__( self : List[str] ) -> None:
super().__init__(__a , __a )
def __bool__( self : Dict ) -> bool:
return False
lowerCamelCase__ = _DeletedItem()
class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ):
'''simple docstring'''
def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None:
_UpperCamelCase : str = initial_block_size
_UpperCamelCase : list[_Item | None] = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
_UpperCamelCase : List[str] = capacity_factor
_UpperCamelCase : Dict = 0
def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int:
return hash(__a ) % len(self._buckets )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int:
return (ind + 1) % len(self._buckets )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool:
_UpperCamelCase : List[Any] = self._buckets[ind]
if not stored:
_UpperCamelCase : Tuple = _Item(__a , __a )
self._len += 1
return True
elif stored.key == key:
_UpperCamelCase : Union[str, Any] = _Item(__a , __a )
return True
else:
return False
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool:
_UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(__a )
def __SCREAMING_SNAKE_CASE ( self : str ) -> bool:
if len(self._buckets ) <= self._initial_block_size:
return False
_UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None:
_UpperCamelCase : Any = self._buckets
_UpperCamelCase : List[Any] = [None] * new_size
_UpperCamelCase : List[str] = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def __SCREAMING_SNAKE_CASE ( self : int ) -> None:
self._resize(len(self._buckets ) * 2 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None:
self._resize(len(self._buckets ) // 2 )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]:
_UpperCamelCase : str = self._get_bucket_index(__a )
for _ in range(len(self._buckets ) ):
yield ind
_UpperCamelCase : Tuple = self._get_next_ind(__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None:
for ind in self._iterate_buckets(__a ):
if self._try_set(__a , __a , __a ):
break
def __setitem__( self : int , __a : KEY , __a : VAL ) -> None:
if self._is_full():
self._size_up()
self._add_item(__a , __a )
def __delitem__( self : str , __a : KEY ) -> None:
for ind in self._iterate_buckets(__a ):
_UpperCamelCase : Tuple = self._buckets[ind]
if item is None:
raise KeyError(__a )
if item is _deleted:
continue
if item.key == key:
_UpperCamelCase : List[Any] = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : str , __a : KEY ) -> VAL:
for ind in self._iterate_buckets(__a ):
_UpperCamelCase : Tuple = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(__a )
def __len__( self : List[Any] ) -> int:
return self._len
def __iter__( self : List[str] ) -> Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self : List[str] ) -> str:
_UpperCamelCase : Optional[int] = " ,".join(
F'''{item.key}: {item.val}''' for item in self._buckets if item )
return F'''HashMap({val_string})'''
| 51
| 0
|
"""simple docstring"""
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Union[str, Any] , __a : Any , __a : Tuple=2 , __a : Optional[Any]=True , __a : Tuple=False , __a : Optional[Any]=10 , __a : List[Any]=3 , __a : str=32 * 8 , __a : Optional[Any]=32 * 8 , __a : List[str]=4 , __a : Optional[Any]=64 , ) -> Optional[Any]:
_UpperCamelCase : List[Any] = parent
_UpperCamelCase : str = batch_size
_UpperCamelCase : Dict = is_training
_UpperCamelCase : List[Any] = use_auxiliary_loss
_UpperCamelCase : Optional[int] = num_queries
_UpperCamelCase : List[str] = num_channels
_UpperCamelCase : Tuple = min_size
_UpperCamelCase : List[str] = max_size
_UpperCamelCase : Tuple = num_labels
_UpperCamelCase : Any = hidden_dim
_UpperCamelCase : List[str] = hidden_dim
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]:
_UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
__a )
_UpperCamelCase : Any = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__a )
_UpperCamelCase : Union[str, Any] = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__a ) > 0.5
).float()
_UpperCamelCase : Optional[Any] = (torch.rand((self.batch_size, self.num_labels) , device=__a ) > 0.5).long()
_UpperCamelCase : Optional[Any] = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str:
_UpperCamelCase : Any = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
_UpperCamelCase : int = self.num_queries
_UpperCamelCase : Optional[Any] = self.num_labels
_UpperCamelCase : Optional[Any] = [1, 1, 1, 1]
_UpperCamelCase : List[str] = self.num_channels
_UpperCamelCase : Optional[Any] = 64
_UpperCamelCase : str = 128
_UpperCamelCase : Union[str, Any] = self.hidden_dim
_UpperCamelCase : int = self.hidden_dim
_UpperCamelCase : Any = self.hidden_dim
return config
def __SCREAMING_SNAKE_CASE ( self : int ) -> Dict:
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs()
_UpperCamelCase : Dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask}
return config, inputs_dict
def __SCREAMING_SNAKE_CASE ( self : str , __a : Union[str, Any] , __a : str ) -> Dict:
_UpperCamelCase : int = output.encoder_hidden_states
_UpperCamelCase : Dict = output.pixel_decoder_hidden_states
_UpperCamelCase : Union[str, Any] = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(__a ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__a ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__a ) , config.decoder_layers )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[Any] , __a : Tuple , __a : List[Any] , __a : Tuple=False ) -> Dict:
with torch.no_grad():
_UpperCamelCase : int = MaskaFormerModel(config=__a )
model.to(__a )
model.eval()
_UpperCamelCase : Optional[Any] = model(pixel_values=__a , pixel_mask=__a )
_UpperCamelCase : int = model(__a , output_hidden_states=__a )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(__a , __a )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : int , __a : Union[str, Any] , __a : List[str] , __a : Dict , __a : Dict ) -> List[Any]:
_UpperCamelCase : Tuple = MaskaFormerForUniversalSegmentation(config=__a )
model.to(__a )
model.eval()
def comm_check_on_output(__a : List[Any] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_UpperCamelCase : Optional[int] = model(pixel_values=__a , pixel_mask=__a )
_UpperCamelCase : str = model(__a )
comm_check_on_output(__a )
_UpperCamelCase : Tuple = model(
pixel_values=__a , pixel_mask=__a , mask_labels=__a , class_labels=__a )
comm_check_on_output(__a )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :List[Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
SCREAMING_SNAKE_CASE__ :int = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {}
SCREAMING_SNAKE_CASE__ :Optional[Any] = False
SCREAMING_SNAKE_CASE__ :Tuple = False
SCREAMING_SNAKE_CASE__ :Union[str, Any] = False
SCREAMING_SNAKE_CASE__ :Optional[int] = False
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple:
_UpperCamelCase : Dict = MaskaFormerModelTester(self )
_UpperCamelCase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any:
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : Any ) -> int:
_UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__a , **__a , output_hidden_states=__a )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]:
_UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__a )
@unittest.skip(reason="Mask2Former does not use inputs_embeds" )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Any:
pass
@unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int:
pass
@unittest.skip(reason="Mask2Former is not a generative model" )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]:
pass
@unittest.skip(reason="Mask2Former does not use token embeddings" )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason="Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`" )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict:
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any:
pass
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict:
_UpperCamelCase, _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase : Any = model_class(__a )
_UpperCamelCase : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCamelCase : Dict = [*signature.parameters.keys()]
_UpperCamelCase : List[str] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __a )
@slow
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]:
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
_UpperCamelCase : int = MaskaFormerModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]:
_UpperCamelCase : Union[str, Any] = (self.model_tester.min_size,) * 2
_UpperCamelCase : Dict = {
"pixel_values": torch.randn((2, 3, *size) , device=__a ),
"mask_labels": torch.randn((2, 10, *size) , device=__a ),
"class_labels": torch.zeros(2 , 10 , device=__a ).long(),
}
_UpperCamelCase : Optional[int] = self.model_tester.get_config()
_UpperCamelCase : Optional[Any] = MaskaFormerForUniversalSegmentation(__a ).to(__a )
_UpperCamelCase : Optional[Any] = model(**__a )
self.assertTrue(outputs.loss is not None )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> int:
_UpperCamelCase, _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__a , **__a , output_hidden_states=__a )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]:
_UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase : Optional[int] = model_class(__a ).to(__a )
_UpperCamelCase : Optional[int] = model(**__a , output_attentions=__a )
self.assertTrue(outputs.attentions is not None )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]:
if not self.model_tester.is_training:
return
_UpperCamelCase : str = self.all_model_classes[1]
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
_UpperCamelCase : int = model_class(__a )
model.to(__a )
model.train()
_UpperCamelCase : Tuple = model(__a , mask_labels=__a , class_labels=__a ).loss
loss.backward()
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Any:
_UpperCamelCase : int = self.all_model_classes[1]
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
_UpperCamelCase : Union[str, Any] = True
_UpperCamelCase : List[Any] = True
_UpperCamelCase : List[Any] = model_class(__a ).to(__a )
model.train()
_UpperCamelCase : str = model(__a , mask_labels=__a , class_labels=__a )
_UpperCamelCase : List[Any] = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_UpperCamelCase : Any = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
_UpperCamelCase : int = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_UpperCamelCase : List[str] = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=__a )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
lowerCamelCase__ = 1E-4
def lowercase__ ( ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_vision
@slow
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]:
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]:
_UpperCamelCase : Any = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__a )
_UpperCamelCase : Optional[Any] = self.default_image_processor
_UpperCamelCase : int = prepare_img()
_UpperCamelCase : str = image_processor(__a , return_tensors="pt" ).to(__a )
_UpperCamelCase : List[str] = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__a , (1, 3, 384, 384) )
with torch.no_grad():
_UpperCamelCase : Dict = model(**__a )
_UpperCamelCase : List[Any] = torch.tensor(
[[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(__a )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , __a , atol=__a ) )
_UpperCamelCase : List[str] = torch.tensor(
[[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(__a )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __a , atol=__a ) )
_UpperCamelCase : Tuple = torch.tensor(
[[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(__a )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __a , atol=__a ) )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]:
_UpperCamelCase : Optional[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__a ).eval()
_UpperCamelCase : List[str] = self.default_image_processor
_UpperCamelCase : int = prepare_img()
_UpperCamelCase : str = image_processor(__a , return_tensors="pt" ).to(__a )
_UpperCamelCase : Optional[Any] = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__a , (1, 3, 384, 384) )
with torch.no_grad():
_UpperCamelCase : List[Any] = model(**__a )
# masks_queries_logits
_UpperCamelCase : Union[str, Any] = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
_UpperCamelCase : str = [
[-8.78_39, -9.00_56, -8.81_21],
[-7.41_04, -7.03_13, -6.54_01],
[-6.61_05, -6.34_27, -6.46_75],
]
_UpperCamelCase : Tuple = torch.tensor(__a ).to(__a )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __a , atol=__a ) )
# class_queries_logits
_UpperCamelCase : int = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
_UpperCamelCase : int = torch.tensor(
[
[1.83_24, -8.08_35, -4.19_22],
[0.84_50, -9.00_50, -3.60_53],
[0.30_45, -7.72_93, -3.02_75],
] ).to(__a )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __a , atol=__a ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any:
_UpperCamelCase : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__a ).eval()
_UpperCamelCase : int = self.default_image_processor
_UpperCamelCase : Tuple = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , )
_UpperCamelCase : Tuple = inputs["pixel_values"].to(__a )
_UpperCamelCase : int = [el.to(__a ) for el in inputs["mask_labels"]]
_UpperCamelCase : Tuple = [el.to(__a ) for el in inputs["class_labels"]]
with torch.no_grad():
_UpperCamelCase : str = model(**__a )
self.assertTrue(outputs.loss is not None )
| 716
|
"""simple docstring"""
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Optional[Any] , __a : list[int] ) -> None:
_UpperCamelCase : Tuple = len(__a )
_UpperCamelCase : Dict = [0] * len_array
if len_array > 0:
_UpperCamelCase : Optional[Any] = array[0]
for i in range(1 , __a ):
_UpperCamelCase : Tuple = self.prefix_sum[i - 1] + array[i]
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : int ) -> int:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> bool:
_UpperCamelCase : int = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(__a )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51
| 0
|
"""simple docstring"""
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetrImageProcessor
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Dict , __a : List[Any] , __a : List[str]=7 , __a : int=3 , __a : List[str]=30 , __a : Optional[int]=400 , __a : str=True , __a : Union[str, Any]=None , __a : int=True , __a : int=1 / 255 , __a : Tuple=True , __a : Optional[int]=[0.5, 0.5, 0.5] , __a : Any=[0.5, 0.5, 0.5] , __a : int=True , ) -> List[str]:
_UpperCamelCase : int = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
_UpperCamelCase : Any = parent
_UpperCamelCase : Dict = batch_size
_UpperCamelCase : Optional[int] = num_channels
_UpperCamelCase : List[str] = min_resolution
_UpperCamelCase : List[str] = max_resolution
_UpperCamelCase : Dict = do_resize
_UpperCamelCase : Union[str, Any] = size
_UpperCamelCase : Optional[Any] = do_rescale
_UpperCamelCase : str = rescale_factor
_UpperCamelCase : List[str] = do_normalize
_UpperCamelCase : str = image_mean
_UpperCamelCase : Optional[int] = image_std
_UpperCamelCase : Tuple = do_pad
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_pad": self.do_pad,
}
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Any=False ) -> Dict:
if not batched:
_UpperCamelCase : Tuple = image_inputs[0]
if isinstance(lowerCamelCase__ , Image.Image ):
_UpperCamelCase : List[str] = image.size
else:
_UpperCamelCase : int = image.shape[1], image.shape[2]
if w < h:
_UpperCamelCase : int = int(self.size["shortest_edge"] * h / w )
_UpperCamelCase : Union[str, Any] = self.size['''shortest_edge''']
elif w > h:
_UpperCamelCase : Optional[Any] = self.size['''shortest_edge''']
_UpperCamelCase : str = int(self.size["shortest_edge"] * w / h )
else:
_UpperCamelCase : List[str] = self.size['''shortest_edge''']
_UpperCamelCase : Optional[Any] = self.size['''shortest_edge''']
else:
_UpperCamelCase : Any = []
for image in image_inputs:
_UpperCamelCase : Union[str, Any] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCamelCase : int = max(lowerCamelCase__ , key=lambda __a : item[0] )[0]
_UpperCamelCase : Tuple = max(lowerCamelCase__ , key=lambda __a : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Tuple = DetrImageProcessor if is_vision_available() else None
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]:
_UpperCamelCase : Dict = DetrImageProcessingTester(self )
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]:
_UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase__ , "image_mean" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "image_std" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "do_rescale" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "rescale_factor" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "do_resize" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "size" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "do_pad" ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any:
_UpperCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} )
self.assertEqual(image_processor.do_pad , lowerCamelCase__ )
_UpperCamelCase : Dict = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCamelCase__ )
self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} )
self.assertEqual(image_processor.do_pad , lowerCamelCase__ )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
pass
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]:
_UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
_UpperCamelCase : int = self.image_processor_tester.get_expected_values(lowerCamelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase : str = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ )
_UpperCamelCase : Dict = image_processing(lowerCamelCase__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]:
_UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
_UpperCamelCase : List[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase : Optional[Any] = image_processing(lowerCamelCase__ , return_tensors="pt" ).pixel_values
_UpperCamelCase : Dict = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __SCREAMING_SNAKE_CASE ( self : int ) -> int:
_UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
_UpperCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase : str = image_processing(lowerCamelCase__ , return_tensors="pt" ).pixel_values
_UpperCamelCase : List[str] = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]:
_UpperCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
_UpperCamelCase : Any = json.loads(f.read() )
_UpperCamelCase : Union[str, Any] = {'''image_id''': 3_9769, '''annotations''': target}
# encode them
_UpperCamelCase : Optional[Any] = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50" )
_UpperCamelCase : int = image_processing(images=lowerCamelCase__ , annotations=lowerCamelCase__ , return_tensors="pt" )
# verify pixel values
_UpperCamelCase : List[str] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase__ )
_UpperCamelCase : int = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase : Dict = torch.tensor([58_87.96_00, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase__ ) )
# verify boxes
_UpperCamelCase : Optional[Any] = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase__ )
_UpperCamelCase : List[Any] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase : Union[str, Any] = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase__ ) )
# verify is_crowd
_UpperCamelCase : str = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase__ ) )
# verify class_labels
_UpperCamelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase__ ) )
# verify orig_size
_UpperCamelCase : List[str] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase__ ) )
# verify size
_UpperCamelCase : List[Any] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase__ ) )
@slow
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple:
_UpperCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
_UpperCamelCase : Tuple = json.loads(f.read() )
_UpperCamelCase : Optional[Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target}
_UpperCamelCase : Tuple = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
_UpperCamelCase : Optional[Any] = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic" )
_UpperCamelCase : Dict = image_processing(images=lowerCamelCase__ , annotations=lowerCamelCase__ , masks_path=lowerCamelCase__ , return_tensors="pt" )
# verify pixel values
_UpperCamelCase : Tuple = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase__ )
_UpperCamelCase : int = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase : Optional[Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase__ ) )
# verify boxes
_UpperCamelCase : List[Any] = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase__ )
_UpperCamelCase : Union[str, Any] = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase : Union[str, Any] = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase__ ) )
# verify is_crowd
_UpperCamelCase : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase__ ) )
# verify class_labels
_UpperCamelCase : List[str] = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase__ ) )
# verify masks
_UpperCamelCase : Optional[int] = 82_2873
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCamelCase__ )
# verify orig_size
_UpperCamelCase : int = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase__ ) )
# verify size
_UpperCamelCase : List[Any] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase__ ) )
| 717
|
"""simple docstring"""
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : Optional[int] = None
if token is not None:
_UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
_UpperCamelCase : Any = "636036"
_UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
_UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json()
return result["workflow_runs"]
def lowercase__ ( lowercase_ ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ )
_UpperCamelCase : Tuple = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
_UpperCamelCase : Union[str, Any] = workflow_run["id"]
break
return workflow_run_id
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ )
if workflow_run_id is not None:
_UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
_UpperCamelCase : Dict = artifacts_links[artifact_name]
download_artifact(
artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int:
"""simple docstring"""
get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ )
_UpperCamelCase : Dict = {}
for artifact_name in artifact_names:
_UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' )
if os.path.isfile(lowercase_ ):
_UpperCamelCase : int = {}
with zipfile.ZipFile(lowercase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowercase_ ):
# read the file
with z.open(lowercase_ ) as f:
_UpperCamelCase : int = f.read().decode("UTF-8" )
return results
| 51
| 0
|
"""simple docstring"""
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __SCREAMING_SNAKE_CASE ( UpperCamelCase_ ):
SCREAMING_SNAKE_CASE__ :Any = (DEISMultistepScheduler,)
SCREAMING_SNAKE_CASE__ :int = (("num_inference_steps", 25),)
def __SCREAMING_SNAKE_CASE ( self : List[str] , **__a : List[Any] ) -> List[str]:
_UpperCamelCase : Dict = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.00_01,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
}
config.update(**__a )
return config
def __SCREAMING_SNAKE_CASE ( self : int , __a : Dict=0 , **__a : Any ) -> Optional[Any]:
_UpperCamelCase : str = dict(self.forward_default_kwargs )
_UpperCamelCase : Optional[int] = kwargs.pop("num_inference_steps" , __a )
_UpperCamelCase : str = self.dummy_sample
_UpperCamelCase : str = 0.1 * sample
_UpperCamelCase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
_UpperCamelCase : str = self.get_scheduler_config(**__a )
_UpperCamelCase : Union[str, Any] = scheduler_class(**__a )
scheduler.set_timesteps(__a )
# copy over dummy past residuals
_UpperCamelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__a )
_UpperCamelCase : Optional[int] = scheduler_class.from_pretrained(__a )
new_scheduler.set_timesteps(__a )
# copy over dummy past residuals
_UpperCamelCase : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order]
_UpperCamelCase : List[Any] = sample, sample
for t in range(__a , time_step + scheduler.config.solver_order + 1 ):
_UpperCamelCase : Optional[int] = scheduler.step(__a , __a , __a , **__a ).prev_sample
_UpperCamelCase : str = new_scheduler.step(__a , __a , __a , **__a ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int:
pass
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Dict=0 , **__a : Dict ) -> List[str]:
_UpperCamelCase : str = dict(self.forward_default_kwargs )
_UpperCamelCase : List[str] = kwargs.pop("num_inference_steps" , __a )
_UpperCamelCase : Union[str, Any] = self.dummy_sample
_UpperCamelCase : int = 0.1 * sample
_UpperCamelCase : int = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
_UpperCamelCase : Tuple = self.get_scheduler_config()
_UpperCamelCase : Union[str, Any] = scheduler_class(**__a )
scheduler.set_timesteps(__a )
# copy over dummy past residuals (must be after setting timesteps)
_UpperCamelCase : List[Any] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__a )
_UpperCamelCase : List[Any] = scheduler_class.from_pretrained(__a )
# copy over dummy past residuals
new_scheduler.set_timesteps(__a )
# copy over dummy past residual (must be after setting timesteps)
_UpperCamelCase : Dict = dummy_past_residuals[: new_scheduler.config.solver_order]
_UpperCamelCase : Tuple = scheduler.step(__a , __a , __a , **__a ).prev_sample
_UpperCamelCase : Union[str, Any] = new_scheduler.step(__a , __a , __a , **__a ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[str]=None , **__a : List[Any] ) -> Any:
if scheduler is None:
_UpperCamelCase : Dict = self.scheduler_classes[0]
_UpperCamelCase : Optional[Any] = self.get_scheduler_config(**__a )
_UpperCamelCase : int = scheduler_class(**__a )
_UpperCamelCase : Optional[int] = self.scheduler_classes[0]
_UpperCamelCase : str = self.get_scheduler_config(**__a )
_UpperCamelCase : Any = scheduler_class(**__a )
_UpperCamelCase : Dict = 10
_UpperCamelCase : Optional[int] = self.dummy_model()
_UpperCamelCase : Any = self.dummy_sample_deter
scheduler.set_timesteps(__a )
for i, t in enumerate(scheduler.timesteps ):
_UpperCamelCase : List[str] = model(__a , __a )
_UpperCamelCase : Any = scheduler.step(__a , __a , __a ).prev_sample
return sample
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]:
_UpperCamelCase : List[Any] = dict(self.forward_default_kwargs )
_UpperCamelCase : Dict = kwargs.pop("num_inference_steps" , __a )
for scheduler_class in self.scheduler_classes:
_UpperCamelCase : Optional[Any] = self.get_scheduler_config()
_UpperCamelCase : List[Any] = scheduler_class(**__a )
_UpperCamelCase : str = self.dummy_sample
_UpperCamelCase : List[str] = 0.1 * sample
if num_inference_steps is not None and hasattr(__a , "set_timesteps" ):
scheduler.set_timesteps(__a )
elif num_inference_steps is not None and not hasattr(__a , "set_timesteps" ):
_UpperCamelCase : List[str] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_UpperCamelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10]
_UpperCamelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order]
_UpperCamelCase : Dict = scheduler.timesteps[5]
_UpperCamelCase : List[str] = scheduler.timesteps[6]
_UpperCamelCase : List[str] = scheduler.step(__a , __a , __a , **__a ).prev_sample
_UpperCamelCase : Optional[int] = scheduler.step(__a , __a , __a , **__a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]:
# make sure that iterating over schedulers with same config names gives same results
# for defaults
_UpperCamelCase : str = DEISMultistepScheduler(**self.get_scheduler_config() )
_UpperCamelCase : List[str] = self.full_loop(scheduler=__a )
_UpperCamelCase : Tuple = torch.mean(torch.abs(__a ) )
assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3
_UpperCamelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config )
_UpperCamelCase : int = DPMSolverMultistepScheduler.from_config(scheduler.config )
_UpperCamelCase : str = UniPCMultistepScheduler.from_config(scheduler.config )
_UpperCamelCase : str = DEISMultistepScheduler.from_config(scheduler.config )
_UpperCamelCase : Optional[int] = self.full_loop(scheduler=__a )
_UpperCamelCase : Tuple = torch.mean(torch.abs(__a ) )
assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]:
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=__a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]:
