code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = "roformer" def __init__( self : Tuple , __a : List[str]=5_0000 , __a : Union[str, Any]=None , __a : Tuple=768 , __a : Union[str, Any]=12 , __a : Optional[Any]=12 , __a : List[Any]=3072 , __a : Dict="gelu" , __a : Optional[Any]=0.1 , __a : Dict=0.1 , __a : int=1536 , __a : Union[str, Any]=2 , __a : Optional[int]=0.02 , __a : int=1e-1_2 , __a : List[str]=0 , __a : Any=False , __a : str=True , **__a : Union[str, Any] , ) -> Optional[int]: super().__init__(pad_token_id=__a , **__a ) _UpperCamelCase : Any = vocab_size _UpperCamelCase : Optional[Any] = hidden_size if embedding_size is None else embedding_size _UpperCamelCase : str = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : Optional[Any] = hidden_act _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Any = max_position_embeddings _UpperCamelCase : Optional[Any] = type_vocab_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : int = layer_norm_eps _UpperCamelCase : Optional[int] = rotary_value _UpperCamelCase : int = use_cache class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCamelCase : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCamelCase : int = {0: "batch", 1: "sequence"} _UpperCamelCase : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
709
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ) -> None: """simple docstring""" _UpperCamelCase : List[Any] = len(lowercase_ ) print("The following activities are selected:" ) # The first activity is always selected _UpperCamelCase : List[Any] = 0 print(lowercase_ ,end="," ) # Consider rest of the activities for j in range(lowercase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase_ ,end="," ) _UpperCamelCase : Optional[Any] = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = [1, 3, 0, 5, 8, 5] lowerCamelCase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
51
0
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
710
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict: super().__init__() _UpperCamelCase : List[str] = layers_per_block _UpperCamelCase : Dict = torch.nn.Convad( __a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : int = None _UpperCamelCase : Any = nn.ModuleList([] ) # down _UpperCamelCase : List[str] = block_out_channels[0] for i, down_block_type in enumerate(__a ): _UpperCamelCase : Tuple = output_channel _UpperCamelCase : int = block_out_channels[i] _UpperCamelCase : int = i == len(__a ) - 1 _UpperCamelCase : Dict = get_down_block( __a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , ) self.down_blocks.append(__a ) # mid _UpperCamelCase : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # out _UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : Any = nn.SiLU() _UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels _UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 ) _UpperCamelCase : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]: _UpperCamelCase : int = x _UpperCamelCase : Optional[int] = self.conv_in(__a ) if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Tuple ): def custom_forward(*__a : Any ): return module(*__a ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , use_reentrant=__a ) # middle _UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , use_reentrant=__a ) else: for down_block in self.down_blocks: _UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a ) # middle _UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a ) else: # down for down_block in self.down_blocks: _UpperCamelCase : int = down_block(__a ) # middle _UpperCamelCase : int = self.mid_block(__a ) # post-process _UpperCamelCase : Any = self.conv_norm_out(__a ) _UpperCamelCase : Any = self.conv_act(__a ) _UpperCamelCase : Optional[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str: super().__init__() _UpperCamelCase : List[Any] = layers_per_block _UpperCamelCase : Tuple = nn.Convad( __a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = nn.ModuleList([] ) _UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None # mid _UpperCamelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # up _UpperCamelCase : List[str] = list(reversed(__a ) ) _UpperCamelCase : int = reversed_block_out_channels[0] for i, up_block_type in enumerate(__a ): _UpperCamelCase : int = output_channel _UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i] _UpperCamelCase : Optional[Any] = i == len(__a ) - 1 _UpperCamelCase : Union[str, Any] = get_up_block( __a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , ) self.up_blocks.append(__a ) _UpperCamelCase : Optional[Any] = output_channel # out if norm_type == "spatial": _UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a ) else: _UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : str = nn.SiLU() _UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 ) _UpperCamelCase : Dict = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple: _UpperCamelCase : List[str] = z _UpperCamelCase : Dict = self.conv_in(__a ) _UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Any ): def custom_forward(*__a : Tuple ): return module(*__a ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle _UpperCamelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a ) _UpperCamelCase : Optional[int] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , __a , use_reentrant=__a ) else: # middle _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a ) _UpperCamelCase : Union[str, Any] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a ) else: # middle _UpperCamelCase : str = self.mid_block(__a , __a ) _UpperCamelCase : int = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : Any = up_block(__a , __a ) # post-process if latent_embeds is None: _UpperCamelCase : List[str] = self.conv_norm_out(__a ) else: _UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a ) _UpperCamelCase : Tuple = self.conv_act(__a ) _UpperCamelCase : List[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]: super().__init__() _UpperCamelCase : Tuple = n_e _UpperCamelCase : Tuple = vq_embed_dim _UpperCamelCase : Union[str, Any] = beta _UpperCamelCase : str = legacy _UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCamelCase : Any = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) _UpperCamelCase : Dict = self.used.shape[0] _UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase : Optional[int] = self.re_embed _UpperCamelCase : Any = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: _UpperCamelCase : Union[str, Any] = n_e _UpperCamelCase : List[str] = sane_index_shape def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]: _UpperCamelCase : str = inds.shape assert len(__a ) > 1 _UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[Any] = self.used.to(__a ) _UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase : Optional[Any] = match.argmax(-1 ) _UpperCamelCase : Any = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCamelCase : Dict = self.unknown_index return new.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]: _UpperCamelCase : int = inds.shape assert len(__a ) > 1 _UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[int] = self.used.to(__a ) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase : int = 0 # simply set to zero _UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a ) return back.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]: # reshape z -> (batch, height, width, channel) and flatten _UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCamelCase : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 ) _UpperCamelCase : int = self.embedding(__a ).view(z.shape ) _UpperCamelCase : str = None _UpperCamelCase : Any = None # compute loss for embedding if not self.legacy: _UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCamelCase : List[str] = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCamelCase : Dict = self.remap_to_used(__a ) _UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: _UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCamelCase : str = self.unmap_to_all(__a ) _UpperCamelCase : int = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCamelCase : Optional[int] = self.embedding(__a ) if shape is not None: _UpperCamelCase : Tuple = z_q.view(__a ) # reshape back to match original input shape _UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int: _UpperCamelCase : Dict = parameters _UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 ) _UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 ) _UpperCamelCase : Union[str, Any] = deterministic _UpperCamelCase : Dict = torch.exp(0.5 * self.logvar ) _UpperCamelCase : Any = torch.exp(self.logvar ) if self.deterministic: _UpperCamelCase : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype _UpperCamelCase : List[Any] = randn_tensor( self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCamelCase : List[Any] = self.mean + self.std * sample return x def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int: if self.deterministic: return torch.Tensor([0.0] ) _UpperCamelCase : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: return self.mean
51
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"summary": Value("string" )} ) SCREAMING_SNAKE_CASE__ :str = "text" SCREAMING_SNAKE_CASE__ :str = "summary" @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
51
0
"""simple docstring""" from __future__ import annotations from typing import TypedDict class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str SCREAMING_SNAKE_CASE__ :int def lowercase__ ( lowercase_ ) -> list[str]: """simple docstring""" if not isinstance(lowercase_ ,lowercase_ ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(lowercase_ ) )] def lowercase__ ( lowercase_ ) -> BWTTransformDict: """simple docstring""" if not isinstance(lowercase_ ,lowercase_ ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) _UpperCamelCase : str = all_rotations(lowercase_ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _UpperCamelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(lowercase_ ), } return response def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" if not isinstance(lowercase_ ,lowercase_ ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: _UpperCamelCase : str = int(lowercase_ ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(lowercase_ ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) _UpperCamelCase : Dict = [""] * len(lowercase_ ) for _ in range(len(lowercase_ ) ): for i in range(len(lowercase_ ) ): _UpperCamelCase : str = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ = "Provide a string that I will generate its BWT transform: " lowerCamelCase__ = input(entry_msg).strip() lowerCamelCase__ = bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result["bwt_string"]}'""" ) lowerCamelCase__ = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """ f"""we get original string '{original_string}'""" )
712
"""simple docstring""" def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : Union[str, Any] = set() # edges = list of graph's edges _UpperCamelCase : Union[str, Any] = get_edges(lowercase_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCamelCase, _UpperCamelCase : str = edges.pop() chosen_vertices.add(lowercase_ ) chosen_vertices.add(lowercase_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase_ ) return chosen_vertices def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
51
0
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any , __a : Dict , __a : Optional[int]=3 , __a : Optional[Any]=32 , __a : int=3 , __a : Tuple=10 , __a : List[Any]=[10, 20, 30, 40] , __a : Tuple=[1, 1, 2, 1] , __a : Optional[int]=True , __a : List[str]=True , __a : List[Any]="relu" , __a : Union[str, Any]=3 , __a : List[Any]=None , ) -> Dict: _UpperCamelCase : int = parent _UpperCamelCase : int = batch_size _UpperCamelCase : Union[str, Any] = image_size _UpperCamelCase : Union[str, Any] = num_channels _UpperCamelCase : List[Any] = embeddings_size _UpperCamelCase : List[Any] = hidden_sizes _UpperCamelCase : Optional[Any] = depths _UpperCamelCase : Dict = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : str = num_labels _UpperCamelCase : List[Any] = scope _UpperCamelCase : Tuple = len(__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Tuple = None if self.use_labels: _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase : List[Any] = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : List[Any] , __a : List[str] ) -> List[str]: _UpperCamelCase : Union[str, Any] = RegNetModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : str = model(__a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : Optional[int] , __a : Optional[Any] ) -> str: _UpperCamelCase : Tuple = self.num_labels _UpperCamelCase : Optional[int] = RegNetForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[str] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : Any = self.prepare_config_and_inputs() _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ :Tuple = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :Tuple = False SCREAMING_SNAKE_CASE__ :Tuple = False SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :List[Any] = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: _UpperCamelCase : List[Any] = RegNetModelTester(self ) _UpperCamelCase : List[str] = ConfigTester(self , config_class=__a , has_text_modality=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: pass def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__a ) _UpperCamelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Tuple = [*signature.parameters.keys()] _UpperCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(config=__a ) for name, module in model.named_modules(): if isinstance(__a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: def check_hidden_states_output(__a : Union[str, Any] , __a : Any , __a : int ): _UpperCamelCase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : int = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : List[str] = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : int = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Tuple = layer_type _UpperCamelCase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : Optional[int] = True check_hidden_states_output(__a , __a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[Any] = RegNetModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__a ) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : Any = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Dict = model(**__a ) # verify the logits _UpperCamelCase : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : Union[str, Any] = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
713
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["OwlViTFeatureExtractor"] lowerCamelCase__ = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
0
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' _UpperCamelCase : Optional[Any] = nn.Parameter(lowercase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' _UpperCamelCase : Optional[Any] = nn.Parameter(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = np.asarray(weights[0] ) _UpperCamelCase : Any = np.asarray(weights[1] ) _UpperCamelCase : str = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(lowercase_ ).transpose(1 ,2 ).contiguous().view(-1 ,lowercase_ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(lowercase_ ).transpose(1 ,2 ).contiguous().view(-1 ,lowercase_ ) ,) set_param( torch_layer.output.dense ,torch.tensor(lowercase_ ).view(-1 ,lowercase_ ).contiguous().transpose(0 ,1 ) ,) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : int = np.asarray(weights[0] ) _UpperCamelCase : Optional[int] = np.asarray(weights[1] ) _UpperCamelCase : str = np.asarray(weights[2] ) _UpperCamelCase : List[str] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(lowercase_ ).transpose(1 ,2 ).contiguous().view(-1 ,lowercase_ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(lowercase_ ).transpose(1 ,2 ).contiguous().view(-1 ,lowercase_ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(lowercase_ ).transpose(1 ,2 ).contiguous().view(-1 ,lowercase_ ) ,) set_param( torch_layer.output.dense ,torch.tensor(lowercase_ ).view(-1 ,lowercase_ ).contiguous().transpose(0 ,1 ) ,) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Union[str, Any] = weights[0][0][0] _UpperCamelCase : Any = np.asarray(layer_norm_a[0] ) _UpperCamelCase : int = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(lowercase_ ) ,torch.tensor(lowercase_ ) ,) # lsh weights + output _UpperCamelCase : List[Any] = weights[0][1] if len(lowercase_ ) < 4: set_layer_weights_in_torch_lsh(lowercase_ ,torch_block.attention ,lowercase_ ) else: set_layer_weights_in_torch_local(lowercase_ ,torch_block.attention ,lowercase_ ) # intermediate weighs _UpperCamelCase : Dict = weights[2][0][1][2] # Chunked Feed Forward if len(lowercase_ ) == 4: _UpperCamelCase : Tuple = intermediate_weights[2] # layernorm 2 _UpperCamelCase : int = np.asarray(intermediate_weights[0][0] ) _UpperCamelCase : Optional[int] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(lowercase_ ) ,torch.tensor(lowercase_ ) ,) # intermediate dense _UpperCamelCase : List[Any] = np.asarray(intermediate_weights[1][0] ) _UpperCamelCase : Tuple = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(lowercase_ ).transpose(0 ,1 ).contiguous() ,torch.tensor(lowercase_ ) ,) # intermediate out _UpperCamelCase : Union[str, Any] = np.asarray(intermediate_weights[4][0] ) _UpperCamelCase : List[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(lowercase_ ).transpose(0 ,1 ).contiguous() ,torch.tensor(lowercase_ ) ,) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = torch_model.reformer # word embeds _UpperCamelCase : List[str] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(lowercase_ ) ,) if isinstance(weights[3] ,lowercase_ ): _UpperCamelCase : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _UpperCamelCase : List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' _UpperCamelCase : Dict = nn.Parameter(torch.tensor(lowercase_ ) ) _UpperCamelCase : Optional[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowercase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _UpperCamelCase : List[Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowercase_ ,lowercase_ ,lowercase_ ) # output layer norm _UpperCamelCase : int = np.asarray(weights[7][0] ) _UpperCamelCase : List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(lowercase_ ) ,torch.tensor(lowercase_ ) ,) # output embeddings _UpperCamelCase : str = np.asarray(weights[9][0] ) _UpperCamelCase : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(lowercase_ ).transpose(0 ,1 ).contiguous() ,torch.tensor(lowercase_ ) ,) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : Dict = ReformerConfig.from_json_file(lowercase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _UpperCamelCase : Dict = ReformerModelWithLMHead(lowercase_ ) with open(lowercase_ ,"rb" ) as f: _UpperCamelCase : Optional[Any] = pickle.load(lowercase_ )["weights"] set_model_weights_in_torch(lowercase_ ,lowercase_ ,config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() ,lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase__ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
714
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int: """simple docstring""" _UpperCamelCase : defaultdict = defaultdict(lowercase_ ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _UpperCamelCase : Any = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: _UpperCamelCase : str = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
51
0
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> None: _UpperCamelCase : List[Any] = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _UpperCamelCase : List[str] = Vector() def __SCREAMING_SNAKE_CASE ( self : int ) -> None: _UpperCamelCase : str = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(__a ) , "(0,0,0,0,0,1)" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: _UpperCamelCase : List[str] = Vector([1, 2, 3, 4] ) self.assertEqual(len(__a ) , 4 ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> None: _UpperCamelCase : List[Any] = Vector([1, 2] ) _UpperCamelCase : Dict = Vector([1, 2, 3, 4, 5] ) _UpperCamelCase : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _UpperCamelCase : Tuple = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> None: _UpperCamelCase : int = Vector([1, 2, 3] ) _UpperCamelCase : Any = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: _UpperCamelCase : Dict = Vector([1, 2, 3] ) _UpperCamelCase : List[Any] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: _UpperCamelCase : Dict = Vector([1, 2, 3] ) _UpperCamelCase : Union[str, Any] = Vector([2, -1, 4] ) # for test of dot product _UpperCamelCase : Any = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , "(3.0,6.0,9.0)" ) self.assertEqual((a * b) , 0 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> None: self.assertEqual(str(zero_vector(10 ) ).count("0" ) , 10 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , "(0,1,0)" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> None: _UpperCamelCase : int = Vector([1, 2, 3] ) _UpperCamelCase : Any = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , __a , __a ) ) , "(3,4,7)" ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> None: _UpperCamelCase : str = Vector([1, 0, 0, 0, 0, 0] ) _UpperCamelCase : Any = x.copy() self.assertEqual(str(__a ) , str(__a ) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> None: _UpperCamelCase : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(__a ) , "(0,1,0)" ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: _UpperCamelCase : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n" , str(__a ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> None: _UpperCamelCase : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _UpperCamelCase : Union[str, Any] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: _UpperCamelCase : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _UpperCamelCase : Tuple = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> None: _UpperCamelCase : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> None: _UpperCamelCase : int = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _UpperCamelCase : Dict = Vector([1, 2, 3] ) self.assertEqual("(14,32,50)" , str(a * x ) ) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n" , str(a * 2 ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: _UpperCamelCase : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n" , str(__a ) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> None: _UpperCamelCase : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> None: _UpperCamelCase : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _UpperCamelCase : Tuple = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n" , str(a + b ) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> None: _UpperCamelCase : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _UpperCamelCase : str = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n" , str(a - b ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: self.assertEqual( "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
715
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("KEY") lowerCamelCase__ = TypeVar("VAL") @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :KEY SCREAMING_SNAKE_CASE__ :VAL class __SCREAMING_SNAKE_CASE ( _Item ): '''simple docstring''' def __init__( self : List[str] ) -> None: super().__init__(__a , __a ) def __bool__( self : Dict ) -> bool: return False lowerCamelCase__ = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None: _UpperCamelCase : str = initial_block_size _UpperCamelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCamelCase : List[str] = capacity_factor _UpperCamelCase : Dict = 0 def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int: return hash(__a ) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int: return (ind + 1) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool: _UpperCamelCase : List[Any] = self._buckets[ind] if not stored: _UpperCamelCase : Tuple = _Item(__a , __a ) self._len += 1 return True elif stored.key == key: _UpperCamelCase : Union[str, Any] = _Item(__a , __a ) return True else: return False def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: _UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False _UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None: _UpperCamelCase : Any = self._buckets _UpperCamelCase : List[Any] = [None] * new_size _UpperCamelCase : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: self._resize(len(self._buckets ) * 2 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: self._resize(len(self._buckets ) // 2 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]: _UpperCamelCase : str = self._get_bucket_index(__a ) for _ in range(len(self._buckets ) ): yield ind _UpperCamelCase : Tuple = self._get_next_ind(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None: for ind in self._iterate_buckets(__a ): if self._try_set(__a , __a , __a ): break def __setitem__( self : int , __a : KEY , __a : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(__a , __a ) def __delitem__( self : str , __a : KEY ) -> None: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: raise KeyError(__a ) if item is _deleted: continue if item.key == key: _UpperCamelCase : List[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , __a : KEY ) -> VAL: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__a ) def __len__( self : List[Any] ) -> int: return self._len def __iter__( self : List[str] ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ) -> str: _UpperCamelCase : Optional[int] = " ,".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
51
0
"""simple docstring""" import qiskit def lowercase__ ( lowercase_ ,lowercase_ ) -> qiskit.result.counts.Counts: """simple docstring""" _UpperCamelCase : Optional[Any] = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register _UpperCamelCase : str = qiskit.QuantumCircuit(lowercase_ ,lowercase_ ) # Map the quantum measurement to the classical bits circuit.measure([0] ,[0] ) # Execute the circuit on the simulator _UpperCamelCase : str = qiskit.execute(lowercase_ ,lowercase_ ,shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": print(f"""Total count for various states are: {single_qubit_measure(1, 1)}""")
716
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , __a : list[int] ) -> None: _UpperCamelCase : Tuple = len(__a ) _UpperCamelCase : Dict = [0] * len_array if len_array > 0: _UpperCamelCase : Optional[Any] = array[0] for i in range(1 , __a ): _UpperCamelCase : Tuple = self.prefix_sum[i - 1] + array[i] def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> bool: _UpperCamelCase : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__a ) return False if __name__ == "__main__": import doctest doctest.testmod()
51
0
"""simple docstring""" from manim import * class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: _UpperCamelCase : int = Rectangle(height=0.5 , width=0.5 ) _UpperCamelCase : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _UpperCamelCase : Optional[int] = [mem.copy() for i in range(6 )] _UpperCamelCase : Optional[int] = [mem.copy() for i in range(6 )] _UpperCamelCase : Optional[Any] = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : Union[str, Any] = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : int = VGroup(__a , __a ).arrange(__a , buff=0 ) _UpperCamelCase : Any = Text("CPU" , font_size=24 ) _UpperCamelCase : List[str] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) _UpperCamelCase : Optional[int] = [mem.copy() for i in range(4 )] _UpperCamelCase : Optional[int] = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : Dict = Text("GPU" , font_size=24 ) _UpperCamelCase : Optional[Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) gpu.move_to([-1, -1, 0] ) self.add(__a ) _UpperCamelCase : Tuple = [mem.copy() for i in range(6 )] _UpperCamelCase : Dict = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : str = Text("Model" , font_size=24 ) _UpperCamelCase : Any = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.add(__a ) _UpperCamelCase : Any = [] for i, rect in enumerate(__a ): rect.set_stroke(__a ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _UpperCamelCase : Optional[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__a , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__a , buff=0.0 ) self.add(__a ) cpu_targs.append(__a ) _UpperCamelCase : List[Any] = [mem.copy() for i in range(6 )] _UpperCamelCase : str = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : Any = Text("Loaded Checkpoint" , font_size=24 ) _UpperCamelCase : List[str] = Group(__a , __a ).arrange(__a , aligned_edge=__a , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _UpperCamelCase : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCamelCase : Optional[Any] = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__a , __a ) _UpperCamelCase : Dict = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _UpperCamelCase : Optional[int] = MarkupText( F'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__a ) , Write(__a ) ) self.play(Write(__a , run_time=1 ) , Create(__a , run_time=1 ) ) _UpperCamelCase : Optional[int] = [] _UpperCamelCase : List[str] = [] for i, rect in enumerate(__a ): _UpperCamelCase : int = fill.copy().set_fill(__a , opacity=0.7 ) target.move_to(__a ) first_animations.append(GrowFromCenter(__a , run_time=1 ) ) _UpperCamelCase : Tuple = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__a , run_time=1.5 ) ) self.play(*__a ) self.play(*__a ) self.wait()
717
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[int] = None if token is not None: _UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) _UpperCamelCase : Any = "636036" _UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' _UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json() return result["workflow_runs"] def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ ) _UpperCamelCase : Tuple = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCamelCase : Union[str, Any] = workflow_run["id"] break return workflow_run_id def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: _UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCamelCase : Dict = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = {} for artifact_name in artifact_names: _UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' ) if os.path.isfile(lowercase_ ): _UpperCamelCase : int = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: _UpperCamelCase : int = f.read().decode("UTF-8" ) return results
51
0
"""simple docstring""" def lowercase__ ( ) -> list[list[int]]: """simple docstring""" return [list(range(1_000 - i ,-1_000 - i ,-1 ) ) for i in range(1_000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowercase__ ( lowercase_ ) -> None: """simple docstring""" assert all(row == sorted(lowercase_ ,reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ ,reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : str = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _UpperCamelCase : Dict = (left + right) // 2 _UpperCamelCase : str = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _UpperCamelCase : Optional[Any] = mid + 1 else: _UpperCamelCase : List[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Any = 0 _UpperCamelCase : List[str] = len(grid[0] ) for i in range(len(lowercase_ ) ): _UpperCamelCase : List[str] = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def lowercase__ ( lowercase_ ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def lowercase__ ( ) -> None: """simple docstring""" from timeit import timeit print("Running benchmarks" ) _UpperCamelCase : List[str] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _UpperCamelCase : List[str] = timeit(F'''{func}(grid=grid)''' ,setup=lowercase_ ,number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
718
"""simple docstring""" import math class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int: _UpperCamelCase : List[Any] = 0.0 _UpperCamelCase : Union[str, Any] = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]: for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase : List[Any] = SelfOrganizingMap() _UpperCamelCase : int = 3 _UpperCamelCase : List[Any] = 0.5 for _ in range(lowercase_ ): for j in range(len(lowercase_ ) ): # training sample _UpperCamelCase : int = training_samples[j] # Compute the winning vector _UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # Update the winning vector _UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) # classify test sample _UpperCamelCase : Optional[int] = [0, 0, 0, 1] _UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
51
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ ) -> float: """simple docstring""" _UpperCamelCase : str = 0.00 _UpperCamelCase : int = 0 for resistor in resistors: if resistor <= 0: _UpperCamelCase : str = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(lowercase_ ) first_sum += 1 / float(lowercase_ ) index += 1 return 1 / first_sum def lowercase__ ( lowercase_ ) -> float: """simple docstring""" _UpperCamelCase : str = 0.00 _UpperCamelCase : Union[str, Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _UpperCamelCase : int = F'''Resistor at index {index} has a negative value!''' raise ValueError(lowercase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
719
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase__ = "src/transformers" lowerCamelCase__ = "docs/source/en" lowerCamelCase__ = "." def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f: _UpperCamelCase : Union[str, Any] = f.readlines() # Find the start prompt. _UpperCamelCase : Dict = 0 while not lines[start_index].startswith(lowercase_ ): start_index += 1 start_index += 1 _UpperCamelCase : Optional[int] = start_index while not lines[end_index].startswith(lowercase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ ) return [m.group(0 ) for m in matches] def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ ) _UpperCamelCase : Union[str, Any] = (width - text_length) // 2 _UpperCamelCase : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : str = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : str = collections.defaultdict(lowercase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowercase_ ): _UpperCamelCase : List[str] = None if attr_name.endswith("Tokenizer" ): _UpperCamelCase : Tuple = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _UpperCamelCase : Optional[Any] = fast_tokenizers _UpperCamelCase : List[str] = attr_name[:-13] elif _re_tf_models.match(lowercase_ ) is not None: _UpperCamelCase : List[Any] = tf_models _UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0] elif _re_flax_models.match(lowercase_ ) is not None: _UpperCamelCase : Dict = flax_models _UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0] elif _re_pt_models.match(lowercase_ ) is not None: _UpperCamelCase : Optional[int] = pt_models _UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0] if lookup_dict is not None: while len(lowercase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Dict = True break # Try again after removing the last word in the name _UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] ) # Let's build that table! _UpperCamelCase : Any = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns] _UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"} for name in model_names: _UpperCamelCase : Optional[int] = model_name_to_prefix[name] _UpperCamelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" return table def lowercase__ ( lowercase_=False ) -> List[Any]: """simple docstring""" _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file( filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,) _UpperCamelCase : Any = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
51
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = (UnCLIPScheduler,) def __SCREAMING_SNAKE_CASE ( self : str , **__a : Tuple ) -> Tuple: _UpperCamelCase : Union[str, Any] = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**__a ) return config def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Any: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__a , prev_timestep=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = self.scheduler_classes[0] _UpperCamelCase : Union[str, Any] = self.get_scheduler_config(variance_type="fixed_small_log" ) _UpperCamelCase : int = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0e-1_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1e-5 def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: _UpperCamelCase : Optional[Any] = self.scheduler_classes[0] _UpperCamelCase : List[str] = self.get_scheduler_config(variance_type="learned_range" ) _UpperCamelCase : Dict = scheduler_class(**__a ) _UpperCamelCase : Any = 0.5 assert scheduler._get_variance(1 , predicted_variance=__a ) - -10.1_71_27_90 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=__a ) - -5.7_99_80_52 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=__a ) - -0.0_01_00_11 < 1e-5 def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: _UpperCamelCase : List[Any] = self.scheduler_classes[0] _UpperCamelCase : Union[str, Any] = self.get_scheduler_config() _UpperCamelCase : Optional[Any] = scheduler_class(**__a ) _UpperCamelCase : List[Any] = scheduler.timesteps _UpperCamelCase : str = self.dummy_model() _UpperCamelCase : List[Any] = self.dummy_sample_deter _UpperCamelCase : List[str] = torch.manual_seed(0 ) for i, t in enumerate(__a ): # 1. predict noise residual _UpperCamelCase : int = model(__a , __a ) # 2. predict previous mean of sample x_t-1 _UpperCamelCase : Union[str, Any] = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _UpperCamelCase : Dict = pred_prev_sample _UpperCamelCase : Optional[int] = torch.sum(torch.abs(__a ) ) _UpperCamelCase : Dict = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1e-3 def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: _UpperCamelCase : Optional[int] = self.scheduler_classes[0] _UpperCamelCase : Union[str, Any] = self.get_scheduler_config() _UpperCamelCase : Any = scheduler_class(**__a ) scheduler.set_timesteps(25 ) _UpperCamelCase : Tuple = scheduler.timesteps _UpperCamelCase : Optional[Any] = self.dummy_model() _UpperCamelCase : int = self.dummy_sample_deter _UpperCamelCase : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(__a ): # 1. predict noise residual _UpperCamelCase : List[str] = model(__a , __a ) if i + 1 == timesteps.shape[0]: _UpperCamelCase : List[Any] = None else: _UpperCamelCase : int = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _UpperCamelCase : List[str] = scheduler.step( __a , __a , __a , prev_timestep=__a , generator=__a ).prev_sample _UpperCamelCase : Union[str, Any] = pred_prev_sample _UpperCamelCase : List[Any] = torch.sum(torch.abs(__a ) ) _UpperCamelCase : Dict = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1e-3 def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: pass
720
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]: """simple docstring""" _UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] ) return (item, float(lowercase_ )) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]: """simple docstring""" _UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 ) _UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] _UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = list(lowercase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _UpperCamelCase : int = random.choice(lowercase_ ) return "".join(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]: """simple docstring""" _UpperCamelCase : Optional[Any] = [] # Generate more children proportionally to the fitness score. _UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1 _UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n for _ in range(lowercase_ ): _UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0] _UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ ) # Append new string to the population list. pop.append(mutate(lowercase_ ,lowercase_ ) ) pop.append(mutate(lowercase_ ,lowercase_ ) ) return pop def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowercase_ ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCamelCase : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowercase_ ) # Generate random starting population. _UpperCamelCase : Union[str, Any] = [] for _ in range(lowercase_ ): population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCamelCase, _UpperCamelCase : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population] # Check if there is a matching evolution. _UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCamelCase : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase_ ) # Normalize population score to be between 0 and 1. _UpperCamelCase : str = [ (item, score / len(lowercase_ )) for item, score in population_score ] # This is selection for i in range(lowercase_ ): population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase__ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase__ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
51
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = "convnextv2" def __init__( self : List[Any] , __a : Optional[int]=3 , __a : str=4 , __a : Tuple=4 , __a : Dict=None , __a : Union[str, Any]=None , __a : List[Any]="gelu" , __a : Tuple=0.02 , __a : List[str]=1e-1_2 , __a : Optional[int]=0.0 , __a : int=224 , __a : List[Any]=None , __a : Tuple=None , **__a : Tuple , ) -> Optional[int]: super().__init__(**__a ) _UpperCamelCase : int = num_channels _UpperCamelCase : int = patch_size _UpperCamelCase : int = num_stages _UpperCamelCase : Tuple = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes _UpperCamelCase : Any = [3, 3, 9, 3] if depths is None else depths _UpperCamelCase : Any = hidden_act _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : List[Any] = drop_path_rate _UpperCamelCase : Tuple = image_size _UpperCamelCase : Optional[int] = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] _UpperCamelCase : str = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
721
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ["model.decoder.embed_positions.weights"] def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if "emb" in name: _UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" ) if "transformer" in name: _UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" ) if "cross_attention" in name: _UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" ) if "linear1" in name: _UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" ) if "linear2" in name: _UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" ) if "norm1" in name: _UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" ) if "norm_cross" in name: _UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" ) if "norm2" in name: _UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" ) if "out_norm" in name: _UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" ) if "linears" in name: _UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]: """simple docstring""" _UpperCamelCase : str = list(state_dict.keys() ) _UpperCamelCase : Optional[Any] = {} for key in keys: _UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ ) _UpperCamelCase : List[Any] = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCamelCase : Tuple = val[:hidden_size, :] _UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _UpperCamelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCamelCase : Optional[Any] = val else: _UpperCamelCase : List[str] = val return state_dict, enc_dec_proj_state_dict def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values _UpperCamelCase : List[Any] = 1_024 _UpperCamelCase : List[str] = 24 _UpperCamelCase : Any = 16 elif checkpoint == "medium": _UpperCamelCase : Tuple = 1_536 _UpperCamelCase : Dict = 48 _UpperCamelCase : Tuple = 24 elif checkpoint == "large": _UpperCamelCase : int = 2_048 _UpperCamelCase : Optional[int] = 48 _UpperCamelCase : Dict = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _UpperCamelCase : str = MusicgenDecoderConfig( hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,) return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]: """simple docstring""" _UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ ) _UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ ) _UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict() _UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict( lowercase_ ,hidden_size=decoder_config.hidden_size ) _UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" ) _UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowercase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass _UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) _UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): _UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" ) _UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) # set the appropriate bos/pad token ids _UpperCamelCase : str = 2_048 _UpperCamelCase : str = 2_048 # set other default generation config params _UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate ) _UpperCamelCase : List[str] = True _UpperCamelCase : int = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowerCamelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
51
0
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase__ = {"UserAgent": UserAgent().random} def lowercase__ ( lowercase_ ) -> dict: """simple docstring""" _UpperCamelCase : int = script.contents[0] _UpperCamelCase : List[str] = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __a : int ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = F'''https://www.instagram.com/{username}/''' _UpperCamelCase : Dict = self.get_json() def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> dict: _UpperCamelCase : Optional[Any] = requests.get(self.url , headers=__a ).text _UpperCamelCase : str = BeautifulSoup(__a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : str ) -> str: return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return self.user_data["username"] @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: return self.user_data["full_name"] @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: return self.user_data["biography"] @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: return self.user_data["business_email"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.user_data["external_url"] @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self.user_data["edge_followed_by"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : str ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return self.user_data["profile_pic_url_hd"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> bool: return self.user_data["is_verified"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> bool: return self.user_data["is_private"] def lowercase__ ( lowercase_ = "github" ) -> None: """simple docstring""" import os if os.environ.get("CI" ): return # test failing on GitHub Actions _UpperCamelCase : Optional[Any] = InstagramUser(lowercase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,lowercase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = InstagramUser("github") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
700
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase__ = input("Enter image url: ").strip() print(f"""Downloading image from {url} ...""") lowerCamelCase__ = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase__ = soup.find("meta", {"property": "og:image"})["content"] lowerCamelCase__ = requests.get(image_url).content lowerCamelCase__ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, "wb") as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
51
0
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : int = inspect.getfile(accelerate.test_utils ) _UpperCamelCase : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _UpperCamelCase : str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: _UpperCamelCase : int = F''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() _UpperCamelCase : Optional[int] = [sys.executable] + distributed_args execute_subprocess_async(__a , env=os.environ.copy() )
701
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) _UpperCamelCase : str = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )] _UpperCamelCase : List[str] = ".".join(lowercase_ ) return test_module_path def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_module_path(lowercase_ ) _UpperCamelCase : str = importlib.import_module(lowercase_ ) return test_module def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[Any] = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowercase_ ,lowercase_ ) ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Any = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): _UpperCamelCase : int = getattr(lowercase_ ,lowercase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] ) if len(lowercase_ ) > 0: test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Dict = get_test_classes(lowercase_ ) _UpperCamelCase : int = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = test_class() if hasattr(lowercase_ ,"setUp" ): test.setUp() _UpperCamelCase : Tuple = None if hasattr(lowercase_ ,"model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCamelCase : Tuple = test.model_tester.__class__ return model_tester def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = get_test_classes(lowercase_ ) _UpperCamelCase : Dict = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = [] for test_class in test_classes: _UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ ) if tester_class is not None: tester_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Any = get_test_classes(lowercase_ ) _UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes} return test_tester_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Optional[int] = { model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_test_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Tuple = { model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_to_tester_mapping def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" if isinstance(lowercase_ ,lowercase_ ): return o elif isinstance(lowercase_ ,lowercase_ ): return o.__name__ elif isinstance(lowercase_ ,(list, tuple) ): return [to_json(lowercase_ ) for x in o] elif isinstance(lowercase_ ,lowercase_ ): return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()} else: return o
51
0
from __future__ import annotations from typing import Any class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' pass class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , __a : Any ) -> None: _UpperCamelCase : Any = data _UpperCamelCase : Node | None = None def __iter__( self : Union[str, Any] ) -> int: _UpperCamelCase : Any = self _UpperCamelCase : Tuple = [] while node: if node in visited: raise ContainsLoopError visited.append(__a ) yield node.data _UpperCamelCase : List[Any] = node.next_node @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": lowerCamelCase__ = Node(1) lowerCamelCase__ = Node(2) lowerCamelCase__ = Node(3) lowerCamelCase__ = Node(4) print(root_node.has_loop) # False lowerCamelCase__ = root_node.next_node print(root_node.has_loop) # True lowerCamelCase__ = Node(5) lowerCamelCase__ = Node(6) lowerCamelCase__ = Node(5) lowerCamelCase__ = Node(6) print(root_node.has_loop) # False lowerCamelCase__ = Node(1) print(root_node.has_loop) # False
702
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
51
0
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : int , __a : Optional[Any] , __a : str=13 , __a : int=7 , __a : List[Any]=True , __a : Optional[int]=True , __a : Any=False , __a : Optional[int]=True , __a : Optional[Any]=99 , __a : Dict=64 , __a : Union[str, Any]=5 , __a : Union[str, Any]=4 , __a : List[Any]=64 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : Any=0.1 , __a : Dict=512 , __a : Optional[Any]=16 , __a : str=2 , __a : Union[str, Any]=0.02 , __a : List[Any]=3 , __a : List[Any]=4 , __a : Dict=None , ) -> int: _UpperCamelCase : List[str] = parent _UpperCamelCase : Tuple = batch_size _UpperCamelCase : Optional[Any] = seq_length _UpperCamelCase : Union[str, Any] = is_training _UpperCamelCase : Dict = use_input_mask _UpperCamelCase : List[str] = use_token_type_ids _UpperCamelCase : Any = use_labels _UpperCamelCase : Optional[int] = vocab_size _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Union[str, Any] = num_hidden_layers _UpperCamelCase : List[Any] = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[int] = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Any = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = type_sequence_label_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[Any] = num_labels _UpperCamelCase : int = num_choices _UpperCamelCase : List[Any] = scope def __SCREAMING_SNAKE_CASE ( self : int ) -> str: return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : Tuple = None if self.use_input_mask: _UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : Dict = None _UpperCamelCase : Tuple = None _UpperCamelCase : Optional[int] = None if self.use_labels: _UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase : List[str] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Dict , __a : int , __a : List[Any] ) -> Optional[Any]: _UpperCamelCase : str = MPNetModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = model(__a , __a ) _UpperCamelCase : List[Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[int] , __a : Union[str, Any] , __a : Any , __a : Optional[int] , __a : List[Any] , __a : str ) -> str: _UpperCamelCase : Tuple = MPNetForQuestionAnswering(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : List[str] = model( __a , attention_mask=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Dict , __a : int , __a : Optional[Any] , __a : Optional[Any] , __a : List[str] , __a : Optional[int] ) -> Dict: _UpperCamelCase : str = self.num_labels _UpperCamelCase : List[str] = MPNetForSequenceClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : int , __a : Tuple , __a : Any , __a : Dict , __a : Optional[int] , __a : str , __a : str ) -> List[str]: _UpperCamelCase : int = self.num_choices _UpperCamelCase : Any = MPNetForMultipleChoice(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase : Any = model( __a , attention_mask=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : str , __a : List[Any] , __a : Union[str, Any] , __a : str , __a : Any , __a : List[str] , __a : List[str] ) -> Optional[int]: _UpperCamelCase : Tuple = self.num_labels _UpperCamelCase : List[Any] = MPNetForTokenClassification(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Dict = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: _UpperCamelCase : str = self.prepare_config_and_inputs() (_UpperCamelCase) : List[str] = config_and_inputs _UpperCamelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE__ :Optional[Any] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Dict = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = True def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: _UpperCamelCase : int = MPNetModelTester(self ) _UpperCamelCase : str = ConfigTester(self , config_class=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*__a ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: _UpperCamelCase : Tuple = MPNetModel.from_pretrained("microsoft/mpnet-base" ) _UpperCamelCase : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase : int = model(__a )[0] _UpperCamelCase : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __a ) _UpperCamelCase : Optional[int] = torch.tensor( [[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
703
"""simple docstring""" lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
51
0
"""simple docstring""" import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] ) -> Optional[int]: _UpperCamelCase : List[str] = psutil.Process() _UpperCamelCase : Tuple = False def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : Tuple = -1 while True: _UpperCamelCase : int = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : Any = True _UpperCamelCase : Union[str, Any] = threading.Thread(target=self.peak_monitor ) _UpperCamelCase : Dict = True self.thread.start() def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : str = False self.thread.join() return self.cpu_memory_peak lowerCamelCase__ = PeakCPUMemory() def lowercase__ ( ) -> Any: """simple docstring""" _UpperCamelCase : List[str] = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _UpperCamelCase : Optional[int] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _UpperCamelCase : Any = torch.cuda.memory_allocated(lowercase_ ) torch.cuda.reset_peak_memory_stats() return measures def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Union[str, Any] = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _UpperCamelCase : List[Any] = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _UpperCamelCase : Tuple = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _UpperCamelCase : List[str] = (torch.cuda.memory_allocated(lowercase_ ) - start_measures[str(lowercase_ )]) / 2**20 _UpperCamelCase : List[str] = (torch.cuda.max_memory_allocated(lowercase_ ) - start_measures[str(lowercase_ )]) / 2**20 return measures def lowercase__ ( lowercase_ ,lowercase_ ) -> int: """simple docstring""" print(F'''{description}:''' ) print(F'''- Time: {measures['time']:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(F'''- GPU {i} allocated: {measures[str(lowercase_ )]:.2f}MiB''' ) _UpperCamelCase : Union[str, Any] = measures[F'''{i}-peak'''] print(F'''- GPU {i} peak: {peak:.2f}MiB''' ) print(F'''- CPU RAM allocated: {measures['cpu']:.2f}MiB''' ) print(F'''- CPU RAM peak: {measures['cpu-peak']:.2f}MiB''' )
704
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: _UpperCamelCase : Tuple = tempfile.mkdtemp() _UpperCamelCase : str = 5 # Realm tok _UpperCamelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) _UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : Any = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : int = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=__a , ) return block_records def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : Tuple = self.get_config() _UpperCamelCase : int = self.get_dummy_retriever() _UpperCamelCase : Tuple = retriever.tokenizer _UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" ) _UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : List[str] = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : str = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Any = self.get_config() _UpperCamelCase : Dict = self.get_dummy_retriever() _UpperCamelCase : Dict = retriever.tokenizer _UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" ) _UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : str = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : Union[str, Any] = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCamelCase : List[Any] = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
51
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ = TaTokenizerFast lowerCamelCase__ = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
705
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = LEDConfig SCREAMING_SNAKE_CASE__ :str = {} SCREAMING_SNAKE_CASE__ :List[str] = "gelu" def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]: _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : List[str] = batch_size _UpperCamelCase : str = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : str = max_position_embeddings _UpperCamelCase : int = eos_token_id _UpperCamelCase : Dict = pad_token_id _UpperCamelCase : Optional[Any] = bos_token_id _UpperCamelCase : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCamelCase : List[str] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a ) _UpperCamelCase : Union[str, Any] = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) _UpperCamelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple: _UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder() _UpperCamelCase : Tuple = inputs_dict["input_ids"] _UpperCamelCase : int = input_ids[:1, :] _UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :] _UpperCamelCase : List[Any] = 1 # first forward pass _UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0] _UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict: """simple docstring""" if attention_mask is None: _UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :Tuple = True SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : int = TFLEDModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] ) _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : str = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) _UpperCamelCase : Dict = True _UpperCamelCase : str = self.model_tester.seq_length _UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a : Optional[int] ): _UpperCamelCase : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a : Optional[Any] ): _UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] _UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCamelCase : Dict = True _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Any = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: _UpperCamelCase : Optional[Any] = model_class(__a ) _UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase : int = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine _UpperCamelCase : Any = True _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: # TODO: Head-masking not yet implement pass def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return tf.constant(lowercase_ ,dtype=tf.intaa ) lowerCamelCase__ = 1E-4 @slow @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Optional[int] = model(**__a )[0] _UpperCamelCase : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Tuple = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Union[str, Any] = model(**__a )[0] _UpperCamelCase : int = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Optional[int] = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
51
0
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ConsistencyModelPipeline SCREAMING_SNAKE_CASE__ :Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ :Dict = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt SCREAMING_SNAKE_CASE__ :List[str] = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: _UpperCamelCase : str = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def __SCREAMING_SNAKE_CASE ( self : int ) -> Any: _UpperCamelCase : Dict = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[Any]=False ) -> Tuple: if class_cond: _UpperCamelCase : Union[str, Any] = self.dummy_cond_unet else: _UpperCamelCase : Any = self.dummy_uncond_unet # Default to CM multistep sampler _UpperCamelCase : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _UpperCamelCase : Optional[int] = { "unet": unet, "scheduler": scheduler, } return components def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Any , __a : Any=0 ) -> Optional[int]: if str(__a ).startswith("mps" ): _UpperCamelCase : Optional[int] = torch.manual_seed(__a ) else: _UpperCamelCase : List[str] = torch.Generator(device=__a ).manual_seed(__a ) _UpperCamelCase : Any = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def __SCREAMING_SNAKE_CASE ( self : str ) -> int: _UpperCamelCase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : Tuple = self.get_dummy_components() _UpperCamelCase : Optional[int] = ConsistencyModelPipeline(**__a ) _UpperCamelCase : int = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _UpperCamelCase : Dict = self.get_dummy_inputs(__a ) _UpperCamelCase : Optional[Any] = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) _UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCamelCase : List[str] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: _UpperCamelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : Union[str, Any] = self.get_dummy_components(class_cond=__a ) _UpperCamelCase : List[Any] = ConsistencyModelPipeline(**__a ) _UpperCamelCase : Tuple = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _UpperCamelCase : Tuple = self.get_dummy_inputs(__a ) _UpperCamelCase : Tuple = 0 _UpperCamelCase : List[str] = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) _UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCamelCase : Optional[int] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : Any = self.get_dummy_components() _UpperCamelCase : List[Any] = ConsistencyModelPipeline(**__a ) _UpperCamelCase : Optional[Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(__a ) _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : Optional[int] = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) _UpperCamelCase : str = image[0, -3:, -3:, -1] _UpperCamelCase : Optional[Any] = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : Optional[Any] = self.get_dummy_components(class_cond=__a ) _UpperCamelCase : List[str] = ConsistencyModelPipeline(**__a ) _UpperCamelCase : List[str] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(__a ) _UpperCamelCase : List[Any] = 1 _UpperCamelCase : List[str] = None _UpperCamelCase : int = 0 _UpperCamelCase : int = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) _UpperCamelCase : Tuple = image[0, -3:, -3:, -1] _UpperCamelCase : Any = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : Dict , __a : List[str]=0 , __a : Optional[Any]=False , __a : Optional[Any]="cpu" , __a : int=torch.floataa , __a : Union[str, Any]=(1, 3, 64, 64) ) -> Tuple: _UpperCamelCase : Optional[int] = torch.manual_seed(__a ) _UpperCamelCase : Optional[Any] = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: _UpperCamelCase : List[str] = self.get_fixed_latents(seed=__a , device=__a , dtype=__a , shape=__a ) _UpperCamelCase : List[Any] = latents return inputs def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : str=0 , __a : int="cpu" , __a : List[str]=torch.floataa , __a : Tuple=(1, 3, 64, 64) ) -> Dict: if type(__a ) == str: _UpperCamelCase : int = torch.device(__a ) _UpperCamelCase : Optional[int] = torch.Generator(device=__a ).manual_seed(__a ) _UpperCamelCase : List[Any] = randn_tensor(__a , generator=__a , device=__a , dtype=__a ) return latents def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : Optional[Any] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _UpperCamelCase : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _UpperCamelCase : List[Any] = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a ) pipe.set_progress_bar_config(disable=__a ) _UpperCamelCase : Any = self.get_inputs() _UpperCamelCase : List[str] = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) _UpperCamelCase : int = image[0, -3:, -3:, -1] _UpperCamelCase : Tuple = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Optional[Any] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _UpperCamelCase : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _UpperCamelCase : List[Any] = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a ) pipe.set_progress_bar_config(disable=__a ) _UpperCamelCase : List[str] = self.get_inputs() _UpperCamelCase : List[str] = 1 _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Optional[int] = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) _UpperCamelCase : Optional[Any] = image[0, -3:, -3:, -1] _UpperCamelCase : int = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: _UpperCamelCase : List[str] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _UpperCamelCase : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _UpperCamelCase : Any = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__a ) _UpperCamelCase : Optional[int] = self.get_inputs(get_fixed_latents=__a , device=__a ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__a , enable_math=__a , enable_mem_efficient=__a ): _UpperCamelCase : Union[str, Any] = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) _UpperCamelCase : Any = image[0, -3:, -3:, -1] _UpperCamelCase : Tuple = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: _UpperCamelCase : List[Any] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _UpperCamelCase : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _UpperCamelCase : Optional[Any] = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__a ) _UpperCamelCase : int = self.get_inputs(get_fixed_latents=__a , device=__a ) _UpperCamelCase : Any = 1 _UpperCamelCase : Any = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__a , enable_math=__a , enable_mem_efficient=__a ): _UpperCamelCase : int = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) _UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCamelCase : Any = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
706
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer SCREAMING_SNAKE_CASE__ :Dict = None SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = True SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().setUp() _UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] _UpperCamelCase : List[str] = {} _UpperCamelCase : Tuple = {} for i, value in enumerate(__a ): _UpperCamelCase : List[str] = i _UpperCamelCase : Optional[Any] = i _UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) _UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(__a , __a , ensure_ascii=__a ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(__a , __a , ensure_ascii=__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: _UpperCamelCase : Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: _UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _UpperCamelCase : Any = {} for i, token in enumerate(__a ): _UpperCamelCase : str = i _UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: _UpperCamelCase : Tuple = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) _UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False _UpperCamelCase : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = ["的", "人", "有"] _UpperCamelCase : int = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = True _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Any = False _UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". _UpperCamelCase : Any = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a ) _UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a ) _UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : int = "你好,你是谁" _UpperCamelCase : Any = tokenizer.tokenize(__a ) _UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a ) _UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a ) _UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a ) _UpperCamelCase : Optional[int] = tokenizer.prepare_for_model( __a , __a , __a , add_special_tokens=__a ) _UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a ) self.assertEqual(__a , __a )
51
0
"""simple docstring""" def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = 0 _UpperCamelCase : List[str] = len(lowercase_ ) for i in range(n - 1 ): for j in range(i + 1 ,lowercase_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" if len(lowercase_ ) <= 1: return arr, 0 _UpperCamelCase : Union[str, Any] = len(lowercase_ ) // 2 _UpperCamelCase : Union[str, Any] = arr[0:mid] _UpperCamelCase : Optional[int] = arr[mid:] _UpperCamelCase : Dict = count_inversions_recursive(lowercase_ ) _UpperCamelCase : Optional[int] = count_inversions_recursive(lowercase_ ) _UpperCamelCase : str = _count_cross_inversions(lowercase_ ,lowercase_ ) _UpperCamelCase : Union[str, Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Tuple = [] _UpperCamelCase : str = 0 while i < len(lowercase_ ) and j < len(lowercase_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowercase_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowercase_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowercase__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Tuple = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _UpperCamelCase : Tuple = count_inversions_bf(lowercase_ ) _UpperCamelCase : Dict = count_inversions_recursive(lowercase_ ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " ,lowercase_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _UpperCamelCase : Union[str, Any] = count_inversions_bf(lowercase_ ) _UpperCamelCase : Tuple = count_inversions_recursive(lowercase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " ,lowercase_ ) # an empty list should also have zero inversions _UpperCamelCase : str = [] _UpperCamelCase : Dict = count_inversions_bf(lowercase_ ) _UpperCamelCase : List[Any] = count_inversions_recursive(lowercase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " ,lowercase_ ) if __name__ == "__main__": main()
707
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = "yolos" def __init__( self : Dict , __a : Optional[Any]=768 , __a : List[Any]=12 , __a : Any=12 , __a : List[Any]=3072 , __a : Optional[int]="gelu" , __a : Dict=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.02 , __a : Optional[int]=1e-1_2 , __a : List[Any]=[512, 864] , __a : List[str]=16 , __a : str=3 , __a : Optional[Any]=True , __a : Optional[Any]=100 , __a : List[str]=True , __a : Any=False , __a : List[str]=1 , __a : str=5 , __a : Optional[Any]=2 , __a : Tuple=5 , __a : Any=2 , __a : Union[str, Any]=0.1 , **__a : List[str] , ) -> List[str]: super().__init__(**__a ) _UpperCamelCase : Dict = hidden_size _UpperCamelCase : Any = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Tuple = image_size _UpperCamelCase : Tuple = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : Any = qkv_bias _UpperCamelCase : str = num_detection_tokens _UpperCamelCase : str = use_mid_position_embeddings _UpperCamelCase : List[str] = auxiliary_loss # Hungarian matcher _UpperCamelCase : List[Any] = class_cost _UpperCamelCase : int = bbox_cost _UpperCamelCase : Optional[int] = giou_cost # Loss coefficients _UpperCamelCase : List[Any] = bbox_loss_coefficient _UpperCamelCase : str = giou_loss_coefficient _UpperCamelCase : Dict = eos_coefficient class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float: return 1e-4 @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return 12
51
0
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowerCamelCase__ = parse(importlib.metadata.version("torch")) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> str: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) _UpperCamelCase : Optional[Any] = STR_OPERATION_TO_FUNC[operation] if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : Tuple = parse(importlib.metadata.version(lowercase_ ) ) return operation(lowercase_ ,parse(lowercase_ ) ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple: """simple docstring""" return compare_versions(lowercase_ ,lowercase_ ,lowercase_ )
708
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCamelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase] lowerCamelCase__ = {ord(char) for char in VALID_CHARS} lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None: """simple docstring""" _UpperCamelCase : str = "" _UpperCamelCase : int _UpperCamelCase : int _UpperCamelCase : int for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ): _UpperCamelCase : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase_ ) return decoded def lowercase__ ( lowercase_ ) -> list[str]: """simple docstring""" _UpperCamelCase : list[str] = [] for key in product(lowercase_ ,repeat=3 ): _UpperCamelCase : int = try_key(lowercase_ ,lowercase_ ) if encoded is not None: possibles.append(lowercase_ ) return possibles def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int: """simple docstring""" _UpperCamelCase : list[int] _UpperCamelCase : list[str] _UpperCamelCase : str _UpperCamelCase : str _UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" ) _UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )] _UpperCamelCase : List[str] = filter_valid_chars(lowercase_ ) for common_word in COMMON_WORDS: _UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ ) if len(lowercase_ ) == 1: break _UpperCamelCase : Union[str, Any] = possibles[0] return sum(ord(lowercase_ ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
51
0
from __future__ import annotations import math lowerCamelCase__ = "2020.9.26" lowerCamelCase__ = "xcodz-dot, cclaus, dhruvmanila" def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> tuple[float, float]: """simple docstring""" if not all(isinstance(lowercase_ ,(float, int) ) for val in locals().values() ): _UpperCamelCase : Any = F'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(lowercase_ ) _UpperCamelCase : Tuple = ((x * distance) / (z + distance)) * scale _UpperCamelCase : Union[str, Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> tuple[float, float, float]: """simple docstring""" if not isinstance(lowercase_ ,lowercase_ ): raise TypeError("Axis must be a str" ) _UpperCamelCase : List[str] = locals() del input_variables["axis"] if not all(isinstance(lowercase_ ,(float, int) ) for val in input_variables.values() ): _UpperCamelCase : Any = ( "Input values except axis must either be float or int: " F'''{list(input_variables.values() )}''' ) raise TypeError(lowercase_ ) _UpperCamelCase : List[str] = (angle % 360) / 450 * 180 / math.pi if axis == "z": _UpperCamelCase : Tuple = x * math.cos(lowercase_ ) - y * math.sin(lowercase_ ) _UpperCamelCase : str = y * math.cos(lowercase_ ) + x * math.sin(lowercase_ ) _UpperCamelCase : Union[str, Any] = z elif axis == "x": _UpperCamelCase : Any = y * math.cos(lowercase_ ) - z * math.sin(lowercase_ ) _UpperCamelCase : List[Any] = z * math.cos(lowercase_ ) + y * math.sin(lowercase_ ) _UpperCamelCase : Optional[Any] = x elif axis == "y": _UpperCamelCase : Any = x * math.cos(lowercase_ ) - z * math.sin(lowercase_ ) _UpperCamelCase : Dict = z * math.cos(lowercase_ ) + x * math.sin(lowercase_ ) _UpperCamelCase : List[Any] = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
709
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ) -> None: """simple docstring""" _UpperCamelCase : List[Any] = len(lowercase_ ) print("The following activities are selected:" ) # The first activity is always selected _UpperCamelCase : List[Any] = 0 print(lowercase_ ,end="," ) # Consider rest of the activities for j in range(lowercase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase_ ,end="," ) _UpperCamelCase : Optional[Any] = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = [1, 3, 0, 5, 8, 5] lowerCamelCase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
51
0
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = torch.load(lowercase_ ,map_location="cpu" ) if "model" in sd.keys(): _UpperCamelCase : Union[str, Any] = torch.load(lowercase_ ,map_location="cpu" )["model"] # pop unnecessary weights _UpperCamelCase : List[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase_ ) _UpperCamelCase : Optional[Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _UpperCamelCase : str = sd.pop(lowercase_ ) _UpperCamelCase : Dict = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _UpperCamelCase : List[str] = sd[key] # We split QKV in separate Q,K,V _UpperCamelCase : Tuple = key.replace(".qkv_proj." ,".q_proj." ) _UpperCamelCase : Any = key.replace(".qkv_proj." ,".k_proj." ) _UpperCamelCase : Tuple = key.replace(".qkv_proj." ,".v_proj." ) _UpperCamelCase : Optional[Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _UpperCamelCase : str = torch.split(lowercase_ ,depth // 3 ,dim=0 ) _UpperCamelCase : int = q _UpperCamelCase : Optional[Any] = k _UpperCamelCase : int = v del sd[key] return sd @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ) -> int: """simple docstring""" _UpperCamelCase : List[Any] = load_checkpoint(lowercase_ ) if config is not None: _UpperCamelCase : Tuple = OPTConfig.from_pretrained(lowercase_ ) else: _UpperCamelCase : Union[str, Any] = OPTConfig() _UpperCamelCase : List[Any] = OPTModel(lowercase_ ).half().eval() model.load_state_dict(lowercase_ ) # Check results Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") lowerCamelCase__ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
710