self.check_over_configs(thresholding=__a )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=__a , prediction_type=__a , sample_max_value=__a , algorithm_type="deis" , solver_order=__a , solver_type=__a , )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__a )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]:
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , )
_UpperCamelCase : List[Any] = self.full_loop(
solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , )
assert not torch.isnan(__a ).any(), "Samples have nan numbers"
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict:
self.check_over_configs(lower_order_final=__a )
self.check_over_configs(lower_order_final=__a )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> int:
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=__a , time_step=0 )
def __SCREAMING_SNAKE_CASE ( self : int ) -> Tuple:
_UpperCamelCase : List[Any] = self.full_loop()
_UpperCamelCase : Optional[Any] = torch.mean(torch.abs(__a ) )
assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]:
_UpperCamelCase : List[Any] = self.full_loop(prediction_type="v_prediction" )
_UpperCamelCase : str = torch.mean(torch.abs(__a ) )
assert abs(result_mean.item() - 0.0_91 ) < 1e-3
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
_UpperCamelCase : Union[str, Any] = self.scheduler_classes[0]
_UpperCamelCase : Tuple = self.get_scheduler_config(thresholding=__a , dynamic_thresholding_ratio=0 )
_UpperCamelCase : str = scheduler_class(**__a )
_UpperCamelCase : List[Any] = 10
_UpperCamelCase : str = self.dummy_model()
_UpperCamelCase : List[str] = self.dummy_sample_deter.half()
scheduler.set_timesteps(__a )
for i, t in enumerate(scheduler.timesteps ):
_UpperCamelCase : int = model(__a , __a )
_UpperCamelCase : Dict = scheduler.step(__a , __a , __a ).prev_sample
assert sample.dtype == torch.floataa
| 718
|
"""simple docstring"""
import math
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int:
_UpperCamelCase : List[Any] = 0.0
_UpperCamelCase : Union[str, Any] = 0.0
for i in range(len(__a ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]:
for i in range(len(__a ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def lowercase__ ( ) -> None:
"""simple docstring"""
_UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
_UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
_UpperCamelCase : List[Any] = SelfOrganizingMap()
_UpperCamelCase : int = 3
_UpperCamelCase : List[Any] = 0.5
for _ in range(lowercase_ ):
for j in range(len(lowercase_ ) ):
# training sample
_UpperCamelCase : int = training_samples[j]
# Compute the winning vector
_UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ )
# Update the winning vector
_UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ )
# classify test sample
_UpperCamelCase : Optional[int] = [0, 0, 0, 1]
_UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ )
# results
print(F'''Clusters that the test sample belongs to : {winner}''' )
print(F'''Weights that have been trained : {weights}''' )
# running the main() function
if __name__ == "__main__":
main()
| 51
| 0
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :str = LEDConfig
SCREAMING_SNAKE_CASE__ :Union[str, Any] = {}
SCREAMING_SNAKE_CASE__ :Optional[Any] = '''gelu'''
def __init__( self : Tuple , __a : Dict , __a : Union[str, Any]=13 , __a : List[Any]=7 , __a : List[Any]=True , __a : Optional[Any]=False , __a : List[Any]=99 , __a : List[Any]=32 , __a : List[Any]=2 , __a : Optional[Any]=4 , __a : int=37 , __a : Any=0.1 , __a : List[str]=0.1 , __a : int=20 , __a : Any=2 , __a : Union[str, Any]=1 , __a : str=0 , __a : List[str]=4 , ) -> List[Any]:
_UpperCamelCase : List[Any] = parent
_UpperCamelCase : List[str] = batch_size
_UpperCamelCase : List[Any] = seq_length
_UpperCamelCase : Dict = is_training
_UpperCamelCase : Union[str, Any] = use_labels
_UpperCamelCase : Union[str, Any] = vocab_size
_UpperCamelCase : List[str] = hidden_size
_UpperCamelCase : Tuple = num_hidden_layers
_UpperCamelCase : Any = num_attention_heads
_UpperCamelCase : Optional[Any] = intermediate_size
_UpperCamelCase : Any = hidden_dropout_prob
_UpperCamelCase : List[str] = attention_probs_dropout_prob
_UpperCamelCase : int = max_position_embeddings
_UpperCamelCase : Optional[Any] = eos_token_id
_UpperCamelCase : Union[str, Any] = pad_token_id
_UpperCamelCase : Optional[Any] = bos_token_id
_UpperCamelCase : Tuple = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_UpperCamelCase : int = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_UpperCamelCase : Optional[Any] = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]:
_UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_UpperCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCamelCase : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 )
_UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase : Optional[int] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_UpperCamelCase : List[Any] = prepare_led_inputs_dict(__a , __a , __a )
_UpperCamelCase : str = tf.concat(
[tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , )
_UpperCamelCase : Optional[Any] = global_attention_mask
return config, inputs_dict
def __SCREAMING_SNAKE_CASE ( self : Any , __a : Dict , __a : Optional[int] ) -> Optional[Any]:
_UpperCamelCase : str = TFLEDModel(config=__a ).get_decoder()
_UpperCamelCase : Tuple = inputs_dict["input_ids"]
_UpperCamelCase : List[str] = input_ids[:1, :]
_UpperCamelCase : Tuple = inputs_dict["attention_mask"][:1, :]
_UpperCamelCase : int = 1
# first forward pass
_UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a )
_UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCamelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCamelCase : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_UpperCamelCase : Dict = tf.concat([input_ids, next_tokens] , axis=-1 )
_UpperCamelCase : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_UpperCamelCase : Dict = model(__a , attention_mask=__a )[0]
_UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_UpperCamelCase : Union[str, Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_UpperCamelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx]
_UpperCamelCase : int = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__a , __a , rtol=1e-3 )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> int:
"""simple docstring"""
if attention_mask is None:
_UpperCamelCase : Any = tf.cast(tf.math.not_equal(UpperCamelCase__ ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
_UpperCamelCase : Optional[int] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
_UpperCamelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCamelCase : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :int = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :List[Any] = (
{
'''conversational''': TFLEDForConditionalGeneration,
'''feature-extraction''': TFLEDModel,
'''summarization''': TFLEDForConditionalGeneration,
'''text2text-generation''': TFLEDForConditionalGeneration,
'''translation''': TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ :Tuple = True
SCREAMING_SNAKE_CASE__ :Optional[int] = False
SCREAMING_SNAKE_CASE__ :Dict = False
SCREAMING_SNAKE_CASE__ :List[Any] = False
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str:
_UpperCamelCase : List[Any] = TFLEDModelTester(self )
_UpperCamelCase : List[str] = ConfigTester(self , config_class=__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : int ) -> Tuple:
_UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> str:
_UpperCamelCase, _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCamelCase : List[str] = tf.zeros_like(inputs_dict["attention_mask"] )
_UpperCamelCase : Dict = 2
_UpperCamelCase : Optional[int] = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , )
_UpperCamelCase : List[str] = True
_UpperCamelCase : Tuple = self.model_tester.seq_length
_UpperCamelCase : Dict = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(__a : Optional[Any] ):
_UpperCamelCase : Optional[int] = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(__a : Union[str, Any] ):
_UpperCamelCase : List[str] = [t.numpy() for t in outputs.encoder_attentions]
_UpperCamelCase : Optional[Any] = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_UpperCamelCase : Union[str, Any] = True
_UpperCamelCase : Dict = False
_UpperCamelCase : Union[str, Any] = False
_UpperCamelCase : int = model_class(__a )
_UpperCamelCase : Tuple = model(self._prepare_for_class(__a , __a ) )
_UpperCamelCase : Any = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
_UpperCamelCase : int = model_class(__a )
_UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_UpperCamelCase : Optional[Any] = True
_UpperCamelCase : int = model_class(__a )
_UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
_UpperCamelCase : List[str] = True
_UpperCamelCase : Union[str, Any] = True
_UpperCamelCase : Optional[Any] = model_class(__a )
_UpperCamelCase : Dict = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]:
pass
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str:
# TODO: Head-masking not yet implement
pass
def lowercase__ ( lowercase_ ) -> str:
"""simple docstring"""
return tf.constant(UpperCamelCase__ ,dtype=tf.intaa )
lowerCamelCase__ = 1E-4
@slow
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]:
_UpperCamelCase : List[Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led
# change to intended input here
_UpperCamelCase : List[str] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : int = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : int = prepare_led_inputs_dict(model.config , __a , __a )
_UpperCamelCase : Tuple = model(**__a )[0]
_UpperCamelCase : List[str] = (1, 1024, 768)
self.assertEqual(output.shape , __a )
# change to expected output here
_UpperCamelCase : int = tf.convert_to_tensor(
[[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]:
_UpperCamelCase : Optional[Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" )
# change to intended input here
_UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Union[str, Any] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a )
_UpperCamelCase : Optional[Any] = model(**__a )[0]
_UpperCamelCase : Any = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , __a )
# change to expected output here
_UpperCamelCase : Union[str, Any] = tf.convert_to_tensor(
[[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
| 719
|
"""simple docstring"""
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
lowerCamelCase__ = "src/transformers"
lowerCamelCase__ = "docs/source/en"
lowerCamelCase__ = "."
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]:
"""simple docstring"""
with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f:
_UpperCamelCase : Union[str, Any] = f.readlines()
# Find the start prompt.
_UpperCamelCase : Dict = 0
while not lines[start_index].startswith(lowercase_ ):
start_index += 1
start_index += 1
_UpperCamelCase : Optional[int] = start_index
while not lines[end_index].startswith(lowercase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH)
def lowercase__ ( lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ )
return [m.group(0 ) for m in matches]
def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ )
_UpperCamelCase : Union[str, Any] = (width - text_length) // 2
_UpperCamelCase : Dict = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowercase__ ( ) -> str:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
_UpperCamelCase : str = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
_UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
_UpperCamelCase : int = collections.defaultdict(lowercase_ )
_UpperCamelCase : Dict = collections.defaultdict(lowercase_ )
_UpperCamelCase : Dict = collections.defaultdict(lowercase_ )
_UpperCamelCase : int = collections.defaultdict(lowercase_ )
_UpperCamelCase : str = collections.defaultdict(lowercase_ )
# Let's lookup through all transformers object (once).
for attr_name in dir(lowercase_ ):
_UpperCamelCase : List[str] = None
if attr_name.endswith("Tokenizer" ):
_UpperCamelCase : Tuple = slow_tokenizers
_UpperCamelCase : Any = attr_name[:-9]
elif attr_name.endswith("TokenizerFast" ):
_UpperCamelCase : Optional[Any] = fast_tokenizers
_UpperCamelCase : List[str] = attr_name[:-13]
elif _re_tf_models.match(lowercase_ ) is not None:
_UpperCamelCase : List[Any] = tf_models
_UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0]
elif _re_flax_models.match(lowercase_ ) is not None:
_UpperCamelCase : Dict = flax_models
_UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0]
elif _re_pt_models.match(lowercase_ ) is not None:
_UpperCamelCase : Optional[int] = pt_models
_UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0]
if lookup_dict is not None:
while len(lowercase_ ) > 0:
if attr_name in model_name_to_prefix.values():
_UpperCamelCase : Dict = True
break
# Try again after removing the last word in the name
_UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] )
# Let's build that table!
_UpperCamelCase : Any = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
_UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
_UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns]
_UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2
# Build the table per se
_UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n"
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n"
_UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"}
for name in model_names:
_UpperCamelCase : Optional[int] = model_name_to_prefix[name]
_UpperCamelCase : Tuple = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n"
return table
def lowercase__ ( lowercase_=False ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file(
filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,)
_UpperCamelCase : Any = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCamelCase__ = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 51
| 0
|
"""simple docstring"""
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"}
lowerCamelCase__ = {
"vocab_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt",
},
"emoji_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json",
},
}
lowerCamelCase__ = {
"abeja/gpt-neox-japanese-2.7b": 2048,
}
def lowercase__ ( lowercase_ ,lowercase_ ) -> str:
"""simple docstring"""
with open(lowerCamelCase__ ,"r" ,encoding="utf-8" ) as f:
_UpperCamelCase : List[str] = json.loads(f.read() )
_UpperCamelCase : List[Any] = collections.OrderedDict()
_UpperCamelCase : Union[str, Any] = collections.OrderedDict()
_UpperCamelCase : Optional[Any] = collections.OrderedDict()
with open(lowerCamelCase__ ,"r" ,encoding="utf-8" ) as f:
_UpperCamelCase : Optional[Any] = f.readlines()
_UpperCamelCase : List[Any] = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token]
for idx, b in enumerate(lowerCamelCase__ ):
_UpperCamelCase : Optional[int] = b
_UpperCamelCase : Union[str, Any] = idx
for wd in b:
_UpperCamelCase : int = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[int] = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ :Any = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ :str = ["""input_ids""", """attention_mask"""]
def __init__( self : Optional[Any] , __a : Tuple , __a : Optional[Any] , __a : Optional[Any]="<|endoftext|>" , __a : List[str]="<|endoftext|>" , __a : Any="<|startoftext|>" , __a : Any="<|endoftext|>" , __a : Tuple=False , **__a : List[str] , ) -> Optional[Any]:
super().__init__(
unk_token=__a , pad_token=__a , bos_token=__a , eos_token=__a , do_clean_text=__a , **__a , )
if not os.path.isfile(__a ):
raise ValueError(
F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained'''
" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
if not os.path.isfile(__a ):
raise ValueError(
F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google'''
" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
_UpperCamelCase : Optional[Any] = do_clean_text
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : int = load_vocab_and_emoji(__a , __a )
_UpperCamelCase : str = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]:
return len(self.raw_vocab )
def __SCREAMING_SNAKE_CASE ( self : str ) -> str:
return dict(self.raw_vocab , **self.added_tokens_encoder )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Tuple ) -> Optional[Any]:
return self.subword_tokenizer.tokenize(__a , clean=self.do_clean_text )
def __SCREAMING_SNAKE_CASE ( self : int , __a : Optional[int] ) -> Dict:
return self.vocab.get(__a , self.vocab.get(self.unk_token ) )
def __SCREAMING_SNAKE_CASE ( self : int , __a : List[Any] ) -> Tuple:
return self.subword_tokenizer.convert_id_to_token(__a )
def __SCREAMING_SNAKE_CASE ( self : str , __a : int ) -> Optional[Any]:
_UpperCamelCase : Tuple = "".join(__a ).strip()
return out_string
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : "Conversation" ) -> List[int]:
_UpperCamelCase : int = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] )
if len(__a ) > self.model_max_length:
_UpperCamelCase : Optional[Any] = input_ids[-self.model_max_length :]
return input_ids
def __SCREAMING_SNAKE_CASE ( self : int , __a : str , __a : Optional[str] = None ) -> Tuple[str]:
_UpperCamelCase : List[Any] = 0
if os.path.isdir(__a ):
_UpperCamelCase : int = os.path.join(
__a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
_UpperCamelCase : str = os.path.join(
__a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] )
else:
_UpperCamelCase : Union[str, Any] = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"]
)
_UpperCamelCase : List[Any] = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"]
)
with open(__a , "w" , encoding="utf-8" ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
" Please check that the vocabulary is not corrupted!" )
_UpperCamelCase : Dict = token_index
writer.write(",".join(__a ) + "\n" )
index += 1
with open(__a , "w" , encoding="utf-8" ) as writer:
json.dump(self.emoji , __a )
return vocab_file, emoji_file
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
def __init__( self : str , __a : Dict , __a : Optional[Any] , __a : List[Any] ) -> int:
_UpperCamelCase : Optional[int] = vocab # same as swe
_UpperCamelCase : int = ids_to_tokens # same as bpe
_UpperCamelCase : List[Any] = emoji
_UpperCamelCase : List[Any] = np.max([len(__a ) for w in self.vocab.keys()] )
_UpperCamelCase : int = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" )
_UpperCamelCase : Optional[Any] = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" )
_UpperCamelCase : List[Any] = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" )
_UpperCamelCase : int = re.compile(
R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
_UpperCamelCase : Tuple = re.compile(
R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
_UpperCamelCase : int = re.compile(
R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" )
_UpperCamelCase : Union[str, Any] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
_UpperCamelCase : List[Any] = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
_UpperCamelCase : Union[str, Any] = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} )
def __len__( self : List[str] ) -> List[str]:
return len(self.ids_to_tokens )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Any ) -> Optional[int]:
_UpperCamelCase : Tuple = self.content_repattera.sub("<URL>" , __a )
_UpperCamelCase : Tuple = self.content_repattera.sub("<EMAIL>" , __a )
_UpperCamelCase : int = self.content_repattera.sub("<TEL>" , __a )
_UpperCamelCase : int = self.content_repattera.sub("<DATE>" , __a )
_UpperCamelCase : Dict = self.content_repattera.sub("<DATE>" , __a )
_UpperCamelCase : List[Any] = self.content_repattera.sub("<PRICE>" , __a )
_UpperCamelCase : str = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
_UpperCamelCase : Optional[Any] = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" )
return content
def __SCREAMING_SNAKE_CASE ( self : Any , __a : int , __a : Any=False ) -> Any:
_UpperCamelCase : Optional[Any] = text.replace(" " , "<SP>" )
_UpperCamelCase : Optional[int] = text.replace(" " , "<SP>" )
_UpperCamelCase : Optional[Any] = text.replace("\r\n" , "<BR>" )
_UpperCamelCase : List[Any] = text.replace("\n" , "<BR>" )
_UpperCamelCase : Optional[int] = text.replace("\r" , "<BR>" )
_UpperCamelCase : Dict = text.replace("\t" , "<TAB>" )
_UpperCamelCase : Union[str, Any] = text.replace("—" , "ー" )
_UpperCamelCase : Union[str, Any] = text.replace("−" , "ー" )
for k, v in self.emoji["emoji"].items():
if k in text:
_UpperCamelCase : List[str] = text.replace(__a , __a )
if clean:
_UpperCamelCase : int = self.clean_text(__a )
def check_simbol(__a : Union[str, Any] ):
_UpperCamelCase : Tuple = x.encode()
if len(__a ) == 1 and len(__a ) == 2:
_UpperCamelCase : Union[str, Any] = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0Xc2a1 and c <= 0Xc2bf)
or (c >= 0Xc780 and c <= 0Xc783)
or (c >= 0Xcab9 and c <= 0Xcbbf)
or (c >= 0Xcc80 and c <= 0Xcda2)
):
return True
return False
def checkuae(__a : List[Any] ):
_UpperCamelCase : List[Any] = x.encode()
if len(__a ) == 1 and len(__a ) == 3:
_UpperCamelCase : List[Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0Xe2_8080 and c <= 0Xe2_b07f:
return True
return False
_UpperCamelCase : Any = 0
_UpperCamelCase : Any = []
while pos < len(__a ):
_UpperCamelCase : Any = min(len(__a ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3
_UpperCamelCase : List[str] = [] # (token_id, token, pos)
for e in range(__a , __a , -1 ):
_UpperCamelCase : Optional[Any] = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(__a ) > 2:
_UpperCamelCase : Any = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(__a ) > 0:
# the smallest token_id is adopted
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Union[str, Any] = sorted(__a , key=lambda __a : x[0] )[0]
result.append(__a )
_UpperCamelCase : Optional[Any] = e
else:
_UpperCamelCase : Optional[Any] = pos + 1
_UpperCamelCase : List[Any] = text[pos:end]
if check_simbol(__a ):
result.append("<KIGOU>" )
elif checkuae(__a ):
result.append("<U2000U2BFF>" )
else:
for i in wd.encode("utf-8" ):
result.append("<|byte%d|>" % i )
_UpperCamelCase : Optional[int] = end
return result
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] , __a : Optional[Any]="\n" ) -> List[Any]:
_UpperCamelCase : str = []
_UpperCamelCase : int = []
_UpperCamelCase : int = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(__a ) > 0:
words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) )
_UpperCamelCase : List[str] = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["emoji_inv"][word] )
elif word == "<SP>":
words.append(" " )
elif word == "<BR>":
words.append(__a )
elif word == "<TAB>":
words.append("\t" )
elif word == "<BLOCK>":
words.append("▀" )
elif word == "<KIGOU>":
words.append("ǀ" )
elif word == "<U2000U2BFF>":
words.append("‖" )
else:
words.append(__a )
if len(__a ) > 0:
words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) )
_UpperCamelCase : List[Any] = "".join(__a )
return text
| 720
|
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
lowerCamelCase__ = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
lowerCamelCase__ = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
lowerCamelCase__ = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]:
"""simple docstring"""
_UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] )
return (item, float(lowercase_ ))
def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]:
"""simple docstring"""
_UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 )
_UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:]
_UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def lowercase__ ( lowercase_ ,lowercase_ ) -> str:
"""simple docstring"""
_UpperCamelCase : int = list(lowercase_ )
if random.uniform(0 ,1 ) < MUTATION_PROBABILITY:
_UpperCamelCase : int = random.choice(lowercase_ )
return "".join(lowercase_ )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = []
# Generate more children proportionally to the fitness score.
_UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1
_UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n
for _ in range(lowercase_ ):
_UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0]
_UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ )
# Append new string to the population list.
pop.append(mutate(lowercase_ ,lowercase_ ) )
pop.append(mutate(lowercase_ ,lowercase_ ) )
return pop
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]:
"""simple docstring"""
if N_POPULATION < N_SELECTED:
_UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(lowercase_ )
# Verify that the target contains no genes besides the ones inside genes variable.
_UpperCamelCase : int = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
_UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(lowercase_ )
# Generate random starting population.
_UpperCamelCase : Union[str, Any] = []
for _ in range(lowercase_ ):
population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) )
# Just some logs to know what the algorithms is doing.
_UpperCamelCase, _UpperCamelCase : str = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowercase_ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
_UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population]
# Check if there is a matching evolution.
_UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'''\nGeneration: {generation}'''
F'''\nTotal Population:{total_population}'''
F'''\nBest score: {population_score[0][1]}'''
F'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
_UpperCamelCase : str = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowercase_ )
# Normalize population score to be between 0 and 1.
_UpperCamelCase : str = [
(item, score / len(lowercase_ )) for item, score in population_score
]
# This is selection
for i in range(lowercase_ ):
population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowercase_ ) > N_POPULATION:
break
if __name__ == "__main__":
lowerCamelCase__ = (
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
)
lowerCamelCase__ = list(
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list)
print(
f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"""
)
| 51
| 0
|
"""simple docstring"""
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
lowerCamelCase__ = pytest.mark.integration
lowerCamelCase__ = {"comet"}
lowerCamelCase__ = importlib.util.find_spec("fairseq") is not None
lowerCamelCase__ = {"code_eval"}
lowerCamelCase__ = os.name == "nt"
lowerCamelCase__ = {"bertscore", "frugalscore", "perplexity"}
lowerCamelCase__ = importlib.util.find_spec("transformers") is not None
def lowercase__ ( lowercase_ ) -> Tuple:
"""simple docstring"""
@wraps(lowercase_ )
def wrapper(self ,lowercase_ ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("\"test requires Fairseq\"" )
else:
test_case(self ,lowercase_ )
return wrapper
def lowercase__ ( lowercase_ ) -> Dict:
"""simple docstring"""
@wraps(lowercase_ )
def wrapper(self ,lowercase_ ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("\"test requires transformers\"" )
else:
test_case(self ,lowercase_ )
return wrapper
def lowercase__ ( lowercase_ ) -> int:
"""simple docstring"""
@wraps(lowercase_ )
def wrapper(self ,lowercase_ ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("\"test not supported on Windows\"" )
else:
test_case(self ,lowercase_ )
return wrapper
def lowercase__ ( ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase : str = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
snake_case__ , snake_case__ , snake_case__ )
@local
class __SCREAMING_SNAKE_CASE ( parameterized.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[int] = {}
SCREAMING_SNAKE_CASE__ :Union[str, Any] = None
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[str] ) -> Dict:
_UpperCamelCase : List[Any] = "[...]"
_UpperCamelCase : List[Any] = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , _SCREAMING_SNAKE_CASE ) ).module_path )
_UpperCamelCase : Optional[int] = datasets.load.import_main_class(metric_module.__name__ , dataset=_SCREAMING_SNAKE_CASE )
# check parameters
_UpperCamelCase : Tuple = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(_SCREAMING_SNAKE_CASE , metric_module.__name__ ):
with self.use_local_metrics():
try:
_UpperCamelCase : Tuple = doctest.testmod(_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , raise_on_error=_SCREAMING_SNAKE_CASE )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def __SCREAMING_SNAKE_CASE ( self : int , __a : Tuple ) -> Tuple:
_UpperCamelCase : Dict = "[...]"