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict: super().__init__() _UpperCamelCase : List[str] = layers_per_block _UpperCamelCase : Dict = torch.nn.Convad( __a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : int = None _UpperCamelCase : Any = nn.ModuleList([] ) # down _UpperCamelCase : List[str] = block_out_channels[0] for i, down_block_type in enumerate(__a ): _UpperCamelCase : Tuple = output_channel _UpperCamelCase : int = block_out_channels[i] _UpperCamelCase : int = i == len(__a ) - 1 _UpperCamelCase : Dict = get_down_block( __a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , ) self.down_blocks.append(__a ) # mid _UpperCamelCase : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # out _UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : Any = nn.SiLU() _UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels _UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 ) _UpperCamelCase : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]: _UpperCamelCase : int = x _UpperCamelCase : Optional[int] = self.conv_in(__a ) if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Tuple ): def custom_forward(*__a : Any ): return module(*__a ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , use_reentrant=__a ) # middle _UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , use_reentrant=__a ) else: for down_block in self.down_blocks: _UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a ) # middle _UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a ) else: # down for down_block in self.down_blocks: _UpperCamelCase : int = down_block(__a ) # middle _UpperCamelCase : int = self.mid_block(__a ) # post-process _UpperCamelCase : Any = self.conv_norm_out(__a ) _UpperCamelCase : Any = self.conv_act(__a ) _UpperCamelCase : Optional[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str: super().__init__() _UpperCamelCase : List[Any] = layers_per_block _UpperCamelCase : Tuple = nn.Convad( __a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = nn.ModuleList([] ) _UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None # mid _UpperCamelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # up _UpperCamelCase : List[str] = list(reversed(__a ) ) _UpperCamelCase : int = reversed_block_out_channels[0] for i, up_block_type in enumerate(__a ): _UpperCamelCase : int = output_channel _UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i] _UpperCamelCase : Optional[Any] = i == len(__a ) - 1 _UpperCamelCase : Union[str, Any] = get_up_block( __a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , ) self.up_blocks.append(__a ) _UpperCamelCase : Optional[Any] = output_channel # out if norm_type == "spatial": _UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a ) else: _UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : str = nn.SiLU() _UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 ) _UpperCamelCase : Dict = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple: _UpperCamelCase : List[str] = z _UpperCamelCase : Dict = self.conv_in(__a ) _UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Any ): def custom_forward(*__a : Tuple ): return module(*__a ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle _UpperCamelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a ) _UpperCamelCase : Optional[int] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , __a , use_reentrant=__a ) else: # middle _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a ) _UpperCamelCase : Union[str, Any] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a ) else: # middle _UpperCamelCase : str = self.mid_block(__a , __a ) _UpperCamelCase : int = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : Any = up_block(__a , __a ) # post-process if latent_embeds is None: _UpperCamelCase : List[str] = self.conv_norm_out(__a ) else: _UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a ) _UpperCamelCase : Tuple = self.conv_act(__a ) _UpperCamelCase : List[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]: super().__init__() _UpperCamelCase : Tuple = n_e _UpperCamelCase : Tuple = vq_embed_dim _UpperCamelCase : Union[str, Any] = beta _UpperCamelCase : str = legacy _UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCamelCase : Any = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) _UpperCamelCase : Dict = self.used.shape[0] _UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase : Optional[int] = self.re_embed _UpperCamelCase : Any = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: _UpperCamelCase : Union[str, Any] = n_e _UpperCamelCase : List[str] = sane_index_shape def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]: _UpperCamelCase : str = inds.shape assert len(__a ) > 1 _UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[Any] = self.used.to(__a ) _UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase : Optional[Any] = match.argmax(-1 ) _UpperCamelCase : Any = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCamelCase : Dict = self.unknown_index return new.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]: _UpperCamelCase : int = inds.shape assert len(__a ) > 1 _UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[int] = self.used.to(__a ) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase : int = 0 # simply set to zero _UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a ) return back.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]: # reshape z -> (batch, height, width, channel) and flatten _UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCamelCase : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 ) _UpperCamelCase : int = self.embedding(__a ).view(z.shape ) _UpperCamelCase : str = None _UpperCamelCase : Any = None # compute loss for embedding if not self.legacy: _UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCamelCase : List[str] = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCamelCase : Dict = self.remap_to_used(__a ) _UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: _UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCamelCase : str = self.unmap_to_all(__a ) _UpperCamelCase : int = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCamelCase : Optional[int] = self.embedding(__a ) if shape is not None: _UpperCamelCase : Tuple = z_q.view(__a ) # reshape back to match original input shape _UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int: _UpperCamelCase : Dict = parameters _UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 ) _UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 ) _UpperCamelCase : Union[str, Any] = deterministic _UpperCamelCase : Dict = torch.exp(0.5 * self.logvar ) _UpperCamelCase : Any = torch.exp(self.logvar ) if self.deterministic: _UpperCamelCase : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype _UpperCamelCase : List[Any] = randn_tensor( self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCamelCase : List[Any] = self.mean + self.std * sample return x def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int: if self.deterministic: return torch.Tensor([0.0] ) _UpperCamelCase : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: return self.mean
51
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _UpperCamelCase : Tuple = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : str = TFAutoModel.from_pretrained(__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : List[str] = AutoModel.from_pretrained(__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _UpperCamelCase : Dict = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : Optional[int] = TFAutoModelForPreTraining.from_pretrained(__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : Dict = AutoModelForPreTraining.from_pretrained(__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Any = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(__a , from_pt=__a ) _UpperCamelCase : int = TFAutoModelForCausalLM.from_pretrained( __a , output_loading_info=__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained(__a , from_tf=__a ) _UpperCamelCase : str = AutoModelForCausalLM.from_pretrained( __a , output_loading_info=__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : int ) -> Any: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : str = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : List[str] = AutoModelWithLMHead.from_pretrained(__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(__a , from_pt=__a ) _UpperCamelCase : List[str] = TFAutoModelForMaskedLM.from_pretrained( __a , output_loading_info=__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : List[Any] = AutoModelForMaskedLM.from_pretrained(__a , from_tf=__a ) _UpperCamelCase : Union[str, Any] = AutoModelForMaskedLM.from_pretrained( __a , output_loading_info=__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : int = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : int = TFAutoModelForSeqaSeqLM.from_pretrained(__a , from_pt=__a ) _UpperCamelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained( __a , output_loading_info=__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : Tuple = AutoModelForSeqaSeqLM.from_pretrained(__a , from_tf=__a ) _UpperCamelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( __a , output_loading_info=__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : str = TFAutoModelForSequenceClassification.from_pretrained(__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained(__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _UpperCamelCase : int = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : List[Any] = TFAutoModelForQuestionAnswering.from_pretrained(__a , from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _UpperCamelCase : str = AutoModelForQuestionAnswering.from_pretrained(__a , from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : List[str] = TFAutoModelWithLMHead.from_pretrained(__a , from_pt=__a ) self.assertIsInstance(__a , __a ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__a ) , 1_4410 ) _UpperCamelCase : Optional[int] = AutoModelWithLMHead.from_pretrained(__a , from_tf=__a ) self.assertIsInstance(__a , __a ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__a ) , 1_4410 ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Optional[int] = TFAutoModelWithLMHead.from_pretrained(__a , from_pt=__a ) self.assertIsInstance(__a , __a ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__a ) , 1_4410 ) _UpperCamelCase : Any = AutoModelWithLMHead.from_pretrained(__a , from_tf=__a ) self.assertIsInstance(__a , __a ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__a ) , 1_4410 )
711
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"summary": Value("string" )} ) SCREAMING_SNAKE_CASE__ :str = "text" SCREAMING_SNAKE_CASE__ :str = "summary" @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
51
0
"""simple docstring""" import argparse import json from tqdm import tqdm def lowercase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" ,type=lowercase_ ,default="biencoder-nq-dev.json" ,help="Path to raw DPR training data" ,) parser.add_argument( "--evaluation_set" ,type=lowercase_ ,help="where to store parsed evaluation_set file" ,) parser.add_argument( "--gold_data_path" ,type=lowercase_ ,help="where to store parsed gold_data_path file" ,) _UpperCamelCase : Union[str, Any] = parser.parse_args() with open(args.src_path ,"r" ) as src_file, open(args.evaluation_set ,"w" ) as eval_file, open( args.gold_data_path ,"w" ) as gold_file: _UpperCamelCase : Dict = json.load(lowercase_ ) for dpr_record in tqdm(lowercase_ ): _UpperCamelCase : str = dpr_record["question"] _UpperCamelCase : Dict = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(lowercase_ ) + "\n" ) if __name__ == "__main__": main()
712
"""simple docstring""" def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : Union[str, Any] = set() # edges = list of graph's edges _UpperCamelCase : Union[str, Any] = get_edges(lowercase_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCamelCase, _UpperCamelCase : str = edges.pop() chosen_vertices.add(lowercase_ ) chosen_vertices.add(lowercase_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase_ ) return chosen_vertices def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
51
0
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: _UpperCamelCase : Tuple = tempfile.mkdtemp() _UpperCamelCase : str = 5 # Realm tok _UpperCamelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) _UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : Any = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : int = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=__a , ) return block_records def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : Tuple = self.get_config() _UpperCamelCase : int = self.get_dummy_retriever() _UpperCamelCase : Tuple = retriever.tokenizer _UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" ) _UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : List[str] = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : str = config.reader_seq_len _UpperCamelCase : List[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Any = self.get_config() _UpperCamelCase : Dict = self.get_dummy_retriever() _UpperCamelCase : Dict = retriever.tokenizer _UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" ) _UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : str = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : Union[str, Any] = config.reader_seq_len _UpperCamelCase : Optional[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCamelCase : List[Any] = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
713
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["OwlViTFeatureExtractor"] lowerCamelCase__ = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Optional[int] = prime_factors(lowercase_ ) if is_square_free(lowercase_ ): return -1 if len(lowercase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int: """simple docstring""" _UpperCamelCase : defaultdict = defaultdict(lowercase_ ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _UpperCamelCase : Any = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: _UpperCamelCase : str = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
51
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase__ = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("KEY") lowerCamelCase__ = TypeVar("VAL") @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :KEY SCREAMING_SNAKE_CASE__ :VAL class __SCREAMING_SNAKE_CASE ( _Item ): '''simple docstring''' def __init__( self : List[str] ) -> None: super().__init__(__a , __a ) def __bool__( self : Dict ) -> bool: return False lowerCamelCase__ = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None: _UpperCamelCase : str = initial_block_size _UpperCamelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCamelCase : List[str] = capacity_factor _UpperCamelCase : Dict = 0 def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int: return hash(__a ) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int: return (ind + 1) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool: _UpperCamelCase : List[Any] = self._buckets[ind] if not stored: _UpperCamelCase : Tuple = _Item(__a , __a ) self._len += 1 return True elif stored.key == key: _UpperCamelCase : Union[str, Any] = _Item(__a , __a ) return True else: return False def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: _UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False _UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None: _UpperCamelCase : Any = self._buckets _UpperCamelCase : List[Any] = [None] * new_size _UpperCamelCase : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: self._resize(len(self._buckets ) * 2 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: self._resize(len(self._buckets ) // 2 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]: _UpperCamelCase : str = self._get_bucket_index(__a ) for _ in range(len(self._buckets ) ): yield ind _UpperCamelCase : Tuple = self._get_next_ind(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None: for ind in self._iterate_buckets(__a ): if self._try_set(__a , __a , __a ): break def __setitem__( self : int , __a : KEY , __a : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(__a , __a ) def __delitem__( self : str , __a : KEY ) -> None: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: raise KeyError(__a ) if item is _deleted: continue if item.key == key: _UpperCamelCase : List[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , __a : KEY ) -> VAL: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__a ) def __len__( self : List[Any] ) -> int: return self._len def __iter__( self : List[str] ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ) -> str: _UpperCamelCase : Optional[int] = " ,".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
51
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = MgpstrTokenizer SCREAMING_SNAKE_CASE__ :Tuple = False SCREAMING_SNAKE_CASE__ :Tuple = {} SCREAMING_SNAKE_CASE__ :Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: super().setUp() # fmt: off _UpperCamelCase : Tuple = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _UpperCamelCase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , **__a : Any ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Optional[int] ) -> Tuple: _UpperCamelCase : Tuple = "tester" _UpperCamelCase : Optional[int] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Optional[int] = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _UpperCamelCase : List[str] = tokenizer.encode([special_token] , add_special_tokens=__a ) self.assertEqual(len(__a ) , 1 ) _UpperCamelCase : str = tokenizer.decode(__a , skip_special_tokens=__a ) self.assertTrue(special_token not in decoded ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: _UpperCamelCase : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Dict = self.get_input_output_texts(__a ) _UpperCamelCase : Tuple = tokenizer.tokenize(__a ) _UpperCamelCase : Dict = tokenizer.convert_tokens_to_ids(__a ) _UpperCamelCase : str = tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Dict = tokenizer.convert_ids_to_tokens(__a ) self.assertNotEqual(len(__a ) , 0 ) _UpperCamelCase : Dict = tokenizer.decode(__a ) self.assertIsInstance(__a , __a ) self.assertEqual(text_a.replace(" " , "" ) , __a ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: pass
716
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , __a : list[int] ) -> None: _UpperCamelCase : Tuple = len(__a ) _UpperCamelCase : Dict = [0] * len_array if len_array > 0: _UpperCamelCase : Optional[Any] = array[0] for i in range(1 , __a ): _UpperCamelCase : Tuple = self.prefix_sum[i - 1] + array[i] def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> bool: _UpperCamelCase : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__a ) return False if __name__ == "__main__": import doctest doctest.testmod()
51
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) lowerCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowercase__ ( lowercase_ ) -> Dict: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCamelCase : Tuple = model_type_to_module_name(lowercase_ ) _UpperCamelCase : Dict = importlib.import_module(F'''.{module_name}''' ,"transformers.models" ) try: return getattr(lowercase_ ,lowercase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowercase_ ,"__name__" ,lowercase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCamelCase : Tuple = importlib.import_module("transformers" ) if hasattr(lowercase_ ,lowercase_ ): return getattr(lowercase_ ,lowercase_ ) return None def lowercase__ ( lowercase_ ,lowercase_ = None ,lowercase_ = False ,lowercase_ = False ,lowercase_ = None ,lowercase_ = None ,lowercase_ = None ,lowercase_ = False ,**lowercase_ ,) -> Tuple: """simple docstring""" _UpperCamelCase : Tuple = get_file_from_repo( lowercase_ ,lowercase_ ,cache_dir=lowercase_ ,force_download=lowercase_ ,resume_download=lowercase_ ,proxies=lowercase_ ,use_auth_token=lowercase_ ,revision=lowercase_ ,local_files_only=lowercase_ ,) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(lowercase_ ,encoding="utf-8" ) as reader: return json.load(lowercase_ ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int ) -> List[Any]: raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(__a ) def __SCREAMING_SNAKE_CASE ( cls : str , __a : Tuple , **__a : Optional[int] ) -> Optional[Any]: _UpperCamelCase : Tuple = kwargs.pop("config" , __a ) _UpperCamelCase : List[str] = kwargs.pop("trust_remote_code" , __a ) _UpperCamelCase : Dict = True _UpperCamelCase : Union[str, Any] = ImageProcessingMixin.get_image_processor_dict(__a , **__a ) _UpperCamelCase : Optional[int] = config_dict.get("image_processor_type" , __a ) _UpperCamelCase : List[Any] = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): _UpperCamelCase : List[str] = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _UpperCamelCase : Dict = config_dict.pop("feature_extractor_type" , __a ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) _UpperCamelCase : List[str] = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _UpperCamelCase : Tuple = config_dict["auto_map"]["AutoFeatureExtractor"] _UpperCamelCase : Optional[Any] = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__a , __a ): _UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(__a , **__a ) # It could be in `config.image_processor_type`` _UpperCamelCase : Dict = getattr(__a , "image_processor_type" , __a ) if hasattr(__a , "auto_map" ) and "AutoImageProcessor" in config.auto_map: _UpperCamelCase : Tuple = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: _UpperCamelCase : Optional[int] = image_processor_class_from_name(__a ) _UpperCamelCase : Any = image_processor_auto_map is not None _UpperCamelCase : str = image_processor_class is not None or type(__a ) in IMAGE_PROCESSOR_MAPPING _UpperCamelCase : int = resolve_trust_remote_code( __a , __a , __a , __a ) if has_remote_code and trust_remote_code: _UpperCamelCase : Dict = get_class_from_dynamic_module( __a , __a , **__a ) _UpperCamelCase : int = kwargs.pop("code_revision" , __a ) if os.path.isdir(__a ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__a , **__a ) elif image_processor_class is not None: return image_processor_class.from_dict(__a , **__a ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__a ) in IMAGE_PROCESSOR_MAPPING: _UpperCamelCase : Optional[int] = IMAGE_PROCESSOR_MAPPING[type(__a )] return image_processor_class.from_dict(__a , **__a ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def __SCREAMING_SNAKE_CASE ( __a : List[str] , __a : Optional[int] ) -> str: IMAGE_PROCESSOR_MAPPING.register(__a , __a )
717
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[int] = None if token is not None: _UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) _UpperCamelCase : Any = "636036" _UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' _UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json() return result["workflow_runs"] def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ ) _UpperCamelCase : Tuple = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCamelCase : Union[str, Any] = workflow_run["id"] break return workflow_run_id def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: _UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCamelCase : Dict = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = {} for artifact_name in artifact_names: _UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' ) if os.path.isfile(lowercase_ ): _UpperCamelCase : int = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: _UpperCamelCase : int = f.read().decode("UTF-8" ) return results
51
0
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE__ :Optional[Any] = VQModel SCREAMING_SNAKE_CASE__ :List[Any] = "sample" @property def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple=(32, 32) ) -> int: _UpperCamelCase : List[Any] = 4 _UpperCamelCase : Dict = 3 _UpperCamelCase : Any = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) return {"sample": image} @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: return (3, 32, 32) @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: return (3, 32, 32) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: _UpperCamelCase : Tuple = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } _UpperCamelCase : List[Any] = self.dummy_input return init_dict, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: pass def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: _UpperCamelCase : Any = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__a ) _UpperCamelCase : List[str] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: _UpperCamelCase : Dict = VQModel.from_pretrained("fusing/vqgan-dummy" ) model.to(__a ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _UpperCamelCase : Dict = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _UpperCamelCase : str = image.to(__a ) with torch.no_grad(): _UpperCamelCase : List[str] = model(__a ).sample _UpperCamelCase : str = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCamelCase : str = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) )
718
"""simple docstring""" import math class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int: _UpperCamelCase : List[Any] = 0.0 _UpperCamelCase : Union[str, Any] = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]: for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase : List[Any] = SelfOrganizingMap() _UpperCamelCase : int = 3 _UpperCamelCase : List[Any] = 0.5 for _ in range(lowercase_ ): for j in range(len(lowercase_ ) ): # training sample _UpperCamelCase : int = training_samples[j] # Compute the winning vector _UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # Update the winning vector _UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) # classify test sample _UpperCamelCase : Optional[int] = [0, 0, 0, 1] _UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
51
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : List[str] = SwinConfig( embed_dim=192 ,depths=(2, 2, 18, 2) ,num_heads=(6, 12, 24, 48) ,window_size=12 ,out_features=["stage2", "stage3", "stage4"] ,) _UpperCamelCase : List[Any] = DetaConfig( backbone_config=lowercase_ ,num_queries=900 ,encoder_ffn_dim=2_048 ,decoder_ffn_dim=2_048 ,num_feature_levels=5 ,assign_first_stage=lowercase_ ,with_box_refine=lowercase_ ,two_stage=lowercase_ ,) # set labels _UpperCamelCase : int = "huggingface/label-files" if "o365" in model_name: _UpperCamelCase : Optional[Any] = 366 _UpperCamelCase : List[str] = "object365-id2label.json" else: _UpperCamelCase : List[str] = 91 _UpperCamelCase : List[str] = "coco-detection-id2label.json" _UpperCamelCase : Union[str, Any] = num_labels _UpperCamelCase : Optional[Any] = json.load(open(cached_download(hf_hub_url(lowercase_ ,lowercase_ ,repo_type="dataset" ) ) ,"r" ) ) _UpperCamelCase : Any = {int(lowercase_ ): v for k, v in idalabel.items()} _UpperCamelCase : Tuple = idalabel _UpperCamelCase : List[Any] = {v: k for k, v in idalabel.items()} return config def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : List[str] = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = dct.pop(lowercase_ ) _UpperCamelCase : Optional[Any] = val def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Dict = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCamelCase : List[str] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCamelCase : Optional[Any] = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _UpperCamelCase : Optional[int] = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : int = in_proj_weight[:dim, :] _UpperCamelCase : Any = in_proj_bias[: dim] _UpperCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _UpperCamelCase : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] _UpperCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _UpperCamelCase : Optional[int] = in_proj_bias[-dim :] # fmt: on def lowercase__ ( lowercase_ ,lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Optional[Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _UpperCamelCase : str = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCamelCase : Optional[int] = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : List[str] = in_proj_weight[:hidden_size, :] _UpperCamelCase : Dict = in_proj_bias[:hidden_size] _UpperCamelCase : Dict = in_proj_weight[ hidden_size : hidden_size * 2, : ] _UpperCamelCase : Any = in_proj_bias[hidden_size : hidden_size * 2] _UpperCamelCase : int = in_proj_weight[-hidden_size:, :] _UpperCamelCase : int = in_proj_bias[-hidden_size:] def lowercase__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCamelCase : int = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw ) return im @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = get_deta_config(lowercase_ ) # load original state dict if model_name == "deta-swin-large": _UpperCamelCase : Optional[int] = hf_hub_download(repo_id="nielsr/deta-checkpoints" ,filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": _UpperCamelCase : Any = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" ,filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F'''Model name {model_name} not supported''' ) _UpperCamelCase : Dict = torch.load(lowercase_ ,map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(lowercase_ ,param.shape ) # rename keys _UpperCamelCase : Dict = create_rename_keys(lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ ,lowercase_ ,lowercase_ ) read_in_swin_q_k_v(lowercase_ ,config.backbone_config ) read_in_decoder_q_k_v(lowercase_ ,lowercase_ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ ) _UpperCamelCase : Tuple = val if "input_proj" in key: _UpperCamelCase : Union[str, Any] = state_dict.pop(lowercase_ ) _UpperCamelCase : Union[str, Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _UpperCamelCase : List[Any] = state_dict.pop(lowercase_ ) _UpperCamelCase : Optional[Any] = val # finally, create HuggingFace model and load state dict _UpperCamelCase : Union[str, Any] = DetaForObjectDetection(lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() _UpperCamelCase : List[str] = "cuda" if torch.cuda.is_available() else "cpu" model.to(lowercase_ ) # load image processor _UpperCamelCase : int = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image _UpperCamelCase : Optional[int] = prepare_img() _UpperCamelCase : Dict = processor(images=lowercase_ ,return_tensors="pt" ) _UpperCamelCase : Optional[Any] = encoding["pixel_values"] _UpperCamelCase : Any = model(pixel_values.to(lowercase_ ) ) # verify logits print("Logits:" ,outputs.logits[0, :3, :3] ) print("Boxes:" ,outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _UpperCamelCase : Tuple = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) _UpperCamelCase : List[Any] = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": _UpperCamelCase : Dict = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) _UpperCamelCase : int = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] ,expected_logits.to(lowercase_ ) ,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] ,expected_boxes.to(lowercase_ ) ,atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCamelCase__ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
719
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase__ = "src/transformers" lowerCamelCase__ = "docs/source/en" lowerCamelCase__ = "." def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f: _UpperCamelCase : Union[str, Any] = f.readlines() # Find the start prompt. _UpperCamelCase : Dict = 0 while not lines[start_index].startswith(lowercase_ ): start_index += 1 start_index += 1 _UpperCamelCase : Optional[int] = start_index while not lines[end_index].startswith(lowercase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ ) return [m.group(0 ) for m in matches] def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ ) _UpperCamelCase : Union[str, Any] = (width - text_length) // 2 _UpperCamelCase : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : str = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : str = collections.defaultdict(lowercase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowercase_ ): _UpperCamelCase : List[str] = None if attr_name.endswith("Tokenizer" ): _UpperCamelCase : Tuple = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _UpperCamelCase : Optional[Any] = fast_tokenizers _UpperCamelCase : List[str] = attr_name[:-13] elif _re_tf_models.match(lowercase_ ) is not None: _UpperCamelCase : List[Any] = tf_models _UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0] elif _re_flax_models.match(lowercase_ ) is not None: _UpperCamelCase : Dict = flax_models _UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0] elif _re_pt_models.match(lowercase_ ) is not None: _UpperCamelCase : Optional[int] = pt_models _UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0] if lookup_dict is not None: while len(lowercase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Dict = True break # Try again after removing the last word in the name _UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] ) # Let's build that table! _UpperCamelCase : Any = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns] _UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"} for name in model_names: _UpperCamelCase : Optional[int] = model_name_to_prefix[name] _UpperCamelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" return table def lowercase__ ( lowercase_=False ) -> List[Any]: """simple docstring""" _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file( filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,) _UpperCamelCase : Any = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
51
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , __a : str , __a : Union[str, Any]=13 , __a : str=32 , __a : Any=3 , __a : List[str]=4 , __a : int=[10, 20, 30, 40] , __a : int=[2, 2, 3, 2] , __a : Union[str, Any]=True , __a : str=True , __a : Dict=37 , __a : Tuple="gelu" , __a : List[str]=10 , __a : List[str]=0.02 , __a : List[str]=["stage2", "stage3", "stage4"] , __a : Any=[2, 3, 4] , __a : List[Any]=None , ) -> Dict: _UpperCamelCase : str = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : Any = num_channels _UpperCamelCase : List[Any] = num_stages _UpperCamelCase : str = hidden_sizes _UpperCamelCase : Union[str, Any] = depths _UpperCamelCase : Union[str, Any] = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Optional[Any] = hidden_act _UpperCamelCase : List[str] = num_labels _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : List[Any] = out_features _UpperCamelCase : Any = out_indices _UpperCamelCase : Any = scope def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: _UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[Any] , __a : Union[str, Any] , __a : Any ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = ConvNextVaModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Union[str, Any] = model(__a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[Any] , __a : Tuple , __a : str ) -> Optional[int]: _UpperCamelCase : Tuple = ConvNextVaForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Tuple ) -> Tuple: _UpperCamelCase : Union[str, Any] = ConvNextVaBackbone(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : List[str] = model(__a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCamelCase : Dict = None _UpperCamelCase : str = ConvNextVaBackbone(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Union[str, Any] = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : int = self.prepare_config_and_inputs() _UpperCamelCase : int = config_and_inputs _UpperCamelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: _UpperCamelCase : List[Any] = self.prepare_config_and_inputs() _UpperCamelCase : int = config_and_inputs _UpperCamelCase : Optional[int] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :List[Any] = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :Dict = False SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :Dict = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = False def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : List[Any] = ConvNextVaModelTester(self ) _UpperCamelCase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: pass def __SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCamelCase : Any = True if model_class.__name__ in [ *get_values(__a ), *get_values(__a ), ]: continue _UpperCamelCase : Tuple = model_class(__a ) model.to(__a ) model.train() _UpperCamelCase : List[str] = self._prepare_for_class(__a , __a , return_labels=__a ) _UpperCamelCase : Optional[Any] = model(**__a ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCamelCase : Dict = False _UpperCamelCase : Optional[int] = True if ( model_class.__name__ in [*get_values(__a ), *get_values(__a )] or not model_class.supports_gradient_checkpointing ): continue _UpperCamelCase : List[Any] = model_class(__a ) model.to(__a ) model.gradient_checkpointing_enable() model.train() _UpperCamelCase : Optional[int] = self._prepare_for_class(__a , __a , return_labels=__a ) _UpperCamelCase : Optional[int] = model(**__a ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[Any] = [*signature.parameters.keys()] _UpperCamelCase : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: def check_hidden_states_output(__a : Optional[Any] , __a : Optional[Any] , __a : List[Any] ): _UpperCamelCase : int = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Dict = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : Optional[int] = True check_hidden_states_output(__a , __a , __a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Any = ConvNextVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : Tuple = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__a ) _UpperCamelCase : List[Any] = self.default_image_processor _UpperCamelCase : Optional[Any] = prepare_img() _UpperCamelCase : List[Any] = preprocessor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : List[str] = model(**__a ) # verify the logits _UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : Union[str, Any] = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
720
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]: """simple docstring""" _UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] ) return (item, float(lowercase_ )) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]: """simple docstring""" _UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 ) _UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] _UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = list(lowercase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _UpperCamelCase : int = random.choice(lowercase_ ) return "".join(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]: """simple docstring""" _UpperCamelCase : Optional[Any] = [] # Generate more children proportionally to the fitness score. _UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1 _UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n for _ in range(lowercase_ ): _UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0] _UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ ) # Append new string to the population list. pop.append(mutate(lowercase_ ,lowercase_ ) ) pop.append(mutate(lowercase_ ,lowercase_ ) ) return pop def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowercase_ ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCamelCase : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowercase_ ) # Generate random starting population. _UpperCamelCase : Union[str, Any] = [] for _ in range(lowercase_ ): population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCamelCase, _UpperCamelCase : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population] # Check if there is a matching evolution. _UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCamelCase : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase_ ) # Normalize population score to be between 0 and 1. _UpperCamelCase : str = [ (item, score / len(lowercase_ )) for item, score in population_score ] # This is selection for i in range(lowercase_ ): population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase__ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase__ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
51
0
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if not is_accelerate_available(): return method _UpperCamelCase : str = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase_ ) < version.parse("0.17.0" ): return method def wrapper(self ,*lowercase_ ,**lowercase_ ): if hasattr(self ,"_hf_hook" ) and hasattr(self._hf_hook ,"pre_forward" ): self._hf_hook.pre_forward(self ) return method(self ,*lowercase_ ,**lowercase_ ) return wrapper
721
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ["model.decoder.embed_positions.weights"] def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if "emb" in name: _UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" ) if "transformer" in name: _UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" ) if "cross_attention" in name: _UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" ) if "linear1" in name: _UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" ) if "linear2" in name: _UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" ) if "norm1" in name: _UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" ) if "norm_cross" in name: _UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" ) if "norm2" in name: _UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" ) if "out_norm" in name: _UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" ) if "linears" in name: _UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]: """simple docstring""" _UpperCamelCase : str = list(state_dict.keys() ) _UpperCamelCase : Optional[Any] = {} for key in keys: _UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ ) _UpperCamelCase : List[Any] = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCamelCase : Tuple = val[:hidden_size, :] _UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _UpperCamelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCamelCase : Optional[Any] = val else: _UpperCamelCase : List[str] = val return state_dict, enc_dec_proj_state_dict def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values _UpperCamelCase : List[Any] = 1_024 _UpperCamelCase : List[str] = 24 _UpperCamelCase : Any = 16 elif checkpoint == "medium": _UpperCamelCase : Tuple = 1_536 _UpperCamelCase : Dict = 48 _UpperCamelCase : Tuple = 24 elif checkpoint == "large": _UpperCamelCase : int = 2_048 _UpperCamelCase : Optional[int] = 48 _UpperCamelCase : Dict = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _UpperCamelCase : str = MusicgenDecoderConfig( hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,) return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]: """simple docstring""" _UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ ) _UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ ) _UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict() _UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict( lowercase_ ,hidden_size=decoder_config.hidden_size ) _UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" ) _UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowercase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass _UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) _UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): _UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" ) _UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) # set the appropriate bos/pad token ids _UpperCamelCase : str = 2_048 _UpperCamelCase : str = 2_048 # set other default generation config params _UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate ) _UpperCamelCase : List[str] = True _UpperCamelCase : int = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowerCamelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
51
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=_UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = ["torch", "transformers", "onnx"] def __init__( self : Optional[int] , *__a : List[str] , **__a : str ) -> int: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , *__a : Dict , **__a : Dict ) -> Optional[Any]: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Any , *__a : Any , **__a : List[str] ) -> List[Any]: requires_backends(cls , ["torch", "transformers", "onnx"] ) class __SCREAMING_SNAKE_CASE ( metaclass=_UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ["torch", "transformers", "onnx"] def __init__( self : Tuple , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] , *__a : List[Any] , **__a : Any ) -> List[Any]: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , *__a : str , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ["torch", "transformers", "onnx"] ) class __SCREAMING_SNAKE_CASE ( metaclass=_UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = ["torch", "transformers", "onnx"] def __init__( self : Optional[Any] , *__a : int , **__a : int ) -> int: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *__a : Tuple , **__a : Union[str, Any] ) -> int: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[int]: requires_backends(cls , ["torch", "transformers", "onnx"] ) class __SCREAMING_SNAKE_CASE ( metaclass=_UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = ["torch", "transformers", "onnx"] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] , *__a : Tuple , **__a : Optional[Any] ) -> str: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : str , *__a : Optional[Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ["torch", "transformers", "onnx"] ) class __SCREAMING_SNAKE_CASE ( metaclass=_UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = ["torch", "transformers", "onnx"] def __init__( self : Optional[int] , *__a : Optional[int] , **__a : Dict ) -> Tuple: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Tuple , *__a : Optional[Any] , **__a : List[str] ) -> List[str]: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *__a : Optional[Any] , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ["torch", "transformers", "onnx"] ) class __SCREAMING_SNAKE_CASE ( metaclass=_UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = ["torch", "transformers", "onnx"] def __init__( self : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[Any]: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : List[Any] ) -> Tuple: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> str: requires_backends(cls , ["torch", "transformers", "onnx"] )
700
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase__ = input("Enter image url: ").strip() print(f"""Downloading image from {url} ...""") lowerCamelCase__ = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase__ = soup.find("meta", {"property": "og:image"})["content"] lowerCamelCase__ = requests.get(image_url).content lowerCamelCase__ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, "wb") as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
51
0
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : Dict , __a : str=13 , __a : List[str]=7 , __a : str=6 , __a : str=17 , __a : Optional[Any]=23 , __a : Optional[int]=11 , __a : Optional[int]=True , ) -> List[Any]: _UpperCamelCase : Union[str, Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Dict = seq_length _UpperCamelCase : Dict = act_dim _UpperCamelCase : str = state_dim _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[Any] = max_length _UpperCamelCase : str = is_training def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: _UpperCamelCase : List[str] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _UpperCamelCase : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _UpperCamelCase : str = floats_tensor((self.batch_size, self.seq_length, 1) ) _UpperCamelCase : str = floats_tensor((self.batch_size, self.seq_length, 1) ) _UpperCamelCase : Any = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) _UpperCamelCase : str = random_attention_mask((self.batch_size, self.seq_length) ) _UpperCamelCase : List[Any] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __SCREAMING_SNAKE_CASE ( self : int , __a : List[str] , __a : Optional[int] , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : str , __a : Tuple , ) -> Tuple: _UpperCamelCase : Any = DecisionTransformerModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = model(__a , __a , __a , __a , __a , __a ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : Any = self.prepare_config_and_inputs() ( _UpperCamelCase ) : Union[str, Any] = config_and_inputs _UpperCamelCase : Tuple = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ :List[str] = () SCREAMING_SNAKE_CASE__ :int = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids SCREAMING_SNAKE_CASE__ :Tuple = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features SCREAMING_SNAKE_CASE__ :Tuple = False SCREAMING_SNAKE_CASE__ :Any = False SCREAMING_SNAKE_CASE__ :Optional[int] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = False SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Optional[int] = False SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :List[str] = False def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: _UpperCamelCase : List[Any] = DecisionTransformerModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : int = DecisionTransformerModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Tuple = [*signature.parameters.keys()] _UpperCamelCase : List[str] = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(__a )] , __a ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : Tuple = 2 # number of steps of autoregressive prediction we will perform _UpperCamelCase : List[Any] = 10 # defined by the RL environment, may be normalized _UpperCamelCase : Tuple = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) _UpperCamelCase : Optional[Any] = model.to(__a ) _UpperCamelCase : str = model.config torch.manual_seed(0 ) _UpperCamelCase : List[str] = torch.randn(1 , 1 , config.state_dim ).to(device=__a , dtype=torch.floataa ) # env.reset() _UpperCamelCase : int = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=__a ) _UpperCamelCase : List[Any] = torch.tensor(__a , device=__a , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _UpperCamelCase : List[Any] = state _UpperCamelCase : Any = torch.zeros(1 , 0 , config.act_dim , device=__a , dtype=torch.floataa ) _UpperCamelCase : int = torch.zeros(1 , 0 , device=__a , dtype=torch.floataa ) _UpperCamelCase : List[Any] = torch.tensor(0 , device=__a , dtype=torch.long ).reshape(1 , 1 ) for step in range(__a ): _UpperCamelCase : Dict = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__a )] , dim=1 ) _UpperCamelCase : int = torch.cat([rewards, torch.zeros(1 , 1 , device=__a )] , dim=1 ) _UpperCamelCase : str = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _UpperCamelCase : Any = model( states=__a , actions=__a , rewards=__a , returns_to_go=__a , timesteps=__a , attention_mask=__a , return_dict=__a , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) _UpperCamelCase : Dict = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=__a , dtype=torch.floataa ), 1.0, False, {}, ) _UpperCamelCase : Tuple = action_pred[0, -1] _UpperCamelCase : Dict = torch.cat([states, state] , dim=1 ) _UpperCamelCase : Dict = returns_to_go[0, -1] - reward _UpperCamelCase : Optional[int] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _UpperCamelCase : Any = torch.cat( [timesteps, torch.ones((1, 1) , device=__a , dtype=torch.long ) * (step + 1)] , dim=1 )
701
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) _UpperCamelCase : str = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )] _UpperCamelCase : List[str] = ".".join(lowercase_ ) return test_module_path def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_module_path(lowercase_ ) _UpperCamelCase : str = importlib.import_module(lowercase_ ) return test_module def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[Any] = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowercase_ ,lowercase_ ) ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Any = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): _UpperCamelCase : int = getattr(lowercase_ ,lowercase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] ) if len(lowercase_ ) > 0: test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Dict = get_test_classes(lowercase_ ) _UpperCamelCase : int = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = test_class() if hasattr(lowercase_ ,"setUp" ): test.setUp() _UpperCamelCase : Tuple = None if hasattr(lowercase_ ,"model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCamelCase : Tuple = test.model_tester.__class__ return model_tester def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = get_test_classes(lowercase_ ) _UpperCamelCase : Dict = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = [] for test_class in test_classes: _UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ ) if tester_class is not None: tester_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Any = get_test_classes(lowercase_ ) _UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes} return test_tester_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Optional[int] = { model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_test_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Tuple = { model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_to_tester_mapping def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" if isinstance(lowercase_ ,lowercase_ ): return o elif isinstance(lowercase_ ,lowercase_ ): return o.__name__ elif isinstance(lowercase_ ,(list, tuple) ): return [to_json(lowercase_ ) for x in o] elif isinstance(lowercase_ ,lowercase_ ): return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()} else: return o
51
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Optional[int] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = StableDiffusionLatentUpscalePipeline SCREAMING_SNAKE_CASE__ :Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } SCREAMING_SNAKE_CASE__ :List[Any] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} SCREAMING_SNAKE_CASE__ :int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ :str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE__ :str = frozenset([] ) SCREAMING_SNAKE_CASE__ :Tuple = True @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Union[str, Any] = 4 _UpperCamelCase : Union[str, Any] = (16, 16) _UpperCamelCase : List[str] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: torch.manual_seed(0 ) _UpperCamelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=__a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=__a , only_cross_attention=__a , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) _UpperCamelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) _UpperCamelCase : Optional[Any] = EulerDiscreteScheduler(prediction_type="sample" ) _UpperCamelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="quick_gelu" , projection_dim=512 , ) _UpperCamelCase : List[str] = CLIPTextModel(__a ) _UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase : Any = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int , __a : Tuple=0 ) -> Dict: if str(__a ).startswith("mps" ): _UpperCamelCase : Dict = torch.manual_seed(__a ) else: _UpperCamelCase : int = torch.Generator(device=__a ).manual_seed(__a ) _UpperCamelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Tuple = "cpu" _UpperCamelCase : Optional[int] = self.get_dummy_components() _UpperCamelCase : Optional[int] = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _UpperCamelCase : Any = self.get_dummy_inputs(__a ) _UpperCamelCase : str = pipe(**__a ).images _UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) _UpperCamelCase : Optional[int] = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) _UpperCamelCase : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: super().test_save_load_local(expected_max_difference=3e-3 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase : Optional[int] = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] _UpperCamelCase : List[str] = self.get_dummy_components() _UpperCamelCase : Dict = self.pipeline_class(**__a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _UpperCamelCase : Tuple = self.get_dummy_inputs(__a ) _UpperCamelCase : Dict = 2 _UpperCamelCase : Optional[int] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _UpperCamelCase : Tuple = getattr(__a , scheduler_enum.name ) _UpperCamelCase : Optional[int] = scheduler_cls.from_config(pipe.scheduler.config ) _UpperCamelCase : List[str] = pipe(**__a )[0] outputs.append(__a ) assert check_same_shape(__a ) @require_torch_gpu @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : List[Any] = torch.manual_seed(33 ) _UpperCamelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) _UpperCamelCase : str = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) _UpperCamelCase : Any = "a photo of an astronaut high resolution, unreal engine, ultra realistic" _UpperCamelCase : Optional[int] = pipe(__a , generator=__a , output_type="latent" ).images _UpperCamelCase : Any = upscaler( prompt=__a , image=__a , num_inference_steps=20 , guidance_scale=0 , generator=__a , output_type="np" , ).images[0] _UpperCamelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5e-2 def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: _UpperCamelCase : int = torch.manual_seed(33 ) _UpperCamelCase : int = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) _UpperCamelCase : Optional[int] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" _UpperCamelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) _UpperCamelCase : str = upscaler( prompt=__a , image=__a , num_inference_steps=20 , guidance_scale=0 , generator=__a , output_type="np" , ).images[0] _UpperCamelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5e-2
702
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
51
0
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowercase__ ( lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : int = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" _UpperCamelCase : Any = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw ).convert("RGB" ) _UpperCamelCase : Dict = transforms.Compose( [ transforms.Resize((image_size, image_size) ,interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) ,(0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) _UpperCamelCase : int = transform(lowercase_ ).unsqueeze(0 ).to(lowercase_ ) return image def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if "visual_encoder" in key: _UpperCamelCase : List[Any] = re.sub("visual_encoder*" ,"vision_model.encoder" ,lowercase_ ) if "blocks" in key: _UpperCamelCase : str = re.sub(r"blocks" ,"layers" ,lowercase_ ) if "attn" in key: _UpperCamelCase : Union[str, Any] = re.sub(r"attn" ,"self_attn" ,lowercase_ ) if "norm1" in key: _UpperCamelCase : int = re.sub(r"norm1" ,"layer_norm1" ,lowercase_ ) if "norm2" in key: _UpperCamelCase : Optional[int] = re.sub(r"norm2" ,"layer_norm2" ,lowercase_ ) if "encoder.norm" in key: _UpperCamelCase : Tuple = re.sub(r"encoder.norm" ,"post_layernorm" ,lowercase_ ) if "encoder.patch_embed.proj" in key: _UpperCamelCase : Dict = re.sub(r"encoder.patch_embed.proj" ,"embeddings.patch_embedding" ,lowercase_ ) if "encoder.pos_embed" in key: _UpperCamelCase : List[Any] = re.sub(r"encoder.pos_embed" ,"embeddings.position_embedding" ,lowercase_ ) if "encoder.cls_token" in key: _UpperCamelCase : int = re.sub(r"encoder.cls_token" ,"embeddings.class_embedding" ,lowercase_ ) if "self_attn" in key: _UpperCamelCase : Optional[int] = re.sub(r"self_attn.proj" ,"self_attn.projection" ,lowercase_ ) return key @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_=None ) -> Tuple: """simple docstring""" if config_path is not None: _UpperCamelCase : Dict = BlipConfig.from_pretrained(lowercase_ ) else: _UpperCamelCase : List[str] = BlipConfig(projection_dim=512 ,text_config={} ,vision_config={} ) _UpperCamelCase : Optional[int] = BlipForConditionalGeneration(lowercase_ ).eval() _UpperCamelCase : Dict = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" _UpperCamelCase : Union[str, Any] = blip_decoder(pretrained=lowercase_ ,image_size=384 ,vit="base" ) _UpperCamelCase : Union[str, Any] = pt_model.eval() _UpperCamelCase : Optional[Any] = pt_model.state_dict() for key in modified_state_dict.copy(): _UpperCamelCase : List[Any] = modified_state_dict.pop(lowercase_ ) _UpperCamelCase : List[Any] = rename_key(lowercase_ ) _UpperCamelCase : Any = value hf_model.load_state_dict(lowercase_ ) _UpperCamelCase : Optional[int] = 384 _UpperCamelCase : int = load_demo_image(image_size=lowercase_ ,device="cpu" ) _UpperCamelCase : List[Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _UpperCamelCase : Union[str, Any] = tokenizer(["a picture of"] ).input_ids _UpperCamelCase : Optional[int] = hf_model.generate(lowercase_ ,lowercase_ ) assert out[0].tolist() == [30_522, 1_037, 3_861, 1_997, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] _UpperCamelCase : List[str] = hf_model.generate(lowercase_ ) assert out[0].tolist() == [30_522, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _UpperCamelCase : List[Any] = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) _UpperCamelCase : List[str] = blip_vqa(pretrained=lowercase_ ,image_size=lowercase_ ,vit="base" ) vqa_model.eval() _UpperCamelCase : List[str] = vqa_model.state_dict() for key in modified_state_dict.copy(): _UpperCamelCase : Any = modified_state_dict.pop(lowercase_ ) _UpperCamelCase : Any = rename_key(lowercase_ ) _UpperCamelCase : Union[str, Any] = value _UpperCamelCase : List[Any] = BlipForQuestionAnswering(lowercase_ ) hf_vqa_model.load_state_dict(lowercase_ ) _UpperCamelCase : Any = ["How many dogs are in this image?"] _UpperCamelCase : int = tokenizer(lowercase_ ,return_tensors="pt" ).input_ids _UpperCamelCase : Tuple = hf_vqa_model.generate(lowercase_ ,lowercase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa" ) _UpperCamelCase : List[Any] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" _UpperCamelCase : Optional[Any] = blip_itm(pretrained=lowercase_ ,image_size=lowercase_ ,vit="base" ) itm_model.eval() _UpperCamelCase : str = itm_model.state_dict() for key in modified_state_dict.copy(): _UpperCamelCase : Optional[Any] = modified_state_dict.pop(lowercase_ ) _UpperCamelCase : Tuple = rename_key(lowercase_ ) _UpperCamelCase : List[str] = value _UpperCamelCase : Union[str, Any] = BlipForImageTextRetrieval(lowercase_ ) _UpperCamelCase : Dict = ["A picture of a woman with a dog sitting in a beach"] _UpperCamelCase : List[Any] = tokenizer( lowercase_ ,return_tensors="pt" ,padding="max_length" ,truncation=lowercase_ ,max_length=35 ,).input_ids hf_itm_model.load_state_dict(lowercase_ ) hf_itm_model.eval() _UpperCamelCase : Optional[Any] = hf_itm_model(lowercase_ ,lowercase_ ,use_itm_head=lowercase_ ) _UpperCamelCase : Any = hf_itm_model(lowercase_ ,lowercase_ ,use_itm_head=lowercase_ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] ,dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowerCamelCase__ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
703
"""simple docstring""" lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
51
0
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : List[str] , __a : str , __a : Union[str, Any]=13 , __a : int=7 , __a : Optional[int]=True , __a : List[str]=True , __a : List[str]=False , __a : Optional[int]=True , __a : List[Any]=99 , __a : Union[str, Any]=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Optional[int]="gelu" , __a : Any=0.1 , __a : List[Any]=0.1 , __a : Union[str, Any]=512 , __a : Tuple=16 , __a : Union[str, Any]=2 , __a : List[Any]=0.02 , __a : Tuple=3 , __a : Dict=4 , __a : List[Any]=None , ) -> Any: _UpperCamelCase : List[Any] = parent _UpperCamelCase : Tuple = batch_size _UpperCamelCase : Optional[int] = seq_length _UpperCamelCase : Optional[Any] = is_training _UpperCamelCase : int = use_input_mask _UpperCamelCase : Any = use_token_type_ids _UpperCamelCase : Any = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : List[str] = max_position_embeddings _UpperCamelCase : Optional[int] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : Union[str, Any] = num_labels _UpperCamelCase : Optional[Any] = num_choices _UpperCamelCase : int = scope def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : Union[str, Any] = None if self.use_input_mask: _UpperCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : Any = None _UpperCamelCase : List[Any] = None _UpperCamelCase : Tuple = None if self.use_labels: _UpperCamelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Any , __a : str , __a : int , __a : List[Any] , __a : int , __a : Any ) -> str: _UpperCamelCase : Any = DistilBertModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Dict = model(__a , __a ) _UpperCamelCase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : Optional[Any] , __a : List[Any] , __a : List[str] , __a : Optional[Any] , __a : Any ) -> int: _UpperCamelCase : List[Any] = DistilBertForMaskedLM(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Tuple , __a : Tuple , __a : int , __a : Dict , __a : Tuple , __a : Optional[Any] ) -> Optional[Any]: _UpperCamelCase : Union[str, Any] = DistilBertForQuestionAnswering(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Union[str, Any] = model( __a , attention_mask=__a , start_positions=__a , end_positions=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int , __a : Any , __a : Optional[int] , __a : Optional[int] , __a : int , __a : List[str] ) -> Optional[int]: _UpperCamelCase : str = self.num_labels _UpperCamelCase : List[str] = DistilBertForSequenceClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[int] , __a : Any , __a : str , __a : Optional[Any] , __a : Tuple , __a : Dict ) -> str: _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Dict = DistilBertForTokenClassification(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : List[Any] , __a : int , __a : Dict , __a : str , __a : Union[str, Any] , __a : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : Tuple = self.num_choices _UpperCamelCase : List[Any] = DistilBertForMultipleChoice(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase : int = model( __a , attention_mask=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : Any = self.prepare_config_and_inputs() (_UpperCamelCase) : List[str] = config_and_inputs _UpperCamelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE__ :Dict = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :List[str] = True SCREAMING_SNAKE_CASE__ :Optional[int] = True SCREAMING_SNAKE_CASE__ :Optional[Any] = True SCREAMING_SNAKE_CASE__ :str = True def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: _UpperCamelCase : Tuple = DistilBertModelTester(self ) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__a , dim=37 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[int] = DistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @slow @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _UpperCamelCase : Tuple = True _UpperCamelCase : Tuple = model_class(config=__a ) _UpperCamelCase : int = self._prepare_for_class(__a , __a ) _UpperCamelCase : str = torch.jit.trace( __a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__a , os.path.join(__a , "traced_model.pt" ) ) _UpperCamelCase : Optional[int] = torch.jit.load(os.path.join(__a , "traced_model.pt" ) , map_location=__a ) loaded(inputs_dict["input_ids"].to(__a ) , inputs_dict["attention_mask"].to(__a ) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: _UpperCamelCase : List[Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) _UpperCamelCase : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCamelCase : Any = model(__a , attention_mask=__a )[0] _UpperCamelCase : str = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __a ) _UpperCamelCase : Optional[int] = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4 ) )
704
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: _UpperCamelCase : Tuple = tempfile.mkdtemp() _UpperCamelCase : str = 5 # Realm tok _UpperCamelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) _UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : Any = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : int = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=__a , ) return block_records def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : Tuple = self.get_config() _UpperCamelCase : int = self.get_dummy_retriever() _UpperCamelCase : Tuple = retriever.tokenizer _UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" ) _UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : List[str] = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : str = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Any = self.get_config() _UpperCamelCase : Dict = self.get_dummy_retriever() _UpperCamelCase : Dict = retriever.tokenizer _UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" ) _UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : str = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : Union[str, Any] = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCamelCase : List[Any] = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
51
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Dict , *__a : Optional[int] , **__a : Dict ) -> None: warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
705
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = LEDConfig SCREAMING_SNAKE_CASE__ :str = {} SCREAMING_SNAKE_CASE__ :List[str] = "gelu" def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]: _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : List[str] = batch_size _UpperCamelCase : str = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : str = max_position_embeddings _UpperCamelCase : int = eos_token_id _UpperCamelCase : Dict = pad_token_id _UpperCamelCase : Optional[Any] = bos_token_id _UpperCamelCase : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCamelCase : List[str] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a ) _UpperCamelCase : Union[str, Any] = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) _UpperCamelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple: _UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder() _UpperCamelCase : Tuple = inputs_dict["input_ids"] _UpperCamelCase : int = input_ids[:1, :] _UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :] _UpperCamelCase : List[Any] = 1 # first forward pass _UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0] _UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict: """simple docstring""" if attention_mask is None: _UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :Tuple = True SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : int = TFLEDModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] ) _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : str = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) _UpperCamelCase : Dict = True _UpperCamelCase : str = self.model_tester.seq_length _UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a : Optional[int] ): _UpperCamelCase : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a : Optional[Any] ): _UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] _UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCamelCase : Dict = True _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Any = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: _UpperCamelCase : Optional[Any] = model_class(__a ) _UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase : int = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine _UpperCamelCase : Any = True _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: # TODO: Head-masking not yet implement pass def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return tf.constant(lowercase_ ,dtype=tf.intaa ) lowerCamelCase__ = 1E-4 @slow @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Optional[int] = model(**__a )[0] _UpperCamelCase : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Tuple = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Union[str, Any] = model(**__a )[0] _UpperCamelCase : int = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Optional[int] = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
51
0
"""simple docstring""" import os def lowercase__ ( ) -> List[str]: """simple docstring""" with open(os.path.dirname(lowercase_ ) + "/p022_names.txt" ) as file: _UpperCamelCase : Optional[Any] = str(file.readlines()[0] ) _UpperCamelCase : Any = names.replace("\"" ,"" ).split("," ) names.sort() _UpperCamelCase : List[str] = 0 _UpperCamelCase : Union[str, Any] = 0 for i, name in enumerate(lowercase_ ): for letter in name: name_score += ord(lowercase_ ) - 64 total_score += (i + 1) * name_score _UpperCamelCase : List[Any] = 0 return total_score if __name__ == "__main__": print(solution())
706
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer SCREAMING_SNAKE_CASE__ :Dict = None SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = True SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().setUp() _UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] _UpperCamelCase : List[str] = {} _UpperCamelCase : Tuple = {} for i, value in enumerate(__a ): _UpperCamelCase : List[str] = i _UpperCamelCase : Optional[Any] = i _UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) _UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(__a , __a , ensure_ascii=__a ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(__a , __a , ensure_ascii=__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: _UpperCamelCase : Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: _UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _UpperCamelCase : Any = {} for i, token in enumerate(__a ): _UpperCamelCase : str = i _UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: _UpperCamelCase : Tuple = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) _UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False _UpperCamelCase : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = ["的", "人", "有"] _UpperCamelCase : int = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = True _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Any = False _UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". _UpperCamelCase : Any = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a ) _UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a ) _UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : int = "你好,你是谁" _UpperCamelCase : Any = tokenizer.tokenize(__a ) _UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a ) _UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a ) _UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a ) _UpperCamelCase : Optional[int] = tokenizer.prepare_for_model( __a , __a , __a , add_special_tokens=__a ) _UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a ) self.assertEqual(__a , __a )
51
0
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase__ = "src/transformers" lowerCamelCase__ = "docs/source/en" lowerCamelCase__ = "." def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f: _UpperCamelCase : Union[str, Any] = f.readlines() # Find the start prompt. _UpperCamelCase : Dict = 0 while not lines[start_index].startswith(lowercase_ ): start_index += 1 start_index += 1 _UpperCamelCase : Optional[int] = start_index while not lines[end_index].startswith(lowercase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ ) return [m.group(0 ) for m in matches] def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ ) _UpperCamelCase : Union[str, Any] = (width - text_length) // 2 _UpperCamelCase : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : str = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : str = collections.defaultdict(lowercase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowercase_ ): _UpperCamelCase : List[str] = None if attr_name.endswith("Tokenizer" ): _UpperCamelCase : Tuple = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _UpperCamelCase : Optional[Any] = fast_tokenizers _UpperCamelCase : List[str] = attr_name[:-13] elif _re_tf_models.match(lowercase_ ) is not None: _UpperCamelCase : List[Any] = tf_models _UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0] elif _re_flax_models.match(lowercase_ ) is not None: _UpperCamelCase : Dict = flax_models _UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0] elif _re_pt_models.match(lowercase_ ) is not None: _UpperCamelCase : Optional[int] = pt_models _UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0] if lookup_dict is not None: while len(lowercase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Dict = True break # Try again after removing the last word in the name _UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] ) # Let's build that table! _UpperCamelCase : Any = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns] _UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"} for name in model_names: _UpperCamelCase : Optional[int] = model_name_to_prefix[name] _UpperCamelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" return table def lowercase__ ( lowercase_=False ) -> List[Any]: """simple docstring""" _UpperCamelCase : str = _find_text_in_file( filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,) _UpperCamelCase : Any = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
707
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = "yolos" def __init__( self : Dict , __a : Optional[Any]=768 , __a : List[Any]=12 , __a : Any=12 , __a : List[Any]=3072 , __a : Optional[int]="gelu" , __a : Dict=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.02 , __a : Optional[int]=1e-1_2 , __a : List[Any]=[512, 864] , __a : List[str]=16 , __a : str=3 , __a : Optional[Any]=True , __a : Optional[Any]=100 , __a : List[str]=True , __a : Any=False , __a : List[str]=1 , __a : str=5 , __a : Optional[Any]=2 , __a : Tuple=5 , __a : Any=2 , __a : Union[str, Any]=0.1 , **__a : List[str] , ) -> List[str]: super().__init__(**__a ) _UpperCamelCase : Dict = hidden_size _UpperCamelCase : Any = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Tuple = image_size _UpperCamelCase : Tuple = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : Any = qkv_bias _UpperCamelCase : str = num_detection_tokens _UpperCamelCase : str = use_mid_position_embeddings _UpperCamelCase : List[str] = auxiliary_loss # Hungarian matcher _UpperCamelCase : List[Any] = class_cost _UpperCamelCase : int = bbox_cost _UpperCamelCase : Optional[int] = giou_cost # Loss coefficients _UpperCamelCase : List[Any] = bbox_loss_coefficient _UpperCamelCase : str = giou_loss_coefficient _UpperCamelCase : Dict = eos_coefficient class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float: return 1e-4 @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return 12
51
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , __a : Optional[int] , __a : List[str]=13 , __a : Optional[Any]=3 , __a : Optional[Any]=224 , __a : str=30 , __a : Optional[Any]=400 , __a : List[Any]=True , __a : Any=None , __a : Union[str, Any]=True , __a : Dict=[0.5, 0.5, 0.5] , __a : str=[0.5, 0.5, 0.5] , ) -> Tuple: _UpperCamelCase : Any = size if size is not None else {"height": 18, "width": 18} _UpperCamelCase : Dict = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = image_size _UpperCamelCase : Optional[int] = min_resolution _UpperCamelCase : int = max_resolution _UpperCamelCase : str = do_resize _UpperCamelCase : Tuple = size _UpperCamelCase : int = do_normalize _UpperCamelCase : int = image_mean _UpperCamelCase : Tuple = image_std def __SCREAMING_SNAKE_CASE ( self : str ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ViTImageProcessor if is_vision_available() else None def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: _UpperCamelCase : str = EfficientFormerImageProcessorTester(self ) @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: return self.image_proc_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: _UpperCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "image_mean" ) ) self.assertTrue(hasattr(__a , "image_std" ) ) self.assertTrue(hasattr(__a , "do_normalize" ) ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "size" ) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: pass def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: # Initialize image_processor _UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input _UpperCamelCase : Union[str, Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched _UpperCamelCase : Any = image_processor(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: # Initialize image_processor _UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input _UpperCamelCase : Optional[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched _UpperCamelCase : Optional[Any] = image_processor(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: # Initialize image_processor _UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input _UpperCamelCase : List[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched _UpperCamelCase : Tuple = image_processor(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
708
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCamelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase] lowerCamelCase__ = {ord(char) for char in VALID_CHARS} lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None: """simple docstring""" _UpperCamelCase : str = "" _UpperCamelCase : int _UpperCamelCase : int _UpperCamelCase : int for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ): _UpperCamelCase : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase_ ) return decoded def lowercase__ ( lowercase_ ) -> list[str]: """simple docstring""" _UpperCamelCase : list[str] = [] for key in product(lowercase_ ,repeat=3 ): _UpperCamelCase : int = try_key(lowercase_ ,lowercase_ ) if encoded is not None: possibles.append(lowercase_ ) return possibles def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int: """simple docstring""" _UpperCamelCase : list[int] _UpperCamelCase : list[str] _UpperCamelCase : str _UpperCamelCase : str _UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" ) _UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )] _UpperCamelCase : List[str] = filter_valid_chars(lowercase_ ) for common_word in COMMON_WORDS: _UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ ) if len(lowercase_ ) == 1: break _UpperCamelCase : Union[str, Any] = possibles[0] return sum(ord(lowercase_ ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
51
0
def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = len(lowercase_ ) for i in range(length - 1 ): _UpperCamelCase : Optional[int] = i for k in range(i + 1 ,lowercase_ ): if collection[k] < collection[least]: _UpperCamelCase : List[str] = k if least != i: _UpperCamelCase : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": lowerCamelCase__ = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase__ = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
709
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ) -> None: """simple docstring""" _UpperCamelCase : List[Any] = len(lowercase_ ) print("The following activities are selected:" ) # The first activity is always selected _UpperCamelCase : List[Any] = 0 print(lowercase_ ,end="," ) # Consider rest of the activities for j in range(lowercase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase_ ,end="," ) _UpperCamelCase : Optional[Any] = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = [1, 3, 0, 5, 8, 5] lowerCamelCase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
51
0
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , __a : str , __a : List[Any]=2 , __a : int=8 , __a : Dict=True , __a : Tuple=True , __a : List[str]=True , __a : Dict=True , __a : List[str]=99 , __a : Union[str, Any]=16 , __a : Any=5 , __a : Any=2 , __a : Any=36 , __a : Tuple="gelu" , __a : Dict=0.0 , __a : Optional[int]=0.0 , __a : str=512 , __a : Optional[int]=16 , __a : Dict=2 , __a : Dict=0.02 , __a : Any=3 , __a : List[str]=4 , __a : Optional[int]=None , ) -> Any: _UpperCamelCase : Any = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Optional[int] = seq_length _UpperCamelCase : Union[str, Any] = is_training _UpperCamelCase : Optional[int] = use_input_mask _UpperCamelCase : Dict = use_token_type_ids _UpperCamelCase : int = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : Optional[Any] = hidden_act _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = max_position_embeddings _UpperCamelCase : Tuple = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : List[str] = num_labels _UpperCamelCase : Dict = num_choices _UpperCamelCase : Any = scope def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : List[Any] = None if self.use_input_mask: _UpperCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : List[str] = None if self.use_token_type_ids: _UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase : List[Any] = None _UpperCamelCase : List[str] = None _UpperCamelCase : List[str] = None if self.use_labels: _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : List[Any] = self.get_config() _UpperCamelCase : List[str] = 300 return config def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: ( _UpperCamelCase ) : Union[str, Any] = self.prepare_config_and_inputs() _UpperCamelCase : Optional[int] = True _UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[str] , __a : Tuple , __a : Tuple , __a : List[Any] , __a : Optional[int] , __a : List[str] , __a : Union[str, Any] ) -> Tuple: _UpperCamelCase : Optional[Any] = MraModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = model(__a , attention_mask=__a , token_type_ids=__a ) _UpperCamelCase : str = model(__a , token_type_ids=__a ) _UpperCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Any , __a : Optional[Any] , __a : int , __a : List[str] , __a : str , __a : Tuple , __a : Optional[int] , __a : Optional[int] , __a : int , ) -> int: _UpperCamelCase : List[Any] = True _UpperCamelCase : str = MraModel(__a ) model.to(__a ) model.eval() _UpperCamelCase : str = model( __a , attention_mask=__a , token_type_ids=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , ) _UpperCamelCase : List[str] = model( __a , attention_mask=__a , token_type_ids=__a , encoder_hidden_states=__a , ) _UpperCamelCase : Dict = model(__a , attention_mask=__a , token_type_ids=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : int , __a : List[str] , __a : int , __a : int ) -> int: _UpperCamelCase : Tuple = MraForMaskedLM(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int , __a : int , __a : int , __a : Any , __a : List[str] , __a : List[str] , __a : Dict ) -> str: _UpperCamelCase : Union[str, Any] = MraForQuestionAnswering(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : List[Any] = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Dict , __a : Any , __a : Any , __a : Optional[Any] , __a : List[Any] , __a : Optional[int] , __a : Any ) -> Optional[Any]: _UpperCamelCase : List[Any] = self.num_labels _UpperCamelCase : Optional[int] = MraForSequenceClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : int = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : str , __a : Tuple , __a : int , __a : Any , __a : Optional[int] , __a : str , __a : str ) -> int: _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Tuple = MraForTokenClassification(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Union[str, Any] , __a : Optional[Any] , __a : Any , __a : Optional[int] , __a : str , __a : Any , __a : Any ) -> str: _UpperCamelCase : Tuple = self.num_choices _UpperCamelCase : Optional[int] = MraForMultipleChoice(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase : Optional[int] = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( _UpperCamelCase ) : int = config_and_inputs _UpperCamelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = False SCREAMING_SNAKE_CASE__ :List[Any] = () def __SCREAMING_SNAKE_CASE ( self : int ) -> Any: _UpperCamelCase : Optional[int] = MraModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Dict: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCamelCase : Tuple = type self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Tuple = MraModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip(reason="MRA does not output attentions" ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: return @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: _UpperCamelCase : Tuple = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) _UpperCamelCase : Optional[Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _UpperCamelCase : Dict = model(__a )[0] _UpperCamelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __a ) _UpperCamelCase : Any = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: _UpperCamelCase : List[Any] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) _UpperCamelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _UpperCamelCase : Optional[int] = model(__a )[0] _UpperCamelCase : int = 5_0265 _UpperCamelCase : str = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __a ) _UpperCamelCase : List[str] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: _UpperCamelCase : Dict = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) _UpperCamelCase : Any = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): _UpperCamelCase : Any = model(__a )[0] _UpperCamelCase : Any = 5_0265 _UpperCamelCase : str = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __a ) _UpperCamelCase : List[str] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