_UpperCamelCase : str = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , _SCREAMING_SNAKE_CASE ) ).module_path )
# run doctest
with self.use_local_metrics():
_UpperCamelCase : Tuple = doctest.testmod(_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , raise_on_error=_SCREAMING_SNAKE_CASE )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[int] , __a : int ) -> Optional[int]:
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](_SCREAMING_SNAKE_CASE ):
yield
else:
yield
@contextmanager
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]:
def load_local_metric(__a : List[str] , *__a : List[str] , **__a : Dict ):
return load_metric(os.path.join("metrics" , _SCREAMING_SNAKE_CASE ) , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
with patch("datasets.load_metric" ) as mock_load_metric:
_UpperCamelCase : List[Any] = load_local_metric
yield
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : List[str] , __a : Union[str, Any] ) -> Any:
def wrapper(__a : str ):
_UpperCamelCase : int = contextmanager(_SCREAMING_SNAKE_CASE )
_UpperCamelCase : List[str] = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("bleurt" )
def lowercase__ ( lowercase_ ) -> List[Any]:
"""simple docstring"""
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("sv" ,"" ,"" ) # handle pytest cli flags
class __SCREAMING_SNAKE_CASE ( snake_case__ ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[int] ) -> List[str]:
assert len(input_dict["input_ids"] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("bleurt.score._create_predictor" ) as mock_create_predictor:
_UpperCamelCase : Optional[Any] = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("bertscore" )
def lowercase__ ( lowercase_ ) -> List[Any]:
"""simple docstring"""
import torch
def bert_cos_score_idf(lowercase_ ,lowercase_ ,*lowercase_ ,**lowercase_ ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(lowercase_ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("bert_score.scorer.get_model" ), patch(
"bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf:
_UpperCamelCase : Optional[int] = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("comet" )
def lowercase__ ( lowercase_ ) -> str:
"""simple docstring"""
def load_from_checkpoint(lowercase_ ):
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : List[str] , *__a : Tuple , **__a : List[Any] ) -> Dict:
assert len(_SCREAMING_SNAKE_CASE ) == 2
_UpperCamelCase : Any = [0.19, 0.92]
return scores, sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("comet.download_model" ) as mock_download_model:
_UpperCamelCase : str = None
with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint:
_UpperCamelCase : Any = load_from_checkpoint
yield
def lowercase__ ( ) -> str:
"""simple docstring"""
_UpperCamelCase : Dict = load_metric(os.path.join("metrics" ,"seqeval" ) )
_UpperCamelCase : List[str] = "ERROR"
_UpperCamelCase : str = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'''
with pytest.raises(lowercase_ ,match=re.escape(lowercase_ ) ):
metric.compute(predictions=[] ,references=[] ,scheme=lowercase_ )
| 721
|
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = ["model.decoder.embed_positions.weights"]
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
if "emb" in name:
_UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" )
if "transformer" in name:
_UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" )
if "cross_attention" in name:
_UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" )
if "linear1" in name:
_UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" )
if "linear2" in name:
_UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" )
if "norm1" in name:
_UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" )
if "norm_cross" in name:
_UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" )
if "norm2" in name:
_UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" )
if "out_norm" in name:
_UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" )
if "linears" in name:
_UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
_UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" )
return name
def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]:
"""simple docstring"""
_UpperCamelCase : str = list(state_dict.keys() )
_UpperCamelCase : Optional[Any] = {}
for key in keys:
_UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ )
_UpperCamelCase : List[Any] = rename_keys(lowercase_ )
if "in_proj_weight" in key:
# split fused qkv proj
_UpperCamelCase : Tuple = val[:hidden_size, :]
_UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :]
_UpperCamelCase : Optional[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
_UpperCamelCase : Optional[Any] = val
else:
_UpperCamelCase : List[str] = val
return state_dict, enc_dec_proj_state_dict
def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
_UpperCamelCase : List[Any] = 1_024
_UpperCamelCase : List[str] = 24
_UpperCamelCase : Any = 16
elif checkpoint == "medium":
_UpperCamelCase : Tuple = 1_536
_UpperCamelCase : Dict = 48
_UpperCamelCase : Tuple = 24
elif checkpoint == "large":
_UpperCamelCase : int = 2_048
_UpperCamelCase : Optional[int] = 48
_UpperCamelCase : Dict = 32
else:
raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' )
_UpperCamelCase : str = MusicgenDecoderConfig(
hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,)
return config
@torch.no_grad()
def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ )
_UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ )
_UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict()
_UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict(
lowercase_ ,hidden_size=decoder_config.hidden_size )
_UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" )
_UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" )
_UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
_UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' )
if len(lowercase_ ) > 0:
raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' )
# init the composite model
_UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowercase_ )
# check we can do a forward pass
_UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 )
_UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 )
with torch.no_grad():
_UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
_UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" )
_UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" )
_UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ )
# set the appropriate bos/pad token ids
_UpperCamelCase : str = 2_048
_UpperCamelCase : str = 2_048
# set other default generation config params
_UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate )
_UpperCamelCase : List[str] = True
_UpperCamelCase : int = 3.0
if pytorch_dump_folder is not None:
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' )
model.save_pretrained(lowercase_ )
processor.save_pretrained(lowercase_ )
if repo_id:
logger.info(F'''Pushing model {checkpoint} to {repo_id}''' )
model.push_to_hub(lowercase_ )
processor.push_to_hub(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
lowerCamelCase__ = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 51
| 0
|
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : int ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple:
torch.manual_seed(0 )
_UpperCamelCase : Dict = UNetaDModel(
sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , )
return model
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]:
torch.manual_seed(0 )
_UpperCamelCase : int = UNetaDConditionModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , )
return model
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]:
torch.manual_seed(0 )
_UpperCamelCase : Any = AutoencoderKL(
sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , )
_UpperCamelCase : List[Any] = UNetaDModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , )
return vqvae, unet
@slow
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple:
_UpperCamelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator
_UpperCamelCase : Union[str, Any] = Mel(
x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , )
_UpperCamelCase : Union[str, Any] = DDPMScheduler()
_UpperCamelCase : int = AudioDiffusionPipeline(vqvae=__a , unet=self.dummy_unet , mel=__a , scheduler=__a )
_UpperCamelCase : Optional[int] = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
_UpperCamelCase : List[str] = torch.Generator(device=__a ).manual_seed(42 )
_UpperCamelCase : List[str] = pipe(generator=__a , steps=4 )
_UpperCamelCase : int = output.audios[0]
_UpperCamelCase : Tuple = output.images[0]
_UpperCamelCase : str = torch.Generator(device=__a ).manual_seed(42 )
_UpperCamelCase : str = pipe(generator=__a , steps=4 , return_dict=__a )
_UpperCamelCase : Optional[int] = output[0][0]
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
assert (
image.height == self.dummy_unet.config.sample_size[0]
and image.width == self.dummy_unet.config.sample_size[1]
)
_UpperCamelCase : Tuple = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
_UpperCamelCase : Union[str, Any] = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10]
_UpperCamelCase : List[Any] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0
_UpperCamelCase : Optional[Any] = Mel(
x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , )
_UpperCamelCase : Tuple = DDIMScheduler()
_UpperCamelCase : Any = self.dummy_vqvae_and_unet
_UpperCamelCase : str = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__a , scheduler=__a )
_UpperCamelCase : Union[str, Any] = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
np.random.seed(0 )
_UpperCamelCase : Optional[Any] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) )
_UpperCamelCase : Dict = torch.Generator(device=__a ).manual_seed(42 )
_UpperCamelCase : Dict = pipe(raw_audio=__a , generator=__a , start_step=5 , steps=10 )
_UpperCamelCase : Optional[int] = output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
)
_UpperCamelCase : int = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
_UpperCamelCase : int = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
_UpperCamelCase : int = self.dummy_unet_condition
_UpperCamelCase : Optional[Any] = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=__a , mel=__a , scheduler=__a )
_UpperCamelCase : str = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
np.random.seed(0 )
_UpperCamelCase : Optional[int] = torch.rand((1, 1, 10) )
_UpperCamelCase : Any = pipe(generator=__a , encoding=__a )
_UpperCamelCase : int = output.images[0]
_UpperCamelCase : str = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
_UpperCamelCase : Dict = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __SCREAMING_SNAKE_CASE ( self : int ) -> str:
_UpperCamelCase : Any = torch_device
_UpperCamelCase : Optional[Any] = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" )
_UpperCamelCase : Any = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
_UpperCamelCase : Any = torch.Generator(device=__a ).manual_seed(42 )
_UpperCamelCase : List[str] = pipe(generator=__a )
_UpperCamelCase : Any = output.audios[0]
_UpperCamelCase : Optional[int] = output.images[0]
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
_UpperCamelCase : List[Any] = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
_UpperCamelCase : int = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
| 700
|
"""simple docstring"""
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
lowerCamelCase__ = input("Enter image url: ").strip()
print(f"""Downloading image from {url} ...""")
lowerCamelCase__ = BeautifulSoup(requests.get(url).content, "html.parser")
# The image URL is in the content field of the first meta tag with property og:image
lowerCamelCase__ = soup.find("meta", {"property": "og:image"})["content"]
lowerCamelCase__ = requests.get(image_url).content
lowerCamelCase__ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"""
with open(file_name, "wb") as fp:
fp.write(image_data)
print(f"""Done. Image saved to disk as {file_name}.""")
| 51
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json",
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Union[str, Any] = "canine"
def __init__( self : Tuple , __a : Dict=768 , __a : Dict=12 , __a : int=12 , __a : str=3072 , __a : str="gelu" , __a : List[str]=0.1 , __a : Optional[Any]=0.1 , __a : int=1_6384 , __a : Dict=16 , __a : Optional[Any]=0.02 , __a : Any=1e-1_2 , __a : Union[str, Any]=0 , __a : Optional[int]=0Xe000 , __a : Union[str, Any]=0Xe001 , __a : str=4 , __a : str=4 , __a : Union[str, Any]=8 , __a : int=1_6384 , __a : Optional[Any]=128 , **__a : Dict , ) -> Optional[int]:
super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
_UpperCamelCase : List[str] = max_position_embeddings
_UpperCamelCase : int = hidden_size
_UpperCamelCase : List[str] = num_hidden_layers
_UpperCamelCase : int = num_attention_heads
_UpperCamelCase : Tuple = intermediate_size
_UpperCamelCase : Union[str, Any] = hidden_act
_UpperCamelCase : Union[str, Any] = hidden_dropout_prob
_UpperCamelCase : Tuple = attention_probs_dropout_prob
_UpperCamelCase : Any = initializer_range
_UpperCamelCase : Optional[int] = type_vocab_size
_UpperCamelCase : str = layer_norm_eps
# Character config:
_UpperCamelCase : Optional[int] = downsampling_rate
_UpperCamelCase : Optional[int] = upsampling_kernel_size
_UpperCamelCase : List[Any] = num_hash_functions
_UpperCamelCase : List[Any] = num_hash_buckets
_UpperCamelCase : Tuple = local_transformer_stride
| 701
|
"""simple docstring"""
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(".")
def lowercase__ ( lowercase_ ) -> int:
"""simple docstring"""
_UpperCamelCase : Any = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
"`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got "
F'''{test_file} instead.''' )
_UpperCamelCase : str = components[-1]
if not test_fn.endswith("py" ):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith("test_modeling_" ):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
_UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )]
_UpperCamelCase : List[str] = ".".join(lowercase_ )
return test_module_path
def lowercase__ ( lowercase_ ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = get_module_path(lowercase_ )
_UpperCamelCase : str = importlib.import_module(lowercase_ )
return test_module
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = []
_UpperCamelCase : List[Any] = get_test_module(lowercase_ )
for attr in dir(lowercase_ ):
if attr.endswith("ModelTester" ):
tester_classes.append(getattr(lowercase_ ,lowercase_ ) )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = []
_UpperCamelCase : Any = get_test_module(lowercase_ )
for attr in dir(lowercase_ ):
_UpperCamelCase : int = getattr(lowercase_ ,lowercase_ )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
_UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] )
if len(lowercase_ ) > 0:
test_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Dict = get_test_classes(lowercase_ )
_UpperCamelCase : int = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : List[str] = test_class()
if hasattr(lowercase_ ,"setUp" ):
test.setUp()
_UpperCamelCase : Tuple = None
if hasattr(lowercase_ ,"model_tester" ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
_UpperCamelCase : Tuple = test.model_tester.__class__
return model_tester
def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : str = get_test_classes(lowercase_ )
_UpperCamelCase : Dict = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict:
"""simple docstring"""
_UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ )
_UpperCamelCase : List[Any] = []
for test_class in test_classes:
_UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ )
if tester_class is not None:
tester_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Any = get_test_classes(lowercase_ )
_UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes}
return test_tester_mapping
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : List[Any] = get_model_classes(lowercase_ )
_UpperCamelCase : Optional[int] = {
model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes
}
return model_test_mapping
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ )
_UpperCamelCase : Tuple = {
model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes
}
return model_to_tester_mapping
def lowercase__ ( lowercase_ ) -> Optional[int]:
"""simple docstring"""
if isinstance(lowercase_ ,lowercase_ ):
return o
elif isinstance(lowercase_ ,lowercase_ ):
return o.__name__
elif isinstance(lowercase_ ,(list, tuple) ):
return [to_json(lowercase_ ) for x in o]
elif isinstance(lowercase_ ,lowercase_ ):
return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()}
else:
return o
| 51
| 0
|
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer
SCREAMING_SNAKE_CASE__ :Dict = None
SCREAMING_SNAKE_CASE__ :List[Any] = False
SCREAMING_SNAKE_CASE__ :Union[str, Any] = True
SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english
def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
super().setUp()
_UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"]
_UpperCamelCase : List[str] = {}
_UpperCamelCase : Tuple = {}
for i, value in enumerate(__a ):
_UpperCamelCase : List[str] = i
_UpperCamelCase : Optional[Any] = i
_UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] )
_UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer:
json.dump(__a , __a , ensure_ascii=__a )
with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer:
json.dump(__a , __a , ensure_ascii=__a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]:
_UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
_UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" )
self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
_UpperCamelCase : Dict = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
_UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple:
_UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
_UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]:
_UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]:
_UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
_UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]:
_UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]:
_UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
_UpperCamelCase : Any = {}
for i, token in enumerate(__a ):
_UpperCamelCase : str = i
_UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) , [] )
self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] )
self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
self.assertTrue(_is_whitespace(" " ) )
self.assertTrue(_is_whitespace("\t" ) )
self.assertTrue(_is_whitespace("\r" ) )
self.assertTrue(_is_whitespace("\n" ) )
self.assertTrue(_is_whitespace("\u00A0" ) )
self.assertFalse(_is_whitespace("A" ) )
self.assertFalse(_is_whitespace("-" ) )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict:
self.assertTrue(_is_control("\u0005" ) )
self.assertFalse(_is_control("A" ) )
self.assertFalse(_is_control(" " ) )
self.assertFalse(_is_control("\t" ) )
self.assertFalse(_is_control("\r" ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]:
self.assertTrue(_is_punctuation("-" ) )
self.assertTrue(_is_punctuation("$" ) )
self.assertTrue(_is_punctuation("`" ) )
self.assertTrue(_is_punctuation("." ) )
self.assertFalse(_is_punctuation("A" ) )
self.assertFalse(_is_punctuation(" " ) )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
_UpperCamelCase : Optional[Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
if self.test_rust_tokenizer:
_UpperCamelCase : Tuple = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
_UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus(
__a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , )
_UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False
_UpperCamelCase : Dict = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
_UpperCamelCase : Optional[Any] = ["的", "人", "有"]
_UpperCamelCase : int = "".join(__a )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_UpperCamelCase : int = True
_UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a )
_UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a )
_UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a )
_UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(__a , __a )
self.assertListEqual(__a , __a )
_UpperCamelCase : Any = False
_UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a )
_UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a )
_UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a )
_UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a )
# it is expected that only the first Chinese character is not preceded by "##".
_UpperCamelCase : Any = [
F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a )
]
self.assertListEqual(__a , __a )
self.assertListEqual(__a , __a )
@slow
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any:
_UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
_UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a )
_UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a )
_UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a )
_UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_UpperCamelCase : int = "你好,你是谁"
_UpperCamelCase : Any = tokenizer.tokenize(__a )
_UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a )
_UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a )
_UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a )
_UpperCamelCase : Optional[int] = tokenizer.prepare_for_model(
__a , __a , __a , add_special_tokens=__a )
_UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a )
self.assertEqual(__a , __a )
| 702
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCamelCase__ = {
"configuration_mask2former": [
"MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Mask2FormerConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["Mask2FormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"Mask2FormerForUniversalSegmentation",
"Mask2FormerModel",
"Mask2FormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 51
| 0
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
def lowercase__ ( lowercase_ ) -> YolosConfig:
"""simple docstring"""
_UpperCamelCase : str = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
_UpperCamelCase : Union[str, Any] = 192
_UpperCamelCase : Dict = 768
_UpperCamelCase : str = 12
_UpperCamelCase : List[Any] = 3
_UpperCamelCase : List[Any] = [800, 1_333]
_UpperCamelCase : Union[str, Any] = False
elif yolos_name == "yolos_s_dWr":
_UpperCamelCase : Optional[int] = 330
_UpperCamelCase : int = 14
_UpperCamelCase : int = 6
_UpperCamelCase : Dict = 1_320
elif "yolos_s" in yolos_name:
_UpperCamelCase : Tuple = 384
_UpperCamelCase : List[Any] = 1_536
_UpperCamelCase : Dict = 12
_UpperCamelCase : str = 6
elif "yolos_b" in yolos_name:
_UpperCamelCase : int = [800, 1_344]
_UpperCamelCase : Union[str, Any] = 91
_UpperCamelCase : Dict = "huggingface/label-files"
_UpperCamelCase : int = "coco-detection-id2label.json"
_UpperCamelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ ,lowercase_ ,repo_type="dataset" ) ,"r" ) )
_UpperCamelCase : Tuple = {int(lowercase_ ): v for k, v in idalabel.items()}
_UpperCamelCase : Optional[Any] = idalabel
_UpperCamelCase : Any = {v: k for k, v in idalabel.items()}
return config
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = False ) -> Optional[Any]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_UpperCamelCase : List[str] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' )
_UpperCamelCase : Optional[int] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_UpperCamelCase : Union[str, Any] = in_proj_weight[: config.hidden_size, :]
_UpperCamelCase : List[Any] = in_proj_bias[: config.hidden_size]
_UpperCamelCase : Optional[int] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_UpperCamelCase : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_UpperCamelCase : Dict = in_proj_weight[-config.hidden_size :, :]
_UpperCamelCase : List[str] = in_proj_bias[-config.hidden_size :]
def lowercase__ ( lowercase_ ) -> str:
"""simple docstring"""
if "backbone" in name:
_UpperCamelCase : List[str] = name.replace("backbone" ,"vit" )
if "cls_token" in name:
_UpperCamelCase : Tuple = name.replace("cls_token" ,"embeddings.cls_token" )
if "det_token" in name:
_UpperCamelCase : str = name.replace("det_token" ,"embeddings.detection_tokens" )
if "mid_pos_embed" in name:
_UpperCamelCase : Dict = name.replace("mid_pos_embed" ,"encoder.mid_position_embeddings" )
if "pos_embed" in name:
_UpperCamelCase : str = name.replace("pos_embed" ,"embeddings.position_embeddings" )
if "patch_embed.proj" in name:
_UpperCamelCase : List[Any] = name.replace("patch_embed.proj" ,"embeddings.patch_embeddings.projection" )
if "blocks" in name:
_UpperCamelCase : Dict = name.replace("blocks" ,"encoder.layer" )
if "attn.proj" in name:
_UpperCamelCase : Dict = name.replace("attn.proj" ,"attention.output.dense" )
if "attn" in name:
_UpperCamelCase : List[Any] = name.replace("attn" ,"attention.self" )
if "norm1" in name:
_UpperCamelCase : Optional[int] = name.replace("norm1" ,"layernorm_before" )
if "norm2" in name:
_UpperCamelCase : Optional[Any] = name.replace("norm2" ,"layernorm_after" )
if "mlp.fc1" in name:
_UpperCamelCase : Dict = name.replace("mlp.fc1" ,"intermediate.dense" )
if "mlp.fc2" in name:
_UpperCamelCase : str = name.replace("mlp.fc2" ,"output.dense" )
if "class_embed" in name:
_UpperCamelCase : Union[str, Any] = name.replace("class_embed" ,"class_labels_classifier" )
if "bbox_embed" in name:
_UpperCamelCase : str = name.replace("bbox_embed" ,"bbox_predictor" )
if "vit.norm" in name:
_UpperCamelCase : List[str] = name.replace("vit.norm" ,"vit.layernorm" )
return name
def lowercase__ ( lowercase_ ,lowercase_ ) -> dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
_UpperCamelCase : Any = orig_state_dict.pop(lowercase_ )
if "qkv" in key:
_UpperCamelCase : Dict = key.split("." )
_UpperCamelCase : Optional[int] = int(key_split[2] )
_UpperCamelCase : List[Any] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
_UpperCamelCase : Any = val[:dim, :]
_UpperCamelCase : Tuple = val[
dim : dim * 2, :
]
_UpperCamelCase : str = val[-dim:, :]
else:
_UpperCamelCase : str = val[:dim]
_UpperCamelCase : Optional[Any] = val[dim : dim * 2]
_UpperCamelCase : List[Any] = val[-dim:]
else:
_UpperCamelCase : List[str] = val
return orig_state_dict
def lowercase__ ( ) -> torch.Tensor:
"""simple docstring"""
_UpperCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCamelCase : Optional[int] = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw )
return im
@torch.no_grad()
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = False ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : Dict = get_yolos_config(lowercase_ )
# load original state_dict
_UpperCamelCase : Tuple = torch.load(lowercase_ ,map_location="cpu" )["model"]
# load 🤗 model
_UpperCamelCase : Dict = YolosForObjectDetection(lowercase_ )
model.eval()
_UpperCamelCase : List[str] = convert_state_dict(lowercase_ ,lowercase_ )
model.load_state_dict(lowercase_ )
# Check outputs on an image, prepared by YolosImageProcessor
_UpperCamelCase : List[str] = 800 if yolos_name != "yolos_ti" else 512
_UpperCamelCase : Any = YolosImageProcessor(format="coco_detection" ,size=lowercase_ )
_UpperCamelCase : Union[str, Any] = image_processor(images=prepare_img() ,return_tensors="pt" )
_UpperCamelCase : Dict = model(**lowercase_ )
_UpperCamelCase : Dict = outputs.logits, outputs.pred_boxes
_UpperCamelCase : int = None, None
if yolos_name == "yolos_ti":
_UpperCamelCase : List[Any] = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
_UpperCamelCase : str = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
_UpperCamelCase : Union[str, Any] = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
_UpperCamelCase : Optional[Any] = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
_UpperCamelCase : Any = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
_UpperCamelCase : int = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
_UpperCamelCase : int = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
_UpperCamelCase : Optional[Any] = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
_UpperCamelCase : Dict = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
_UpperCamelCase : Optional[Any] = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(F'''Unknown yolos_name: {yolos_name}''' )
assert torch.allclose(logits[0, :3, :3] ,lowercase_ ,atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] ,lowercase_ ,atol=1e-4 )
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowercase_ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(lowercase_ )
if push_to_hub:
_UpperCamelCase : str = {
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
_UpperCamelCase : List[str] = model_mapping[yolos_name]
image_processor.push_to_hub(lowercase_ ,organization="hustvl" )
model.push_to_hub(lowercase_ ,organization="hustvl" )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowerCamelCase__ = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 703
|
"""simple docstring"""
lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCamelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 51
| 0
|
"""simple docstring"""
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , __a : int , __a : int , __a : int , __a : Dict=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ) -> List[str]:
super().__init__()
_UpperCamelCase : Tuple = only_cross_attention
_UpperCamelCase : List[Any] = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
_UpperCamelCase : List[Any] = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'''
F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
_UpperCamelCase : Union[str, Any] = AdaLayerNorm(__a , __a )
elif self.use_ada_layer_norm_zero:
_UpperCamelCase : Any = AdaLayerNormZero(__a , __a )
else:
_UpperCamelCase : Optional[Any] = nn.LayerNorm(__a , elementwise_affine=__a )
_UpperCamelCase : Union[str, Any] = Attention(
query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
_UpperCamelCase : int = (
AdaLayerNorm(__a , __a )
if self.use_ada_layer_norm
else nn.LayerNorm(__a , elementwise_affine=__a )
)
_UpperCamelCase : Optional[Any] = Attention(
query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none
else:
_UpperCamelCase : Optional[Any] = None
_UpperCamelCase : Optional[int] = None
# 3. Feed-forward
_UpperCamelCase : List[Any] = nn.LayerNorm(__a , elementwise_affine=__a )
_UpperCamelCase : Any = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a )
# let chunk size default to None
_UpperCamelCase : List[str] = None
_UpperCamelCase : Optional[Any] = 0
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[int] , __a : int ) -> Tuple:
# Sets chunk feed-forward
_UpperCamelCase : List[str] = chunk_size
_UpperCamelCase : Tuple = dim
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ) -> Optional[Any]:
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
_UpperCamelCase : int = self.norma(__a , __a )
elif self.use_ada_layer_norm_zero:
_UpperCamelCase : Dict = self.norma(
__a , __a , __a , hidden_dtype=hidden_states.dtype )
else:
_UpperCamelCase : str = self.norma(__a )
_UpperCamelCase : Optional[int] = cross_attention_kwargs if cross_attention_kwargs is not None else {}
_UpperCamelCase : Optional[int] = self.attna(
__a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , )
if self.use_ada_layer_norm_zero:
_UpperCamelCase : Optional[int] = gate_msa.unsqueeze(1 ) * attn_output
_UpperCamelCase : Tuple = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
_UpperCamelCase : str = (
self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a )
)
_UpperCamelCase : Any = self.attna(
__a , encoder_hidden_states=__a , attention_mask=__a , **__a , )
_UpperCamelCase : List[Any] = attn_output + hidden_states
# 3. Feed-forward
_UpperCamelCase : Optional[int] = self.norma(__a )
if self.use_ada_layer_norm_zero:
_UpperCamelCase : str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' )
_UpperCamelCase : str = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
_UpperCamelCase : Dict = torch.cat(
[self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
_UpperCamelCase : Optional[int] = self.ff(__a )
if self.use_ada_layer_norm_zero:
_UpperCamelCase : Any = gate_mlp.unsqueeze(1 ) * ff_output
_UpperCamelCase : Tuple = ff_output + hidden_states
return hidden_states
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ) -> str:
super().__init__()
_UpperCamelCase : List[Any] = int(dim * mult )
_UpperCamelCase : List[Any] = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
_UpperCamelCase : Optional[Any] = GELU(__a , __a )
if activation_fn == "gelu-approximate":
_UpperCamelCase : Dict = GELU(__a , __a , approximate="tanh" )
elif activation_fn == "geglu":
_UpperCamelCase : Dict = GEGLU(__a , __a )
elif activation_fn == "geglu-approximate":
_UpperCamelCase : List[str] = ApproximateGELU(__a , __a )
_UpperCamelCase : Union[str, Any] = nn.ModuleList([] )
# project in
self.net.append(__a )
# project dropout
self.net.append(nn.Dropout(__a ) )
# project out
self.net.append(nn.Linear(__a , __a ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(__a ) )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Tuple ) -> List[str]:
for module in self.net:
_UpperCamelCase : int = module(__a )
return hidden_states
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : int , __a : int , __a : int , __a : str = "none" ) -> List[str]:
super().__init__()
_UpperCamelCase : Optional[Any] = nn.Linear(__a , __a )
_UpperCamelCase : List[str] = approximate
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : int ) -> Dict:
if gate.device.type != "mps":
return F.gelu(__a , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : int ) -> Tuple:
_UpperCamelCase : int = self.proj(__a )
_UpperCamelCase : List[Any] = self.gelu(__a )
return hidden_states
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] , __a : int , __a : int ) -> str:
super().__init__()
_UpperCamelCase : Optional[Any] = nn.Linear(__a , dim_out * 2 )
def __SCREAMING_SNAKE_CASE ( self : Any , __a : Optional[Any] ) -> List[str]:
if gate.device.type != "mps":
return F.gelu(__a )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Tuple ) -> Optional[int]:
_UpperCamelCase : Optional[Any] = self.proj(__a ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(__a )
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : int , __a : int , __a : int ) -> Any:
super().__init__()
_UpperCamelCase : str = nn.Linear(__a , __a )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Any ) -> str:
_UpperCamelCase : Dict = self.proj(__a )
return x * torch.sigmoid(1.7_02 * x )
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __a : List[str] , __a : Tuple ) -> Union[str, Any]:
super().__init__()
_UpperCamelCase : Dict = nn.Embedding(__a , __a )
_UpperCamelCase : Optional[int] = nn.SiLU()
_UpperCamelCase : Tuple = nn.Linear(__a , embedding_dim * 2 )
_UpperCamelCase : str = nn.LayerNorm(__a , elementwise_affine=__a )
def __SCREAMING_SNAKE_CASE ( self : Any , __a : str , __a : List[Any] ) -> List[Any]:
_UpperCamelCase : Optional[int] = self.linear(self.silu(self.emb(__a ) ) )
_UpperCamelCase : Optional[Any] = torch.chunk(__a , 2 )
_UpperCamelCase : List[Any] = self.norm(__a ) * (1 + scale) + shift
return x
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , __a : List[Any] , __a : Tuple ) -> List[Any]:
super().__init__()
_UpperCamelCase : Any = CombinedTimestepLabelEmbeddings(__a , __a )
_UpperCamelCase : List[str] = nn.SiLU()
_UpperCamelCase : Optional[int] = nn.Linear(__a , 6 * embedding_dim , bias=__a )
_UpperCamelCase : List[str] = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str , __a : Optional[Any] , __a : Dict , __a : Tuple=None ) -> int:
_UpperCamelCase : Tuple = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) )
_UpperCamelCase : str = emb.chunk(6 , dim=1 )
_UpperCamelCase : Tuple = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : str , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ) -> Dict:
super().__init__()
_UpperCamelCase : Optional[int] = num_groups
_UpperCamelCase : List[str] = eps
if act_fn is None:
_UpperCamelCase : int = None
else:
_UpperCamelCase : List[str] = get_activation(__a )
_UpperCamelCase : List[Any] = nn.Linear(__a , out_dim * 2 )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Union[str, Any] , __a : Any ) -> Tuple:
if self.act:
_UpperCamelCase : Any = self.act(__a )
_UpperCamelCase : Optional[Any] = self.linear(__a )
_UpperCamelCase : Tuple = emb[:, :, None, None]
_UpperCamelCase : Optional[int] = emb.chunk(2 , dim=1 )
_UpperCamelCase : Optional[int] = F.group_norm(__a , self.num_groups , eps=self.eps )
_UpperCamelCase : Optional[Any] = x * (1 + scale) + shift
return x
| 704
|
"""simple docstring"""
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
_UpperCamelCase : Tuple = tempfile.mkdtemp()
_UpperCamelCase : str = 5
# Realm tok
_UpperCamelCase : Tuple = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"test",
"question",
"this",
"is",
"the",
"first",
"second",
"third",
"fourth",
"fifth",
"record",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
_UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" )
os.makedirs(__a , exist_ok=__a )
_UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
_UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" )
os.makedirs(__a , exist_ok=__a )
def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer:
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict:
shutil.rmtree(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]:
_UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records )
return config
def __SCREAMING_SNAKE_CASE ( self : int ) -> int:
_UpperCamelCase : Any = Dataset.from_dict(
{
"id": ["0", "1"],
"question": ["foo", "bar"],
"answers": [["Foo", "Bar"], ["Bar"]],
} )
return dataset
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str:
_UpperCamelCase : int = np.array(
[
b"This is the first record",
b"This is the second record",
b"This is the third record",
b"This is the fourth record",
b"This is the fifth record",
b"This is a longer longer longer record",
] , dtype=__a , )
return block_records
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]:
_UpperCamelCase : List[str] = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple:
_UpperCamelCase : Tuple = self.get_config()
_UpperCamelCase : int = self.get_dummy_retriever()
_UpperCamelCase : Tuple = retriever.tokenizer
_UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" )
_UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids
_UpperCamelCase : List[str] = tokenizer(
["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids
_UpperCamelCase : str = config.reader_seq_len
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = retriever(
__a , __a , answer_ids=__a , max_length=__a , return_tensors="np" )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]:
_UpperCamelCase : Any = self.get_config()
_UpperCamelCase : Dict = self.get_dummy_retriever()
_UpperCamelCase : Dict = retriever.tokenizer
_UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" )
_UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids
_UpperCamelCase : str = tokenizer(
["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids
_UpperCamelCase : Union[str, Any] = config.reader_seq_len
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = retriever(
__a , __a , answer_ids=__a , max_length=__a , return_tensors="np" )
self.assertEqual([False, True, True] , __a )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]:
_UpperCamelCase : List[Any] = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) )
# Test local path
_UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) )
self.assertEqual(retriever.block_records[0] , b"This is the first record" )
# Test mocked remote path
with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download:
_UpperCamelCase : List[Any] = os.path.join(
os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME )
_UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" )
self.assertEqual(retriever.block_records[0] , b"This is the first record" )
| 51
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase__ = {
"configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["ConvNextFeatureExtractor"]
lowerCamelCase__ = ["ConvNextImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConvNextForImageClassification",
"ConvNextModel",
"ConvNextPreTrainedModel",
"ConvNextBackbone",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"TFConvNextForImageClassification",
"TFConvNextModel",
"TFConvNextPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 705
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Any = LEDConfig
SCREAMING_SNAKE_CASE__ :str = {}
SCREAMING_SNAKE_CASE__ :List[str] = "gelu"
def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]:
_UpperCamelCase : Optional[Any] = parent
_UpperCamelCase : List[str] = batch_size
_UpperCamelCase : str = seq_length
_UpperCamelCase : str = is_training
_UpperCamelCase : Any = use_labels
_UpperCamelCase : Any = vocab_size
_UpperCamelCase : List[str] = hidden_size
_UpperCamelCase : Optional[Any] = num_hidden_layers
_UpperCamelCase : Dict = num_attention_heads
_UpperCamelCase : Optional[Any] = intermediate_size
_UpperCamelCase : int = hidden_dropout_prob
_UpperCamelCase : Dict = attention_probs_dropout_prob
_UpperCamelCase : str = max_position_embeddings
_UpperCamelCase : int = eos_token_id
_UpperCamelCase : Dict = pad_token_id
_UpperCamelCase : Optional[Any] = bos_token_id
_UpperCamelCase : str = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_UpperCamelCase : List[str] = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_UpperCamelCase : int = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __SCREAMING_SNAKE_CASE ( self : int ) -> str:
_UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 )
_UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase : List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a )
_UpperCamelCase : Union[str, Any] = tf.concat(
[tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , )
_UpperCamelCase : Union[str, Any] = global_attention_mask
return config, inputs_dict
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple:
_UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder()
_UpperCamelCase : Tuple = inputs_dict["input_ids"]
_UpperCamelCase : int = input_ids[:1, :]
_UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :]
_UpperCamelCase : List[Any] = 1
# first forward pass
_UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a )
_UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 )
_UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0]
_UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx]
_UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__a , __a , rtol=1e-3 )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict:
"""simple docstring"""
if attention_mask is None:
_UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
_UpperCamelCase : str = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
_UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :List[str] = (
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ :Tuple = True
SCREAMING_SNAKE_CASE__ :str = False
SCREAMING_SNAKE_CASE__ :Optional[Any] = False
SCREAMING_SNAKE_CASE__ :int = False
def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]:
_UpperCamelCase : int = TFLEDModelTester(self )
_UpperCamelCase : Any = ConfigTester(self , config_class=__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]:
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int:
_UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__a )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
_UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] )
_UpperCamelCase : Union[str, Any] = 2
_UpperCamelCase : str = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , )
_UpperCamelCase : Dict = True
_UpperCamelCase : str = self.model_tester.seq_length
_UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(__a : Optional[int] ):
_UpperCamelCase : Optional[int] = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(__a : Optional[Any] ):
_UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions]
_UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_UpperCamelCase : Dict = True
_UpperCamelCase : Optional[Any] = False
_UpperCamelCase : int = False
_UpperCamelCase : Optional[int] = model_class(__a )
_UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) )
_UpperCamelCase : Any = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
_UpperCamelCase : Optional[Any] = model_class(__a )
_UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_UpperCamelCase : int = True
_UpperCamelCase : Tuple = model_class(__a )
_UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
_UpperCamelCase : Any = True
_UpperCamelCase : List[str] = True
_UpperCamelCase : Tuple = model_class(__a )
_UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
pass
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple:
# TODO: Head-masking not yet implement
pass
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
return tf.constant(lowercase_ ,dtype=tf.intaa )
lowerCamelCase__ = 1E-4
@slow
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]:
_UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led
# change to intended input here
_UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a )
_UpperCamelCase : Optional[int] = model(**__a )[0]
_UpperCamelCase : Optional[int] = (1, 1024, 768)
self.assertEqual(output.shape , __a )
# change to expected output here
_UpperCamelCase : Tuple = tf.convert_to_tensor(
[[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
_UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" )
# change to intended input here
_UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a )
_UpperCamelCase : Union[str, Any] = model(**__a )[0]
_UpperCamelCase : int = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , __a )
# change to expected output here
_UpperCamelCase : Optional[int] = tf.convert_to_tensor(
[[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
| 51
| 0
|
"""simple docstring"""
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def lowercase__ ( ) -> Dict:
"""simple docstring"""
_UpperCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"-m" ,"--pretrained_model_name_or_path" ,type=lowercase_ ,default=lowercase_ ,required=lowercase_ ,help="Path to pretrained model or model identifier from huggingface.co/models." ,)
parser.add_argument(
"-c" ,"--caption" ,type=lowercase_ ,default="robotic cat with wings" ,help="Text used to generate images." ,)
parser.add_argument(
"-n" ,"--images_num" ,type=lowercase_ ,default=4 ,help="How much images to generate." ,)
parser.add_argument(
"-s" ,"--seed" ,type=lowercase_ ,default=42 ,help="Seed for random process." ,)
parser.add_argument(
"-ci" ,"--cuda_id" ,type=lowercase_ ,default=0 ,help="cuda_id." ,)
_UpperCamelCase : Union[str, Any] = parser.parse_args()
return args
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
if not len(lowercase_ ) == rows * cols:
raise ValueError("The specified number of rows and columns are not correct." )
_UpperCamelCase : int = imgs[0].size
_UpperCamelCase : Optional[int] = Image.new("RGB" ,size=(cols * w, rows * h) )
_UpperCamelCase : List[str] = grid.size
for i, img in enumerate(lowercase_ ):
grid.paste(lowercase_ ,box=(i % cols * w, i // cols * h) )
return grid
def lowercase__ ( lowercase_ ,lowercase_="robotic cat with wings" ,lowercase_=7.5 ,lowercase_=50 ,lowercase_=1 ,lowercase_=42 ,) -> Any:
"""simple docstring"""
_UpperCamelCase : List[Any] = torch.Generator(pipeline.device ).manual_seed(lowercase_ )
_UpperCamelCase : Optional[Any] = pipeline(
lowercase_ ,guidance_scale=lowercase_ ,num_inference_steps=lowercase_ ,generator=lowercase_ ,num_images_per_prompt=lowercase_ ,).images
_UpperCamelCase : List[Any] = int(math.sqrt(lowercase_ ) )
_UpperCamelCase : Any = image_grid(lowercase_ ,rows=_rows ,cols=num_images_per_prompt // _rows )
return grid, images
lowerCamelCase__ = parse_args()
# Load models and create wrapper for stable diffusion
lowerCamelCase__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
lowerCamelCase__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
lowerCamelCase__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
lowerCamelCase__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
lowerCamelCase__ = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
lowerCamelCase__ = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")):
lowerCamelCase__ = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, "unet", unet)
else:
lowerCamelCase__ = unet.to(torch.device("cuda", args.cuda_id))
lowerCamelCase__ = pipeline.to(unet.device)
lowerCamelCase__ , lowerCamelCase__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split()))))
lowerCamelCase__ = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
| 706
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer
SCREAMING_SNAKE_CASE__ :Dict = None
SCREAMING_SNAKE_CASE__ :List[Any] = False
SCREAMING_SNAKE_CASE__ :Union[str, Any] = True
SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english
def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
super().setUp()
_UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"]
_UpperCamelCase : List[str] = {}
_UpperCamelCase : Tuple = {}
for i, value in enumerate(__a ):
_UpperCamelCase : List[str] = i
_UpperCamelCase : Optional[Any] = i
_UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] )
_UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer:
json.dump(__a , __a , ensure_ascii=__a )
with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer:
json.dump(__a , __a , ensure_ascii=__a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]:
_UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
_UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" )
self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
_UpperCamelCase : Dict = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
_UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple:
_UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
_UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]:
_UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]:
_UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
_UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]:
_UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]:
_UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
_UpperCamelCase : Any = {}
for i, token in enumerate(__a ):
_UpperCamelCase : str = i
_UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) , [] )
self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] )
self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
self.assertTrue(_is_whitespace(" " ) )
self.assertTrue(_is_whitespace("\t" ) )
self.assertTrue(_is_whitespace("\r" ) )
self.assertTrue(_is_whitespace("\n" ) )
self.assertTrue(_is_whitespace("\u00A0" ) )
self.assertFalse(_is_whitespace("A" ) )
self.assertFalse(_is_whitespace("-" ) )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict:
self.assertTrue(_is_control("\u0005" ) )
self.assertFalse(_is_control("A" ) )
self.assertFalse(_is_control(" " ) )
self.assertFalse(_is_control("\t" ) )
self.assertFalse(_is_control("\r" ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]:
self.assertTrue(_is_punctuation("-" ) )
self.assertTrue(_is_punctuation("$" ) )
self.assertTrue(_is_punctuation("`" ) )
self.assertTrue(_is_punctuation("." ) )
self.assertFalse(_is_punctuation("A" ) )
self.assertFalse(_is_punctuation(" " ) )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
_UpperCamelCase : Optional[Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
if self.test_rust_tokenizer:
_UpperCamelCase : Tuple = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
_UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus(
__a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , )
_UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False
_UpperCamelCase : Dict = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
_UpperCamelCase : Optional[Any] = ["的", "人", "有"]
_UpperCamelCase : int = "".join(__a )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_UpperCamelCase : int = True
_UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a )
_UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a )
_UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a )
_UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(__a , __a )
self.assertListEqual(__a , __a )
_UpperCamelCase : Any = False
_UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a )
_UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a )
_UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a )
_UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a )
# it is expected that only the first Chinese character is not preceded by "##".
_UpperCamelCase : Any = [
F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a )
]
self.assertListEqual(__a , __a )
self.assertListEqual(__a , __a )
@slow
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any:
_UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
_UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a )
_UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a )
_UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a )
_UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_UpperCamelCase : int = "你好,你是谁"
_UpperCamelCase : Any = tokenizer.tokenize(__a )
_UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a )
_UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a )
_UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a )
_UpperCamelCase : Optional[int] = tokenizer.prepare_for_model(
__a , __a , __a , add_special_tokens=__a )
_UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a )
self.assertEqual(__a , __a )
| 51
| 0
|
"""simple docstring"""
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :int
SCREAMING_SNAKE_CASE__ :TreeNode | None = None
SCREAMING_SNAKE_CASE__ :TreeNode | None = None
lowerCamelCase__ = namedtuple("CoinsDistribResult", "moves excess")
def lowercase__ ( lowercase_ ) -> int:
"""simple docstring"""
if root is None:
return 0
# Validation
def count_nodes(lowercase_ ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(lowercase_ ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(lowercase_ ) != count_coins(lowercase_ ):
raise ValueError("The nodes number should be same as the number of coins" )
# Main calculation
def get_distrib(lowercase_ ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 ,1 )
_UpperCamelCase : int = get_distrib(node.left )
_UpperCamelCase : List[str] = get_distrib(node.right )
_UpperCamelCase : Tuple = 1 - left_distrib_excess
_UpperCamelCase : Union[str, Any] = 1 - right_distrib_excess
_UpperCamelCase : List[Any] = (
left_distrib_moves
+ right_distrib_moves
+ abs(lowercase_ )
+ abs(lowercase_ )
)
_UpperCamelCase : Optional[int] = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(lowercase_ ,lowercase_ )
return get_distrib(lowercase_ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 707
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Tuple = "yolos"
def __init__( self : Dict , __a : Optional[Any]=768 , __a : List[Any]=12 , __a : Any=12 , __a : List[Any]=3072 , __a : Optional[int]="gelu" , __a : Dict=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.02 , __a : Optional[int]=1e-1_2 , __a : List[Any]=[512, 864] , __a : List[str]=16 , __a : str=3 , __a : Optional[Any]=True , __a : Optional[Any]=100 , __a : List[str]=True , __a : Any=False , __a : List[str]=1 , __a : str=5 , __a : Optional[Any]=2 , __a : Tuple=5 , __a : Any=2 , __a : Union[str, Any]=0.1 , **__a : List[str] , ) -> List[str]:
super().__init__(**__a )
_UpperCamelCase : Dict = hidden_size
_UpperCamelCase : Any = num_hidden_layers
_UpperCamelCase : str = num_attention_heads
_UpperCamelCase : Dict = intermediate_size
_UpperCamelCase : List[str] = hidden_act
_UpperCamelCase : List[str] = hidden_dropout_prob
_UpperCamelCase : str = attention_probs_dropout_prob
_UpperCamelCase : Tuple = initializer_range
_UpperCamelCase : List[str] = layer_norm_eps
_UpperCamelCase : Tuple = image_size
_UpperCamelCase : Tuple = patch_size
_UpperCamelCase : Dict = num_channels
_UpperCamelCase : Any = qkv_bias
_UpperCamelCase : str = num_detection_tokens
_UpperCamelCase : str = use_mid_position_embeddings
_UpperCamelCase : List[str] = auxiliary_loss
# Hungarian matcher
_UpperCamelCase : List[Any] = class_cost
_UpperCamelCase : int = bbox_cost
_UpperCamelCase : Optional[int] = giou_cost
# Loss coefficients
_UpperCamelCase : List[Any] = bbox_loss_coefficient
_UpperCamelCase : str = giou_loss_coefficient
_UpperCamelCase : Dict = eos_coefficient
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :List[str] = version.parse("1.11" )
@property
def __SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float:
return 1e-4
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int:
return 12
| 51
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Dict = "megatron-bert"
def __init__( self : int , __a : List[str]=2_9056 , __a : Dict=1024 , __a : Optional[Any]=24 , __a : str=16 , __a : List[Any]=4096 , __a : str="gelu" , __a : Optional[Any]=0.1 , __a : Any=0.1 , __a : Optional[int]=512 , __a : int=2 , __a : Tuple=0.02 , __a : str=1e-1_2 , __a : Optional[int]=0 , __a : Optional[Any]="absolute" , __a : Any=True , **__a : List[Any] , ) -> Tuple:
super().__init__(pad_token_id=__a , **__a )
_UpperCamelCase : Any = vocab_size
_UpperCamelCase : int = hidden_size
_UpperCamelCase : int = num_hidden_layers
_UpperCamelCase : List[Any] = num_attention_heads
_UpperCamelCase : List[str] = hidden_act
_UpperCamelCase : Union[str, Any] = intermediate_size
_UpperCamelCase : List[Any] = hidden_dropout_prob
_UpperCamelCase : Tuple = attention_probs_dropout_prob
_UpperCamelCase : Tuple = max_position_embeddings
_UpperCamelCase : Optional[Any] = type_vocab_size
_UpperCamelCase : Dict = initializer_range
_UpperCamelCase : Union[str, Any] = layer_norm_eps
_UpperCamelCase : Any = position_embedding_type
_UpperCamelCase : Optional[int] = use_cache
| 708
|
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
lowerCamelCase__ = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase]
lowerCamelCase__ = {ord(char) for char in VALID_CHARS}
lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"]
def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None:
"""simple docstring"""
_UpperCamelCase : str = ""
_UpperCamelCase : int
_UpperCamelCase : int
_UpperCamelCase : int
for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ):
_UpperCamelCase : Dict = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(lowercase_ )
return decoded
def lowercase__ ( lowercase_ ) -> list[str]:
"""simple docstring"""
_UpperCamelCase : list[str] = []
for key in product(lowercase_ ,repeat=3 ):
_UpperCamelCase : int = try_key(lowercase_ ,lowercase_ )
if encoded is not None:
possibles.append(lowercase_ )
return possibles
def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]:
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int:
"""simple docstring"""
_UpperCamelCase : list[int]
_UpperCamelCase : list[str]
_UpperCamelCase : str
_UpperCamelCase : str
_UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" )
_UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )]
_UpperCamelCase : List[str] = filter_valid_chars(lowercase_ )
for common_word in COMMON_WORDS:
_UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ )
if len(lowercase_ ) == 1:
break
_UpperCamelCase : Union[str, Any] = possibles[0]
return sum(ord(lowercase_ ) for char in decoded_text )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 51
| 0
|
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Tuple = (path or []) + [u]
for v in graph[u]:
if visited_edge[u][v] is False:
_UpperCamelCase : Any = True, True
_UpperCamelCase : Optional[int] = dfs(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ )
return path
def lowercase__ ( lowercase_ ,lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Tuple = 0
_UpperCamelCase : Tuple = -1
for i in range(lowercase_ ):
if i not in graph.keys():
continue
if len(graph[i] ) % 2 == 1:
odd_degree_nodes += 1
_UpperCamelCase : str = i
if odd_degree_nodes == 0:
return 1, odd_node
if odd_degree_nodes == 2:
return 2, odd_node
return 3, odd_node
def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict:
"""simple docstring"""
_UpperCamelCase : List[str] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )]
_UpperCamelCase : Any = check_circuit_or_path(lowercase_ ,lowercase_ )
if check == 3:
print("graph is not Eulerian" )
print("no path" )
return
_UpperCamelCase : int = 1
if check == 2:
_UpperCamelCase : Optional[Any] = odd_node
print("graph has a Euler path" )
if check == 1:
print("graph has a Euler cycle" )
_UpperCamelCase : Any = dfs(lowercase_ ,lowercase_ ,lowercase_ )
print(lowercase_ )
def lowercase__ ( ) -> Dict:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
_UpperCamelCase : Any = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
_UpperCamelCase : List[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
_UpperCamelCase : Optional[int] = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
_UpperCamelCase : Tuple = {
1: [],
2: []
# all degree is zero
}
_UpperCamelCase : Optional[int] = 10
check_euler(lowercase_ ,lowercase_ )
check_euler(lowercase_ ,lowercase_ )
check_euler(lowercase_ ,lowercase_ )
check_euler(lowercase_ ,lowercase_ )
check_euler(lowercase_ ,lowercase_ )
if __name__ == "__main__":
main()
| 709
|
"""simple docstring"""
def lowercase__ ( lowercase_ ,lowercase_ ) -> None:
"""simple docstring"""
_UpperCamelCase : List[Any] = len(lowercase_ )
print("The following activities are selected:" )
# The first activity is always selected
_UpperCamelCase : List[Any] = 0
print(lowercase_ ,end="," )
# Consider rest of the activities
for j in range(lowercase_ ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(lowercase_ ,end="," )
_UpperCamelCase : Optional[Any] = j
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase__ = [1, 3, 0, 5, 8, 5]
lowerCamelCase__ = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 51
| 0
|
"""simple docstring"""
import random
from .binary_exp_mod import bin_exp_mod
def lowercase__ ( lowercase_ ,lowercase_=1_000 ) -> Union[str, Any]:
"""simple docstring"""
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
_UpperCamelCase : str = n - 1
_UpperCamelCase : Optional[int] = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
_UpperCamelCase : List[str] = 0
while count < prec:
_UpperCamelCase : Union[str, Any] = random.randint(2 ,n - 1 )
_UpperCamelCase : Optional[int] = bin_exp_mod(lowercase_ ,lowercase_ ,lowercase_ )
if b != 1:
_UpperCamelCase : Optional[int] = True
for _ in range(lowercase_ ):
if b == n - 1:
_UpperCamelCase : Tuple = False
break
_UpperCamelCase : List[Any] = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
lowerCamelCase__ = abs(int(input("Enter bound : ").strip()))
print("Here's the list of primes:")
print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 710
|
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :torch.FloatTensor
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict:
super().__init__()
_UpperCamelCase : List[str] = layers_per_block
_UpperCamelCase : Dict = torch.nn.Convad(
__a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
_UpperCamelCase : int = None
_UpperCamelCase : Any = nn.ModuleList([] )
# down
_UpperCamelCase : List[str] = block_out_channels[0]
for i, down_block_type in enumerate(__a ):
_UpperCamelCase : Tuple = output_channel
_UpperCamelCase : int = block_out_channels[i]