710
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict: super().__init__() _UpperCamelCase : List[str] = layers_per_block _UpperCamelCase : Dict = torch.nn.Convad( __a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : int = None _UpperCamelCase : Any = nn.ModuleList([] ) # down _UpperCamelCase : List[str] = block_out_channels[0] for i, down_block_type in enumerate(__a ): _UpperCamelCase : Tuple = output_channel _UpperCamelCase : int = block_out_channels[i] _UpperCamelCase : int = i == len(__a ) - 1 _UpperCamelCase : Dict = get_down_block( __a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , ) self.down_blocks.append(__a ) # mid _UpperCamelCase : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # out _UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : Any = nn.SiLU() _UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels _UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 ) _UpperCamelCase : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]: _UpperCamelCase : int = x _UpperCamelCase : Optional[int] = self.conv_in(__a ) if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Tuple ): def custom_forward(*__a : Any ): return module(*__a ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , use_reentrant=__a ) # middle _UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , use_reentrant=__a ) else: for down_block in self.down_blocks: _UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a ) # middle _UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a ) else: # down for down_block in self.down_blocks: _UpperCamelCase : int = down_block(__a ) # middle _UpperCamelCase : int = self.mid_block(__a ) # post-process _UpperCamelCase : Any = self.conv_norm_out(__a ) _UpperCamelCase : Any = self.conv_act(__a ) _UpperCamelCase : Optional[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str: super().__init__() _UpperCamelCase : List[Any] = layers_per_block _UpperCamelCase : Tuple = nn.Convad( __a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = nn.ModuleList([] ) _UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None # mid _UpperCamelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # up _UpperCamelCase : List[str] = list(reversed(__a ) ) _UpperCamelCase : int = reversed_block_out_channels[0] for i, up_block_type in enumerate(__a ): _UpperCamelCase : int = output_channel _UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i] _UpperCamelCase : Optional[Any] = i == len(__a ) - 1 _UpperCamelCase : Union[str, Any] = get_up_block( __a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , ) self.up_blocks.append(__a ) _UpperCamelCase : Optional[Any] = output_channel # out if norm_type == "spatial": _UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a ) else: _UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : str = nn.SiLU() _UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 ) _UpperCamelCase : Dict = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple: _UpperCamelCase : List[str] = z _UpperCamelCase : Dict = self.conv_in(__a ) _UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Any ): def custom_forward(*__a : Tuple ): return module(*__a ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle _UpperCamelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a ) _UpperCamelCase : Optional[int] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , __a , use_reentrant=__a ) else: # middle _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a ) _UpperCamelCase : Union[str, Any] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a ) else: # middle _UpperCamelCase : str = self.mid_block(__a , __a ) _UpperCamelCase : int = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : Any = up_block(__a , __a ) # post-process if latent_embeds is None: _UpperCamelCase : List[str] = self.conv_norm_out(__a ) else: _UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a ) _UpperCamelCase : Tuple = self.conv_act(__a ) _UpperCamelCase : List[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]: super().__init__() _UpperCamelCase : Tuple = n_e _UpperCamelCase : Tuple = vq_embed_dim _UpperCamelCase : Union[str, Any] = beta _UpperCamelCase : str = legacy _UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCamelCase : Any = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) _UpperCamelCase : Dict = self.used.shape[0] _UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase : Optional[int] = self.re_embed _UpperCamelCase : Any = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: _UpperCamelCase : Union[str, Any] = n_e _UpperCamelCase : List[str] = sane_index_shape def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]: _UpperCamelCase : str = inds.shape assert len(__a ) > 1 _UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[Any] = self.used.to(__a ) _UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase : Optional[Any] = match.argmax(-1 ) _UpperCamelCase : Any = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCamelCase : Dict = self.unknown_index return new.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]: _UpperCamelCase : int = inds.shape assert len(__a ) > 1 _UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[int] = self.used.to(__a ) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase : int = 0 # simply set to zero _UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a ) return back.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]: # reshape z -> (batch, height, width, channel) and flatten _UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCamelCase : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 ) _UpperCamelCase : int = self.embedding(__a ).view(z.shape ) _UpperCamelCase : str = None _UpperCamelCase : Any = None # compute loss for embedding if not self.legacy: _UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCamelCase : List[str] = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCamelCase : Dict = self.remap_to_used(__a ) _UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: _UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCamelCase : str = self.unmap_to_all(__a ) _UpperCamelCase : int = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCamelCase : Optional[int] = self.embedding(__a ) if shape is not None: _UpperCamelCase : Tuple = z_q.view(__a ) # reshape back to match original input shape _UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int: _UpperCamelCase : Dict = parameters _UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 ) _UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 ) _UpperCamelCase : Union[str, Any] = deterministic _UpperCamelCase : Dict = torch.exp(0.5 * self.logvar ) _UpperCamelCase : Any = torch.exp(self.logvar ) if self.deterministic: _UpperCamelCase : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype _UpperCamelCase : List[Any] = randn_tensor( self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCamelCase : List[Any] = self.mean + self.std * sample return x def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int: if self.deterministic: return torch.Tensor([0.0] ) _UpperCamelCase : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: return self.mean
51
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" return len(set(lowercase_ ) ) == len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"summary": Value("string" )} ) SCREAMING_SNAKE_CASE__ :str = "text" SCREAMING_SNAKE_CASE__ :str = "summary" @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
51
0
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[int] = None if token is not None: _UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) _UpperCamelCase : Any = "636036" _UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' _UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json() return result["workflow_runs"] def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ ) _UpperCamelCase : Tuple = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCamelCase : Union[str, Any] = workflow_run["id"] break return workflow_run_id def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: _UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCamelCase : Dict = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = {} for artifact_name in artifact_names: _UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' ) if os.path.isfile(lowercase_ ): _UpperCamelCase : int = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: _UpperCamelCase : int = f.read().decode("UTF-8" ) return results
712
"""simple docstring""" def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : Union[str, Any] = set() # edges = list of graph's edges _UpperCamelCase : Union[str, Any] = get_edges(lowercase_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCamelCase, _UpperCamelCase : str = edges.pop() chosen_vertices.add(lowercase_ ) chosen_vertices.add(lowercase_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase_ ) return chosen_vertices def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
51
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowerCamelCase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] lowerCamelCase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = "whisper" SCREAMING_SNAKE_CASE__ :Dict = ["past_key_values"] SCREAMING_SNAKE_CASE__ :List[Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , __a : Dict=5_1865 , __a : Tuple=80 , __a : Optional[Any]=6 , __a : List[Any]=4 , __a : Any=6 , __a : Tuple=4 , __a : List[str]=1536 , __a : str=1536 , __a : Any=0.0 , __a : List[str]=0.0 , __a : Dict=5_0257 , __a : str=True , __a : Optional[Any]=True , __a : Optional[Any]="gelu" , __a : Optional[int]=256 , __a : List[Any]=0.0 , __a : Dict=0.0 , __a : List[Any]=0.0 , __a : int=0.02 , __a : Optional[Any]=False , __a : Optional[Any]=1500 , __a : List[str]=448 , __a : Union[str, Any]=5_0256 , __a : List[str]=5_0256 , __a : Any=5_0256 , __a : str=None , __a : List[Any]=[220, 5_0256] , __a : int=False , __a : str=256 , __a : Any=False , __a : Optional[Any]=0.05 , __a : Union[str, Any]=10 , __a : int=2 , __a : int=0.0 , __a : Optional[int]=10 , __a : str=0 , __a : Any=7 , **__a : Tuple , ) -> Tuple: _UpperCamelCase : Tuple = vocab_size _UpperCamelCase : List[Any] = num_mel_bins _UpperCamelCase : Union[str, Any] = d_model _UpperCamelCase : Tuple = encoder_layers _UpperCamelCase : Any = encoder_attention_heads _UpperCamelCase : List[Any] = decoder_layers _UpperCamelCase : int = decoder_attention_heads _UpperCamelCase : Dict = decoder_ffn_dim _UpperCamelCase : Tuple = encoder_ffn_dim _UpperCamelCase : Tuple = dropout _UpperCamelCase : Union[str, Any] = attention_dropout _UpperCamelCase : int = activation_dropout _UpperCamelCase : int = activation_function _UpperCamelCase : str = init_std _UpperCamelCase : List[Any] = encoder_layerdrop _UpperCamelCase : Tuple = decoder_layerdrop _UpperCamelCase : List[Any] = use_cache _UpperCamelCase : List[str] = encoder_layers _UpperCamelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCamelCase : Dict = max_source_positions _UpperCamelCase : Dict = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. _UpperCamelCase : Union[str, Any] = classifier_proj_size _UpperCamelCase : List[str] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase : Tuple = apply_spec_augment _UpperCamelCase : List[Any] = mask_time_prob _UpperCamelCase : List[Any] = mask_time_length _UpperCamelCase : Tuple = mask_time_min_masks _UpperCamelCase : List[Any] = mask_feature_prob _UpperCamelCase : str = mask_feature_length _UpperCamelCase : int = mask_feature_min_masks _UpperCamelCase : Union[str, Any] = median_filter_width super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , suppress_tokens=__a , begin_suppress_tokens=__a , **__a , ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: _UpperCamelCase : int = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: _UpperCamelCase : Union[str, Any] = {0: "batch"} else: _UpperCamelCase : Optional[int] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__a , direction="inputs" ) return common_inputs def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 2_2050 , __a : float = 5.0 , __a : int = 220 , ) -> Mapping[str, Any]: _UpperCamelCase : str = OrderedDict() _UpperCamelCase : str = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=__a , framework=__a , sampling_rate=__a , time_duration=__a , frequency=__a , ) _UpperCamelCase : List[str] = encoder_inputs["input_features"].shape[2] _UpperCamelCase : Union[str, Any] = encoder_sequence_length // 2 if self.use_past else seq_length _UpperCamelCase : Dict = super().generate_dummy_inputs( preprocessor.tokenizer , __a , __a , __a , __a ) _UpperCamelCase : int = encoder_inputs.pop("input_features" ) _UpperCamelCase : List[Any] = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: _UpperCamelCase : Optional[int] = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def __SCREAMING_SNAKE_CASE ( self : str ) -> float: return 1e-3
713
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["OwlViTFeatureExtractor"] lowerCamelCase__ = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = "speech_to_text" SCREAMING_SNAKE_CASE__ :Any = ["past_key_values"] SCREAMING_SNAKE_CASE__ :int = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , __a : Optional[int]=1_0000 , __a : Optional[Any]=12 , __a : Optional[int]=2048 , __a : Optional[int]=4 , __a : List[Any]=6 , __a : Optional[Any]=2048 , __a : List[str]=4 , __a : Dict=0.0 , __a : Union[str, Any]=0.0 , __a : Union[str, Any]=True , __a : int=True , __a : Union[str, Any]="relu" , __a : Union[str, Any]=256 , __a : List[str]=0.1 , __a : Any=0.0 , __a : Any=0.0 , __a : List[str]=0.02 , __a : List[str]=2 , __a : Optional[int]=True , __a : int=1 , __a : Optional[int]=0 , __a : Dict=2 , __a : Tuple=6000 , __a : Optional[Any]=1024 , __a : Union[str, Any]=2 , __a : str=(5, 5) , __a : Dict=1024 , __a : List[Any]=80 , __a : Dict=1 , **__a : Optional[int] , ) -> Optional[int]: _UpperCamelCase : List[str] = vocab_size _UpperCamelCase : Any = d_model _UpperCamelCase : Tuple = encoder_ffn_dim _UpperCamelCase : List[str] = encoder_layers _UpperCamelCase : str = encoder_attention_heads _UpperCamelCase : List[str] = decoder_ffn_dim _UpperCamelCase : Any = decoder_layers _UpperCamelCase : List[str] = decoder_attention_heads _UpperCamelCase : Union[str, Any] = dropout _UpperCamelCase : List[str] = attention_dropout _UpperCamelCase : Optional[int] = activation_dropout _UpperCamelCase : int = activation_function _UpperCamelCase : Dict = init_std _UpperCamelCase : List[Any] = encoder_layerdrop _UpperCamelCase : Optional[int] = decoder_layerdrop _UpperCamelCase : List[str] = use_cache _UpperCamelCase : str = encoder_layers _UpperCamelCase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCamelCase : Any = max_source_positions _UpperCamelCase : Optional[Any] = max_target_positions _UpperCamelCase : Optional[Any] = num_conv_layers _UpperCamelCase : Tuple = list(__a ) _UpperCamelCase : Optional[int] = conv_channels _UpperCamelCase : List[Any] = input_feat_per_channel _UpperCamelCase : List[str] = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
714
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int: """simple docstring""" _UpperCamelCase : defaultdict = defaultdict(lowercase_ ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _UpperCamelCase : Any = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: _UpperCamelCase : str = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
51
0
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: _UpperCamelCase : Optional[Any] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__a ) ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: _UpperCamelCase : Any = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__a ) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> int: _UpperCamelCase : int = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__a ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : Any = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(__a ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : Any = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(__a ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: _UpperCamelCase : Any = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] _UpperCamelCase : Optional[int] = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: _UpperCamelCase : Optional[Any] = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] _UpperCamelCase : List[Any] = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: # pass variant but use the non-variant filenames _UpperCamelCase : int = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] _UpperCamelCase : int = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _UpperCamelCase : Tuple = "fp16" self.assertFalse(is_safetensors_compatible(__a , variant=__a ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : int = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] _UpperCamelCase : int = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> int: # pass variant but use the non-variant filenames _UpperCamelCase : Optional[int] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] _UpperCamelCase : Tuple = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : str = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] _UpperCamelCase : Optional[int] = "fp16" self.assertFalse(is_safetensors_compatible(__a , variant=__a ) )
715
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("KEY") lowerCamelCase__ = TypeVar("VAL") @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :KEY SCREAMING_SNAKE_CASE__ :VAL class __SCREAMING_SNAKE_CASE ( _Item ): '''simple docstring''' def __init__( self : List[str] ) -> None: super().__init__(__a , __a ) def __bool__( self : Dict ) -> bool: return False lowerCamelCase__ = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None: _UpperCamelCase : str = initial_block_size _UpperCamelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCamelCase : List[str] = capacity_factor _UpperCamelCase : Dict = 0 def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int: return hash(__a ) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int: return (ind + 1) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool: _UpperCamelCase : List[Any] = self._buckets[ind] if not stored: _UpperCamelCase : Tuple = _Item(__a , __a ) self._len += 1 return True elif stored.key == key: _UpperCamelCase : Union[str, Any] = _Item(__a , __a ) return True else: return False def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: _UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False _UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None: _UpperCamelCase : Any = self._buckets _UpperCamelCase : List[Any] = [None] * new_size _UpperCamelCase : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: self._resize(len(self._buckets ) * 2 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: self._resize(len(self._buckets ) // 2 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]: _UpperCamelCase : str = self._get_bucket_index(__a ) for _ in range(len(self._buckets ) ): yield ind _UpperCamelCase : Tuple = self._get_next_ind(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None: for ind in self._iterate_buckets(__a ): if self._try_set(__a , __a , __a ): break def __setitem__( self : int , __a : KEY , __a : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(__a , __a ) def __delitem__( self : str , __a : KEY ) -> None: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: raise KeyError(__a ) if item is _deleted: continue if item.key == key: _UpperCamelCase : List[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , __a : KEY ) -> VAL: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__a ) def __len__( self : List[Any] ) -> int: return self._len def __iter__( self : List[str] ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ) -> str: _UpperCamelCase : Optional[int] = " ,".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
51
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
716
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , __a : list[int] ) -> None: _UpperCamelCase : Tuple = len(__a ) _UpperCamelCase : Dict = [0] * len_array if len_array > 0: _UpperCamelCase : Optional[Any] = array[0] for i in range(1 , __a ): _UpperCamelCase : Tuple = self.prefix_sum[i - 1] + array[i] def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> bool: _UpperCamelCase : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__a ) return False if __name__ == "__main__": import doctest doctest.testmod()
51
0
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __a : str , __a : List[Any] ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = name _UpperCamelCase : Tuple = val def __str__( self : Dict ) -> Any: return F'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self : List[str] , __a : Any ) -> List[Any]: return self.val < other.val class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> Tuple: _UpperCamelCase : List[Any] = {} _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Union[str, Any] = self.build_heap(__a ) def __getitem__( self : Any , __a : List[str] ) -> Optional[int]: return self.get_value(__a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : List[str] ) -> List[Any]: return (idx - 1) // 2 def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : List[str] ) -> str: return idx * 2 + 1 def __SCREAMING_SNAKE_CASE ( self : str , __a : Dict ) -> int: return idx * 2 + 2 def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Any ) -> Optional[int]: return self.heap_dict[key] def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[Any] ) -> List[Any]: _UpperCamelCase : Optional[int] = len(__a ) - 1 _UpperCamelCase : Any = self.get_parent_idx(__a ) for idx, i in enumerate(__a ): _UpperCamelCase : Tuple = idx _UpperCamelCase : Union[str, Any] = i.val for i in range(__a , -1 , -1 ): self.sift_down(__a , __a ) return array def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Tuple ) -> List[Any]: while True: _UpperCamelCase : Dict = self.get_left_child_idx(__a ) # noqa: E741 _UpperCamelCase : Any = self.get_right_child_idx(__a ) _UpperCamelCase : Tuple = idx if l < len(__a ) and array[l] < array[idx]: _UpperCamelCase : Tuple = l if r < len(__a ) and array[r] < array[smallest]: _UpperCamelCase : str = r if smallest != idx: _UpperCamelCase : Optional[int] = array[smallest], array[idx] ( _UpperCamelCase ) : Union[str, Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) _UpperCamelCase : int = smallest else: break def __SCREAMING_SNAKE_CASE ( self : str , __a : Any ) -> Tuple: _UpperCamelCase : List[str] = self.get_parent_idx(__a ) while p >= 0 and self.heap[p] > self.heap[idx]: _UpperCamelCase : Optional[Any] = self.heap[idx], self.heap[p] _UpperCamelCase : Dict = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) _UpperCamelCase : List[str] = p _UpperCamelCase : Optional[Any] = self.get_parent_idx(__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.heap[0] def __SCREAMING_SNAKE_CASE ( self : str ) -> str: _UpperCamelCase : str = self.heap[-1], self.heap[0] _UpperCamelCase : Tuple = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) _UpperCamelCase : Dict = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> str: self.heap.append(__a ) _UpperCamelCase : int = len(self.heap ) - 1 _UpperCamelCase : Optional[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return len(self.heap ) == 0 def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Optional[int] , __a : int ) -> Optional[Any]: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" _UpperCamelCase : Union[str, Any] = new_value _UpperCamelCase : Optional[Any] = new_value self.sift_up(self.idx_of_element[node] ) lowerCamelCase__ = Node("R", -1) lowerCamelCase__ = Node("B", 6) lowerCamelCase__ = Node("A", 3) lowerCamelCase__ = Node("X", 1) lowerCamelCase__ = Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCamelCase__ = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[int] = None if token is not None: _UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) _UpperCamelCase : Any = "636036" _UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' _UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json() return result["workflow_runs"] def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ ) _UpperCamelCase : Tuple = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCamelCase : Union[str, Any] = workflow_run["id"] break return workflow_run_id def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: _UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCamelCase : Dict = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = {} for artifact_name in artifact_names: _UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' ) if os.path.isfile(lowercase_ ): _UpperCamelCase : int = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: _UpperCamelCase : int = f.read().decode("UTF-8" ) return results
51
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ ) -> list[int]: """simple docstring""" _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : List[str] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowercase_ ) if n > 1: factors.append(lowercase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" import math class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int: _UpperCamelCase : List[Any] = 0.0 _UpperCamelCase : Union[str, Any] = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]: for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase : List[Any] = SelfOrganizingMap() _UpperCamelCase : int = 3 _UpperCamelCase : List[Any] = 0.5 for _ in range(lowercase_ ): for j in range(len(lowercase_ ) ): # training sample _UpperCamelCase : int = training_samples[j] # Compute the winning vector _UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # Update the winning vector _UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) # classify test sample _UpperCamelCase : Optional[int] = [0, 0, 0, 1] _UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
51
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase__ = "src/transformers" lowerCamelCase__ = "docs/source/en" lowerCamelCase__ = "." def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f: _UpperCamelCase : Union[str, Any] = f.readlines() # Find the start prompt. _UpperCamelCase : Dict = 0 while not lines[start_index].startswith(lowercase_ ): start_index += 1 start_index += 1 _UpperCamelCase : Optional[int] = start_index while not lines[end_index].startswith(lowercase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ ) return [m.group(0 ) for m in matches] def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ ) _UpperCamelCase : Union[str, Any] = (width - text_length) // 2 _UpperCamelCase : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : str = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : str = collections.defaultdict(lowercase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowercase_ ): _UpperCamelCase : List[str] = None if attr_name.endswith("Tokenizer" ): _UpperCamelCase : Tuple = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _UpperCamelCase : Optional[Any] = fast_tokenizers _UpperCamelCase : List[str] = attr_name[:-13] elif _re_tf_models.match(lowercase_ ) is not None: _UpperCamelCase : List[Any] = tf_models _UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0] elif _re_flax_models.match(lowercase_ ) is not None: _UpperCamelCase : Dict = flax_models _UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0] elif _re_pt_models.match(lowercase_ ) is not None: _UpperCamelCase : Optional[int] = pt_models _UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0] if lookup_dict is not None: while len(lowercase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Dict = True break # Try again after removing the last word in the name _UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] ) # Let's build that table! _UpperCamelCase : Any = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns] _UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"} for name in model_names: _UpperCamelCase : Optional[int] = model_name_to_prefix[name] _UpperCamelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" return table def lowercase__ ( lowercase_=False ) -> List[Any]: """simple docstring""" _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file( filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,) _UpperCamelCase : Any = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
51
0
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
720
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]: """simple docstring""" _UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] ) return (item, float(lowercase_ )) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]: """simple docstring""" _UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 ) _UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] _UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = list(lowercase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _UpperCamelCase : int = random.choice(lowercase_ ) return "".join(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]: """simple docstring""" _UpperCamelCase : Optional[Any] = [] # Generate more children proportionally to the fitness score. _UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1 _UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n for _ in range(lowercase_ ): _UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0] _UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ ) # Append new string to the population list. pop.append(mutate(lowercase_ ,lowercase_ ) ) pop.append(mutate(lowercase_ ,lowercase_ ) ) return pop def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowercase_ ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCamelCase : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowercase_ ) # Generate random starting population. _UpperCamelCase : Union[str, Any] = [] for _ in range(lowercase_ ): population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCamelCase, _UpperCamelCase : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population] # Check if there is a matching evolution. _UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCamelCase : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase_ ) # Normalize population score to be between 0 and 1. _UpperCamelCase : str = [ (item, score / len(lowercase_ )) for item, score in population_score ] # This is selection for i in range(lowercase_ ): population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase__ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase__ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
51
0
"""simple docstring""" import string def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : Union[str, Any] = "" for i in sequence: _UpperCamelCase : List[str] = ord(lowercase_ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : Union[str, Any] = string.ascii_letters _UpperCamelCase : str = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowercase_ )] if c in letters else c for c in sequence ) def lowercase__ ( ) -> None: """simple docstring""" from timeit import timeit print("Running performance benchmarks..." ) _UpperCamelCase : List[Any] = "from string import printable ; from __main__ import atbash, atbash_slow" print(F'''> atbash_slow(): {timeit('atbash_slow(printable)' ,setup=lowercase_ )} seconds''' ) print(F'''> atbash(): {timeit('atbash(printable)' ,setup=lowercase_ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
721
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ["model.decoder.embed_positions.weights"] def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if "emb" in name: _UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" ) if "transformer" in name: _UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" ) if "cross_attention" in name: _UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" ) if "linear1" in name: _UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" ) if "linear2" in name: _UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" ) if "norm1" in name: _UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" ) if "norm_cross" in name: _UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" ) if "norm2" in name: _UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" ) if "out_norm" in name: _UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" ) if "linears" in name: _UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]: """simple docstring""" _UpperCamelCase : str = list(state_dict.keys() ) _UpperCamelCase : Optional[Any] = {} for key in keys: _UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ ) _UpperCamelCase : List[Any] = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCamelCase : Tuple = val[:hidden_size, :] _UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _UpperCamelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCamelCase : Optional[Any] = val else: _UpperCamelCase : List[str] = val return state_dict, enc_dec_proj_state_dict def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values _UpperCamelCase : List[Any] = 1_024 _UpperCamelCase : List[str] = 24 _UpperCamelCase : Any = 16 elif checkpoint == "medium": _UpperCamelCase : Tuple = 1_536 _UpperCamelCase : Dict = 48 _UpperCamelCase : Tuple = 24 elif checkpoint == "large": _UpperCamelCase : int = 2_048 _UpperCamelCase : Optional[int] = 48 _UpperCamelCase : Dict = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _UpperCamelCase : str = MusicgenDecoderConfig( hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,) return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]: """simple docstring""" _UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ ) _UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ ) _UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict() _UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict( lowercase_ ,hidden_size=decoder_config.hidden_size ) _UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" ) _UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowercase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass _UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) _UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): _UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" ) _UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) # set the appropriate bos/pad token ids _UpperCamelCase : str = 2_048 _UpperCamelCase : str = 2_048 # set other default generation config params _UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate ) _UpperCamelCase : List[str] = True _UpperCamelCase : int = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowerCamelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
51
0
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("KEY") lowerCamelCase__ = TypeVar("VAL") @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :KEY SCREAMING_SNAKE_CASE__ :VAL class __SCREAMING_SNAKE_CASE ( _Item ): '''simple docstring''' def __init__( self : List[str] ) -> None: super().__init__(__a , __a ) def __bool__( self : Dict ) -> bool: return False lowerCamelCase__ = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None: _UpperCamelCase : str = initial_block_size _UpperCamelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCamelCase : List[str] = capacity_factor _UpperCamelCase : Dict = 0 def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int: return hash(__a ) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int: return (ind + 1) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool: _UpperCamelCase : List[Any] = self._buckets[ind] if not stored: _UpperCamelCase : Tuple = _Item(__a , __a ) self._len += 1 return True elif stored.key == key: _UpperCamelCase : Union[str, Any] = _Item(__a , __a ) return True else: return False def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: _UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False _UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None: _UpperCamelCase : Any = self._buckets _UpperCamelCase : List[Any] = [None] * new_size _UpperCamelCase : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: self._resize(len(self._buckets ) * 2 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: self._resize(len(self._buckets ) // 2 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]: _UpperCamelCase : str = self._get_bucket_index(__a ) for _ in range(len(self._buckets ) ): yield ind _UpperCamelCase : Tuple = self._get_next_ind(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None: for ind in self._iterate_buckets(__a ): if self._try_set(__a , __a , __a ): break def __setitem__( self : int , __a : KEY , __a : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(__a , __a ) def __delitem__( self : str , __a : KEY ) -> None: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: raise KeyError(__a ) if item is _deleted: continue if item.key == key: _UpperCamelCase : List[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , __a : KEY ) -> VAL: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__a ) def __len__( self : List[Any] ) -> int: return self._len def __iter__( self : List[str] ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ) -> str: _UpperCamelCase : Optional[int] = " ,".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
700
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase__ = input("Enter image url: ").strip() print(f"""Downloading image from {url} ...""") lowerCamelCase__ = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase__ = soup.find("meta", {"property": "og:image"})["content"] lowerCamelCase__ = requests.get(image_url).content lowerCamelCase__ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, "wb") as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
51
0