_UpperCamelCase : int = i == len(__a ) - 1
_UpperCamelCase : Dict = get_down_block(
__a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , )
self.down_blocks.append(__a )
# mid
_UpperCamelCase : Union[str, Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , )
# out
_UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 )
_UpperCamelCase : Any = nn.SiLU()
_UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels
_UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 )
_UpperCamelCase : Optional[int] = False
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]:
_UpperCamelCase : int = x
_UpperCamelCase : Optional[int] = self.conv_in(__a )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__a : Tuple ):
def custom_forward(*__a : Any ):
return module(*__a )
return custom_forward
# down
if is_torch_version(">=" , "1.11.0" ):
for down_block in self.down_blocks:
_UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__a ) , __a , use_reentrant=__a )
# middle
_UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __a , use_reentrant=__a )
else:
for down_block in self.down_blocks:
_UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a )
# middle
_UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a )
else:
# down
for down_block in self.down_blocks:
_UpperCamelCase : int = down_block(__a )
# middle
_UpperCamelCase : int = self.mid_block(__a )
# post-process
_UpperCamelCase : Any = self.conv_norm_out(__a )
_UpperCamelCase : Any = self.conv_act(__a )
_UpperCamelCase : Optional[Any] = self.conv_out(__a )
return sample
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str:
super().__init__()
_UpperCamelCase : List[Any] = layers_per_block
_UpperCamelCase : Tuple = nn.Convad(
__a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
_UpperCamelCase : List[str] = None
_UpperCamelCase : Dict = nn.ModuleList([] )
_UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None
# mid
_UpperCamelCase : Optional[Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , )
# up
_UpperCamelCase : List[str] = list(reversed(__a ) )
_UpperCamelCase : int = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__a ):
_UpperCamelCase : int = output_channel
_UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i]
_UpperCamelCase : Optional[Any] = i == len(__a ) - 1
_UpperCamelCase : Union[str, Any] = get_up_block(
__a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , )
self.up_blocks.append(__a )
_UpperCamelCase : Optional[Any] = output_channel
# out
if norm_type == "spatial":
_UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a )
else:
_UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 )
_UpperCamelCase : str = nn.SiLU()
_UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 )
_UpperCamelCase : Dict = False
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple:
_UpperCamelCase : List[str] = z
_UpperCamelCase : Dict = self.conv_in(__a )
_UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__a : Any ):
def custom_forward(*__a : Tuple ):
return module(*__a )
return custom_forward
if is_torch_version(">=" , "1.11.0" ):
# middle
_UpperCamelCase : str = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a )
_UpperCamelCase : Optional[int] = sample.to(__a )
# up
for up_block in self.up_blocks:
_UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__a ) , __a , __a , use_reentrant=__a )
else:
# middle
_UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __a , __a )
_UpperCamelCase : Union[str, Any] = sample.to(__a )
# up
for up_block in self.up_blocks:
_UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a )
else:
# middle
_UpperCamelCase : str = self.mid_block(__a , __a )
_UpperCamelCase : int = sample.to(__a )
# up
for up_block in self.up_blocks:
_UpperCamelCase : Any = up_block(__a , __a )
# post-process
if latent_embeds is None:
_UpperCamelCase : List[str] = self.conv_norm_out(__a )
else:
_UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a )
_UpperCamelCase : Tuple = self.conv_act(__a )
_UpperCamelCase : List[Any] = self.conv_out(__a )
return sample
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]:
super().__init__()
_UpperCamelCase : Tuple = n_e
_UpperCamelCase : Tuple = vq_embed_dim
_UpperCamelCase : Union[str, Any] = beta
_UpperCamelCase : str = legacy
_UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
_UpperCamelCase : Any = remap
if self.remap is not None:
self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) )
_UpperCamelCase : Dict = self.used.shape[0]
_UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
_UpperCamelCase : Optional[int] = self.re_embed
_UpperCamelCase : Any = self.re_embed + 1
print(
F'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
F'''Using {self.unknown_index} for unknown indices.''' )
else:
_UpperCamelCase : Union[str, Any] = n_e
_UpperCamelCase : List[str] = sane_index_shape
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]:
_UpperCamelCase : str = inds.shape
assert len(__a ) > 1
_UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 )
_UpperCamelCase : Optional[Any] = self.used.to(__a )
_UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long()
_UpperCamelCase : Optional[Any] = match.argmax(-1 )
_UpperCamelCase : Any = match.sum(2 ) < 1
if self.unknown_index == "random":
_UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
_UpperCamelCase : Dict = self.unknown_index
return new.reshape(__a )
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]:
_UpperCamelCase : int = inds.shape
assert len(__a ) > 1
_UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 )
_UpperCamelCase : Optional[int] = self.used.to(__a )
if self.re_embed > self.used.shape[0]: # extra token
_UpperCamelCase : int = 0 # simply set to zero
_UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a )
return back.reshape(__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]:
# reshape z -> (batch, height, width, channel) and flatten
_UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous()
_UpperCamelCase : int = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
_UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 )
_UpperCamelCase : int = self.embedding(__a ).view(z.shape )
_UpperCamelCase : str = None
_UpperCamelCase : Any = None
# compute loss for embedding
if not self.legacy:
_UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
_UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
_UpperCamelCase : List[str] = z + (z_q - z).detach()
# reshape back to match original input shape
_UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
_UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
_UpperCamelCase : Dict = self.remap_to_used(__a )
_UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
_UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any:
# shape specifying (batch, height, width, channel)
if self.remap is not None:
_UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis
_UpperCamelCase : str = self.unmap_to_all(__a )
_UpperCamelCase : int = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
_UpperCamelCase : Optional[int] = self.embedding(__a )
if shape is not None:
_UpperCamelCase : Tuple = z_q.view(__a )
# reshape back to match original input shape
_UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int:
_UpperCamelCase : Dict = parameters
_UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 )
_UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 )
_UpperCamelCase : Union[str, Any] = deterministic
_UpperCamelCase : Dict = torch.exp(0.5 * self.logvar )
_UpperCamelCase : Any = torch.exp(self.logvar )
if self.deterministic:
_UpperCamelCase : List[Any] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor:
# make sure sample is on the same device as the parameters and has same dtype
_UpperCamelCase : List[Any] = randn_tensor(
self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype )
_UpperCamelCase : List[Any] = self.mean + self.std * sample
return x
def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]:
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int:
if self.deterministic:
return torch.Tensor([0.0] )
_UpperCamelCase : List[str] = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]:
return self.mean
| 51
| 0
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
lowerCamelCase__ = logging.get_logger(__name__)
def lowercase__ ( lowercase_ ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(lowercase_ ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowercase_ ,(list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowercase_ ):
return [[videos]]
raise ValueError(F'''Could not make batched video from {videos}''' )
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
SCREAMING_SNAKE_CASE__ :str = ["pixel_values"]
def __init__( self : List[str] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : Tuple , ) -> None:
super().__init__(**__a )
_UpperCamelCase : List[Any] = size if size is not None else {"shortest_edge": 256}
_UpperCamelCase : Any = get_size_dict(__a , default_to_square=__a )
_UpperCamelCase : List[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224}
_UpperCamelCase : List[str] = get_size_dict(__a , param_name="crop_size" )
_UpperCamelCase : Optional[int] = do_resize
_UpperCamelCase : Any = size
_UpperCamelCase : Tuple = do_center_crop
_UpperCamelCase : str = crop_size
_UpperCamelCase : List[Any] = resample
_UpperCamelCase : Any = do_rescale
_UpperCamelCase : int = rescale_factor
_UpperCamelCase : str = offset
_UpperCamelCase : Union[str, Any] = do_normalize
_UpperCamelCase : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCamelCase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __SCREAMING_SNAKE_CASE ( self : int , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray:
_UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a )
if "shortest_edge" in size:
_UpperCamelCase : Any = get_resize_output_image_size(__a , size["shortest_edge"] , default_to_square=__a )
elif "height" in size and "width" in size:
_UpperCamelCase : Union[str, Any] = (size["height"], size["width"])
else:
raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' )
return resize(__a , size=__a , resample=__a , data_format=__a , **__a )
def __SCREAMING_SNAKE_CASE ( self : int , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray:
_UpperCamelCase : List[Any] = get_size_dict(__a )
if "height" not in size or "width" not in size:
raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' )
return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : np.ndarray , __a : Union[int, float] , __a : bool = True , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ) -> Optional[Any]:
_UpperCamelCase : Any = image.astype(np.floataa )
if offset:
_UpperCamelCase : Any = image - (scale / 2)
return rescale(__a , scale=__a , data_format=__a , **__a )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ) -> np.ndarray:
return normalize(__a , mean=__a , std=__a , data_format=__a , **__a )
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray:
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
if offset and not do_rescale:
raise ValueError("For offset, do_rescale must also be set to True." )
# All transformations expect numpy arrays.
_UpperCamelCase : List[str] = to_numpy_array(__a )
if do_resize:
_UpperCamelCase : Tuple = self.resize(image=__a , size=__a , resample=__a )
if do_center_crop:
_UpperCamelCase : Tuple = self.center_crop(__a , size=__a )
if do_rescale:
_UpperCamelCase : Dict = self.rescale(image=__a , scale=__a , offset=__a )
if do_normalize:
_UpperCamelCase : Optional[Any] = self.normalize(image=__a , mean=__a , std=__a )
_UpperCamelCase : Tuple = to_channel_dimension_format(__a , __a )
return image
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : Optional[Any] , ) -> PIL.Image.Image:
_UpperCamelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase : Optional[int] = resample if resample is not None else self.resample
_UpperCamelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase : Dict = offset if offset is not None else self.offset
_UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase : int = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase : Union[str, Any] = image_std if image_std is not None else self.image_std
_UpperCamelCase : int = size if size is not None else self.size
_UpperCamelCase : int = get_size_dict(__a , default_to_square=__a )
_UpperCamelCase : Any = crop_size if crop_size is not None else self.crop_size
_UpperCamelCase : List[Any] = get_size_dict(__a , param_name="crop_size" )
if not valid_images(__a ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
_UpperCamelCase : List[str] = make_batched(__a )
_UpperCamelCase : int = [
[
self._preprocess_image(
image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , offset=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , )
for img in video
]
for video in videos
]
_UpperCamelCase : Any = {"pixel_values": videos}
return BatchFeature(data=__a , tensor_type=__a )
| 711
|
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=_UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} )
SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} )
SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"summary": Value("string" )} )
SCREAMING_SNAKE_CASE__ :str = "text"
SCREAMING_SNAKE_CASE__ :str = "summary"
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict[str, str]:
return {self.text_column: "text", self.summary_column: "summary"}
| 51
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase__ = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["XLNetTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["XLNetTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLNetForMultipleChoice",
"XLNetForQuestionAnswering",
"XLNetForQuestionAnsweringSimple",
"XLNetForSequenceClassification",
"XLNetForTokenClassification",
"XLNetLMHeadModel",
"XLNetModel",
"XLNetPreTrainedModel",
"load_tf_weights_in_xlnet",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLNetForMultipleChoice",
"TFXLNetForQuestionAnsweringSimple",
"TFXLNetForSequenceClassification",
"TFXLNetForTokenClassification",
"TFXLNetLMHeadModel",
"TFXLNetMainLayer",
"TFXLNetModel",
"TFXLNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 712
|
"""simple docstring"""
def lowercase__ ( lowercase_ ) -> set:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = set()
# edges = list of graph's edges
_UpperCamelCase : Union[str, Any] = get_edges(lowercase_ )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
_UpperCamelCase, _UpperCamelCase : str = edges.pop()
chosen_vertices.add(lowercase_ )
chosen_vertices.add(lowercase_ )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(lowercase_ )
return chosen_vertices
def lowercase__ ( lowercase_ ) -> set:
"""simple docstring"""
_UpperCamelCase : List[str] = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 51
| 0
|
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> float:
"""simple docstring"""
if days_between_payments <= 0:
raise ValueError("days_between_payments must be > 0" )
if daily_interest_rate < 0:
raise ValueError("daily_interest_rate must be >= 0" )
if principal <= 0:
raise ValueError("principal must be > 0" )
return principal * daily_interest_rate * days_between_payments
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> float:
"""simple docstring"""
if number_of_compounding_periods <= 0:
raise ValueError("number_of_compounding_periods must be > 0" )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" )
if principal <= 0:
raise ValueError("principal must be > 0" )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> float:
"""simple docstring"""
if number_of_years <= 0:
raise ValueError("number_of_years must be > 0" )
if nominal_annual_percentage_rate < 0:
raise ValueError("nominal_annual_percentage_rate must be >= 0" )
if principal <= 0:
raise ValueError("principal must be > 0" )
return compound_interest(
lowercase_ ,nominal_annual_percentage_rate / 365 ,number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 713
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase__ = {
"configuration_owlvit": [
"OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"OwlViTConfig",
"OwlViTOnnxConfig",
"OwlViTTextConfig",
"OwlViTVisionConfig",
],
"processing_owlvit": ["OwlViTProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["OwlViTFeatureExtractor"]
lowerCamelCase__ = ["OwlViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OwlViTModel",
"OwlViTPreTrainedModel",
"OwlViTTextModel",
"OwlViTVisionModel",
"OwlViTForObjectDetection",
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 51
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"microsoft/table-transformer-detection": (
"https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json"
),
}
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :str = "table-transformer"
SCREAMING_SNAKE_CASE__ :Optional[int] = ["past_key_values"]
SCREAMING_SNAKE_CASE__ :Union[str, Any] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self : Optional[int] , __a : Dict=True , __a : int=None , __a : Optional[Any]=3 , __a : Any=100 , __a : List[str]=6 , __a : Optional[int]=2048 , __a : List[Any]=8 , __a : str=6 , __a : Union[str, Any]=2048 , __a : Tuple=8 , __a : Dict=0.0 , __a : Any=0.0 , __a : int=True , __a : int="relu" , __a : Tuple=256 , __a : List[Any]=0.1 , __a : Optional[int]=0.0 , __a : Union[str, Any]=0.0 , __a : List[str]=0.02 , __a : Dict=1.0 , __a : Union[str, Any]=False , __a : Optional[Any]="sine" , __a : List[Any]="resnet50" , __a : List[Any]=True , __a : List[str]=False , __a : Union[str, Any]=1 , __a : str=5 , __a : str=2 , __a : Optional[Any]=1 , __a : Tuple=1 , __a : Dict=5 , __a : Tuple=2 , __a : Any=0.1 , **__a : str , ) -> List[str]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
_UpperCamelCase : Dict = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(__a , __a ):
_UpperCamelCase : List[Any] = backbone_config.get("model_type" )
_UpperCamelCase : int = CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase : str = config_class.from_dict(__a )
# set timm attributes to None
_UpperCamelCase : Union[str, Any] = None, None, None
_UpperCamelCase : List[str] = use_timm_backbone
_UpperCamelCase : Optional[int] = backbone_config
_UpperCamelCase : Union[str, Any] = num_channels
_UpperCamelCase : List[str] = num_queries
_UpperCamelCase : Union[str, Any] = d_model
_UpperCamelCase : Union[str, Any] = encoder_ffn_dim
_UpperCamelCase : Tuple = encoder_layers
_UpperCamelCase : str = encoder_attention_heads
_UpperCamelCase : Dict = decoder_ffn_dim
_UpperCamelCase : str = decoder_layers
_UpperCamelCase : Optional[Any] = decoder_attention_heads
_UpperCamelCase : Any = dropout
_UpperCamelCase : Dict = attention_dropout
_UpperCamelCase : Any = activation_dropout
_UpperCamelCase : Dict = activation_function
_UpperCamelCase : Optional[Any] = init_std
_UpperCamelCase : int = init_xavier_std
_UpperCamelCase : int = encoder_layerdrop
_UpperCamelCase : Optional[int] = decoder_layerdrop
_UpperCamelCase : Tuple = encoder_layers
_UpperCamelCase : str = auxiliary_loss
_UpperCamelCase : str = position_embedding_type
_UpperCamelCase : Optional[Any] = backbone
_UpperCamelCase : Dict = use_pretrained_backbone
_UpperCamelCase : List[Any] = dilation
# Hungarian matcher
_UpperCamelCase : List[str] = class_cost
_UpperCamelCase : Union[str, Any] = bbox_cost
_UpperCamelCase : Any = giou_cost
# Loss coefficients
_UpperCamelCase : List[Any] = mask_loss_coefficient
_UpperCamelCase : Dict = dice_loss_coefficient
_UpperCamelCase : Dict = bbox_loss_coefficient
_UpperCamelCase : Any = giou_loss_coefficient
_UpperCamelCase : Optional[int] = eos_coefficient
super().__init__(is_encoder_decoder=__a , **__a )
@property
def __SCREAMING_SNAKE_CASE ( self : str ) -> int:
return self.encoder_attention_heads
@property
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int:
return self.d_model
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Dict = version.parse("1.11" )
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def __SCREAMING_SNAKE_CASE ( self : str ) -> float:
return 1e-5
@property
def __SCREAMING_SNAKE_CASE ( self : str ) -> int:
return 12
| 714
|
"""simple docstring"""
from collections import defaultdict
from math import ceil, sqrt
def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int:
"""simple docstring"""
_UpperCamelCase : defaultdict = defaultdict(lowercase_ )
for outer_width in range(3 ,(t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
_UpperCamelCase : Any = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 )
else:
_UpperCamelCase : str = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(lowercase_ ,outer_width - 1 ,2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 51
| 0
|
"""simple docstring"""
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Tuple = StableUnCLIPPipeline
SCREAMING_SNAKE_CASE__ :Union[str, Any] = TEXT_TO_IMAGE_PARAMS
SCREAMING_SNAKE_CASE__ :List[str] = TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ :Any = TEXT_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE__ :str = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
SCREAMING_SNAKE_CASE__ :Union[str, Any] = False
def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple:
_UpperCamelCase : Tuple = 32
_UpperCamelCase : List[str] = embedder_hidden_size
# prior components
torch.manual_seed(0 )
_UpperCamelCase : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
_UpperCamelCase : int = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=__a , projection_dim=__a , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCamelCase : str = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__a , num_layers=1 , )
torch.manual_seed(0 )
_UpperCamelCase : List[Any] = DDPMScheduler(
variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=__a , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , )
# regular denoising components
torch.manual_seed(0 )
_UpperCamelCase : str = StableUnCLIPImageNormalizer(embedding_dim=__a )
_UpperCamelCase : Optional[Any] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
_UpperCamelCase : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
_UpperCamelCase : int = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=__a , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCamelCase : Union[str, Any] = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__a , layers_per_block=1 , upcast_attention=__a , use_linear_projection=__a , )
torch.manual_seed(0 )
_UpperCamelCase : Optional[Any] = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=__a , steps_offset=1 , )
torch.manual_seed(0 )
_UpperCamelCase : Union[str, Any] = AutoencoderKL()
_UpperCamelCase : List[str] = {
# prior components
"prior_tokenizer": prior_tokenizer,
"prior_text_encoder": prior_text_encoder,
"prior": prior,
"prior_scheduler": prior_scheduler,
# image noising components
"image_normalizer": image_normalizer,
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
}
return components
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : str , __a : List[str]=0 ) -> Tuple:
if str(__a ).startswith("mps" ):
_UpperCamelCase : Optional[Any] = torch.manual_seed(__a )
else:
_UpperCamelCase : List[str] = torch.Generator(device=__a ).manual_seed(__a )
_UpperCamelCase : List[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
_UpperCamelCase : Optional[int] = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=__a )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict:
_UpperCamelCase : Optional[Any] = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=__a )
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __SCREAMING_SNAKE_CASE ( self : int ) -> Any:
_UpperCamelCase : Any = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" )
_UpperCamelCase : Tuple = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase : List[str] = torch.Generator(device="cpu" ).manual_seed(0 )
_UpperCamelCase : Optional[Any] = pipe("anime turle" , generator=__a , output_type="np" )
_UpperCamelCase : Dict = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__a , __a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_UpperCamelCase : Optional[Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
_UpperCamelCase : Optional[int] = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase : str = pipe(
"anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , )
_UpperCamelCase : Dict = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 715
|
"""simple docstring"""
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowerCamelCase__ = TypeVar("KEY")
lowerCamelCase__ = TypeVar("VAL")
@dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :KEY
SCREAMING_SNAKE_CASE__ :VAL
class __SCREAMING_SNAKE_CASE ( _Item ):
'''simple docstring'''
def __init__( self : List[str] ) -> None:
super().__init__(__a , __a )
def __bool__( self : Dict ) -> bool:
return False
lowerCamelCase__ = _DeletedItem()
class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ):
'''simple docstring'''
def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None:
_UpperCamelCase : str = initial_block_size
_UpperCamelCase : list[_Item | None] = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
_UpperCamelCase : List[str] = capacity_factor
_UpperCamelCase : Dict = 0
def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int:
return hash(__a ) % len(self._buckets )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int:
return (ind + 1) % len(self._buckets )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool:
_UpperCamelCase : List[Any] = self._buckets[ind]
if not stored:
_UpperCamelCase : Tuple = _Item(__a , __a )
self._len += 1
return True
elif stored.key == key:
_UpperCamelCase : Union[str, Any] = _Item(__a , __a )
return True
else:
return False
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool:
_UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(__a )
def __SCREAMING_SNAKE_CASE ( self : str ) -> bool:
if len(self._buckets ) <= self._initial_block_size:
return False
_UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None:
_UpperCamelCase : Any = self._buckets
_UpperCamelCase : List[Any] = [None] * new_size
_UpperCamelCase : List[str] = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def __SCREAMING_SNAKE_CASE ( self : int ) -> None:
self._resize(len(self._buckets ) * 2 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None:
self._resize(len(self._buckets ) // 2 )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]:
_UpperCamelCase : str = self._get_bucket_index(__a )
for _ in range(len(self._buckets ) ):
yield ind
_UpperCamelCase : Tuple = self._get_next_ind(__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None:
for ind in self._iterate_buckets(__a ):
if self._try_set(__a , __a , __a ):
break
def __setitem__( self : int , __a : KEY , __a : VAL ) -> None:
if self._is_full():
self._size_up()
self._add_item(__a , __a )
def __delitem__( self : str , __a : KEY ) -> None:
for ind in self._iterate_buckets(__a ):
_UpperCamelCase : Tuple = self._buckets[ind]
if item is None:
raise KeyError(__a )
if item is _deleted:
continue
if item.key == key:
_UpperCamelCase : List[Any] = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : str , __a : KEY ) -> VAL:
for ind in self._iterate_buckets(__a ):
_UpperCamelCase : Tuple = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(__a )
def __len__( self : List[Any] ) -> int:
return self._len
def __iter__( self : List[str] ) -> Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self : List[str] ) -> str:
_UpperCamelCase : Optional[int] = " ,".join(
F'''{item.key}: {item.val}''' for item in self._buckets if item )
return F'''HashMap({val_string})'''
| 51
| 0
|
"""simple docstring"""
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def lowercase__ ( lowercase_ ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : int = model.config
_UpperCamelCase : Optional[int] = DonutSwinConfig(
image_size=original_config.input_size ,patch_size=4 ,depths=original_config.encoder_layer ,num_heads=[4, 8, 16, 32] ,window_size=original_config.window_size ,embed_dim=128 ,)
_UpperCamelCase : Any = MBartConfig(
is_decoder=lowercase_ ,is_encoder_decoder=lowercase_ ,add_cross_attention=lowercase_ ,decoder_layers=original_config.decoder_layer ,max_position_embeddings=original_config.max_position_embeddings ,vocab_size=len(
model.decoder.tokenizer ) ,scale_embedding=lowercase_ ,add_final_layer_norm=lowercase_ ,)
return encoder_config, decoder_config
def lowercase__ ( lowercase_ ) -> Optional[int]:
"""simple docstring"""
if "encoder.model" in name:
_UpperCamelCase : str = name.replace("encoder.model" ,"encoder" )
if "decoder.model" in name:
_UpperCamelCase : Dict = name.replace("decoder.model" ,"decoder" )
if "patch_embed.proj" in name:
_UpperCamelCase : List[Any] = name.replace("patch_embed.proj" ,"embeddings.patch_embeddings.projection" )
if "patch_embed.norm" in name:
_UpperCamelCase : str = name.replace("patch_embed.norm" ,"embeddings.norm" )
if name.startswith("encoder" ):
if "layers" in name:
_UpperCamelCase : Union[str, Any] = "encoder." + name
if "attn.proj" in name:
_UpperCamelCase : Any = name.replace("attn.proj" ,"attention.output.dense" )
if "attn" in name and "mask" not in name:
_UpperCamelCase : int = name.replace("attn" ,"attention.self" )
if "norm1" in name:
_UpperCamelCase : int = name.replace("norm1" ,"layernorm_before" )
if "norm2" in name:
_UpperCamelCase : int = name.replace("norm2" ,"layernorm_after" )
if "mlp.fc1" in name:
_UpperCamelCase : List[str] = name.replace("mlp.fc1" ,"intermediate.dense" )
if "mlp.fc2" in name:
_UpperCamelCase : Optional[Any] = name.replace("mlp.fc2" ,"output.dense" )
if name == "encoder.norm.weight":
_UpperCamelCase : Union[str, Any] = "encoder.layernorm.weight"
if name == "encoder.norm.bias":
_UpperCamelCase : Tuple = "encoder.layernorm.bias"
return name
def lowercase__ ( lowercase_ ,lowercase_ ) -> str:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
_UpperCamelCase : Optional[Any] = orig_state_dict.pop(lowercase_ )
if "qkv" in key:
_UpperCamelCase : Tuple = key.split("." )
_UpperCamelCase : Dict = int(key_split[3] )
_UpperCamelCase : Optional[Any] = int(key_split[5] )
_UpperCamelCase : int = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
_UpperCamelCase : int = val[:dim, :]
_UpperCamelCase : Tuple = val[dim : dim * 2, :]
_UpperCamelCase : Optional[Any] = val[-dim:, :]
else:
_UpperCamelCase : Union[str, Any] = val[:dim]
_UpperCamelCase : Tuple = val[dim : dim * 2]
_UpperCamelCase : Any = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
_UpperCamelCase : Dict = val
return orig_state_dict
def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : List[str] = DonutModel.from_pretrained(lowercase_ ).eval()
# load HuggingFace model
_UpperCamelCase : Dict = get_configs(lowercase_ )
_UpperCamelCase : Dict = DonutSwinModel(lowercase_ )
_UpperCamelCase : int = MBartForCausalLM(lowercase_ )
_UpperCamelCase : str = VisionEncoderDecoderModel(encoder=lowercase_ ,decoder=lowercase_ )
model.eval()
_UpperCamelCase : str = original_model.state_dict()
_UpperCamelCase : Union[str, Any] = convert_state_dict(lowercase_ ,lowercase_ )
model.load_state_dict(lowercase_ )
# verify results on scanned document
_UpperCamelCase : Any = load_dataset("hf-internal-testing/example-documents" )
_UpperCamelCase : Any = dataset["test"][0]["image"].convert("RGB" )
_UpperCamelCase : Dict = XLMRobertaTokenizerFast.from_pretrained(lowercase_ ,from_slow=lowercase_ )
_UpperCamelCase : Any = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis ,size=original_model.config.input_size[::-1] )
_UpperCamelCase : int = DonutProcessor(lowercase_ ,lowercase_ )
_UpperCamelCase : List[str] = processor(lowercase_ ,return_tensors="pt" ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
_UpperCamelCase : Optional[Any] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
_UpperCamelCase : str = "When is the coffee break?"
_UpperCamelCase : str = task_prompt.replace("{user_input}" ,lowercase_ )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
_UpperCamelCase : int = "<s_rvlcdip>"
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
_UpperCamelCase : Any = "<s_cord>"
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
_UpperCamelCase : Tuple = "s_cord-v2>"
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
_UpperCamelCase : Tuple = "<s_zhtrainticket>"
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
_UpperCamelCase : List[Any] = "hello world"
else:
raise ValueError("Model name not supported" )
_UpperCamelCase : str = original_model.decoder.tokenizer(lowercase_ ,add_special_tokens=lowercase_ ,return_tensors="pt" )[
"input_ids"
]
_UpperCamelCase : List[Any] = original_model.encoder.model.patch_embed(lowercase_ )
_UpperCamelCase : List[Any] = model.encoder.embeddings(lowercase_ )
assert torch.allclose(lowercase_ ,lowercase_ ,atol=1e-3 )
# verify encoder hidden states
_UpperCamelCase : Any = original_model.encoder(lowercase_ )
_UpperCamelCase : Any = model.encoder(lowercase_ ).last_hidden_state
assert torch.allclose(lowercase_ ,lowercase_ ,atol=1e-2 )
# verify decoder hidden states
_UpperCamelCase : Any = original_model(lowercase_ ,lowercase_ ,lowercase_ ).logits
_UpperCamelCase : List[str] = model(lowercase_ ,decoder_input_ids=lowercase_ ).logits
assert torch.allclose(lowercase_ ,lowercase_ ,atol=1e-3 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(F'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowercase_ )
processor.save_pretrained(lowercase_ )
if push_to_hub:
model.push_to_hub("nielsr/" + model_name.split("/" )[-1] ,commit_message="Update model" )
processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] ,commit_message="Update model" )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="naver-clova-ix/donut-base-finetuned-docvqa",
required=False,
type=str,
help="Name of the original model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
required=False,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the converted model and processor to the 🤗 hub.",
)
lowerCamelCase__ = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 716
|
"""simple docstring"""
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Optional[Any] , __a : list[int] ) -> None:
_UpperCamelCase : Tuple = len(__a )
_UpperCamelCase : Dict = [0] * len_array
if len_array > 0:
_UpperCamelCase : Optional[Any] = array[0]
for i in range(1 , __a ):
_UpperCamelCase : Tuple = self.prefix_sum[i - 1] + array[i]
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : int ) -> int:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> bool:
_UpperCamelCase : int = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(__a )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51
| 0
|
"""simple docstring"""
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> float:
"""simple docstring"""
_UpperCamelCase : int = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total
def lowercase__ ( ) -> Any:
"""simple docstring"""
print(sum_of_series(1 ,1 ,10 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 717
|
"""simple docstring"""
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : Optional[int] = None
if token is not None:
_UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
_UpperCamelCase : Any = "636036"
_UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
_UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json()
return result["workflow_runs"]
def lowercase__ ( lowercase_ ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ )
_UpperCamelCase : Tuple = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
_UpperCamelCase : Union[str, Any] = workflow_run["id"]
break
return workflow_run_id
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ )
if workflow_run_id is not None:
_UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
_UpperCamelCase : Dict = artifacts_links[artifact_name]
download_artifact(
artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int:
"""simple docstring"""
get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ )
_UpperCamelCase : Dict = {}
for artifact_name in artifact_names:
_UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' )
if os.path.isfile(lowercase_ ):
_UpperCamelCase : int = {}
with zipfile.ZipFile(lowercase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowercase_ ):
# read the file
with z.open(lowercase_ ) as f:
_UpperCamelCase : int = f.read().decode("UTF-8" )
return results
| 51
| 0
|
"""simple docstring"""
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]:
"""simple docstring"""
return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :]
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_="attention" ) -> str:
"""simple docstring"""
_UpperCamelCase : List[Any] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] )
_UpperCamelCase : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] )
_UpperCamelCase : Optional[Any] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] )
_UpperCamelCase : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] )
_UpperCamelCase : str = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] )
_UpperCamelCase : int = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] )
_UpperCamelCase : Dict = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] )
_UpperCamelCase : Optional[Any] = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] )
return k, o, q, v
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=False ) -> Dict:
"""simple docstring"""
if split_mlp_wi:
_UpperCamelCase : Dict = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :]
_UpperCamelCase : Optional[Any] = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :]
_UpperCamelCase : Union[str, Any] = (wi_a, wi_a)
else:
_UpperCamelCase : Optional[Any] = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :]
_UpperCamelCase : int = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :]
return wi, wo
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i]
def lowercase__ ( lowercase_ ,*, lowercase_ ,lowercase_ ,lowercase_ = False ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase : int = traverse_util.flatten_dict(variables["target"] )
_UpperCamelCase : str = {"/".join(lowercase_ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
_UpperCamelCase : Union[str, Any] = "encoder/encoder/mlp/wi_0/kernel" in old
print("Split MLP:" ,lowercase_ )
_UpperCamelCase : List[Any] = collections.OrderedDict()
# Shared embeddings.
_UpperCamelCase : str = old["token_embedder/embedding"]
# Encoder.
for i in range(lowercase_ ):
# Block i, layer 0 (Self Attention).
_UpperCamelCase : int = tax_layer_norm_lookup(lowercase_ ,lowercase_ ,"encoder" ,"pre_attention_layer_norm" )
_UpperCamelCase : str = tax_attention_lookup(lowercase_ ,lowercase_ ,"encoder" ,"attention" )
_UpperCamelCase : List[Any] = layer_norm
_UpperCamelCase : str = k.T
_UpperCamelCase : Optional[Any] = o.T
_UpperCamelCase : List[str] = q.T
_UpperCamelCase : int = v.T
# Block i, layer 1 (MLP).
_UpperCamelCase : Dict = tax_layer_norm_lookup(lowercase_ ,lowercase_ ,"encoder" ,"pre_mlp_layer_norm" )
_UpperCamelCase : int = tax_mlp_lookup(lowercase_ ,lowercase_ ,"encoder" ,lowercase_ )
_UpperCamelCase : int = layer_norm
if split_mlp_wi:
_UpperCamelCase : Optional[int] = wi[0].T
_UpperCamelCase : Optional[Any] = wi[1].T
else:
_UpperCamelCase : Any = wi.T
_UpperCamelCase : Optional[Any] = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
_UpperCamelCase : Optional[int] = tax_relpos_bias_lookup(
lowercase_ ,lowercase_ ,"encoder" ).T
_UpperCamelCase : str = old["encoder/encoder_norm/scale"]
if not scalable_attention:
_UpperCamelCase : Any = tax_relpos_bias_lookup(
lowercase_ ,0 ,"encoder" ).T
_UpperCamelCase : str = tax_relpos_bias_lookup(
lowercase_ ,0 ,"decoder" ).T
if not is_encoder_only:
# Decoder.
for i in range(lowercase_ ):
# Block i, layer 0 (Self Attention).
_UpperCamelCase : List[Any] = tax_layer_norm_lookup(lowercase_ ,lowercase_ ,"decoder" ,"pre_self_attention_layer_norm" )
_UpperCamelCase : Any = tax_attention_lookup(lowercase_ ,lowercase_ ,"decoder" ,"self_attention" )
_UpperCamelCase : List[str] = layer_norm
_UpperCamelCase : Union[str, Any] = k.T
_UpperCamelCase : str = o.T
_UpperCamelCase : List[str] = q.T
_UpperCamelCase : Union[str, Any] = v.T
# Block i, layer 1 (Cross Attention).
_UpperCamelCase : Dict = tax_layer_norm_lookup(lowercase_ ,lowercase_ ,"decoder" ,"pre_cross_attention_layer_norm" )
_UpperCamelCase : int = tax_attention_lookup(lowercase_ ,lowercase_ ,"decoder" ,"encoder_decoder_attention" )
_UpperCamelCase : List[str] = layer_norm
_UpperCamelCase : str = k.T
_UpperCamelCase : List[Any] = o.T
_UpperCamelCase : int = q.T
_UpperCamelCase : List[Any] = v.T
# Block i, layer 2 (MLP).
_UpperCamelCase : Tuple = tax_layer_norm_lookup(lowercase_ ,lowercase_ ,"decoder" ,"pre_mlp_layer_norm" )
_UpperCamelCase : Tuple = tax_mlp_lookup(lowercase_ ,lowercase_ ,"decoder" ,lowercase_ )
_UpperCamelCase : Optional[int] = layer_norm
if split_mlp_wi:
_UpperCamelCase : List[Any] = wi[0].T
_UpperCamelCase : Optional[int] = wi[1].T
else:
_UpperCamelCase : str = wi.T
_UpperCamelCase : Union[str, Any] = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
_UpperCamelCase : Optional[int] = tax_relpos_bias_lookup(lowercase_ ,lowercase_ ,"decoder" ).T
_UpperCamelCase : Tuple = old["decoder/decoder_norm/scale"]
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
_UpperCamelCase : Any = old["decoder/logits_dense/kernel"].T
return new
def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : Dict = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
_UpperCamelCase : str = state_dict["shared.weight"]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
_UpperCamelCase : Optional[int] = state_dict["shared.weight"]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("Using shared word embeddings as lm_head." )
_UpperCamelCase : int = state_dict["shared.weight"]
return state_dict
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Dict:
"""simple docstring"""
_UpperCamelCase : int = checkpoints.load_tax_checkpoint(lowercase_ )
_UpperCamelCase : List[str] = convert_tax_to_pytorch(
lowercase_ ,num_layers=config.num_layers ,is_encoder_only=lowercase_ ,scalable_attention=lowercase_ )
_UpperCamelCase : Union[str, Any] = make_state_dict(lowercase_ ,lowercase_ )
model.load_state_dict(lowercase_ ,strict=lowercase_ )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = False ,lowercase_ = False ,) -> Tuple:
"""simple docstring"""
_UpperCamelCase : int = MTaConfig.from_json_file(lowercase_ )
print(F'''Building PyTorch model from configuration: {config}''' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
_UpperCamelCase : Optional[int] = UMTaEncoderModel(lowercase_ )
else:
_UpperCamelCase : Optional[int] = UMTaForConditionalGeneration(lowercase_ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
model.save_pretrained(lowercase_ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowercase_ )
print("Done" )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.")
# Required parameters
parser.add_argument(
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False
)
parser.add_argument(
"--scalable_attention",
action="store_true",
help="Whether the model uses scaled attention (umt5 model)",
default=False,
)
lowerCamelCase__ = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 718
|
"""simple docstring"""
import math
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int:
_UpperCamelCase : List[Any] = 0.0
_UpperCamelCase : Union[str, Any] = 0.0
for i in range(len(__a ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]:
for i in range(len(__a ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def lowercase__ ( ) -> None:
"""simple docstring"""
_UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
_UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
_UpperCamelCase : List[Any] = SelfOrganizingMap()
_UpperCamelCase : int = 3
_UpperCamelCase : List[Any] = 0.5
for _ in range(lowercase_ ):
for j in range(len(lowercase_ ) ):
# training sample
_UpperCamelCase : int = training_samples[j]
# Compute the winning vector
_UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ )
# Update the winning vector
_UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ )
# classify test sample
_UpperCamelCase : Optional[int] = [0, 0, 0, 1]
_UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ )
# results
print(F'''Clusters that the test sample belongs to : {winner}''' )
print(F'''Weights that have been trained : {weights}''' )
# running the main() function
if __name__ == "__main__":
main()
| 51
| 0
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]:
_UpperCamelCase : Any = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split()
_UpperCamelCase : Any = dict(zip(__a , range(len(__a ) ) ) )
_UpperCamelCase : Union[str, Any] = {
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
}
_UpperCamelCase : List[str] = {
"feature_size": 1,
"padding_value": 0.0,
"sampling_rate": 1_6000,
"return_attention_mask": False,
"do_normalize": True,
}
_UpperCamelCase : Optional[Any] = tempfile.mkdtemp()
_UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_UpperCamelCase : List[Any] = os.path.join(self.tmpdirname , __a )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__a ) + "\n" )
with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__a ) + "\n" )
# load decoder from hub
_UpperCamelCase : List[Any] = "hf-internal-testing/ngram-beam-search-decoder"
def __SCREAMING_SNAKE_CASE ( self : Tuple , **__a : Union[str, Any] ) -> int:
_UpperCamelCase : Tuple = self.add_kwargs_tokens_map.copy()
kwargs.update(__a )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a )
def __SCREAMING_SNAKE_CASE ( self : Tuple , **__a : List[str] ) -> int:
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a )
def __SCREAMING_SNAKE_CASE ( self : str , **__a : Optional[int] ) -> Tuple:
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]:
_UpperCamelCase : List[Any] = self.get_tokenizer()
_UpperCamelCase : Dict = self.get_feature_extractor()
_UpperCamelCase : Dict = self.get_decoder()
_UpperCamelCase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a )
processor.save_pretrained(self.tmpdirname )
_UpperCamelCase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , __a )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , __a )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , __a )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]:
_UpperCamelCase : List[Any] = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
_UpperCamelCase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]:
_UpperCamelCase : int = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(["xx"] )
with self.assertRaisesRegex(__a , "include" ):
WavaVecaProcessorWithLM(
tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]:
_UpperCamelCase : Any = self.get_feature_extractor()
_UpperCamelCase : Dict = self.get_tokenizer()
_UpperCamelCase : str = self.get_decoder()
_UpperCamelCase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a )
_UpperCamelCase : Union[str, Any] = floats_list((3, 1000) )
_UpperCamelCase : List[Any] = feature_extractor(__a , return_tensors="np" )
_UpperCamelCase : Optional[Any] = processor(__a , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> int:
_UpperCamelCase : str = self.get_feature_extractor()
_UpperCamelCase : List[str] = self.get_tokenizer()
_UpperCamelCase : Union[str, Any] = self.get_decoder()
_UpperCamelCase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a )
_UpperCamelCase : Optional[int] = "This is a test string"
_UpperCamelCase : Optional[int] = processor(text=__a )
_UpperCamelCase : Any = tokenizer(__a )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> List[Any]:
np.random.seed(__a )
return np.random.rand(*__a )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]:
_UpperCamelCase : Optional[Any] = self.get_feature_extractor()
_UpperCamelCase : List[Any] = self.get_tokenizer()
_UpperCamelCase : Optional[Any] = self.get_decoder()
_UpperCamelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a )
_UpperCamelCase : Union[str, Any] = self._get_dummy_logits(shape=(10, 16) , seed=13 )
_UpperCamelCase : List[Any] = processor.decode(__a )
_UpperCamelCase : str = decoder.decode_beams(__a )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual("</s> <s> </s>" , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ["fork"], ["spawn"]] )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Tuple ) -> Any:
_UpperCamelCase : str = self.get_feature_extractor()
_UpperCamelCase : int = self.get_tokenizer()
_UpperCamelCase : str = self.get_decoder()
_UpperCamelCase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a )
_UpperCamelCase : Any = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
_UpperCamelCase : List[str] = processor.batch_decode(__a )
else:
with get_context(__a ).Pool() as pool:
_UpperCamelCase : List[str] = processor.batch_decode(__a , __a )
_UpperCamelCase : Any = list(__a )
with get_context("fork" ).Pool() as p:
_UpperCamelCase : Optional[int] = decoder.decode_beams_batch(__a , __a )
_UpperCamelCase : Dict = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(__a , decoded_processor.text )
self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text )
self.assertListEqual(__a , decoded_processor.logit_score )
self.assertListEqual(__a , decoded_processor.lm_score )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int:
_UpperCamelCase : Dict = self.get_feature_extractor()
_UpperCamelCase : Any = self.get_tokenizer()
_UpperCamelCase : Optional[int] = self.get_decoder()
_UpperCamelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a )
_UpperCamelCase : int = self._get_dummy_logits()
_UpperCamelCase : Tuple = 15
_UpperCamelCase : List[Any] = -20.0
_UpperCamelCase : int = -4.0
_UpperCamelCase : Union[str, Any] = processor.batch_decode(
__a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , )
_UpperCamelCase : List[str] = decoded_processor_out.text
_UpperCamelCase : Optional[int] = list(__a )
with get_context("fork" ).Pool() as pool:
_UpperCamelCase : List[str] = decoder.decode_beams_batch(
__a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , )
_UpperCamelCase : int = [d[0][0] for d in decoded_decoder_out]
_UpperCamelCase : List[Any] = [d[0][2] for d in decoded_decoder_out]
_UpperCamelCase : Optional[Any] = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(__a , __a )
self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , __a )
self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.0_54, -18.4_47] , __a , atol=1e-3 ) )
self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.5_54, -13.94_74] , __a , atol=1e-3 ) )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any:
_UpperCamelCase : Optional[int] = self.get_feature_extractor()
_UpperCamelCase : Union[str, Any] = self.get_tokenizer()
_UpperCamelCase : Any = self.get_decoder()
_UpperCamelCase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a )
_UpperCamelCase : Union[str, Any] = self._get_dummy_logits()
_UpperCamelCase : Optional[Any] = 2.0
_UpperCamelCase : Union[str, Any] = 5.0
_UpperCamelCase : Tuple = -20.0
_UpperCamelCase : str = True
_UpperCamelCase : Any = processor.batch_decode(
__a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , )
_UpperCamelCase : str = decoded_processor_out.text
_UpperCamelCase : Union[str, Any] = list(__a )
decoder.reset_params(
alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , )
with get_context("fork" ).Pool() as pool:
_UpperCamelCase : List[str] = decoder.decode_beams_batch(
__a , __a , )
_UpperCamelCase : str = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(__a , __a )
self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , __a )
_UpperCamelCase : Tuple = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , __a )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict:
_UpperCamelCase : List[Any] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
_UpperCamelCase : str = processor.decoder.model_container[processor.decoder._model_key]
_UpperCamelCase : Optional[Any] = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute()
_UpperCamelCase : Dict = os.listdir(__a )
_UpperCamelCase : Dict = ["alphabet.json", "language_model"]
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(__a , __a )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]:
_UpperCamelCase : List[str] = snapshot_download("hf-internal-testing/processor_with_lm" )
_UpperCamelCase : int = WavaVecaProcessorWithLM.from_pretrained(__a )
_UpperCamelCase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key]
_UpperCamelCase : Dict = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute()
_UpperCamelCase : Dict = os.listdir(__a )
_UpperCamelCase : Optional[Any] = os.listdir(__a )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(__a , __a )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]:
_UpperCamelCase : List[Any] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
_UpperCamelCase : Dict = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" )
_UpperCamelCase : Dict = floats_list((3, 1000) )
_UpperCamelCase : Optional[Any] = processor_wavaveca(__a , return_tensors="np" )
_UpperCamelCase : Dict = processor_auto(__a , return_tensors="np" )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
_UpperCamelCase : List[str] = self._get_dummy_logits()
_UpperCamelCase : str = processor_wavaveca.batch_decode(__a )
_UpperCamelCase : str = processor_auto.batch_decode(__a )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]:
_UpperCamelCase : Any = self.get_feature_extractor()
_UpperCamelCase : Optional[int] = self.get_tokenizer()
_UpperCamelCase : Any = self.get_decoder()
_UpperCamelCase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
@staticmethod
def __SCREAMING_SNAKE_CASE ( __a : Optional[Any] , __a : Optional[int] ) -> int:
_UpperCamelCase : Dict = [d[key] for d in offsets]
return retrieved_list
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]:
_UpperCamelCase : Any = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
_UpperCamelCase : int = self._get_dummy_logits()[0]
_UpperCamelCase : List[str] = processor.decode(__a , output_word_offsets=__a )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("text" in outputs )
self.assertTrue("word_offsets" in outputs )
self.assertTrue(isinstance(__a , __a ) )
self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] )
def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]:
_UpperCamelCase : List[str] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
_UpperCamelCase : List[Any] = self._get_dummy_logits()
_UpperCamelCase : str = processor.batch_decode(__a , output_word_offsets=__a )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("text" in outputs )
self.assertTrue("word_offsets" in outputs )
self.assertTrue(isinstance(__a , __a ) )
self.assertListEqual(
[" ".join(self.get_from_offsets(__a , "word" ) ) for o in outputs["word_offsets"]] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]:
import torch
_UpperCamelCase : Optional[int] = load_dataset("common_voice" , "en" , split="train" , streaming=__a )
_UpperCamelCase : Optional[int] = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_6000 ) )
_UpperCamelCase : Any = iter(__a )
_UpperCamelCase : Union[str, Any] = next(__a )
_UpperCamelCase : Optional[Any] = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" )
_UpperCamelCase : List[Any] = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
_UpperCamelCase : int = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values
with torch.no_grad():
_UpperCamelCase : Optional[Any] = model(__a ).logits.cpu().numpy()
_UpperCamelCase : Dict = processor.decode(logits[0] , output_word_offsets=__a )
_UpperCamelCase : Any = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
_UpperCamelCase : str = [
{
"start_time": d["start_offset"] * time_offset,
"end_time": d["end_offset"] * time_offset,
"word": d["word"],
}
for d in output["word_offsets"]
]
_UpperCamelCase : Dict = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL"
# output words
self.assertEqual(" ".join(self.get_from_offsets(__a , "word" ) ) , __a )
self.assertEqual(" ".join(self.get_from_offsets(__a , "word" ) ) , output.text )
# output times
_UpperCamelCase : List[str] = torch.tensor(self.get_from_offsets(__a , "start_time" ) )
_UpperCamelCase : List[Any] = torch.tensor(self.get_from_offsets(__a , "end_time" ) )
# fmt: off
_UpperCamelCase : List[Any] = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] )
_UpperCamelCase : Tuple = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
| 719
|
"""simple docstring"""
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
lowerCamelCase__ = "src/transformers"
lowerCamelCase__ = "docs/source/en"
lowerCamelCase__ = "."