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any ) -> Union[str, Any]: _UpperCamelCase : int = {} def __SCREAMING_SNAKE_CASE ( self : int , __a : str ) -> None: _UpperCamelCase : Union[str, Any] = {} def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : str , __a : str , __a : float ) -> None: if nodea not in self.connections: self.add_node(__a ) if nodea not in self.connections: self.add_node(__a ) _UpperCamelCase : Dict = probability def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> list[str]: return list(self.connections ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : str ) -> str: _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : List[str] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> dict[str, int]: """simple docstring""" _UpperCamelCase : Tuple = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = Counter(graph.get_nodes() ) _UpperCamelCase : Union[str, Any] = start for _ in range(lowercase_ ): _UpperCamelCase : List[str] = graph.transition(lowercase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) _UpperCamelCase : str = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )] _UpperCamelCase : List[str] = ".".join(lowercase_ ) return test_module_path def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_module_path(lowercase_ ) _UpperCamelCase : str = importlib.import_module(lowercase_ ) return test_module def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[Any] = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowercase_ ,lowercase_ ) ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Any = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): _UpperCamelCase : int = getattr(lowercase_ ,lowercase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] ) if len(lowercase_ ) > 0: test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Dict = get_test_classes(lowercase_ ) _UpperCamelCase : int = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = test_class() if hasattr(lowercase_ ,"setUp" ): test.setUp() _UpperCamelCase : Tuple = None if hasattr(lowercase_ ,"model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCamelCase : Tuple = test.model_tester.__class__ return model_tester def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = get_test_classes(lowercase_ ) _UpperCamelCase : Dict = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = [] for test_class in test_classes: _UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ ) if tester_class is not None: tester_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Any = get_test_classes(lowercase_ ) _UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes} return test_tester_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Optional[int] = { model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_test_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Tuple = { model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_to_tester_mapping def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" if isinstance(lowercase_ ,lowercase_ ): return o elif isinstance(lowercase_ ,lowercase_ ): return o.__name__ elif isinstance(lowercase_ ,(list, tuple) ): return [to_json(lowercase_ ) for x in o] elif isinstance(lowercase_ ,lowercase_ ): return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()} else: return o
51
0
def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Union[str, Any] = [1] _UpperCamelCase : List[str] = 0, 0, 0 _UpperCamelCase : str = ugly_nums[ia] * 2 _UpperCamelCase : int = ugly_nums[ia] * 3 _UpperCamelCase : Tuple = ugly_nums[ia] * 5 for _ in range(1 ,lowercase_ ): _UpperCamelCase : Optional[int] = min(lowercase_ ,lowercase_ ,lowercase_ ) ugly_nums.append(lowercase_ ) if next_num == next_a: ia += 1 _UpperCamelCase : List[str] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _UpperCamelCase : Any = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _UpperCamelCase : str = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(200) = }""")
702
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
51
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): SCREAMING_SNAKE_CASE__ :str = ["pixel_values"] def __init__( self : int , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: super().__init__(**__a ) _UpperCamelCase : Optional[Any] = size if size is not None else {"height": 384, "width": 384} _UpperCamelCase : str = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : Optional[Any] = do_resize _UpperCamelCase : List[str] = size _UpperCamelCase : Dict = resample _UpperCamelCase : List[str] = do_rescale _UpperCamelCase : str = rescale_factor _UpperCamelCase : Tuple = do_normalize _UpperCamelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCamelCase : str = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCamelCase : str = do_convert_rgb def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: _UpperCamelCase : int = get_size_dict(__a , default_to_square=__a ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) _UpperCamelCase : str = (size["height"], size["width"]) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> List[str]: return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : ImageInput , __a : Optional[bool] = None , __a : Optional[Dict[str, int]] = None , __a : PILImageResampling = None , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : bool = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : Tuple , ) -> PIL.Image.Image: _UpperCamelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Dict = resample if resample is not None else self.resample _UpperCamelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : int = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : List[Any] = image_std if image_std is not None else self.image_std _UpperCamelCase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCamelCase : Union[str, Any] = size if size is not None else self.size _UpperCamelCase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : List[Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCamelCase : List[Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. _UpperCamelCase : List[str] = [to_numpy_array(__a ) for image in images] if do_resize: _UpperCamelCase : List[str] = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_rescale: _UpperCamelCase : int = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: _UpperCamelCase : int = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] _UpperCamelCase : Union[str, Any] = [to_channel_dimension_format(__a , __a ) for image in images] _UpperCamelCase : Union[str, Any] = BatchFeature(data={"pixel_values": images} , tensor_type=__a ) return encoded_outputs
703
"""simple docstring""" lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
51
0
"""simple docstring""" from math import isqrt def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" return all(number % divisor != 0 for divisor in range(2 ,isqrt(lowercase_ ) + 1 ) ) def lowercase__ ( lowercase_ = 10**6 ) -> int: """simple docstring""" _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : Tuple = 1 _UpperCamelCase : Optional[Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(lowercase_ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
704
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: _UpperCamelCase : Tuple = tempfile.mkdtemp() _UpperCamelCase : str = 5 # Realm tok _UpperCamelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) _UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : Any = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : int = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=__a , ) return block_records def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : Tuple = self.get_config() _UpperCamelCase : int = self.get_dummy_retriever() _UpperCamelCase : Tuple = retriever.tokenizer _UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" ) _UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : List[str] = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : str = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Any = self.get_config() _UpperCamelCase : Dict = self.get_dummy_retriever() _UpperCamelCase : Dict = retriever.tokenizer _UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" ) _UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : str = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : Union[str, Any] = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCamelCase : List[Any] = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
51
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = LEDConfig SCREAMING_SNAKE_CASE__ :str = {} SCREAMING_SNAKE_CASE__ :List[str] = "gelu" def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]: _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : List[str] = batch_size _UpperCamelCase : str = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : str = max_position_embeddings _UpperCamelCase : int = eos_token_id _UpperCamelCase : Dict = pad_token_id _UpperCamelCase : Optional[Any] = bos_token_id _UpperCamelCase : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCamelCase : List[str] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a ) _UpperCamelCase : Union[str, Any] = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) _UpperCamelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple: _UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder() _UpperCamelCase : Tuple = inputs_dict["input_ids"] _UpperCamelCase : int = input_ids[:1, :] _UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :] _UpperCamelCase : List[Any] = 1 # first forward pass _UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0] _UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict: """simple docstring""" if attention_mask is None: _UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :Tuple = True SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : int = TFLEDModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] ) _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : str = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) _UpperCamelCase : Dict = True _UpperCamelCase : str = self.model_tester.seq_length _UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a : Optional[int] ): _UpperCamelCase : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a : Optional[Any] ): _UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] _UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCamelCase : Dict = True _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Any = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: _UpperCamelCase : Optional[Any] = model_class(__a ) _UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase : int = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine _UpperCamelCase : Any = True _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: # TODO: Head-masking not yet implement pass def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return tf.constant(lowercase_ ,dtype=tf.intaa ) lowerCamelCase__ = 1E-4 @slow @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Optional[int] = model(**__a )[0] _UpperCamelCase : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Tuple = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Union[str, Any] = model(**__a )[0] _UpperCamelCase : int = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Optional[int] = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
51
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_UpperCamelCase )} , ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "The input training data file (a text file)."} ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) SCREAMING_SNAKE_CASE__ :bool = field(default=_UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."} ) SCREAMING_SNAKE_CASE__ :float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) SCREAMING_SNAKE_CASE__ :float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) SCREAMING_SNAKE_CASE__ :int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) SCREAMING_SNAKE_CASE__ :int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = False ,lowercase_ = None ,) -> List[str]: """simple docstring""" def _dataset(lowercase_ ,lowercase_=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=lowercase_ ,file_path=lowercase_ ,block_size=args.block_size ,ref_path=lowercase_ ,) return LineByLineTextDataset(tokenizer=lowercase_ ,file_path=lowercase_ ,block_size=args.block_size ) else: return TextDataset( tokenizer=lowercase_ ,file_path=lowercase_ ,block_size=args.block_size ,overwrite_cache=args.overwrite_cache ,cache_dir=lowercase_ ,) if evaluate: return _dataset(args.eval_data_file ,args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowercase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file ,args.train_ref_file ) def lowercase__ ( ) -> int: """simple docstring""" _UpperCamelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase : int = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" ,lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(model_args.config_name ,cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path ,cache_dir=model_args.cache_dir ) else: _UpperCamelCase : Dict = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: _UpperCamelCase : int = AutoTokenizer.from_pretrained(model_args.tokenizer_name ,cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path ,cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: _UpperCamelCase : List[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path ,from_tf=bool(".ckpt" in model_args.model_name_or_path ) ,config=lowercase_ ,cache_dir=model_args.cache_dir ,) else: logger.info("Training new model from scratch" ) _UpperCamelCase : List[Any] = AutoModelWithLMHead.from_config(lowercase_ ) model.resize_token_embeddings(len(lowercase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: _UpperCamelCase : Dict = tokenizer.max_len # Our input block size will be the max possible for the model else: _UpperCamelCase : Union[str, Any] = min(data_args.block_size ,tokenizer.max_len ) # Get datasets _UpperCamelCase : int = ( get_dataset(lowercase_ ,tokenizer=lowercase_ ,cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _UpperCamelCase : int = ( get_dataset(lowercase_ ,tokenizer=lowercase_ ,evaluate=lowercase_ ,cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _UpperCamelCase : Dict = DataCollatorForPermutationLanguageModeling( tokenizer=lowercase_ ,plm_probability=data_args.plm_probability ,max_span_length=data_args.max_span_length ,) else: if data_args.mlm and data_args.whole_word_mask: _UpperCamelCase : Optional[Any] = DataCollatorForWholeWordMask( tokenizer=lowercase_ ,mlm_probability=data_args.mlm_probability ) else: _UpperCamelCase : Union[str, Any] = DataCollatorForLanguageModeling( tokenizer=lowercase_ ,mlm=data_args.mlm ,mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCamelCase : str = Trainer( model=lowercase_ ,args=lowercase_ ,data_collator=lowercase_ ,train_dataset=lowercase_ ,eval_dataset=lowercase_ ,prediction_loss_only=lowercase_ ,) # Training if training_args.do_train: _UpperCamelCase : Tuple = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowercase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase : int = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCamelCase : Union[str, Any] = trainer.evaluate() _UpperCamelCase : Dict = math.exp(eval_output["eval_loss"] ) _UpperCamelCase : int = {"perplexity": perplexity} _UpperCamelCase : int = os.path.join(training_args.output_dir ,"eval_results_lm.txt" ) if trainer.is_world_master(): with open(lowercase_ ,"w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" ,lowercase_ ,str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(lowercase_ ) return results def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
706
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer SCREAMING_SNAKE_CASE__ :Dict = None SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = True SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().setUp() _UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] _UpperCamelCase : List[str] = {} _UpperCamelCase : Tuple = {} for i, value in enumerate(__a ): _UpperCamelCase : List[str] = i _UpperCamelCase : Optional[Any] = i _UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) _UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(__a , __a , ensure_ascii=__a ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(__a , __a , ensure_ascii=__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: _UpperCamelCase : Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: _UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _UpperCamelCase : Any = {} for i, token in enumerate(__a ): _UpperCamelCase : str = i _UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: _UpperCamelCase : Tuple = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) _UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False _UpperCamelCase : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = ["的", "人", "有"] _UpperCamelCase : int = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = True _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Any = False _UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". _UpperCamelCase : Any = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a ) _UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a ) _UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : int = "你好,你是谁" _UpperCamelCase : Any = tokenizer.tokenize(__a ) _UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a ) _UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a ) _UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a ) _UpperCamelCase : Optional[int] = tokenizer.prepare_for_model( __a , __a , __a , add_special_tokens=__a ) _UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a ) self.assertEqual(__a , __a )
51
0
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = args.pruning_method _UpperCamelCase : int = args.threshold _UpperCamelCase : Optional[Any] = args.model_name_or_path.rstrip("/" ) _UpperCamelCase : str = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) _UpperCamelCase : Dict = torch.load(os.path.join(lowercase_ ,"pytorch_model.bin" ) ) _UpperCamelCase : Tuple = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _UpperCamelCase : List[Any] = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _UpperCamelCase : str = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: _UpperCamelCase : List[str] = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _UpperCamelCase : List[Any] = MagnitudeBinarizer.apply(inputs=lowercase_ ,threshold=lowercase_ ) _UpperCamelCase : List[Any] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _UpperCamelCase : Tuple = name[:-6] _UpperCamelCase : Union[str, Any] = model[F'''{prefix_}mask_scores'''] _UpperCamelCase : List[str] = TopKBinarizer.apply(lowercase_ ,lowercase_ ) _UpperCamelCase : Optional[Any] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _UpperCamelCase : List[str] = name[:-6] _UpperCamelCase : Union[str, Any] = model[F'''{prefix_}mask_scores'''] _UpperCamelCase : Tuple = ThresholdBinarizer.apply(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Union[str, Any] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _UpperCamelCase : str = name[:-6] _UpperCamelCase : List[Any] = model[F'''{prefix_}mask_scores'''] _UpperCamelCase : Optional[int] = -0.1, 1.1 _UpperCamelCase : Dict = torch.sigmoid(lowercase_ ) _UpperCamelCase : str = s * (r - l) + l _UpperCamelCase : Any = s_bar.clamp(min=0.0 ,max=1.0 ) _UpperCamelCase : Optional[int] = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: _UpperCamelCase : int = os.path.join( os.path.dirname(lowercase_ ) ,F'''bertarized_{os.path.basename(lowercase_ )}''' ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ ,lowercase_ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(lowercase_ ,os.path.join(lowercase_ ,"pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) lowerCamelCase__ = parser.parse_args() main(args)
707
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = "yolos" def __init__( self : Dict , __a : Optional[Any]=768 , __a : List[Any]=12 , __a : Any=12 , __a : List[Any]=3072 , __a : Optional[int]="gelu" , __a : Dict=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.02 , __a : Optional[int]=1e-1_2 , __a : List[Any]=[512, 864] , __a : List[str]=16 , __a : str=3 , __a : Optional[Any]=True , __a : Optional[Any]=100 , __a : List[str]=True , __a : Any=False , __a : List[str]=1 , __a : str=5 , __a : Optional[Any]=2 , __a : Tuple=5 , __a : Any=2 , __a : Union[str, Any]=0.1 , **__a : List[str] , ) -> List[str]: super().__init__(**__a ) _UpperCamelCase : Dict = hidden_size _UpperCamelCase : Any = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Tuple = image_size _UpperCamelCase : Tuple = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : Any = qkv_bias _UpperCamelCase : str = num_detection_tokens _UpperCamelCase : str = use_mid_position_embeddings _UpperCamelCase : List[str] = auxiliary_loss # Hungarian matcher _UpperCamelCase : List[Any] = class_cost _UpperCamelCase : int = bbox_cost _UpperCamelCase : Optional[int] = giou_cost # Loss coefficients _UpperCamelCase : List[Any] = bbox_loss_coefficient _UpperCamelCase : str = giou_loss_coefficient _UpperCamelCase : Dict = eos_coefficient class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float: return 1e-4 @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return 12
51
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :int SCREAMING_SNAKE_CASE__ :int class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , __a : int ) -> Optional[Any]: _UpperCamelCase : list[list[Edge]] = [[] for _ in range(__a )] _UpperCamelCase : Tuple = size def __getitem__( self : int , __a : int ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: return self._size def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : int , __a : int , __a : int ) -> Dict: if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : int ) -> int | None: _UpperCamelCase : Optional[Any] = deque([start_vertex] ) _UpperCamelCase : list[int | None] = [None] * self.size _UpperCamelCase : int = 0 while queue: _UpperCamelCase : List[Any] = queue.popleft() _UpperCamelCase : List[str] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCamelCase : List[Any] = current_distance + edge.weight _UpperCamelCase : Dict = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _UpperCamelCase : List[str] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCamelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase] lowerCamelCase__ = {ord(char) for char in VALID_CHARS} lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None: """simple docstring""" _UpperCamelCase : str = "" _UpperCamelCase : int _UpperCamelCase : int _UpperCamelCase : int for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ): _UpperCamelCase : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase_ ) return decoded def lowercase__ ( lowercase_ ) -> list[str]: """simple docstring""" _UpperCamelCase : list[str] = [] for key in product(lowercase_ ,repeat=3 ): _UpperCamelCase : int = try_key(lowercase_ ,lowercase_ ) if encoded is not None: possibles.append(lowercase_ ) return possibles def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int: """simple docstring""" _UpperCamelCase : list[int] _UpperCamelCase : list[str] _UpperCamelCase : str _UpperCamelCase : str _UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" ) _UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )] _UpperCamelCase : List[str] = filter_valid_chars(lowercase_ ) for common_word in COMMON_WORDS: _UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ ) if len(lowercase_ ) == 1: break _UpperCamelCase : Union[str, Any] = possibles[0] return sum(ord(lowercase_ ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
51
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :int SCREAMING_SNAKE_CASE__ :Node | None = None SCREAMING_SNAKE_CASE__ :Node | None = None def lowercase__ ( ) -> Node | None: """simple docstring""" _UpperCamelCase : Tuple = Node(1 ) _UpperCamelCase : int = Node(2 ) _UpperCamelCase : Any = Node(3 ) _UpperCamelCase : List[Any] = Node(4 ) _UpperCamelCase : Tuple = Node(5 ) return tree def lowercase__ ( lowercase_ ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase__ ( lowercase_ ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase__ ( lowercase_ ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase__ ( lowercase_ ) -> int: """simple docstring""" return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def lowercase__ ( lowercase_ ) -> Sequence[Node | None]: """simple docstring""" _UpperCamelCase : list[Any] = [] if root is None: return output _UpperCamelCase : Any = deque([root] ) while process_queue: _UpperCamelCase : List[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase__ ( lowercase_ ,lowercase_ ) -> Sequence[Node | None]: """simple docstring""" _UpperCamelCase : list[Any] = [] def populate_output(lowercase_ ,lowercase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(lowercase_ ,lowercase_ ) return output def lowercase__ ( lowercase_ ,lowercase_ ) -> Sequence[Node | None]: """simple docstring""" _UpperCamelCase : list[Any] = [] def populate_output(lowercase_ ,lowercase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(lowercase_ ,lowercase_ ) return output def lowercase__ ( lowercase_ ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] _UpperCamelCase : list[Sequence[Node | None]] = [] _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = height(lowercase_ ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowercase_ ,lowercase_ ) ) _UpperCamelCase : Dict = 1 else: output.append(get_nodes_from_right_to_left(lowercase_ ,lowercase_ ) ) _UpperCamelCase : List[str] = 0 return output def lowercase__ ( ) -> None: # Main function for testing. """simple docstring""" _UpperCamelCase : Union[str, Any] = make_tree() print(F'''In-order Traversal: {inorder(lowercase_ )}''' ) print(F'''Pre-order Traversal: {preorder(lowercase_ )}''' ) print(F'''Post-order Traversal: {postorder(lowercase_ )}''' ,"\n" ) print(F'''Height of Tree: {height(lowercase_ )}''' ,"\n" ) print("Complete Level Order Traversal: " ) print(level_order(lowercase_ ) ,"\n" ) print("Level-wise order Traversal: " ) for level in range(1 ,height(lowercase_ ) + 1 ): print(F'''Level {level}:''' ,get_nodes_from_left_to_right(lowercase_ ,level=lowercase_ ) ) print("\nZigZag order Traversal: " ) print(zigzag(lowercase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
709
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ) -> None: """simple docstring""" _UpperCamelCase : List[Any] = len(lowercase_ ) print("The following activities are selected:" ) # The first activity is always selected _UpperCamelCase : List[Any] = 0 print(lowercase_ ,end="," ) # Consider rest of the activities for j in range(lowercase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase_ ,end="," ) _UpperCamelCase : Optional[Any] = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = [1, 3, 0, 5, 8, 5] lowerCamelCase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
51
0
"""simple docstring""" def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" _UpperCamelCase : List[str] = [] if len(lowercase_ ) == 1: return [nums.copy()] for _ in range(len(lowercase_ ) ): _UpperCamelCase : Dict = nums.pop(0 ) _UpperCamelCase : Any = permute(lowercase_ ) for perm in permutations: perm.append(lowercase_ ) result.extend(lowercase_ ) nums.append(lowercase_ ) return result def lowercase__ ( lowercase_ ) -> int: """simple docstring""" def backtrack(lowercase_ ): if start == len(lowercase_ ) - 1: output.append(nums[:] ) else: for i in range(lowercase_ ,len(lowercase_ ) ): _UpperCamelCase : Tuple = nums[i], nums[start] backtrack(start + 1 ) _UpperCamelCase : Any = nums[i], nums[start] # backtrack _UpperCamelCase : str = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCamelCase__ = permutea([1, 2, 3]) print(res) doctest.testmod()
710
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict: super().__init__() _UpperCamelCase : List[str] = layers_per_block _UpperCamelCase : Dict = torch.nn.Convad( __a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : int = None _UpperCamelCase : Any = nn.ModuleList([] ) # down _UpperCamelCase : List[str] = block_out_channels[0] for i, down_block_type in enumerate(__a ): _UpperCamelCase : Tuple = output_channel _UpperCamelCase : int = block_out_channels[i] _UpperCamelCase : int = i == len(__a ) - 1 _UpperCamelCase : Dict = get_down_block( __a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , ) self.down_blocks.append(__a ) # mid _UpperCamelCase : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # out _UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : Any = nn.SiLU() _UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels _UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 ) _UpperCamelCase : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]: _UpperCamelCase : int = x _UpperCamelCase : Optional[int] = self.conv_in(__a ) if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Tuple ): def custom_forward(*__a : Any ): return module(*__a ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , use_reentrant=__a ) # middle _UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , use_reentrant=__a ) else: for down_block in self.down_blocks: _UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a ) # middle _UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a ) else: # down for down_block in self.down_blocks: _UpperCamelCase : int = down_block(__a ) # middle _UpperCamelCase : int = self.mid_block(__a ) # post-process _UpperCamelCase : Any = self.conv_norm_out(__a ) _UpperCamelCase : Any = self.conv_act(__a ) _UpperCamelCase : Optional[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str: super().__init__() _UpperCamelCase : List[Any] = layers_per_block _UpperCamelCase : Tuple = nn.Convad( __a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = nn.ModuleList([] ) _UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None # mid _UpperCamelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # up _UpperCamelCase : List[str] = list(reversed(__a ) ) _UpperCamelCase : int = reversed_block_out_channels[0] for i, up_block_type in enumerate(__a ): _UpperCamelCase : int = output_channel _UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i] _UpperCamelCase : Optional[Any] = i == len(__a ) - 1 _UpperCamelCase : Union[str, Any] = get_up_block( __a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , ) self.up_blocks.append(__a ) _UpperCamelCase : Optional[Any] = output_channel # out if norm_type == "spatial": _UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a ) else: _UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : str = nn.SiLU() _UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 ) _UpperCamelCase : Dict = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple: _UpperCamelCase : List[str] = z _UpperCamelCase : Dict = self.conv_in(__a ) _UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Any ): def custom_forward(*__a : Tuple ): return module(*__a ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle _UpperCamelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a ) _UpperCamelCase : Optional[int] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , __a , use_reentrant=__a ) else: # middle _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a ) _UpperCamelCase : Union[str, Any] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a ) else: # middle _UpperCamelCase : str = self.mid_block(__a , __a ) _UpperCamelCase : int = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : Any = up_block(__a , __a ) # post-process if latent_embeds is None: _UpperCamelCase : List[str] = self.conv_norm_out(__a ) else: _UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a ) _UpperCamelCase : Tuple = self.conv_act(__a ) _UpperCamelCase : List[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]: super().__init__() _UpperCamelCase : Tuple = n_e _UpperCamelCase : Tuple = vq_embed_dim _UpperCamelCase : Union[str, Any] = beta _UpperCamelCase : str = legacy _UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCamelCase : Any = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) _UpperCamelCase : Dict = self.used.shape[0] _UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase : Optional[int] = self.re_embed _UpperCamelCase : Any = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: _UpperCamelCase : Union[str, Any] = n_e _UpperCamelCase : List[str] = sane_index_shape def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]: _UpperCamelCase : str = inds.shape assert len(__a ) > 1 _UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[Any] = self.used.to(__a ) _UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase : Optional[Any] = match.argmax(-1 ) _UpperCamelCase : Any = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCamelCase : Dict = self.unknown_index return new.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]: _UpperCamelCase : int = inds.shape assert len(__a ) > 1 _UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[int] = self.used.to(__a ) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase : int = 0 # simply set to zero _UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a ) return back.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]: # reshape z -> (batch, height, width, channel) and flatten _UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCamelCase : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 ) _UpperCamelCase : int = self.embedding(__a ).view(z.shape ) _UpperCamelCase : str = None _UpperCamelCase : Any = None # compute loss for embedding if not self.legacy: _UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCamelCase : List[str] = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCamelCase : Dict = self.remap_to_used(__a ) _UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: _UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCamelCase : str = self.unmap_to_all(__a ) _UpperCamelCase : int = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCamelCase : Optional[int] = self.embedding(__a ) if shape is not None: _UpperCamelCase : Tuple = z_q.view(__a ) # reshape back to match original input shape _UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int: _UpperCamelCase : Dict = parameters _UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 ) _UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 ) _UpperCamelCase : Union[str, Any] = deterministic _UpperCamelCase : Dict = torch.exp(0.5 * self.logvar ) _UpperCamelCase : Any = torch.exp(self.logvar ) if self.deterministic: _UpperCamelCase : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype _UpperCamelCase : List[Any] = randn_tensor( self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCamelCase : List[Any] = self.mean + self.std * sample return x def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int: if self.deterministic: return torch.Tensor([0.0] ) _UpperCamelCase : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: return self.mean
51
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
711
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"summary": Value("string" )} ) SCREAMING_SNAKE_CASE__ :str = "text" SCREAMING_SNAKE_CASE__ :str = "summary" @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
51
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: _UpperCamelCase : int = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) _UpperCamelCase : List[str] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house _UpperCamelCase : List[str] = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim _UpperCamelCase : List[str] = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _UpperCamelCase : List[str] = model(__a )["last_hidden_state"].detach() self.assertEqual(output.shape , __a ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __a , atol=1e-3 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : List[str] = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) _UpperCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house _UpperCamelCase : Optional[Any] = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim _UpperCamelCase : str = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _UpperCamelCase : List[Any] = model(__a )["last_hidden_state"].detach() self.assertEqual(output.shape , __a ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __a , atol=1e-3 ) )
712
"""simple docstring""" def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : Union[str, Any] = set() # edges = list of graph's edges _UpperCamelCase : Union[str, Any] = get_edges(lowercase_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCamelCase, _UpperCamelCase : str = edges.pop() chosen_vertices.add(lowercase_ ) chosen_vertices.add(lowercase_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase_ ) return chosen_vertices def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
51
0
"""simple docstring""" def lowercase__ ( lowercase_ = 1_000_000 ) -> int: """simple docstring""" _UpperCamelCase : int = set(range(3 ,lowercase_ ,2 ) ) primes.add(2 ) for p in range(3 ,lowercase_ ,2 ): if p not in primes: continue primes.difference_update(set(range(p * p ,lowercase_ ,lowercase_ ) ) ) _UpperCamelCase : Union[str, Any] = [float(lowercase_ ) for n in range(limit + 1 )] for p in primes: for n in range(lowercase_ ,limit + 1 ,lowercase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
713
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["OwlViTFeatureExtractor"] lowerCamelCase__ = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
0
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCamelCase__ = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" lowerCamelCase__ = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" lowerCamelCase__ = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_="binary" ) -> str: """simple docstring""" _UpperCamelCase : Tuple = simple_accuracy(lowercase_ ,lowercase_ ) _UpperCamelCase : Union[str, Any] = float(fa_score(y_true=lowercase_ ,y_pred=lowercase_ ,average=lowercase_ ) ) return { "accuracy": acc, "f1": fa, } def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = {} for id_pred, label in zip(lowercase_ ,lowercase_ ): _UpperCamelCase : int = F'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' _UpperCamelCase : List[Any] = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _UpperCamelCase : int = [(pred, label)] _UpperCamelCase : Optional[Any] = [], [] for question, preds_labels in question_map.items(): _UpperCamelCase : str = zip(*lowercase_ ) _UpperCamelCase : Optional[Any] = fa_score(y_true=lowercase_ ,y_pred=lowercase_ ,average="macro" ) fas.append(lowercase_ ) _UpperCamelCase : List[Any] = int(sum(pred == label for pred, label in preds_labels ) == len(lowercase_ ) ) ems.append(lowercase_ ) _UpperCamelCase : Optional[Any] = float(sum(lowercase_ ) / len(lowercase_ ) ) _UpperCamelCase : int = sum(lowercase_ ) / len(lowercase_ ) _UpperCamelCase : Union[str, Any] = float(fa_score(y_true=lowercase_ ,y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def __SCREAMING_SNAKE_CASE ( self : str ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def __SCREAMING_SNAKE_CASE ( self : Any , __a : Dict , __a : Dict ) -> List[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__a , __a )} elif self.config_name == "cb": return acc_and_fa(__a , __a , fa_avg="macro" ) elif self.config_name == "record": _UpperCamelCase : Optional[Any] = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] _UpperCamelCase : Optional[int] = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(__a , __a )[0] elif self.config_name == "multirc": return evaluate_multirc(__a , __a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__a , __a )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
714
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int: """simple docstring""" _UpperCamelCase : defaultdict = defaultdict(lowercase_ ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _UpperCamelCase : Any = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: _UpperCamelCase : str = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
51
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCamelCase__ = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__ :List[str] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: SCREAMING_SNAKE_CASE__ :Optional[int] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: SCREAMING_SNAKE_CASE__ :int = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __SCREAMING_SNAKE_CASE ( self : int ) -> Any: _UpperCamelCase : Tuple = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) _UpperCamelCase : str = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__a ) , [{"label": "LABEL_0", "score": 0.5_04}] ) _UpperCamelCase : Union[str, Any] = text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(__a ) , [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}] ) _UpperCamelCase : int = text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(__a ) , [ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] , ) _UpperCamelCase : Tuple = text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(__a ) , [{"label": "LABEL_0", "score": 0.5_04}] ) # Legacy behavior _UpperCamelCase : Any = text_classifier("This is great !" , return_all_scores=__a ) self.assertEqual(nested_simplify(__a ) , [{"label": "LABEL_0", "score": 0.5_04}] ) _UpperCamelCase : int = text_classifier("This is great !" , return_all_scores=__a ) self.assertEqual( nested_simplify(__a ) , [[{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}]] ) _UpperCamelCase : List[str] = text_classifier(["This is great !", "Something else"] , return_all_scores=__a ) self.assertEqual( nested_simplify(__a ) , [ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] , ) _UpperCamelCase : Optional[Any] = text_classifier(["This is great !", "Something else"] , return_all_scores=__a ) self.assertEqual( nested_simplify(__a ) , [ {"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_0", "score": 0.5_04}, ] , ) @require_torch def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: import torch _UpperCamelCase : List[str] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) _UpperCamelCase : Tuple = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__a ) , [{"label": "LABEL_0", "score": 0.5_04}] ) @require_tf def __SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: _UpperCamelCase : List[str] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) _UpperCamelCase : Union[str, Any] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__a ) , [{"label": "LABEL_0", "score": 0.5_04}] ) @slow @require_torch def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: _UpperCamelCase : str = pipeline("text-classification" ) _UpperCamelCase : List[Any] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__a ) , [{"label": "POSITIVE", "score": 1.0}] ) _UpperCamelCase : Optional[Any] = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(__a ) , [{"label": "NEGATIVE", "score": 1.0}] ) _UpperCamelCase : Any = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(__a ) , [{"label": "POSITIVE", "score": 0.9_88}] ) @slow @require_tf def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: _UpperCamelCase : Tuple = pipeline("text-classification" , framework="tf" ) _UpperCamelCase : int = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__a ) , [{"label": "POSITIVE", "score": 1.0}] ) _UpperCamelCase : str = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(__a ) , [{"label": "NEGATIVE", "score": 1.0}] ) _UpperCamelCase : Tuple = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(__a ) , [{"label": "POSITIVE", "score": 0.9_88}] ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : Any , __a : str , __a : Optional[Any] ) -> int: _UpperCamelCase : Optional[int] = TextClassificationPipeline(model=__a , tokenizer=__a ) return text_classifier, ["HuggingFace is in", "This is another test"] def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Tuple , __a : str ) -> Tuple: _UpperCamelCase : List[Any] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 _UpperCamelCase : List[str] = "HuggingFace is in" _UpperCamelCase : Tuple = text_classifier(__a ) self.assertEqual(nested_simplify(__a ) , [{"label": ANY(__a ), "score": ANY(__a )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) _UpperCamelCase : Dict = ["HuggingFace is in ", "Paris is in France"] _UpperCamelCase : List[Any] = text_classifier(__a ) self.assertEqual( nested_simplify(__a ) , [{"label": ANY(__a ), "score": ANY(__a )}, {"label": ANY(__a ), "score": ANY(__a )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format _UpperCamelCase : List[Any] = text_classifier(__a , top_k=__a ) _UpperCamelCase : Optional[Any] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__a ) , [[{"label": ANY(__a ), "score": ANY(__a )}] * N, [{"label": ANY(__a ), "score": ANY(__a )}] * N] , ) _UpperCamelCase : List[str] = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} _UpperCamelCase : List[str] = text_classifier(__a ) self.assertEqual( nested_simplify(__a ) , {"label": ANY(__a ), "score": ANY(__a )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. _UpperCamelCase : Optional[int] = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(__a ): text_classifier(__a ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility _UpperCamelCase : Optional[Any] = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(__a ) , [{"label": ANY(__a ), "score": ANY(__a )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