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]:
"""simple docstring"""
with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f:
_UpperCamelCase : Union[str, Any] = f.readlines()
# Find the start prompt.
_UpperCamelCase : Dict = 0
while not lines[start_index].startswith(lowercase_ ):
start_index += 1
start_index += 1
_UpperCamelCase : Optional[int] = start_index
while not lines[end_index].startswith(lowercase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH)
def lowercase__ ( lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ )
return [m.group(0 ) for m in matches]
def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ )
_UpperCamelCase : Union[str, Any] = (width - text_length) // 2
_UpperCamelCase : Dict = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowercase__ ( ) -> str:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
_UpperCamelCase : str = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
_UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
_UpperCamelCase : int = collections.defaultdict(lowercase_ )
_UpperCamelCase : Dict = collections.defaultdict(lowercase_ )
_UpperCamelCase : Dict = collections.defaultdict(lowercase_ )
_UpperCamelCase : int = collections.defaultdict(lowercase_ )
_UpperCamelCase : str = collections.defaultdict(lowercase_ )
# Let's lookup through all transformers object (once).
for attr_name in dir(lowercase_ ):
_UpperCamelCase : List[str] = None
if attr_name.endswith("Tokenizer" ):
_UpperCamelCase : Tuple = slow_tokenizers
_UpperCamelCase : Any = attr_name[:-9]
elif attr_name.endswith("TokenizerFast" ):
_UpperCamelCase : Optional[Any] = fast_tokenizers
_UpperCamelCase : List[str] = attr_name[:-13]
elif _re_tf_models.match(lowercase_ ) is not None:
_UpperCamelCase : List[Any] = tf_models
_UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0]
elif _re_flax_models.match(lowercase_ ) is not None:
_UpperCamelCase : Dict = flax_models
_UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0]
elif _re_pt_models.match(lowercase_ ) is not None:
_UpperCamelCase : Optional[int] = pt_models
_UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0]
if lookup_dict is not None:
while len(lowercase_ ) > 0:
if attr_name in model_name_to_prefix.values():
_UpperCamelCase : Dict = True
break
# Try again after removing the last word in the name
_UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] )
# Let's build that table!
_UpperCamelCase : Any = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
_UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
_UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns]
_UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2
# Build the table per se
_UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n"
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n"
_UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"}
for name in model_names:
_UpperCamelCase : Optional[int] = model_name_to_prefix[name]
_UpperCamelCase : Tuple = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n"
return table
def lowercase__ ( lowercase_=False ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file(
filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,)
_UpperCamelCase : Any = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCamelCase__ = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 51
| 0
|
"""simple docstring"""
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase__ = get_tests_dir("fixtures/test_sentencepiece.model")
lowerCamelCase__ = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
lowerCamelCase__ = "pt" if is_torch_available() else "tf"
@require_sentencepiece
@require_tokenizers
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[int] = CamembertTokenizer
SCREAMING_SNAKE_CASE__ :List[Any] = CamembertTokenizerFast
SCREAMING_SNAKE_CASE__ :Optional[Any] = True
SCREAMING_SNAKE_CASE__ :int = True
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase : Optional[int] = CamembertTokenizer(__a )
tokenizer.save_pretrained(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]:
_UpperCamelCase : Any = "<pad>"
_UpperCamelCase : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
_UpperCamelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>NOTUSED" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(__a ) , 1004 )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
self.assertEqual(self.get_tokenizer().vocab_size , 1005 )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str:
_UpperCamelCase : Tuple = CamembertTokenizer(__a )
tokenizer.save_pretrained(self.tmpdirname )
_UpperCamelCase : int = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
_UpperCamelCase : str = "I was born in 92000, and this is falsé."
_UpperCamelCase : Tuple = tokenizer.encode(__a )
_UpperCamelCase : Any = rust_tokenizer.encode(__a )
self.assertListEqual(__a , __a )
_UpperCamelCase : Union[str, Any] = tokenizer.encode(__a , add_special_tokens=__a )
_UpperCamelCase : List[str] = rust_tokenizer.encode(__a , add_special_tokens=__a )
self.assertListEqual(__a , __a )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
_UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__a )
_UpperCamelCase : Tuple = rust_tokenizer.tokenize(__a )
self.assertListEqual(__a , __a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]:
if not self.test_rust_tokenizer:
return
_UpperCamelCase : Union[str, Any] = self.get_tokenizer()
_UpperCamelCase : int = self.get_rust_tokenizer()
_UpperCamelCase : Optional[int] = "I was born in 92000, and this is falsé."
_UpperCamelCase : Dict = tokenizer.tokenize(__a )
_UpperCamelCase : Optional[Any] = rust_tokenizer.tokenize(__a )
self.assertListEqual(__a , __a )
_UpperCamelCase : Optional[Any] = tokenizer.encode(__a , add_special_tokens=__a )
_UpperCamelCase : Any = rust_tokenizer.encode(__a , add_special_tokens=__a )
self.assertListEqual(__a , __a )
_UpperCamelCase : Optional[Any] = self.get_rust_tokenizer()
_UpperCamelCase : Any = tokenizer.encode(__a )
_UpperCamelCase : str = rust_tokenizer.encode(__a )
self.assertListEqual(__a , __a )
@slow
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]:
# fmt: off
_UpperCamelCase : Union[str, Any] = {"input_ids": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
_UpperCamelCase : List[Any] = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=__a , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=__a , )
| 720
|
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
lowerCamelCase__ = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
lowerCamelCase__ = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
lowerCamelCase__ = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]:
"""simple docstring"""
_UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] )
return (item, float(lowercase_ ))
def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]:
"""simple docstring"""
_UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 )
_UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:]
_UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def lowercase__ ( lowercase_ ,lowercase_ ) -> str:
"""simple docstring"""
_UpperCamelCase : int = list(lowercase_ )
if random.uniform(0 ,1 ) < MUTATION_PROBABILITY:
_UpperCamelCase : int = random.choice(lowercase_ )
return "".join(lowercase_ )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = []
# Generate more children proportionally to the fitness score.
_UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1
_UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n
for _ in range(lowercase_ ):
_UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0]
_UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ )
# Append new string to the population list.
pop.append(mutate(lowercase_ ,lowercase_ ) )
pop.append(mutate(lowercase_ ,lowercase_ ) )
return pop
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]:
"""simple docstring"""
if N_POPULATION < N_SELECTED:
_UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(lowercase_ )
# Verify that the target contains no genes besides the ones inside genes variable.
_UpperCamelCase : int = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
_UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(lowercase_ )
# Generate random starting population.
_UpperCamelCase : Union[str, Any] = []
for _ in range(lowercase_ ):
population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) )
# Just some logs to know what the algorithms is doing.
_UpperCamelCase, _UpperCamelCase : str = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowercase_ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
_UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population]
# Check if there is a matching evolution.
_UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'''\nGeneration: {generation}'''
F'''\nTotal Population:{total_population}'''
F'''\nBest score: {population_score[0][1]}'''
F'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
_UpperCamelCase : str = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowercase_ )
# Normalize population score to be between 0 and 1.
_UpperCamelCase : str = [
(item, score / len(lowercase_ )) for item, score in population_score
]
# This is selection
for i in range(lowercase_ ):
population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowercase_ ) > N_POPULATION:
break
if __name__ == "__main__":
lowerCamelCase__ = (
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
)
lowerCamelCase__ = list(
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list)
print(
f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"""
)
| 51
| 0
|
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( lowercase_ ) -> int:
"""simple docstring"""
_UpperCamelCase : Dict = len(lowercase_ ) // 2
# choose the middle 3 elements
_UpperCamelCase : Dict = lst[m - 1 : m + 2]
# if middle element is peak
if three[1] > three[0] and three[1] > three[2]:
return three[1]
# if increasing, recurse on right
elif three[0] < three[2]:
if len(lst[:m] ) == 2:
m -= 1
return peak(lst[m:] )
# decreasing
else:
if len(lst[:m] ) == 2:
m += 1
return peak(lst[:m] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 721
|
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = ["model.decoder.embed_positions.weights"]
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
if "emb" in name:
_UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" )
if "transformer" in name:
_UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" )
if "cross_attention" in name:
_UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" )
if "linear1" in name:
_UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" )
if "linear2" in name:
_UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" )
if "norm1" in name:
_UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" )
if "norm_cross" in name:
_UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" )
if "norm2" in name:
_UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" )
if "out_norm" in name:
_UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" )
if "linears" in name:
_UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
_UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" )
return name
def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]:
"""simple docstring"""
_UpperCamelCase : str = list(state_dict.keys() )
_UpperCamelCase : Optional[Any] = {}
for key in keys:
_UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ )
_UpperCamelCase : List[Any] = rename_keys(lowercase_ )
if "in_proj_weight" in key:
# split fused qkv proj
_UpperCamelCase : Tuple = val[:hidden_size, :]
_UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :]
_UpperCamelCase : Optional[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
_UpperCamelCase : Optional[Any] = val
else:
_UpperCamelCase : List[str] = val
return state_dict, enc_dec_proj_state_dict
def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
_UpperCamelCase : List[Any] = 1_024
_UpperCamelCase : List[str] = 24
_UpperCamelCase : Any = 16
elif checkpoint == "medium":
_UpperCamelCase : Tuple = 1_536
_UpperCamelCase : Dict = 48
_UpperCamelCase : Tuple = 24
elif checkpoint == "large":
_UpperCamelCase : int = 2_048
_UpperCamelCase : Optional[int] = 48
_UpperCamelCase : Dict = 32
else:
raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' )
_UpperCamelCase : str = MusicgenDecoderConfig(
hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,)
return config
@torch.no_grad()
def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ )
_UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ )
_UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict()
_UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict(
lowercase_ ,hidden_size=decoder_config.hidden_size )
_UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" )
_UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" )
_UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
_UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' )
if len(lowercase_ ) > 0:
raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' )
# init the composite model
_UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowercase_ )
# check we can do a forward pass
_UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 )
_UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 )
with torch.no_grad():
_UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
_UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" )
_UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" )
_UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ )
# set the appropriate bos/pad token ids
_UpperCamelCase : str = 2_048
_UpperCamelCase : str = 2_048
# set other default generation config params
_UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate )
_UpperCamelCase : List[str] = True
_UpperCamelCase : int = 3.0
if pytorch_dump_folder is not None:
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' )
model.save_pretrained(lowercase_ )
processor.save_pretrained(lowercase_ )
if repo_id:
logger.info(F'''Pushing model {checkpoint} to {repo_id}''' )
model.push_to_hub(lowercase_ )
processor.push_to_hub(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
lowerCamelCase__ = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 51
| 0
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
def lowercase__ ( lowercase_ ,lowercase_=False ) -> Any:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_UpperCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=False ) -> Any:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
_UpperCamelCase : Union[str, Any] = ""
else:
_UpperCamelCase : Union[str, Any] = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_UpperCamelCase : Any = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' )
_UpperCamelCase : List[str] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_UpperCamelCase : List[Any] = in_proj_weight[
: config.hidden_size, :
]
_UpperCamelCase : Tuple = in_proj_bias[: config.hidden_size]
_UpperCamelCase : Any = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_UpperCamelCase : Optional[int] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_UpperCamelCase : Dict = in_proj_weight[
-config.hidden_size :, :
]
_UpperCamelCase : Any = in_proj_bias[-config.hidden_size :]
def lowercase__ ( lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Optional[int] = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(lowercase_ ,lowercase_ )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : Dict = dct.pop(lowercase_ )
_UpperCamelCase : List[str] = val
def lowercase__ ( ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCamelCase : Any = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw )
return im
@torch.no_grad()
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=True ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
_UpperCamelCase : List[Any] = 8
# set labels if required
if not base_model:
_UpperCamelCase : Tuple = 1_000
_UpperCamelCase : Union[str, Any] = "huggingface/label-files"
_UpperCamelCase : Optional[Any] = "imagenet-1k-id2label.json"
_UpperCamelCase : int = json.load(open(hf_hub_download(lowercase_ ,lowercase_ ,repo_type="dataset" ) ,"r" ) )
_UpperCamelCase : int = {int(lowercase_ ): v for k, v in idalabel.items()}
_UpperCamelCase : int = idalabel
_UpperCamelCase : List[str] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
_UpperCamelCase : Dict = 384
_UpperCamelCase : Any = 1_536
_UpperCamelCase : List[Any] = 12
_UpperCamelCase : Union[str, Any] = 6
# load original model from torch hub
_UpperCamelCase : List[str] = torch.hub.load("facebookresearch/dino:main" ,lowercase_ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
_UpperCamelCase : int = original_model.state_dict()
if base_model:
remove_classification_head_(lowercase_ )
_UpperCamelCase : Optional[Any] = create_rename_keys(lowercase_ ,base_model=lowercase_ )
for src, dest in rename_keys:
rename_key(lowercase_ ,lowercase_ ,lowercase_ )
read_in_q_k_v(lowercase_ ,lowercase_ ,lowercase_ )
# load HuggingFace model
if base_model:
_UpperCamelCase : Dict = ViTModel(lowercase_ ,add_pooling_layer=lowercase_ ).eval()
else:
_UpperCamelCase : List[str] = ViTForImageClassification(lowercase_ ).eval()
model.load_state_dict(lowercase_ )
# Check outputs on an image, prepared by ViTImageProcessor
_UpperCamelCase : Tuple = ViTImageProcessor()
_UpperCamelCase : str = image_processor(images=prepare_img() ,return_tensors="pt" )
_UpperCamelCase : str = encoding["pixel_values"]
_UpperCamelCase : Union[str, Any] = model(lowercase_ )
if base_model:
_UpperCamelCase : Union[str, Any] = original_model(lowercase_ )
assert torch.allclose(lowercase_ ,outputs.last_hidden_state[:, 0, :] ,atol=1e-1 )
else:
_UpperCamelCase : str = original_model(lowercase_ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(lowercase_ ,outputs.logits ,atol=1e-3 )
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowercase_ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="dino_vitb16",
type=str,
help="Name of the model trained with DINO you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--base_model",
action="store_true",
help="Whether to only convert the base model (no projection head weights).",
)
parser.set_defaults(base_model=True)
lowerCamelCase__ = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 700
|
"""simple docstring"""
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
lowerCamelCase__ = input("Enter image url: ").strip()
print(f"""Downloading image from {url} ...""")
lowerCamelCase__ = BeautifulSoup(requests.get(url).content, "html.parser")
# The image URL is in the content field of the first meta tag with property og:image
lowerCamelCase__ = soup.find("meta", {"property": "og:image"})["content"]
lowerCamelCase__ = requests.get(image_url).content
lowerCamelCase__ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"""
with open(file_name, "wb") as fp:
fp.write(image_data)
print(f"""Done. Image saved to disk as {file_name}.""")
| 51
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json",
# See all BioGPT models at https://huggingface.co/models?filter=biogpt
}
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Tuple = "biogpt"
def __init__( self : List[Any] , __a : List[Any]=4_2384 , __a : Optional[Any]=1024 , __a : Dict=24 , __a : List[str]=16 , __a : Any=4096 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Optional[int]=0.1 , __a : Any=1024 , __a : Dict=0.02 , __a : str=1e-1_2 , __a : Optional[int]=True , __a : Union[str, Any]=True , __a : Optional[int]=0.0 , __a : Dict=0.0 , __a : List[str]=1 , __a : Dict=0 , __a : Any=2 , **__a : int , ) -> Dict:
_UpperCamelCase : Union[str, Any] = vocab_size
_UpperCamelCase : Optional[Any] = max_position_embeddings
_UpperCamelCase : List[Any] = hidden_size
_UpperCamelCase : int = num_hidden_layers
_UpperCamelCase : Optional[Any] = num_attention_heads
_UpperCamelCase : Optional[int] = intermediate_size
_UpperCamelCase : Tuple = hidden_act
_UpperCamelCase : Dict = hidden_dropout_prob
_UpperCamelCase : Optional[int] = attention_probs_dropout_prob
_UpperCamelCase : Tuple = initializer_range
_UpperCamelCase : List[Any] = layer_norm_eps
_UpperCamelCase : Tuple = scale_embedding
_UpperCamelCase : List[str] = use_cache
_UpperCamelCase : Any = layerdrop
_UpperCamelCase : Optional[Any] = activation_dropout
super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
| 701
|
"""simple docstring"""
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(".")
def lowercase__ ( lowercase_ ) -> int:
"""simple docstring"""
_UpperCamelCase : Any = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
"`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got "
F'''{test_file} instead.''' )
_UpperCamelCase : str = components[-1]
if not test_fn.endswith("py" ):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith("test_modeling_" ):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
_UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )]
_UpperCamelCase : List[str] = ".".join(lowercase_ )
return test_module_path
def lowercase__ ( lowercase_ ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = get_module_path(lowercase_ )
_UpperCamelCase : str = importlib.import_module(lowercase_ )
return test_module
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = []
_UpperCamelCase : List[Any] = get_test_module(lowercase_ )
for attr in dir(lowercase_ ):
if attr.endswith("ModelTester" ):
tester_classes.append(getattr(lowercase_ ,lowercase_ ) )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = []
_UpperCamelCase : Any = get_test_module(lowercase_ )
for attr in dir(lowercase_ ):
_UpperCamelCase : int = getattr(lowercase_ ,lowercase_ )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
_UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] )
if len(lowercase_ ) > 0:
test_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Dict = get_test_classes(lowercase_ )
_UpperCamelCase : int = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : List[str] = test_class()
if hasattr(lowercase_ ,"setUp" ):
test.setUp()
_UpperCamelCase : Tuple = None
if hasattr(lowercase_ ,"model_tester" ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
_UpperCamelCase : Tuple = test.model_tester.__class__
return model_tester
def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : str = get_test_classes(lowercase_ )
_UpperCamelCase : Dict = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict:
"""simple docstring"""
_UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ )
_UpperCamelCase : List[Any] = []
for test_class in test_classes:
_UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ )
if tester_class is not None:
tester_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Any = get_test_classes(lowercase_ )
_UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes}
return test_tester_mapping
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : List[Any] = get_model_classes(lowercase_ )
_UpperCamelCase : Optional[int] = {
model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes
}
return model_test_mapping
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ )
_UpperCamelCase : Tuple = {
model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes
}
return model_to_tester_mapping
def lowercase__ ( lowercase_ ) -> Optional[int]:
"""simple docstring"""
if isinstance(lowercase_ ,lowercase_ ):
return o
elif isinstance(lowercase_ ,lowercase_ ):
return o.__name__
elif isinstance(lowercase_ ,(list, tuple) ):
return [to_json(lowercase_ ) for x in o]
elif isinstance(lowercase_ ,lowercase_ ):
return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()}
else:
return o
| 51
| 0
|
def lowercase__ ( lowercase_ ) -> str:
"""simple docstring"""
_UpperCamelCase : List[Any] = []
_UpperCamelCase : str = []
_UpperCamelCase : Dict = {
"^": 3,
"*": 2,
"/": 2,
"%": 2,
"+": 1,
"-": 1,
} # Priority of each operator
_UpperCamelCase : Union[str, Any] = len(lowercase_ ) if (len(lowercase_ ) > 7) else 7
# Print table header for output
print(
"Symbol".center(8 ) ,"Stack".center(lowercase_ ) ,"Postfix".center(lowercase_ ) ,sep=" | " ,)
print("-" * (print_width * 3 + 7) )
for x in infix:
if x.isalpha() or x.isdigit():
post_fix.append(lowercase_ ) # if x is Alphabet / Digit, add it to Postfix
elif x == "(":
stack.append(lowercase_ ) # if x is "(" push to Stack
elif x == ")": # if x is ")" pop stack until "(" is encountered
while stack[-1] != "(":
post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix
stack.pop()
else:
if len(lowercase_ ) == 0:
stack.append(lowercase_ ) # If stack is empty, push x to stack
else: # while priority of x is not > priority of element in the stack
while len(lowercase_ ) > 0 and priority[x] <= priority[stack[-1]]:
post_fix.append(stack.pop() ) # pop stack & add to Postfix
stack.append(lowercase_ ) # push x to stack
print(
x.center(8 ) ,("".join(lowercase_ )).ljust(lowercase_ ) ,("".join(lowercase_ )).ljust(lowercase_ ) ,sep=" | " ,) # Output in tabular format
while len(lowercase_ ) > 0: # while stack is not empty
post_fix.append(stack.pop() ) # pop stack & add to Postfix
print(
" ".center(8 ) ,("".join(lowercase_ )).ljust(lowercase_ ) ,("".join(lowercase_ )).ljust(lowercase_ ) ,sep=" | " ,) # Output in tabular format
return "".join(lowercase_ ) # return Postfix as str
def lowercase__ ( lowercase_ ) -> List[str]:
"""simple docstring"""
_UpperCamelCase : str = list(infix[::-1] ) # reverse the infix equation
for i in range(len(lowercase_ ) ):
if infix[i] == "(":
_UpperCamelCase : Any = ")" # change "(" to ")"
elif infix[i] == ")":
_UpperCamelCase : Tuple = "(" # change ")" to "("
return (infix_2_postfix("".join(lowercase_ ) ))[
::-1
] # call infix_2_postfix on Infix, return reverse of Postfix
if __name__ == "__main__":
lowerCamelCase__ = input("\nEnter an Infix Equation = ") # Input an Infix equation
lowerCamelCase__ = "".join(Infix.split()) # Remove spaces from the input
print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
| 702
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCamelCase__ = {
"configuration_mask2former": [
"MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Mask2FormerConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["Mask2FormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"Mask2FormerForUniversalSegmentation",
"Mask2FormerModel",
"Mask2FormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 51
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
lowerCamelCase__ = {"tokenization_herbert": ["HerbertTokenizer"]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["HerbertTokenizerFast"]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 703
|
"""simple docstring"""
lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCamelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 51
| 0
|
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json",
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[Any] = "dpt"
def __init__( self : Optional[Any] , __a : Union[str, Any]=768 , __a : Tuple=12 , __a : Any=12 , __a : Any=3072 , __a : Dict="gelu" , __a : int=0.0 , __a : int=0.0 , __a : Tuple=0.02 , __a : str=1e-1_2 , __a : Dict=384 , __a : Optional[Any]=16 , __a : List[str]=3 , __a : List[str]=False , __a : Optional[Any]=True , __a : str=[2, 5, 8, 11] , __a : int="project" , __a : Union[str, Any]=[4, 2, 1, 0.5] , __a : Optional[int]=[96, 192, 384, 768] , __a : List[str]=256 , __a : Tuple=-1 , __a : Union[str, Any]=False , __a : Dict=True , __a : int=0.4 , __a : List[str]=255 , __a : Optional[Any]=0.1 , __a : Any=[1, 1024, 24, 24] , __a : Optional[Any]=[0, 1] , __a : Any=None , **__a : str , ) -> List[str]:
super().__init__(**__a )
_UpperCamelCase : Union[str, Any] = hidden_size
_UpperCamelCase : List[str] = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info("Initializing the config with a `BiT` backbone." )
_UpperCamelCase : int = {
"global_padding": "same",
"layer_type": "bottleneck",
"depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True,
}
_UpperCamelCase : Union[str, Any] = BitConfig(**__a )
elif isinstance(__a , __a ):
logger.info("Initializing the config with a `BiT` backbone." )
_UpperCamelCase : int = BitConfig(**__a )
elif isinstance(__a , __a ):
_UpperCamelCase : List[str] = backbone_config
else:
raise ValueError(
F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' )
_UpperCamelCase : str = backbone_featmap_shape
_UpperCamelCase : Tuple = neck_ignore_stages
if readout_type != "project":
raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." )
else:
_UpperCamelCase : Dict = None
_UpperCamelCase : Tuple = None
_UpperCamelCase : Optional[int] = []
_UpperCamelCase : str = num_hidden_layers
_UpperCamelCase : Optional[int] = num_attention_heads
_UpperCamelCase : str = intermediate_size
_UpperCamelCase : Optional[Any] = hidden_act
_UpperCamelCase : Union[str, Any] = hidden_dropout_prob
_UpperCamelCase : Optional[int] = attention_probs_dropout_prob
_UpperCamelCase : Tuple = initializer_range
_UpperCamelCase : Any = layer_norm_eps
_UpperCamelCase : Optional[Any] = image_size
_UpperCamelCase : Optional[Any] = patch_size
_UpperCamelCase : Any = num_channels
_UpperCamelCase : List[Any] = qkv_bias
_UpperCamelCase : str = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" )
_UpperCamelCase : Tuple = readout_type
_UpperCamelCase : Optional[Any] = reassemble_factors
_UpperCamelCase : Union[str, Any] = neck_hidden_sizes
_UpperCamelCase : int = fusion_hidden_size
_UpperCamelCase : List[str] = head_in_index
_UpperCamelCase : Tuple = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
_UpperCamelCase : Union[str, Any] = use_auxiliary_head
_UpperCamelCase : List[Any] = auxiliary_loss_weight
_UpperCamelCase : int = semantic_loss_ignore_index
_UpperCamelCase : Dict = semantic_classifier_dropout
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]:
_UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
_UpperCamelCase : Any = self.backbone_config.to_dict()
_UpperCamelCase : Any = self.__class__.model_type
return output
| 704
|
"""simple docstring"""
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
_UpperCamelCase : Tuple = tempfile.mkdtemp()
_UpperCamelCase : str = 5
# Realm tok
_UpperCamelCase : Tuple = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"test",
"question",
"this",
"is",
"the",
"first",
"second",
"third",
"fourth",
"fifth",
"record",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
_UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" )
os.makedirs(__a , exist_ok=__a )
_UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
_UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" )
os.makedirs(__a , exist_ok=__a )
def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer:
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict:
shutil.rmtree(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]:
_UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records )
return config
def __SCREAMING_SNAKE_CASE ( self : int ) -> int:
_UpperCamelCase : Any = Dataset.from_dict(
{
"id": ["0", "1"],
"question": ["foo", "bar"],
"answers": [["Foo", "Bar"], ["Bar"]],
} )
return dataset
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str:
_UpperCamelCase : int = np.array(
[
b"This is the first record",
b"This is the second record",
b"This is the third record",
b"This is the fourth record",
b"This is the fifth record",
b"This is a longer longer longer record",
] , dtype=__a , )
return block_records
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]:
_UpperCamelCase : List[str] = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple:
_UpperCamelCase : Tuple = self.get_config()
_UpperCamelCase : int = self.get_dummy_retriever()
_UpperCamelCase : Tuple = retriever.tokenizer
_UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" )
_UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids
_UpperCamelCase : List[str] = tokenizer(
["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids
_UpperCamelCase : str = config.reader_seq_len
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = retriever(
__a , __a , answer_ids=__a , max_length=__a , return_tensors="np" )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(len(__a ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]:
_UpperCamelCase : Any = self.get_config()
_UpperCamelCase : Dict = self.get_dummy_retriever()
_UpperCamelCase : Dict = retriever.tokenizer
_UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" )
_UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids
_UpperCamelCase : str = tokenizer(
["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids
_UpperCamelCase : Union[str, Any] = config.reader_seq_len
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = retriever(
__a , __a , answer_ids=__a , max_length=__a , return_tensors="np" )
self.assertEqual([False, True, True] , __a )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]:
_UpperCamelCase : List[Any] = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) )
# Test local path
_UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) )
self.assertEqual(retriever.block_records[0] , b"This is the first record" )
# Test mocked remote path
with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download:
_UpperCamelCase : List[Any] = os.path.join(
os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME )
_UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" )
self.assertEqual(retriever.block_records[0] , b"This is the first record" )
| 51
| 0
|
"""simple docstring"""
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
lowerCamelCase__ = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 16_000 ) -> str:
"""simple docstring"""
_UpperCamelCase : int = int(round(sample_rate * max_length ) )
if len(lowercase_ ) <= sample_length:
return wav
_UpperCamelCase : Dict = randint(0 ,len(lowercase_ ) - sample_length - 1 )
return wav[random_offset : random_offset + sample_length]
@dataclass
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[str] = field(default=_UpperCamelCase , metadata={"help": "Name of a dataset from the datasets package"} )
SCREAMING_SNAKE_CASE__ :Optional[str] = field(
default=_UpperCamelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
SCREAMING_SNAKE_CASE__ :Optional[str] = field(
default=_UpperCamelCase , metadata={"help": "A file containing the training audio paths and labels."} )
SCREAMING_SNAKE_CASE__ :Optional[str] = field(
default=_UpperCamelCase , metadata={"help": "A file containing the validation audio paths and labels."} )
SCREAMING_SNAKE_CASE__ :str = field(
default="train" , metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
} , )
SCREAMING_SNAKE_CASE__ :str = field(
default="validation" , metadata={
"help": (
"The name of the training data set split to use (via the datasets library). Defaults to 'validation'"
)
} , )
SCREAMING_SNAKE_CASE__ :str = field(
default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , )
SCREAMING_SNAKE_CASE__ :str = field(
default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} )
SCREAMING_SNAKE_CASE__ :Optional[int] = field(
default=_UpperCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
SCREAMING_SNAKE_CASE__ :Optional[int] = field(
default=_UpperCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
SCREAMING_SNAKE_CASE__ :float = field(
default=20 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , )
@dataclass
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :str = field(
default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , )
SCREAMING_SNAKE_CASE__ :Optional[str] = field(
default=_UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
SCREAMING_SNAKE_CASE__ :Optional[str] = field(
default=_UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} )
SCREAMING_SNAKE_CASE__ :str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
SCREAMING_SNAKE_CASE__ :Optional[str] = field(
default=_UpperCamelCase , metadata={"help": "Name or path of preprocessor config."} )
SCREAMING_SNAKE_CASE__ :bool = field(
default=_UpperCamelCase , metadata={"help": "Whether to freeze the feature encoder layers of the model."} )
SCREAMING_SNAKE_CASE__ :bool = field(
default=_UpperCamelCase , metadata={"help": "Whether to generate an attention mask in the feature extractor."} )
SCREAMING_SNAKE_CASE__ :bool = field(
default=_UpperCamelCase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
SCREAMING_SNAKE_CASE__ :Optional[bool] = field(
default=_UpperCamelCase , metadata={"help": "Whether to freeze the feature extractor layers of the model."} )
SCREAMING_SNAKE_CASE__ :bool = field(
default=_UpperCamelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , )
def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]:
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
"The argument `--freeze_feature_extractor` is deprecated and "
"will be removed in a future version. Use `--freeze_feature_encoder`"
"instead. Setting `freeze_feature_encoder==True`." , __a , )
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
"The argument `--freeze_feature_extractor` is deprecated and "
"should not be used in combination with `--freeze_feature_encoder`."