715
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("KEY") lowerCamelCase__ = TypeVar("VAL") @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :KEY SCREAMING_SNAKE_CASE__ :VAL class __SCREAMING_SNAKE_CASE ( _Item ): '''simple docstring''' def __init__( self : List[str] ) -> None: super().__init__(__a , __a ) def __bool__( self : Dict ) -> bool: return False lowerCamelCase__ = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None: _UpperCamelCase : str = initial_block_size _UpperCamelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCamelCase : List[str] = capacity_factor _UpperCamelCase : Dict = 0 def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int: return hash(__a ) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int: return (ind + 1) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool: _UpperCamelCase : List[Any] = self._buckets[ind] if not stored: _UpperCamelCase : Tuple = _Item(__a , __a ) self._len += 1 return True elif stored.key == key: _UpperCamelCase : Union[str, Any] = _Item(__a , __a ) return True else: return False def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: _UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False _UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None: _UpperCamelCase : Any = self._buckets _UpperCamelCase : List[Any] = [None] * new_size _UpperCamelCase : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: self._resize(len(self._buckets ) * 2 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: self._resize(len(self._buckets ) // 2 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]: _UpperCamelCase : str = self._get_bucket_index(__a ) for _ in range(len(self._buckets ) ): yield ind _UpperCamelCase : Tuple = self._get_next_ind(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None: for ind in self._iterate_buckets(__a ): if self._try_set(__a , __a , __a ): break def __setitem__( self : int , __a : KEY , __a : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(__a , __a ) def __delitem__( self : str , __a : KEY ) -> None: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: raise KeyError(__a ) if item is _deleted: continue if item.key == key: _UpperCamelCase : List[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , __a : KEY ) -> VAL: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__a ) def __len__( self : List[Any] ) -> int: return self._len def __iter__( self : List[str] ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ) -> str: _UpperCamelCase : Optional[int] = " ,".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
51
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCamelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase] lowerCamelCase__ = {ord(char) for char in VALID_CHARS} lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None: """simple docstring""" _UpperCamelCase : str = "" _UpperCamelCase : int _UpperCamelCase : int _UpperCamelCase : int for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ): _UpperCamelCase : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase_ ) return decoded def lowercase__ ( lowercase_ ) -> list[str]: """simple docstring""" _UpperCamelCase : list[str] = [] for key in product(lowercase_ ,repeat=3 ): _UpperCamelCase : int = try_key(lowercase_ ,lowercase_ ) if encoded is not None: possibles.append(lowercase_ ) return possibles def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int: """simple docstring""" _UpperCamelCase : list[int] _UpperCamelCase : list[str] _UpperCamelCase : str _UpperCamelCase : str _UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" ) _UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )] _UpperCamelCase : List[str] = filter_valid_chars(lowercase_ ) for common_word in COMMON_WORDS: _UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ ) if len(lowercase_ ) == 1: break _UpperCamelCase : Union[str, Any] = possibles[0] return sum(ord(lowercase_ ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
716
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , __a : list[int] ) -> None: _UpperCamelCase : Tuple = len(__a ) _UpperCamelCase : Dict = [0] * len_array if len_array > 0: _UpperCamelCase : Optional[Any] = array[0] for i in range(1 , __a ): _UpperCamelCase : Tuple = self.prefix_sum[i - 1] + array[i] def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> bool: _UpperCamelCase : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__a ) return False if __name__ == "__main__": import doctest doctest.testmod()
51
0
"""simple docstring""" import argparse import os from accelerate.test_utils import execute_subprocess_async def lowercase__ ( lowercase_=None ) -> Any: """simple docstring""" if subparsers is not None: _UpperCamelCase : Dict = subparsers.add_parser("test" ) else: _UpperCamelCase : str = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" ,default=lowercase_ ,help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) ,) if subparsers is not None: parser.set_defaults(func=lowercase_ ) return parser def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: _UpperCamelCase : int = script_name else: _UpperCamelCase : Dict = F'''--config_file={args.config_file} {script_name}''' _UpperCamelCase : str = ["accelerate-launch"] + test_args.split() _UpperCamelCase : Tuple = execute_subprocess_async(lowercase_ ,env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def lowercase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : int = test_command_parser() _UpperCamelCase : Tuple = parser.parse_args() test_command(lowercase_ ) if __name__ == "__main__": main()
717
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[int] = None if token is not None: _UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) _UpperCamelCase : Any = "636036" _UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' _UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json() return result["workflow_runs"] def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ ) _UpperCamelCase : Tuple = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCamelCase : Union[str, Any] = workflow_run["id"] break return workflow_run_id def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: _UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCamelCase : Dict = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = {} for artifact_name in artifact_names: _UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' ) if os.path.isfile(lowercase_ ): _UpperCamelCase : int = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: _UpperCamelCase : int = f.read().decode("UTF-8" ) return results
51
0
"""simple docstring""" def lowercase__ ( lowercase_ ) -> int: """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" _UpperCamelCase : str = 0 _UpperCamelCase : str = number while duplicate > 0: _UpperCamelCase : int = divmod(lowercase_ ,10 ) fact_sum += factorial(lowercase_ ) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") lowerCamelCase__ = int(input("Enter number: ").strip()) print( f"""{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.""" )
718
"""simple docstring""" import math class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int: _UpperCamelCase : List[Any] = 0.0 _UpperCamelCase : Union[str, Any] = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]: for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase : List[Any] = SelfOrganizingMap() _UpperCamelCase : int = 3 _UpperCamelCase : List[Any] = 0.5 for _ in range(lowercase_ ): for j in range(len(lowercase_ ) ): # training sample _UpperCamelCase : int = training_samples[j] # Compute the winning vector _UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # Update the winning vector _UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) # classify test sample _UpperCamelCase : Optional[int] = [0, 0, 0, 1] _UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
51
0
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED lowerCamelCase__ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCamelCase__ = { "allenai/led-base-16384": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = ( list(range(ord("!" ) ,ord("~" ) + 1 ) ) + list(range(ord("¡" ) ,ord("¬" ) + 1 ) ) + list(range(ord("®" ) ,ord("ÿ" ) + 1 ) ) ) _UpperCamelCase : List[str] = bs[:] _UpperCamelCase : str = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase_ ) cs.append(2**8 + n ) n += 1 _UpperCamelCase : str = [chr(lowercase_ ) for n in cs] return dict(zip(lowercase_ ,lowercase_ ) ) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : Dict = set() _UpperCamelCase : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCamelCase : Dict = char return pairs class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ :Optional[int] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , __a : int , __a : Optional[int] , __a : Optional[int]="replace" , __a : Any="<s>" , __a : Dict="</s>" , __a : List[str]="</s>" , __a : int="<s>" , __a : Any="<unk>" , __a : str="<pad>" , __a : Any="<mask>" , __a : List[Any]=False , **__a : List[str] , ) -> str: _UpperCamelCase : Tuple = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else bos_token _UpperCamelCase : List[str] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token _UpperCamelCase : Tuple = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else sep_token _UpperCamelCase : str = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else cls_token _UpperCamelCase : Any = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token _UpperCamelCase : List[Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : int = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( errors=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , **__a , ) with open(__a , encoding="utf-8" ) as vocab_handle: _UpperCamelCase : int = json.load(__a ) _UpperCamelCase : str = {v: k for k, v in self.encoder.items()} _UpperCamelCase : int = errors # how to handle errors in decoding _UpperCamelCase : str = bytes_to_unicode() _UpperCamelCase : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__a , encoding="utf-8" ) as merges_handle: _UpperCamelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] _UpperCamelCase : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] _UpperCamelCase : List[Any] = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : Any = {} _UpperCamelCase : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCamelCase : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: return len(self.encoder ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: return dict(self.encoder , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Optional[Any] ) -> Tuple: if token in self.cache: return self.cache[token] _UpperCamelCase : Optional[int] = tuple(__a ) _UpperCamelCase : List[Any] = get_pairs(__a ) if not pairs: return token while True: _UpperCamelCase : List[str] = min(__a , key=lambda __a : self.bpe_ranks.get(__a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _UpperCamelCase : Union[str, Any] = bigram _UpperCamelCase : Dict = [] _UpperCamelCase : Optional[Any] = 0 while i < len(__a ): try: _UpperCamelCase : Dict = word.index(__a , __a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCamelCase : str = j if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCamelCase : str = tuple(__a ) _UpperCamelCase : Optional[int] = new_word if len(__a ) == 1: break else: _UpperCamelCase : Any = get_pairs(__a ) _UpperCamelCase : str = " ".join(__a ) _UpperCamelCase : Dict = word return word def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] ) -> Tuple: _UpperCamelCase : str = [] for token in re.findall(self.pat , __a ): _UpperCamelCase : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__a ).split(" " ) ) return bpe_tokens def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : int ) -> Tuple: return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Dict ) -> Union[str, Any]: return self.decoder.get(__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Tuple ) -> str: _UpperCamelCase : Tuple = "".join(__a ) _UpperCamelCase : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __SCREAMING_SNAKE_CASE ( self : Any , __a : str , __a : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase : Tuple = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Dict = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + "\n" ) _UpperCamelCase : str = 0 with open(__a , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) _UpperCamelCase : Union[str, Any] = token_index writer.write(" ".join(__a ) + "\n" ) index += 1 return vocab_file, merge_file def __SCREAMING_SNAKE_CASE ( self : int , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def __SCREAMING_SNAKE_CASE ( self : str , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: _UpperCamelCase : Optional[int] = [self.sep_token_id] _UpperCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __SCREAMING_SNAKE_CASE ( self : Any , __a : str , __a : int=False , **__a : List[Any] ) -> List[Any]: _UpperCamelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__a ) > 0 and not text[0].isspace()): _UpperCamelCase : List[Any] = " " + text return (text, kwargs) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Union[Dict[str, EncodedInput], BatchEncoding] , __a : Optional[int] = None , __a : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __a : Optional[int] = None , __a : Optional[bool] = None , ) -> dict: _UpperCamelCase : Any = super()._pad( encoded_inputs=__a , max_length=__a , padding_strategy=__a , pad_to_multiple_of=__a , return_attention_mask=__a , ) # Load from model defaults if return_attention_mask is None: _UpperCamelCase : str = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _UpperCamelCase : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _UpperCamelCase : str = len(encoded_inputs["global_attention_mask"] ) != len(__a ) if needs_to_be_padded: _UpperCamelCase : List[str] = len(__a ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _UpperCamelCase : str = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _UpperCamelCase : List[Any] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
719
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase__ = "src/transformers" lowerCamelCase__ = "docs/source/en" lowerCamelCase__ = "." def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f: _UpperCamelCase : Union[str, Any] = f.readlines() # Find the start prompt. _UpperCamelCase : Dict = 0 while not lines[start_index].startswith(lowercase_ ): start_index += 1 start_index += 1 _UpperCamelCase : Optional[int] = start_index while not lines[end_index].startswith(lowercase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase__ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Tuple = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" ,lowercase_ ) return [m.group(0 ) for m in matches] def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = 2 if text == "✅" or text == "❌" else len(lowercase_ ) _UpperCamelCase : Union[str, Any] = (width - text_length) // 2 _UpperCamelCase : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : str = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : Dict = {name: config.replace("Config" ,"" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : Dict = collections.defaultdict(lowercase_ ) _UpperCamelCase : int = collections.defaultdict(lowercase_ ) _UpperCamelCase : str = collections.defaultdict(lowercase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowercase_ ): _UpperCamelCase : List[str] = None if attr_name.endswith("Tokenizer" ): _UpperCamelCase : Tuple = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _UpperCamelCase : Optional[Any] = fast_tokenizers _UpperCamelCase : List[str] = attr_name[:-13] elif _re_tf_models.match(lowercase_ ) is not None: _UpperCamelCase : List[Any] = tf_models _UpperCamelCase : Dict = _re_tf_models.match(lowercase_ ).groups()[0] elif _re_flax_models.match(lowercase_ ) is not None: _UpperCamelCase : Dict = flax_models _UpperCamelCase : Union[str, Any] = _re_flax_models.match(lowercase_ ).groups()[0] elif _re_pt_models.match(lowercase_ ) is not None: _UpperCamelCase : Optional[int] = pt_models _UpperCamelCase : Any = _re_pt_models.match(lowercase_ ).groups()[0] if lookup_dict is not None: while len(lowercase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Dict = True break # Try again after removing the last word in the name _UpperCamelCase : List[str] = "".join(camel_case_split(lowercase_ )[:-1] ) # Let's build that table! _UpperCamelCase : Any = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : List[str] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : Union[str, Any] = [len(lowercase_ ) + 2 for c in columns] _UpperCamelCase : Any = max([len(lowercase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : Tuple = "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for c, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _UpperCamelCase : Union[str, Any] = {True: "✅", False: "❌"} for name in model_names: _UpperCamelCase : Optional[int] = model_name_to_prefix[name] _UpperCamelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowercase_ ,lowercase_ ) for l, w in zip(lowercase_ ,lowercase_ )] ) + "|\n" return table def lowercase__ ( lowercase_=False ) -> List[Any]: """simple docstring""" _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = _find_text_in_file( filename=os.path.join(lowercase_ ,"index.md" ) ,start_prompt="<!--This table is updated automatically from the auto modules" ,end_prompt="<!-- End table-->" ,) _UpperCamelCase : Any = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowercase_ ,"index.md" ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
51
0
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): lowerCamelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowerCamelCase__ = 12_8022 lowerCamelCase__ = 12_8028 @require_sentencepiece class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = MaMaaaTokenizer SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :Tuple = False SCREAMING_SNAKE_CASE__ :str = True def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().setUp() _UpperCamelCase : List[Any] = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _UpperCamelCase : Dict = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : List[str] = Path(self.tmpdirname ) save_json(__a , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__a , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _UpperCamelCase : Tuple = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Dict , **__a : Dict ) -> Optional[int]: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Union[str, Any] ) -> int: return ( "This is a test", "This is a test", ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: _UpperCamelCase : List[str] = "</s>" _UpperCamelCase : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Tuple = self.get_tokenizer() _UpperCamelCase : str = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(__a ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: pass def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : Optional[int] = self.get_tokenizer() _UpperCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [2, 3, 4, 5, 6] , ) _UpperCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) _UpperCamelCase : Any = tokenizer.convert_tokens_to_string(__a ) self.assertEqual(__a , "This is a test" ) @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: # fmt: off _UpperCamelCase : List[Any] = {"input_ids": [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = "facebook/m2m100_418M" SCREAMING_SNAKE_CASE__ :Union[str, Any] = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] SCREAMING_SNAKE_CASE__ :Optional[int] = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off SCREAMING_SNAKE_CASE__ :int = [EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2] @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] ) -> str: _UpperCamelCase : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _UpperCamelCase : Union[str, Any] = 1 return cls def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 12_8063 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = self.tokenizer.get_vocab() self.assertEqual(len(__a ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , __a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: _UpperCamelCase : Union[str, Any] = "en" _UpperCamelCase : Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: self.assertIn(__a , self.tokenizer.all_special_ids ) # fmt: off _UpperCamelCase : Union[str, Any] = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on _UpperCamelCase : Dict = self.tokenizer.decode(__a , skip_special_tokens=__a ) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: _UpperCamelCase : Tuple = tempfile.mkdtemp() _UpperCamelCase : List[str] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(__a ) _UpperCamelCase : int = MaMaaaTokenizer.from_pretrained(__a ) self.assertDictEqual(new_tok.lang_token_to_id , __a ) @require_torch def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: _UpperCamelCase : Optional[Any] = "en" _UpperCamelCase : int = "fr" _UpperCamelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__a , return_tensors="pt" ) _UpperCamelCase : Optional[int] = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _UpperCamelCase : Any = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Any = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _UpperCamelCase : Optional[int] = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: _UpperCamelCase : Any = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _UpperCamelCase : List[str] = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase : Union[str, Any] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(__a ) , { # en_XX, A, test, EOS "input_ids": [[12_8022, 58, 4183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 12_8006, } , )
720
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]: """simple docstring""" _UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] ) return (item, float(lowercase_ )) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]: """simple docstring""" _UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 ) _UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] _UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = list(lowercase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _UpperCamelCase : int = random.choice(lowercase_ ) return "".join(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]: """simple docstring""" _UpperCamelCase : Optional[Any] = [] # Generate more children proportionally to the fitness score. _UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1 _UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n for _ in range(lowercase_ ): _UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0] _UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ ) # Append new string to the population list. pop.append(mutate(lowercase_ ,lowercase_ ) ) pop.append(mutate(lowercase_ ,lowercase_ ) ) return pop def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowercase_ ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCamelCase : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowercase_ ) # Generate random starting population. _UpperCamelCase : Union[str, Any] = [] for _ in range(lowercase_ ): population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCamelCase, _UpperCamelCase : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population] # Check if there is a matching evolution. _UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCamelCase : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase_ ) # Normalize population score to be between 0 and 1. _UpperCamelCase : str = [ (item, score / len(lowercase_ )) for item, score in population_score ] # This is selection for i in range(lowercase_ ): population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase__ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase__ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
51
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = DDIMPipeline SCREAMING_SNAKE_CASE__ :Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ :List[str] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } SCREAMING_SNAKE_CASE__ :Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ :List[Any] = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCamelCase : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) _UpperCamelCase : List[Any] = DDIMScheduler() _UpperCamelCase : Any = {"unet": unet, "scheduler": scheduler} return components def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Union[str, Any] , __a : int=0 ) -> Dict: if str(__a ).startswith("mps" ): _UpperCamelCase : List[str] = torch.manual_seed(__a ) else: _UpperCamelCase : Tuple = torch.Generator(device=__a ).manual_seed(__a ) _UpperCamelCase : Tuple = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = "cpu" _UpperCamelCase : Any = self.get_dummy_components() _UpperCamelCase : Any = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _UpperCamelCase : List[str] = self.get_dummy_inputs(__a ) _UpperCamelCase : Tuple = pipe(**__a ).images _UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _UpperCamelCase : List[Any] = np.array( [1.0_0_0e0_0, 5.7_1_7e-0_1, 4.7_1_7e-0_1, 1.0_0_0e0_0, 0.0_0_0e0_0, 1.0_0_0e0_0, 3.0_0_0e-0_4, 0.0_0_0e0_0, 9.0_0_0e-0_4] ) _UpperCamelCase : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1e-3 ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: super().test_save_load_local(expected_max_difference=3e-3 ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : List[Any] = "google/ddpm-cifar10-32" _UpperCamelCase : Tuple = UNetaDModel.from_pretrained(__a ) _UpperCamelCase : str = DDIMScheduler() _UpperCamelCase : Union[str, Any] = DDIMPipeline(unet=__a , scheduler=__a ) ddim.to(__a ) ddim.set_progress_bar_config(disable=__a ) _UpperCamelCase : Dict = torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = ddim(generator=__a , eta=0.0 , output_type="numpy" ).images _UpperCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase : Any = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Any = "google/ddpm-ema-bedroom-256" _UpperCamelCase : Optional[int] = UNetaDModel.from_pretrained(__a ) _UpperCamelCase : Optional[Any] = DDIMScheduler.from_pretrained(__a ) _UpperCamelCase : int = DDIMPipeline(unet=__a , scheduler=__a ) ddpm.to(__a ) ddpm.set_progress_bar_config(disable=__a ) _UpperCamelCase : int = torch.manual_seed(0 ) _UpperCamelCase : Tuple = ddpm(generator=__a , output_type="numpy" ).images _UpperCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _UpperCamelCase : int = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
721
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ["model.decoder.embed_positions.weights"] def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if "emb" in name: _UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" ) if "transformer" in name: _UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" ) if "cross_attention" in name: _UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" ) if "linear1" in name: _UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" ) if "linear2" in name: _UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" ) if "norm1" in name: _UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" ) if "norm_cross" in name: _UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" ) if "norm2" in name: _UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" ) if "out_norm" in name: _UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" ) if "linears" in name: _UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]: """simple docstring""" _UpperCamelCase : str = list(state_dict.keys() ) _UpperCamelCase : Optional[Any] = {} for key in keys: _UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ ) _UpperCamelCase : List[Any] = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCamelCase : Tuple = val[:hidden_size, :] _UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _UpperCamelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCamelCase : Optional[Any] = val else: _UpperCamelCase : List[str] = val return state_dict, enc_dec_proj_state_dict def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values _UpperCamelCase : List[Any] = 1_024 _UpperCamelCase : List[str] = 24 _UpperCamelCase : Any = 16 elif checkpoint == "medium": _UpperCamelCase : Tuple = 1_536 _UpperCamelCase : Dict = 48 _UpperCamelCase : Tuple = 24 elif checkpoint == "large": _UpperCamelCase : int = 2_048 _UpperCamelCase : Optional[int] = 48 _UpperCamelCase : Dict = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _UpperCamelCase : str = MusicgenDecoderConfig( hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,) return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]: """simple docstring""" _UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ ) _UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ ) _UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict() _UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict( lowercase_ ,hidden_size=decoder_config.hidden_size ) _UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" ) _UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowercase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass _UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) _UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): _UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" ) _UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) # set the appropriate bos/pad token ids _UpperCamelCase : str = 2_048 _UpperCamelCase : str = 2_048 # set other default generation config params _UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate ) _UpperCamelCase : List[str] = True _UpperCamelCase : int = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowerCamelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
51
0
import tensorflow as tf from ...tf_utils import shape_list class __lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : Any=1 , _snake_case : Optional[Any]=False , **_snake_case : List[Any] ): """simple docstring""" super().__init__(**_snake_case ) A__ = vocab_size A__ = d_embed A__ = d_proj A__ = cutoffs + [vocab_size] A__ = [0] + self.cutoffs A__ = div_val A__ = self.cutoffs[0] A__ = len(self.cutoffs ) - 1 A__ = self.shortlist_size + self.n_clusters A__ = keep_order A__ = [] A__ = [] def _a ( self : Optional[int] , _snake_case : Any ): """simple docstring""" if self.n_clusters > 0: A__ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='zeros' , trainable=_snake_case , name='cluster_weight' ) A__ = self.add_weight( shape=(self.n_clusters,) , initializer='zeros' , trainable=_snake_case , name='cluster_bias' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A__ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='zeros' , trainable=_snake_case , name=F'''out_projs_._{i}''' , ) self.out_projs.append(_snake_case ) else: self.out_projs.append(_snake_case ) A__ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='zeros' , trainable=_snake_case , name=F'''out_layers_._{i}_._weight''' , ) A__ = self.add_weight( shape=(self.vocab_size,) , initializer='zeros' , trainable=_snake_case , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A__ , A__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A__ = self.d_embed // (self.div_val**i) A__ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='zeros' , trainable=_snake_case , name=F'''out_projs_._{i}''' ) self.out_projs.append(_snake_case ) A__ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='zeros' , trainable=_snake_case , name=F'''out_layers_._{i}_._weight''' , ) A__ = self.add_weight( shape=(r_idx - l_idx,) , initializer='zeros' , trainable=_snake_case , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(_snake_case ) @staticmethod def _a ( _snake_case : List[Any] , _snake_case : str , _snake_case : Any , _snake_case : Union[str, Any]=None ): """simple docstring""" A__ = x if proj is not None: A__ = tf.einsum('ibd,ed->ibe' , _snake_case , _snake_case ) return tf.einsum('ibd,nd->ibn' , _snake_case , _snake_case ) + b @staticmethod def _a ( _snake_case : Optional[int] , _snake_case : Optional[Any] ): """simple docstring""" A__ = shape_list(_snake_case ) A__ = tf.range(lp_size[0] , dtype=target.dtype ) A__ = tf.stack([r, target] , 1 ) return tf.gather_nd(_snake_case , _snake_case ) def _a ( self : Optional[int] , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : Any=True , _snake_case : Union[str, Any]=False ): """simple docstring""" A__ = 0 if self.n_clusters == 0: A__ = self._logit(_snake_case , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A__ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_snake_case , logits=_snake_case ) A__ = tf.nn.log_softmax(_snake_case , axis=-1 ) else: A__ = shape_list(_snake_case ) A__ = [] A__ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A__ , A__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A__ = (target >= l_idx) & (target < r_idx) A__ = tf.where(_snake_case ) A__ = tf.boolean_mask(_snake_case , _snake_case ) - l_idx if self.div_val == 1: A__ = self.out_layers[0][0][l_idx:r_idx] A__ = self.out_layers[0][1][l_idx:r_idx] else: A__ = self.out_layers[i][0] A__ = self.out_layers[i][1] if i == 0: A__ = tf.concat([cur_W, self.cluster_weight] , 0 ) A__ = tf.concat([cur_b, self.cluster_bias] , 0 ) A__ = self._logit(_snake_case , _snake_case , _snake_case , self.out_projs[0] ) A__ = tf.nn.log_softmax(_snake_case ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A__ = tf.boolean_mask(_snake_case , _snake_case ) A__ = self._gather_logprob(_snake_case , _snake_case ) else: A__ = self._logit(_snake_case , _snake_case , _snake_case , self.out_projs[i] ) A__ = tf.nn.log_softmax(_snake_case ) A__ = self.cutoffs[0] + i - 1 # No probability for the head cluster A__ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_snake_case ) if target is not None: A__ = tf.boolean_mask(_snake_case , _snake_case ) A__ = tf.boolean_mask(_snake_case , _snake_case ) A__ = self._gather_logprob(_snake_case , _snake_case ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_snake_case , -cur_logprob , shape_list(_snake_case ) ) A__ = tf.concat(_snake_case , axis=-1 ) if target is not None: if return_mean: A__ = tf.reduce_mean(_snake_case ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_snake_case ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_snake_case , name=self.name , aggregation='mean' if return_mean else '' ) return out
52
def A ( __UpperCamelCase ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
52
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : str = "Salesforce/blip-image-captioning-base" A__ : Any = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) A__ : Optional[Any] = "image_captioner" A__ : Dict = AutoModelForVisionaSeq A__ : int = ["image"] A__ : int = ["text"] def __init__( self : Tuple , *_snake_case : Optional[int] , **_snake_case : str ): """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*_snake_case , **_snake_case ) def _a ( self : List[Any] , _snake_case : "Image" ): """simple docstring""" return self.pre_processor(images=_snake_case , return_tensors='pt' ) def _a ( self : Any , _snake_case : Optional[int] ): """simple docstring""" return self.model.generate(**_snake_case ) def _a ( self : Dict , _snake_case : Union[str, Any] ): """simple docstring""" return self.pre_processor.batch_decode(_snake_case , skip_special_tokens=_snake_case )[0].strip()
52
from typing import Dict from .base import GenericTensor, Pipeline class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : Any , _snake_case : str=None , _snake_case : Dict=None , _snake_case : Any=None , **_snake_case : str ): """simple docstring""" if tokenize_kwargs is None: A__ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) A__ = truncation A__ = tokenize_kwargs A__ = {} if return_tensors is not None: A__ = return_tensors return preprocess_params, {}, postprocess_params def _a ( self : Any , _snake_case : Dict , **_snake_case : Optional[Any] ): """simple docstring""" A__ = self.framework A__ = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) return model_inputs def _a ( self : List[Any] , _snake_case : Dict ): """simple docstring""" A__ = self.model(**_snake_case ) return model_outputs def _a ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : str=False ): """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : Dict , *_snake_case : int , **_snake_case : List[str] ): """simple docstring""" return super().__call__(*_snake_case , **_snake_case )
52
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def A ( __UpperCamelCase ) -> Any: if is_torch_version('<' , '2.0.0' ) or not hasattr(__UpperCamelCase , '_dynamo' ): return False return isinstance(__UpperCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def A ( __UpperCamelCase , __UpperCamelCase = True ) -> List[str]: A__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A__ = is_compiled_module(__UpperCamelCase ) if is_compiled: A__ = model A__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__UpperCamelCase , __UpperCamelCase ): A__ = model.module if not keep_fpaa_wrapper: A__ = getattr(__UpperCamelCase , 'forward' ) A__ = model.__dict__.pop('_original_forward' , __UpperCamelCase ) if original_forward is not None: while hasattr(__UpperCamelCase , '__wrapped__' ): A__ = forward.__wrapped__ if forward == original_forward: break A__ = forward if getattr(__UpperCamelCase , '_converted_to_transformer_engine' , __UpperCamelCase ): convert_model(__UpperCamelCase , to_transformer_engine=__UpperCamelCase ) if is_compiled: A__ = model A__ = compiled_model return model def A ( ) -> List[Any]: PartialState().wait_for_everyone() def A ( __UpperCamelCase , __UpperCamelCase ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(__UpperCamelCase , __UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(__UpperCamelCase , __UpperCamelCase ) @contextmanager def A ( **__UpperCamelCase ) -> List[str]: for key, value in kwargs.items(): A__ = str(__UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def A ( __UpperCamelCase ) -> List[str]: if not hasattr(__UpperCamelCase , '__qualname__' ) and not hasattr(__UpperCamelCase , '__name__' ): A__ = getattr(__UpperCamelCase , '__class__' , __UpperCamelCase ) if hasattr(__UpperCamelCase , '__qualname__' ): return obj.__qualname__ if hasattr(__UpperCamelCase , '__name__' ): return obj.__name__ return str(__UpperCamelCase ) def A ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: for key, value in source.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): A__ = destination.setdefault(__UpperCamelCase , {} ) merge_dicts(__UpperCamelCase , __UpperCamelCase ) else: A__ = value return destination def A ( __UpperCamelCase = None ) -> bool: if port is None: A__ = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
52