"Only make use of `--freeze_feature_encoder`." )
def lowercase__ ( ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCamelCase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCamelCase : List[Any] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_audio_classification" ,lowercase_ ,lowercase_ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,handlers=[logging.StreamHandler(sys.stdout )] ,)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_UpperCamelCase : int = training_args.get_process_log_level()
logger.setLevel(lowercase_ )
transformers.utils.logging.set_verbosity(lowercase_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} '''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Detecting last checkpoint.
_UpperCamelCase : int = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCamelCase : Union[str, Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"Use --overwrite_output_dir to train from scratch." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Initialize our dataset and prepare it for the audio classification task.
_UpperCamelCase : Dict = DatasetDict()
_UpperCamelCase : Any = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.train_split_name ,use_auth_token=True if model_args.use_auth_token else None ,)
_UpperCamelCase : Any = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.eval_split_name ,use_auth_token=True if model_args.use_auth_token else None ,)
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. '''
"Make sure to set `--audio_column_name` to the correct audio column - one of "
F'''{', '.join(raw_datasets['train'].column_names )}.''' )
if data_args.label_column_name not in raw_datasets["train"].column_names:
raise ValueError(
F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. '''
"Make sure to set `--label_column_name` to the correct text column - one of "
F'''{', '.join(raw_datasets['train'].column_names )}.''' )
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
_UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path ,return_attention_mask=model_args.attention_mask ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
_UpperCamelCase : int = raw_datasets.cast_column(
data_args.audio_column_name ,datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) )
_UpperCamelCase : Optional[int] = feature_extractor.model_input_names[0]
def train_transforms(lowercase_ ):
_UpperCamelCase : Dict = []
for audio in batch[data_args.audio_column_name]:
_UpperCamelCase : Dict = random_subsample(
audio["array"] ,max_length=data_args.max_length_seconds ,sample_rate=feature_extractor.sampling_rate )
subsampled_wavs.append(lowercase_ )
_UpperCamelCase : List[Any] = feature_extractor(lowercase_ ,sampling_rate=feature_extractor.sampling_rate )
_UpperCamelCase : Optional[int] = {model_input_name: inputs.get(lowercase_ )}
_UpperCamelCase : Tuple = list(batch[data_args.label_column_name] )
return output_batch
def val_transforms(lowercase_ ):
_UpperCamelCase : Optional[Any] = [audio["array"] for audio in batch[data_args.audio_column_name]]
_UpperCamelCase : Optional[int] = feature_extractor(lowercase_ ,sampling_rate=feature_extractor.sampling_rate )
_UpperCamelCase : List[Any] = {model_input_name: inputs.get(lowercase_ )}
_UpperCamelCase : Union[str, Any] = list(batch[data_args.label_column_name] )
return output_batch
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
_UpperCamelCase : Union[str, Any] = raw_datasets["train"].features[data_args.label_column_name].names
_UpperCamelCase : int = {}, {}
for i, label in enumerate(lowercase_ ):
_UpperCamelCase : int = str(lowercase_ )
_UpperCamelCase : str = label
# Load the accuracy metric from the datasets package
_UpperCamelCase : List[Any] = evaluate.load("accuracy" )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
def compute_metrics(lowercase_ ):
_UpperCamelCase : Any = np.argmax(eval_pred.predictions ,axis=1 )
return metric.compute(predictions=lowercase_ ,references=eval_pred.label_ids )
_UpperCamelCase : List[str] = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path ,num_labels=len(lowercase_ ) ,labelaid=lowercase_ ,idalabel=lowercase_ ,finetuning_task="audio-classification" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
_UpperCamelCase : Optional[Any] = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path ,from_tf=bool(".ckpt" in model_args.model_name_or_path ) ,config=lowercase_ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,)
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
_UpperCamelCase : Union[str, Any] = (
raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
raw_datasets["train"].set_transform(lowercase_ ,output_all_columns=lowercase_ )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
_UpperCamelCase : int = (
raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
raw_datasets["eval"].set_transform(lowercase_ ,output_all_columns=lowercase_ )
# Initialize our trainer
_UpperCamelCase : Optional[Any] = Trainer(
model=lowercase_ ,args=lowercase_ ,train_dataset=raw_datasets["train"] if training_args.do_train else None ,eval_dataset=raw_datasets["eval"] if training_args.do_eval else None ,compute_metrics=lowercase_ ,tokenizer=lowercase_ ,)
# Training
if training_args.do_train:
_UpperCamelCase : Union[str, Any] = None
if training_args.resume_from_checkpoint is not None:
_UpperCamelCase : Optional[int] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_UpperCamelCase : Tuple = last_checkpoint
_UpperCamelCase : List[str] = trainer.train(resume_from_checkpoint=lowercase_ )
trainer.save_model()
trainer.log_metrics("train" ,train_result.metrics )
trainer.save_metrics("train" ,train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_UpperCamelCase : List[str] = trainer.evaluate()
trainer.log_metrics("eval" ,lowercase_ )
trainer.save_metrics("eval" ,lowercase_ )
# Write model card and (optionally) push to hub
_UpperCamelCase : Dict = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "audio-classification",
"dataset": data_args.dataset_name,
"tags": ["audio-classification"],
}
if training_args.push_to_hub:
trainer.push_to_hub(**lowercase_ )
else:
trainer.create_model_card(**lowercase_ )
if __name__ == "__main__":
main()
| 705
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Any = LEDConfig
SCREAMING_SNAKE_CASE__ :str = {}
SCREAMING_SNAKE_CASE__ :List[str] = "gelu"
def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]:
_UpperCamelCase : Optional[Any] = parent
_UpperCamelCase : List[str] = batch_size
_UpperCamelCase : str = seq_length
_UpperCamelCase : str = is_training
_UpperCamelCase : Any = use_labels
_UpperCamelCase : Any = vocab_size
_UpperCamelCase : List[str] = hidden_size
_UpperCamelCase : Optional[Any] = num_hidden_layers
_UpperCamelCase : Dict = num_attention_heads
_UpperCamelCase : Optional[Any] = intermediate_size
_UpperCamelCase : int = hidden_dropout_prob
_UpperCamelCase : Dict = attention_probs_dropout_prob
_UpperCamelCase : str = max_position_embeddings
_UpperCamelCase : int = eos_token_id
_UpperCamelCase : Dict = pad_token_id
_UpperCamelCase : Optional[Any] = bos_token_id
_UpperCamelCase : str = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_UpperCamelCase : List[str] = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_UpperCamelCase : int = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __SCREAMING_SNAKE_CASE ( self : int ) -> str:
_UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 )
_UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase : List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a )
_UpperCamelCase : Union[str, Any] = tf.concat(
[tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , )
_UpperCamelCase : Union[str, Any] = global_attention_mask
return config, inputs_dict
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple:
_UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder()
_UpperCamelCase : Tuple = inputs_dict["input_ids"]
_UpperCamelCase : int = input_ids[:1, :]
_UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :]
_UpperCamelCase : List[Any] = 1
# first forward pass
_UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a )
_UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 )
_UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0]
_UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx]
_UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__a , __a , rtol=1e-3 )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict:
"""simple docstring"""
if attention_mask is None:
_UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
_UpperCamelCase : str = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
_UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :List[str] = (
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ :Tuple = True
SCREAMING_SNAKE_CASE__ :str = False
SCREAMING_SNAKE_CASE__ :Optional[Any] = False
SCREAMING_SNAKE_CASE__ :int = False
def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]:
_UpperCamelCase : int = TFLEDModelTester(self )
_UpperCamelCase : Any = ConfigTester(self , config_class=__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]:
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int:
_UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__a )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
_UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] )
_UpperCamelCase : Union[str, Any] = 2
_UpperCamelCase : str = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , )
_UpperCamelCase : Dict = True
_UpperCamelCase : str = self.model_tester.seq_length
_UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(__a : Optional[int] ):
_UpperCamelCase : Optional[int] = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(__a : Optional[Any] ):
_UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions]
_UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_UpperCamelCase : Dict = True
_UpperCamelCase : Optional[Any] = False
_UpperCamelCase : int = False
_UpperCamelCase : Optional[int] = model_class(__a )
_UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) )
_UpperCamelCase : Any = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
_UpperCamelCase : Optional[Any] = model_class(__a )
_UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_UpperCamelCase : int = True
_UpperCamelCase : Tuple = model_class(__a )
_UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
_UpperCamelCase : Any = True
_UpperCamelCase : List[str] = True
_UpperCamelCase : Tuple = model_class(__a )
_UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
pass
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple:
# TODO: Head-masking not yet implement
pass
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
return tf.constant(lowercase_ ,dtype=tf.intaa )
lowerCamelCase__ = 1E-4
@slow
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]:
_UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led
# change to intended input here
_UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a )
_UpperCamelCase : Optional[int] = model(**__a )[0]
_UpperCamelCase : Optional[int] = (1, 1024, 768)
self.assertEqual(output.shape , __a )
# change to expected output here
_UpperCamelCase : Tuple = tf.convert_to_tensor(
[[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
_UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" )
# change to intended input here
_UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a )
_UpperCamelCase : Union[str, Any] = model(**__a )[0]
_UpperCamelCase : int = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , __a )
# change to expected output here
_UpperCamelCase : Optional[int] = tf.convert_to_tensor(
[[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
| 51
| 0
|
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=_UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :str = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} )
SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"labels": ClassLabel} )
SCREAMING_SNAKE_CASE__ :str = "text"
SCREAMING_SNAKE_CASE__ :str = "labels"
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple ) -> Optional[int]:
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , __a ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
_UpperCamelCase : Tuple = copy.deepcopy(self )
_UpperCamelCase : Optional[Any] = self.label_schema.copy()
_UpperCamelCase : Optional[Any] = features[self.label_column]
_UpperCamelCase : Union[str, Any] = label_schema
return task_template
@property
def __SCREAMING_SNAKE_CASE ( self : int ) -> Dict[str, str]:
return {
self.text_column: "text",
self.label_column: "labels",
}
| 706
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer
SCREAMING_SNAKE_CASE__ :Dict = None
SCREAMING_SNAKE_CASE__ :List[Any] = False
SCREAMING_SNAKE_CASE__ :Union[str, Any] = True
SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english
def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
super().setUp()
_UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"]
_UpperCamelCase : List[str] = {}
_UpperCamelCase : Tuple = {}
for i, value in enumerate(__a ):
_UpperCamelCase : List[str] = i
_UpperCamelCase : Optional[Any] = i
_UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] )
_UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer:
json.dump(__a , __a , ensure_ascii=__a )
with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer:
json.dump(__a , __a , ensure_ascii=__a )
def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]:
_UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
_UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" )
self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
_UpperCamelCase : Dict = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
_UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple:
_UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
_UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]:
_UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]:
_UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
_UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]:
_UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]:
_UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
_UpperCamelCase : Any = {}
for i, token in enumerate(__a ):
_UpperCamelCase : str = i
_UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) , [] )
self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] )
self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
self.assertTrue(_is_whitespace(" " ) )
self.assertTrue(_is_whitespace("\t" ) )
self.assertTrue(_is_whitespace("\r" ) )
self.assertTrue(_is_whitespace("\n" ) )
self.assertTrue(_is_whitespace("\u00A0" ) )
self.assertFalse(_is_whitespace("A" ) )
self.assertFalse(_is_whitespace("-" ) )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict:
self.assertTrue(_is_control("\u0005" ) )
self.assertFalse(_is_control("A" ) )
self.assertFalse(_is_control(" " ) )
self.assertFalse(_is_control("\t" ) )
self.assertFalse(_is_control("\r" ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]:
self.assertTrue(_is_punctuation("-" ) )
self.assertTrue(_is_punctuation("$" ) )
self.assertTrue(_is_punctuation("`" ) )
self.assertTrue(_is_punctuation("." ) )
self.assertFalse(_is_punctuation("A" ) )
self.assertFalse(_is_punctuation(" " ) )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
_UpperCamelCase : Optional[Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
if self.test_rust_tokenizer:
_UpperCamelCase : Tuple = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
_UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus(
__a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , )
_UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False
_UpperCamelCase : Dict = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] )
def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
_UpperCamelCase : Optional[Any] = ["的", "人", "有"]
_UpperCamelCase : int = "".join(__a )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_UpperCamelCase : int = True
_UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a )
_UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a )
_UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a )
_UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(__a , __a )
self.assertListEqual(__a , __a )
_UpperCamelCase : Any = False
_UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a )
_UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a )
_UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a )
_UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a )
_UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a )
# it is expected that only the first Chinese character is not preceded by "##".
_UpperCamelCase : Any = [
F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a )
]
self.assertListEqual(__a , __a )
self.assertListEqual(__a , __a )
@slow
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any:
_UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
_UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a )
_UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a )
_UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a )
_UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
_UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_UpperCamelCase : int = "你好,你是谁"
_UpperCamelCase : Any = tokenizer.tokenize(__a )
_UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a )
_UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a )
_UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a )
_UpperCamelCase : Optional[int] = tokenizer.prepare_for_model(
__a , __a , __a , add_special_tokens=__a )
_UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a )
self.assertEqual(__a , __a )
| 51
| 0
|
"""simple docstring"""
from collections import defaultdict
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : str , __a : List[str] , __a : Tuple ) -> Optional[Any]:
_UpperCamelCase : Optional[Any] = total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
# initially all values are set to -1
_UpperCamelCase : Tuple = [
[-1 for i in range(total + 1 )] for j in range(2 ** len(__a ) )
]
_UpperCamelCase : List[Any] = defaultdict(__a ) # stores the list of persons for each task
# final_mask is used to check if all persons are included by setting all bits
# to 1
_UpperCamelCase : List[Any] = (1 << len(__a )) - 1
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[int] , __a : Any ) -> Optional[int]:
# if mask == self.finalmask all persons are distributed tasks, return 1
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
_UpperCamelCase : Optional[Any] = self.count_ways_until(__a , task_no + 1 )
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 )
# save the value.
_UpperCamelCase : Union[str, Any] = total_ways_util
return self.dp[mask][task_no]
def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple ) -> List[str]:
# Store the list of persons for each task
for i in range(len(__a ) ):
for j in task_performed[i]:
self.task[j].append(__a )
# call the function to fill the DP table, final answer is stored in dp[0][1]
return self.count_ways_until(0 , 1 )
if __name__ == "__main__":
lowerCamelCase__ = 5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
lowerCamelCase__ = [[1, 3, 4], [1, 2, 5], [3, 4]]
print(
AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
| 707
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Tuple = "yolos"
def __init__( self : Dict , __a : Optional[Any]=768 , __a : List[Any]=12 , __a : Any=12 , __a : List[Any]=3072 , __a : Optional[int]="gelu" , __a : Dict=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.02 , __a : Optional[int]=1e-1_2 , __a : List[Any]=[512, 864] , __a : List[str]=16 , __a : str=3 , __a : Optional[Any]=True , __a : Optional[Any]=100 , __a : List[str]=True , __a : Any=False , __a : List[str]=1 , __a : str=5 , __a : Optional[Any]=2 , __a : Tuple=5 , __a : Any=2 , __a : Union[str, Any]=0.1 , **__a : List[str] , ) -> List[str]:
super().__init__(**__a )
_UpperCamelCase : Dict = hidden_size
_UpperCamelCase : Any = num_hidden_layers
_UpperCamelCase : str = num_attention_heads
_UpperCamelCase : Dict = intermediate_size
_UpperCamelCase : List[str] = hidden_act
_UpperCamelCase : List[str] = hidden_dropout_prob
_UpperCamelCase : str = attention_probs_dropout_prob
_UpperCamelCase : Tuple = initializer_range
_UpperCamelCase : List[str] = layer_norm_eps
_UpperCamelCase : Tuple = image_size
_UpperCamelCase : Tuple = patch_size
_UpperCamelCase : Dict = num_channels
_UpperCamelCase : Any = qkv_bias
_UpperCamelCase : str = num_detection_tokens
_UpperCamelCase : str = use_mid_position_embeddings
_UpperCamelCase : List[str] = auxiliary_loss
# Hungarian matcher
_UpperCamelCase : List[Any] = class_cost
_UpperCamelCase : int = bbox_cost
_UpperCamelCase : Optional[int] = giou_cost
# Loss coefficients
_UpperCamelCase : List[Any] = bbox_loss_coefficient
_UpperCamelCase : str = giou_loss_coefficient
_UpperCamelCase : Dict = eos_coefficient
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :List[str] = version.parse("1.11" )
@property
def __SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float:
return 1e-4
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int:
return 12
| 51
| 0
|
"""simple docstring"""
from __future__ import annotations
lowerCamelCase__ = "Muhammad Umer Farooq"
lowerCamelCase__ = "MIT"
lowerCamelCase__ = "1.0.0"
lowerCamelCase__ = "Muhammad Umer Farooq"
lowerCamelCase__ = "contact@muhammadumerfarooq.me"
lowerCamelCase__ = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
def __init__( self : List[Any] , __a : str ) -> None:
super().__init__()
_UpperCamelCase : list[str] = []
_UpperCamelCase : int = domain
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : str , __a : list[tuple[str, str | None]] ) -> None:
# Only parse the 'anchor' tag.
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
_UpperCamelCase : Union[str, Any] = parse.urljoin(self.domain , __a )
self.urls.append(__a )
def lowercase__ ( lowercase_ ) -> str:
"""simple docstring"""
return ".".join(get_sub_domain_name(lowercase_ ).split("." )[-2:] )
def lowercase__ ( lowercase_ ) -> str:
"""simple docstring"""
return parse.urlparse(lowercase_ ).netloc
def lowercase__ ( lowercase_ = "https://github.com" ) -> list[str]:
"""simple docstring"""
_UpperCamelCase : int = get_domain_name(lowercase_ )
# Initialize the parser
_UpperCamelCase : Any = Parser(lowercase_ )
try:
# Open URL
_UpperCamelCase : Optional[int] = requests.get(lowercase_ )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
_UpperCamelCase : Union[str, Any] = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
_UpperCamelCase : Optional[int] = requests.get(lowercase_ )
# Get the valid email.
_UpperCamelCase : Union[str, Any] = re.findall("[a-zA-Z0-9]+@" + domain ,read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(lowercase_ )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ = emails_from_url("https://github.com")
print(f"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 708
|
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
lowerCamelCase__ = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase]
lowerCamelCase__ = {ord(char) for char in VALID_CHARS}
lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"]
def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None:
"""simple docstring"""
_UpperCamelCase : str = ""
_UpperCamelCase : int
_UpperCamelCase : int
_UpperCamelCase : int
for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ):
_UpperCamelCase : Dict = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(lowercase_ )
return decoded
def lowercase__ ( lowercase_ ) -> list[str]:
"""simple docstring"""
_UpperCamelCase : list[str] = []
for key in product(lowercase_ ,repeat=3 ):
_UpperCamelCase : int = try_key(lowercase_ ,lowercase_ )
if encoded is not None:
possibles.append(lowercase_ )
return possibles
def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]:
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int:
"""simple docstring"""
_UpperCamelCase : list[int]
_UpperCamelCase : list[str]
_UpperCamelCase : str
_UpperCamelCase : str
_UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" )
_UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )]
_UpperCamelCase : List[str] = filter_valid_chars(lowercase_ )
for common_word in COMMON_WORDS:
_UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ )
if len(lowercase_ ) == 1:
break
_UpperCamelCase : Union[str, Any] = possibles[0]
return sum(ord(lowercase_ ) for char in decoded_text )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 51
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.