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def A ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: return (preds == labels).mean() @dataclass class __lowerCAmelCase : """simple docstring""" A__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowerCAmelCase : """simple docstring""" A__ : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) A__ : str = field(metadata={"help": "Should contain the data files for the task."} ) A__ : int = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A__ : bool = field( default=UpperCAmelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def A ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A__ , A__ , A__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , __UpperCamelCase ) # Set seed set_seed(training_args.seed ) try: A__ = processors[data_args.task_name]() A__ = processor.get_labels() A__ = len(__UpperCamelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCamelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) A__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) A__ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets A__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) A__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__UpperCamelCase ) -> Dict: A__ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__UpperCamelCase , p.label_ids )} # Data collator A__ = DataCollatorWithPadding(__UpperCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer A__ = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=__UpperCamelCase , eval_dataset=__UpperCamelCase , compute_metrics=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A__ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A__ = trainer.evaluate() A__ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(__UpperCamelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , __UpperCamelCase , __UpperCamelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(__UpperCamelCase ) return results def A ( __UpperCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
52
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : List[Any] = "naver-clova-ix/donut-base-finetuned-docvqa" A__ : Optional[Any] = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) A__ : Tuple = "document_qa" A__ : str = AutoProcessor A__ : Union[str, Any] = VisionEncoderDecoderModel A__ : int = ["image", "text"] A__ : Any = ["text"] def __init__( self : Optional[int] , *_snake_case : Tuple , **_snake_case : Tuple ): """simple docstring""" if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*_snake_case , **_snake_case ) def _a ( self : Union[str, Any] , _snake_case : "Image" , _snake_case : str ): """simple docstring""" A__ = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' A__ = task_prompt.replace('{user_input}' , _snake_case ) A__ = self.pre_processor.tokenizer( _snake_case , add_special_tokens=_snake_case , return_tensors='pt' ).input_ids A__ = self.pre_processor(_snake_case , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _a ( self : int , _snake_case : Optional[Any] ): """simple docstring""" return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_snake_case , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_snake_case , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_snake_case , ).sequences def _a ( self : List[Any] , _snake_case : List[str] ): """simple docstring""" A__ = self.pre_processor.batch_decode(_snake_case )[0] A__ = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) A__ = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) A__ = re.sub(R'<.*?>' , '' , _snake_case , count=1 ).strip() # remove first task start token A__ = self.pre_processor.tokenajson(_snake_case ) return sequence["answer"]
52
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
52
1
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , _snake_case : Any , _snake_case : Optional[int]=13 , _snake_case : Optional[Any]=64 , _snake_case : List[str]=2 , _snake_case : Any=3 , _snake_case : Union[str, Any]=True , _snake_case : Dict=True , _snake_case : int=32 , _snake_case : int=5 , _snake_case : Union[str, Any]=4 , _snake_case : int=37 , _snake_case : Tuple="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : Dict=0.1 , _snake_case : List[str]=10 , _snake_case : Union[str, Any]=0.02 , _snake_case : Dict=[1, 16, 4, 4] , _snake_case : Dict=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = scope A__ = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size A__ = (self.image_size // 32) ** 2 A__ = num_patches + 1 def _a ( self : Any ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def _a ( self : Tuple ): """simple docstring""" A__ = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_snake_case , ) def _a ( self : int , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Optional[int] ): """simple docstring""" A__ = ViTHybridModel(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : List[str] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : Any ): """simple docstring""" A__ = self.type_sequence_label_size A__ = ViTHybridForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Dict ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () A__ : str = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) A__ : Union[str, Any] = False A__ : Any = False A__ : Union[str, Any] = False def _a ( self : Dict ): """simple docstring""" A__ = ViTHybridModelTester(self ) A__ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def _a ( self : int ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self : int ): """simple docstring""" pass def _a ( self : int ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear ) ) def _a ( self : List[str] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _a ( self : Any ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) def _a ( self : Any ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: A__ = model_class(config=_snake_case ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": A__ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _a ( self : int ): """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = ViTHybridModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A ( ) -> Union[str, Any]: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : Tuple ): """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ): """simple docstring""" A__ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _snake_case ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ).to(_snake_case ) # forward pass with torch.no_grad(): A__ = model(**_snake_case ) # verify the logits A__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) ) @slow @require_accelerate def _a ( self : List[Any] ): """simple docstring""" A__ = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) A__ = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = model(**_snake_case ) A__ = outputs.logits # model predicts one of the 1000 ImageNet classes A__ = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
52
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') SCREAMING_SNAKE_CASE__ = f'https://www.google.com/search?q={query}&num=100' SCREAMING_SNAKE_CASE__ = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: SCREAMING_SNAKE_CASE__ = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: SCREAMING_SNAKE_CASE__ = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
1
import math class __lowerCAmelCase : """simple docstring""" def _a ( self : List[Any] , _snake_case : list[list[float]] , _snake_case : list[int] ): """simple docstring""" A__ = 0.0 A__ = 0.0 for i in range(len(_snake_case ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _a ( self : Dict , _snake_case : list[list[int | float]] , _snake_case : list[int] , _snake_case : int , _snake_case : float ): """simple docstring""" for i in range(len(_snake_case ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def A ( ) -> None: # Training Examples ( m, n ) A__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) A__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training A__ = SelfOrganizingMap() A__ = 3 A__ = 0.5 for _ in range(__UpperCamelCase ): for j in range(len(__UpperCamelCase ) ): # training sample A__ = training_samples[j] # Compute the winning vector A__ = self_organizing_map.get_winner(__UpperCamelCase , __UpperCamelCase ) # Update the winning vector A__ = self_organizing_map.update(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # classify test sample A__ = [0, 0, 0, 1] A__ = self_organizing_map.get_winner(__UpperCamelCase , __UpperCamelCase ) # results print(f'''Clusters that the test sample belongs to : {winner}''' ) print(f'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
52
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Any = IFInpaintingPipeline A__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} A__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A__ : Dict = PipelineTesterMixin.required_optional_params - {"latents"} def _a ( self : Any ): """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _snake_case : Any , _snake_case : str=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): A__ = torch.manual_seed(_snake_case ) else: A__ = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _a ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _a ( self : int ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def _a ( self : Optional[int] ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def _a ( self : List[str] ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _a ( self : Dict ): """simple docstring""" self._test_save_load_local() def _a ( self : Optional[int] ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
52
1
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def A ( __UpperCamelCase ) -> List[str]: A__ = [] embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', f'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', f'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', f'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', f'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def A ( __UpperCamelCase , __UpperCamelCase ) -> Tuple: A__ = [] attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def A ( __UpperCamelCase ) -> Any: A__ = [] token.append((f'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def A ( ) -> List[str]: A__ = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: A__ = 'imagenet-1k-id2label.json' A__ = 1_000 A__ = 'huggingface/label-files' A__ = num_labels A__ = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = A__ = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": A__ = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": A__ = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: A__ = [2, 2, 20] A__ = [3, 12, 16] A__ = [192, 768, 1_024] A__ = CvtForImageClassification(__UpperCamelCase ) A__ = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) A__ = image_size A__ = torch.load(__UpperCamelCase , map_location=torch.device('cpu' ) ) A__ = OrderedDict() A__ = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: A__ = list_of_state_dict + cls_token(__UpperCamelCase ) A__ = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): A__ = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) A__ = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): A__ = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=3_8_4, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
52
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) SCREAMING_SNAKE_CASE__ = r''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class __lowerCAmelCase : """simple docstring""" @add_start_docstrings(_snake_case ) def __call__( self : Optional[int] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray ): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __lowerCAmelCase : """simple docstring""" @add_start_docstrings(_snake_case ) def __call__( self : List[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray ): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" @add_start_docstrings(_snake_case ) def __call__( self : Any , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int , **_snake_case : Optional[int] ): """simple docstring""" for processor in self: A__ = inspect.signature(processor.__call__ ).parameters if len(_snake_case ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) A__ = processor(_snake_case , _snake_case , _snake_case , **_snake_case ) else: A__ = processor(_snake_case , _snake_case , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , _snake_case : float ): """simple docstring""" if not isinstance(_snake_case , _snake_case ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) A__ = temperature def __call__( self : str , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = scores / self.temperature return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , _snake_case : float , _snake_case : float = -float('Inf' ) , _snake_case : int = 1 ): """simple docstring""" if not isinstance(_snake_case , _snake_case ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(_snake_case , _snake_case ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) A__ = top_p A__ = filter_value A__ = min_tokens_to_keep def __call__( self : str , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ , A__ = lax.top_k(_snake_case , scores.shape[-1] ) A__ = jnp.full_like(_snake_case , self.filter_value ) A__ = jax.nn.softmax(_snake_case , axis=-1 ).cumsum(axis=-1 ) A__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well A__ = jnp.roll(_snake_case , 1 ) score_mask |= score_mask.at[:, 0].set(_snake_case ) # min tokens to keep A__ = score_mask.at[:, : self.min_tokens_to_keep].set(_snake_case ) A__ = jnp.where(_snake_case , _snake_case , _snake_case ) A__ = jax.lax.sort_key_val(_snake_case , _snake_case )[-1] return next_scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : int , _snake_case : float = -float('Inf' ) , _snake_case : int = 1 ): """simple docstring""" if not isinstance(_snake_case , _snake_case ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) A__ = max(_snake_case , _snake_case ) A__ = filter_value def __call__( self : Optional[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ , A__ = scores.shape A__ = jnp.full(batch_size * vocab_size , self.filter_value ) A__ = min(self.top_k , scores.shape[-1] ) # Safety check A__ , A__ = lax.top_k(_snake_case , _snake_case ) A__ = jnp.broadcast_to((jnp.arange(_snake_case ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() A__ = topk_scores.flatten() A__ = topk_indices.flatten() + shift A__ = next_scores_flat.at[topk_indices_flat].set(_snake_case ) A__ = next_scores_flat.reshape(_snake_case , _snake_case ) return next_scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , _snake_case : int ): """simple docstring""" A__ = bos_token_id def __call__( self : Optional[int] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = jnp.full(scores.shape , -float('inf' ) ) A__ = 1 - jnp.bool_(cur_len - 1 ) A__ = jnp.where(_snake_case , new_scores.at[:, self.bos_token_id].set(0 ) , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , _snake_case : int , _snake_case : int ): """simple docstring""" A__ = max_length A__ = eos_token_id def __call__( self : List[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = jnp.full(scores.shape , -float('inf' ) ) A__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A__ = jnp.where(_snake_case , new_scores.at[:, self.eos_token_id].set(0 ) , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , _snake_case : int , _snake_case : int ): """simple docstring""" if not isinstance(_snake_case , _snake_case ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(_snake_case , _snake_case ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) A__ = min_length A__ = eos_token_id def __call__( self : int , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) A__ = jnp.where(_snake_case , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : int , _snake_case : Tuple , _snake_case : Union[str, Any] ): """simple docstring""" A__ = list(_snake_case ) A__ = begin_index def __call__( self : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : int ): """simple docstring""" A__ = 1 - jnp.bool_(cur_len - self.begin_index ) A__ = jnp.where(_snake_case , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , _snake_case ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : int , _snake_case : list ): """simple docstring""" A__ = list(_snake_case ) def __call__( self : List[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" A__ = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[str] , _snake_case : Optional[Any] ): """simple docstring""" A__ = dict(_snake_case ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A__ = force_token_array.at[index].set(_snake_case ) A__ = jnp.intaa(_snake_case ) def __call__( self : List[Any] , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : int ): """simple docstring""" def _force_token(_snake_case : Dict ): A__ = scores.shape[0] A__ = self.force_token_array[generation_idx] A__ = jnp.ones_like(_snake_case , dtype=scores.dtype ) * -float('inf' ) A__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) A__ = lax.dynamic_update_slice(_snake_case , _snake_case , (0, current_token) ) return new_scores A__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_snake_case ) , lambda: scores , ) , ) return scores class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : List[Any] ): """simple docstring""" A__ = generate_config.eos_token_id A__ = generate_config.no_timestamps_token_id A__ = generate_config.no_timestamps_token_id + 1 A__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_snake_case , 'max_initial_timestamp_index' ): A__ = generate_config.max_initial_timestamp_index else: A__ = model_config.vocab_size if self.max_initial_timestamp_index is None: A__ = model_config.vocab_size def __call__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict , _snake_case : Dict ): """simple docstring""" A__ = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(_snake_case : Dict , _snake_case : str ): A__ = jnp.where((cur_len - self.begin_index) >= 1 , _snake_case , _snake_case ) A__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _snake_case , ) A__ = jnp.where((cur_len - self.begin_index) < 2 , _snake_case , _snake_case ) A__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _snake_case , _snake_case , ) return jnp.where( _snake_case , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , _snake_case , ) A__ = jax.vmap(_snake_case )(_snake_case , _snake_case ) A__ = jnp.where(cur_len == self.begin_index , _snake_case , _snake_case ) A__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _snake_case , ) A__ = self.timestamp_begin + self.max_initial_timestamp_index A__ = jnp.where( _snake_case , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , _snake_case , ) # if sum of probability over timestamps is above any other token, sample timestamp A__ = jax.nn.log_softmax(_snake_case , axis=-1 ) def handle_cumulative_probs(_snake_case : List[Any] , _snake_case : Union[str, Any] ): A__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) A__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , _snake_case , ) A__ = jax.vmap(_snake_case )(_snake_case , _snake_case ) return scores
52
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
import argparse import struct import unittest class __lowerCAmelCase : """simple docstring""" def __init__( self : List[str] , _snake_case : bytes ): """simple docstring""" A__ = data # Initialize hash values A__ = [ 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, ] # Initialize round constants A__ = [ 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def _a ( _snake_case : bytes ): """simple docstring""" A__ = B'\x80' + (B'\x00' * (63 - (len(_snake_case ) + 8) % 64)) A__ = struct.pack('>Q' , (len(_snake_case ) * 8) ) return data + padding + big_endian_integer def _a ( self : Optional[int] ): """simple docstring""" A__ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack('>16L' , _snake_case ) ) # add 48 0-ed integers words += [0] * 48 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) A__ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) A__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100000000 # Compression A__ = self.ror(_snake_case , 6 ) ^ self.ror(_snake_case , 11 ) ^ self.ror(_snake_case , 25 ) A__ = (e & f) ^ ((~e & 0xFFFFFFFF) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100000000 A__ = self.ror(_snake_case , 2 ) ^ self.ror(_snake_case , 13 ) ^ self.ror(_snake_case , 22 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0x100000000 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0x100000000), c, b, a, ((tempa + tempa) % 0x100000000), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0x100000000) for index, element in enumerate(self.hashes ) ] A__ = ''.join([hex(_snake_case )[2:].zfill(8 ) for value in self.hashes] ) def _a ( self : Dict , _snake_case : int , _snake_case : int ): """simple docstring""" return 0xFFFFFFFF & (value << (32 - rotations)) | (value >> rotations) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : str ): """simple docstring""" import hashlib A__ = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(_snake_case ).hash , hashlib.shaaaa(_snake_case ).hexdigest() ) def A ( ) -> None: import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A__ = f.read() else: A__ = bytes(__UpperCamelCase , 'utf-8' ) print(SHAaaa(__UpperCamelCase ).hash ) if __name__ == "__main__": main()
52
1
from __future__ import annotations def A ( __UpperCamelCase ) -> int: if not nums: return 0 A__ = nums[0] A__ = 0 for num in nums[1:]: A__ , A__ = ( max_excluding + num, max(__UpperCamelCase , __UpperCamelCase ), ) return max(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
52
import math import random def A ( __UpperCamelCase , __UpperCamelCase = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value SCREAMING_SNAKE_CASE__ = 0.02 def A ( __UpperCamelCase , __UpperCamelCase ) -> float: A__ = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(__UpperCamelCase ): # Forward propagation A__ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? A__ = (expected / 100) - layer_a # Error delta A__ = layer_1_error * sigmoid_function(__UpperCamelCase , __UpperCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = int(input('''Expected value: ''')) SCREAMING_SNAKE_CASE__ = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
52
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A ( __UpperCamelCase ) -> int: A__ = 384 if "tiny" in model_name: A__ = [3, 3, 9, 3] A__ = [96, 192, 384, 768] if "small" in model_name: A__ = [3, 3, 27, 3] A__ = [96, 192, 384, 768] if "base" in model_name: A__ = [3, 3, 27, 3] A__ = [128, 256, 512, 1_024] A__ = 512 if "large" in model_name: A__ = [3, 3, 27, 3] A__ = [192, 384, 768, 1_536] A__ = 768 if "xlarge" in model_name: A__ = [3, 3, 27, 3] A__ = [256, 512, 1_024, 2_048] A__ = 1_024 # set label information A__ = 150 A__ = 'huggingface/label-files' A__ = 'ade20k-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = {v: k for k, v in idalabel.items()} A__ = ConvNextConfig( depths=__UpperCamelCase , hidden_sizes=__UpperCamelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) A__ = UperNetConfig( backbone_config=__UpperCamelCase , auxiliary_in_channels=__UpperCamelCase , num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase , ) return config def A ( __UpperCamelCase ) -> Union[str, Any]: A__ = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } A__ = model_name_to_url[model_name] A__ = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='cpu' )['state_dict'] A__ = get_upernet_config(__UpperCamelCase ) A__ = UperNetForSemanticSegmentation(__UpperCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A__ = state_dict.pop(__UpperCamelCase ) if "bn" in key: A__ = key.replace('bn' , 'batch_norm' ) A__ = val # rename keys A__ = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # verify on image A__ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert('RGB' ) A__ = SegformerImageProcessor() A__ = processor(__UpperCamelCase , return_tensors='pt' ).pixel_values with torch.no_grad(): A__ = model(__UpperCamelCase ) if model_name == "upernet-convnext-tiny": A__ = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": A__ = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": A__ = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": A__ = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": A__ = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCamelCase , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[f'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
52
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _a ( self : int ): """simple docstring""" A__ = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' ) A__ = AutoTokenizer.from_pretrained('google/mt5-small' ) A__ = tokenizer('Hello there' , return_tensors='np' ).input_ids A__ = tokenizer('Hi I am' , return_tensors='np' ).input_ids A__ = shift_tokens_right(_snake_case , model.config.pad_token_id , model.config.decoder_start_token_id ) A__ = model(_snake_case , decoder_input_ids=_snake_case ).logits A__ = optax.softmax_cross_entropy(_snake_case , onehot(_snake_case , logits.shape[-1] ) ).mean() A__ = -(labels.shape[-1] * loss.item()) A__ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
52
1
def A ( __UpperCamelCase ) -> Dict: A__ = [] A__ = [] A__ = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator A__ = len(__UpperCamelCase ) if (len(__UpperCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(__UpperCamelCase ) , 'Postfix'.center(__UpperCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__UpperCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__UpperCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__UpperCamelCase ) == 0: stack.append(__UpperCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__UpperCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__UpperCamelCase ) # push x to stack print( x.center(8 ) , (''.join(__UpperCamelCase )).ljust(__UpperCamelCase ) , (''.join(__UpperCamelCase )).ljust(__UpperCamelCase ) , sep=' | ' , ) # Output in tabular format while len(__UpperCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(__UpperCamelCase )).ljust(__UpperCamelCase ) , (''.join(__UpperCamelCase )).ljust(__UpperCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(__UpperCamelCase ) # return Postfix as str def A ( __UpperCamelCase ) -> Optional[Any]: A__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__UpperCamelCase ) ): if infix[i] == "(": A__ = ')' # change "(" to ")" elif infix[i] == ")": A__ = '(' # change ")" to "(" return (infix_2_postfix(''.join(__UpperCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input('''\nEnter an Infix Equation = ''') # Input an Infix equation SCREAMING_SNAKE_CASE__ = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
52
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : List[str] = "roberta" def __init__( self : List[str] , _snake_case : Union[str, Any]=5_02_65 , _snake_case : List[Any]=7_68 , _snake_case : List[str]=12 , _snake_case : List[str]=12 , _snake_case : Any=30_72 , _snake_case : Union[str, Any]="gelu" , _snake_case : int=0.1 , _snake_case : Union[str, Any]=0.1 , _snake_case : Tuple=5_12 , _snake_case : Union[str, Any]=2 , _snake_case : Any=0.02 , _snake_case : Any=1E-12 , _snake_case : List[Any]=1 , _snake_case : int=0 , _snake_case : Any=2 , _snake_case : Optional[Any]="absolute" , _snake_case : int=True , _snake_case : Any=None , **_snake_case : Any , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" @property def _a ( self : Dict ): """simple docstring""" if self.task == "multiple-choice": A__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
52
1
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __get__( self : str , _snake_case : List[str] , _snake_case : List[Any]=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) A__ = '__cached_' + self.fget.__name__ A__ = getattr(_snake_case , _snake_case , _snake_case ) if cached is None: A__ = self.fget(_snake_case ) setattr(_snake_case , _snake_case , _snake_case ) return cached def A ( __UpperCamelCase ) -> Optional[Any]: A__ = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def A ( __UpperCamelCase ) -> Any: if is_torch_fx_proxy(__UpperCamelCase ): return True if is_torch_available(): import torch if isinstance(__UpperCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__UpperCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__UpperCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(__UpperCamelCase , np.ndarray ) def A ( __UpperCamelCase ) -> Union[str, Any]: return isinstance(__UpperCamelCase , np.ndarray ) def A ( __UpperCamelCase ) -> List[Any]: return _is_numpy(__UpperCamelCase ) def A ( __UpperCamelCase ) -> str: import torch return isinstance(__UpperCamelCase , torch.Tensor ) def A ( __UpperCamelCase ) -> Any: return False if not is_torch_available() else _is_torch(__UpperCamelCase ) def A ( __UpperCamelCase ) -> str: import torch return isinstance(__UpperCamelCase , torch.device ) def A ( __UpperCamelCase ) -> List[Any]: return False if not is_torch_available() else _is_torch_device(__UpperCamelCase ) def A ( __UpperCamelCase ) -> List[Any]: import torch if isinstance(__UpperCamelCase , __UpperCamelCase ): if hasattr(__UpperCamelCase , __UpperCamelCase ): A__ = getattr(__UpperCamelCase , __UpperCamelCase ) else: return False return isinstance(__UpperCamelCase , torch.dtype ) def A ( __UpperCamelCase ) -> List[Any]: return False if not is_torch_available() else _is_torch_dtype(__UpperCamelCase ) def A ( __UpperCamelCase ) -> Any: import tensorflow as tf return isinstance(__UpperCamelCase , tf.Tensor ) def A ( __UpperCamelCase ) -> List[Any]: return False if not is_tf_available() else _is_tensorflow(__UpperCamelCase ) def A ( __UpperCamelCase ) -> Any: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__UpperCamelCase , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(__UpperCamelCase ) return type(__UpperCamelCase ) == tf.Tensor def A ( __UpperCamelCase ) -> Any: return False if not is_tf_available() else _is_tf_symbolic_tensor(__UpperCamelCase ) def A ( __UpperCamelCase ) -> Optional[Any]: import jax.numpy as jnp # noqa: F811 return isinstance(__UpperCamelCase , jnp.ndarray ) def A ( __UpperCamelCase ) -> str: return False if not is_flax_available() else _is_jax(__UpperCamelCase ) def A ( __UpperCamelCase ) -> Any: if isinstance(__UpperCamelCase , (dict, UserDict) ): return {k: to_py_obj(__UpperCamelCase ) for k, v in obj.items()} elif isinstance(__UpperCamelCase , (list, tuple) ): return [to_py_obj(__UpperCamelCase ) for o in obj] elif is_tf_tensor(__UpperCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(__UpperCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(__UpperCamelCase ): return np.asarray(__UpperCamelCase ).tolist() elif isinstance(__UpperCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def A ( __UpperCamelCase ) -> Dict: if isinstance(__UpperCamelCase , (dict, UserDict) ): return {k: to_numpy(__UpperCamelCase ) for k, v in obj.items()} elif isinstance(__UpperCamelCase , (list, tuple) ): return np.array(__UpperCamelCase ) elif is_tf_tensor(__UpperCamelCase ): return obj.numpy() elif is_torch_tensor(__UpperCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(__UpperCamelCase ): return np.asarray(__UpperCamelCase ) else: return obj class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : Tuple ): """simple docstring""" A__ = fields(self ) # Safety and consistency checks if not len(_snake_case ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) A__ = getattr(self , class_fields[0].name ) A__ = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_snake_case ): if isinstance(_snake_case , _snake_case ): A__ = first_field.items() A__ = True else: try: A__ = iter(_snake_case ) A__ = True except TypeError: A__ = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_snake_case ): if ( not isinstance(_snake_case , (list, tuple) ) or not len(_snake_case ) == 2 or not isinstance(element[0] , _snake_case ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute A__ = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: A__ = element[1] elif first_field is not None: A__ = first_field else: for field in class_fields: A__ = getattr(self , field.name ) if v is not None: A__ = v def __delitem__( self : List[Any] , *_snake_case : str , **_snake_case : Optional[Any] ): """simple docstring""" raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def _a ( self : Any , *_snake_case : List[str] , **_snake_case : List[str] ): """simple docstring""" raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def _a ( self : Optional[int] , *_snake_case : List[Any] , **_snake_case : str ): """simple docstring""" raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def _a ( self : Union[str, Any] , *_snake_case : Tuple , **_snake_case : Optional[int] ): """simple docstring""" raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : Optional[int] , _snake_case : List[Any] ): """simple docstring""" if isinstance(_snake_case , _snake_case ): A__ = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Union[str, Any] , _snake_case : Tuple , _snake_case : int ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_snake_case , _snake_case ) super().__setattr__(_snake_case , _snake_case ) def __setitem__( self : List[str] , _snake_case : str , _snake_case : Any ): """simple docstring""" super().__setitem__(_snake_case , _snake_case ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_snake_case , _snake_case ) def _a ( self : Union[str, Any] ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): """simple docstring""" @classmethod def _a ( cls : Any , _snake_case : Optional[int] ): """simple docstring""" raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = "longest" A__ : str = "max_length" A__ : Dict = "do_not_pad" class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : int = "pt" A__ : List[str] = "tf" A__ : List[Any] = "np" A__ : Any = "jax" class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , _snake_case : List[ContextManager] ): """simple docstring""" A__ = context_managers A__ = ExitStack() def __enter__( self : Tuple ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(_snake_case ) def __exit__( self : List[Any] , *_snake_case : Tuple , **_snake_case : str ): """simple docstring""" self.stack.__exit__(*_snake_case , **_snake_case ) def A ( __UpperCamelCase ) -> List[Any]: A__ = infer_framework(__UpperCamelCase ) if framework == "tf": A__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A__ = inspect.signature(model_class.forward ) # PyTorch models else: A__ = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def A ( __UpperCamelCase ) -> Dict: A__ = model_class.__name__ A__ = infer_framework(__UpperCamelCase ) if framework == "tf": A__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A__ = inspect.signature(model_class.forward ) # PyTorch models else: A__ = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def A ( __UpperCamelCase , __UpperCamelCase = "" , __UpperCamelCase = "." ) -> Any: def _flatten_dict(__UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase="." ): for k, v in d.items(): A__ = str(__UpperCamelCase ) + delimiter + str(__UpperCamelCase ) if parent_key else k if v and isinstance(__UpperCamelCase , __UpperCamelCase ): yield from flatten_dict(__UpperCamelCase , __UpperCamelCase , delimiter=__UpperCamelCase ).items() else: yield key, v return dict(_flatten_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) @contextmanager def A ( __UpperCamelCase , __UpperCamelCase = False ) -> int: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def A ( __UpperCamelCase , __UpperCamelCase=None ) -> List[Any]: if is_numpy_array(__UpperCamelCase ): return np.transpose(__UpperCamelCase , axes=__UpperCamelCase ) elif is_torch_tensor(__UpperCamelCase ): return array.T if axes is None else array.permute(*__UpperCamelCase ) elif is_tf_tensor(__UpperCamelCase ): import tensorflow as tf return tf.transpose(__UpperCamelCase , perm=__UpperCamelCase ) elif is_jax_tensor(__UpperCamelCase ): return jnp.transpose(__UpperCamelCase , axes=__UpperCamelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(__UpperCamelCase )}.''' ) def A ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: if is_numpy_array(__UpperCamelCase ): return np.reshape(__UpperCamelCase , __UpperCamelCase ) elif is_torch_tensor(__UpperCamelCase ): return array.reshape(*__UpperCamelCase ) elif is_tf_tensor(__UpperCamelCase ): import tensorflow as tf return tf.reshape(__UpperCamelCase , __UpperCamelCase ) elif is_jax_tensor(__UpperCamelCase ): return jnp.reshape(__UpperCamelCase , __UpperCamelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(__UpperCamelCase )}.''' ) def A ( __UpperCamelCase , __UpperCamelCase=None ) -> Tuple: if is_numpy_array(__UpperCamelCase ): return np.squeeze(__UpperCamelCase , axis=__UpperCamelCase ) elif is_torch_tensor(__UpperCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=__UpperCamelCase ) elif is_tf_tensor(__UpperCamelCase ): import tensorflow as tf return tf.squeeze(__UpperCamelCase , axis=__UpperCamelCase ) elif is_jax_tensor(__UpperCamelCase ): return jnp.squeeze(__UpperCamelCase , axis=__UpperCamelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(__UpperCamelCase )}.''' ) def A ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: if is_numpy_array(__UpperCamelCase ): return np.expand_dims(__UpperCamelCase , __UpperCamelCase ) elif is_torch_tensor(__UpperCamelCase ): return array.unsqueeze(dim=__UpperCamelCase ) elif is_tf_tensor(__UpperCamelCase ): import tensorflow as tf return tf.expand_dims(__UpperCamelCase , axis=__UpperCamelCase ) elif is_jax_tensor(__UpperCamelCase ): return jnp.expand_dims(__UpperCamelCase , axis=__UpperCamelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(__UpperCamelCase )}.''' ) def A ( __UpperCamelCase ) -> Optional[Any]: if is_numpy_array(__UpperCamelCase ): return np.size(__UpperCamelCase ) elif is_torch_tensor(__UpperCamelCase ): return array.numel() elif is_tf_tensor(__UpperCamelCase ): import tensorflow as tf return tf.size(__UpperCamelCase ) elif is_jax_tensor(__UpperCamelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(__UpperCamelCase )}.''' ) def A ( __UpperCamelCase , __UpperCamelCase ) -> Tuple: for key, value in auto_map.items(): if isinstance(__UpperCamelCase , (tuple, list) ): A__ = [f'''{repo_id}--{v}''' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: A__ = f'''{repo_id}--{value}''' return auto_map def A ( __UpperCamelCase ) -> Optional[int]: for base_class in inspect.getmro(__UpperCamelCase ): A__ = base_class.__module__ A__ = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
52
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : int = LongformerTokenizer A__ : Optional[int] = True A__ : Any = LongformerTokenizerFast A__ : Dict = True def _a ( self : int ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] A__ = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) A__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] A__ = {'unk_token': '<unk>'} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_snake_case ) ) def _a ( self : int , **_snake_case : Union[str, Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : Optional[int] , **_snake_case : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : Any , _snake_case : Optional[Any] ): """simple docstring""" A__ = 'lower newer' A__ = 'lower newer' return input_text, output_text def _a ( self : Any ): """simple docstring""" A__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) A__ = 'lower newer' A__ = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] A__ = tokenizer.tokenize(_snake_case ) # , add_prefix_space=True) self.assertListEqual(_snake_case , _snake_case ) A__ = tokens + [tokenizer.unk_token] A__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) def _a ( self : List[str] ): """simple docstring""" A__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_snake_case ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_snake_case ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def _a ( self : List[Any] ): """simple docstring""" A__ = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) A__ = tokenizer.encode('sequence builders' , add_special_tokens=_snake_case ) A__ = tokenizer.encode('multi-sequence build' , add_special_tokens=_snake_case ) A__ = tokenizer.encode( 'sequence builders' , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) A__ = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) A__ = tokenizer.build_inputs_with_special_tokens(_snake_case ) A__ = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _a ( self : List[str] ): """simple docstring""" A__ = self.get_tokenizer() A__ = 'Encode this sequence.' A__ = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments A__ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) A__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_snake_case , _snake_case ) A__ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) A__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_snake_case , _snake_case ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) A__ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) A__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_snake_case , _snake_case ) # Testing spaces after special tokens A__ = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case )} ) # mask token has a left space A__ = tokenizer.convert_tokens_to_ids(_snake_case ) A__ = 'Encode <mask> sequence' A__ = 'Encode <mask>sequence' A__ = tokenizer.encode(_snake_case ) A__ = encoded.index(_snake_case ) A__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_snake_case , _snake_case ) A__ = tokenizer.encode(_snake_case ) A__ = encoded.index(_snake_case ) A__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_snake_case , _snake_case ) def _a ( self : Dict ): """simple docstring""" pass def _a ( self : Union[str, Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A__ = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) A__ = self.tokenizer_class.from_pretrained(_snake_case , **_snake_case ) A__ = 'A, <mask> AllenNLP sentence.' A__ = tokenizer_r.encode_plus(_snake_case , add_special_tokens=_snake_case , return_token_type_ids=_snake_case ) A__ = tokenizer_p.encode_plus(_snake_case , add_special_tokens=_snake_case , return_token_type_ids=_snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) A__ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) A__ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( _snake_case , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _snake_case , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def _a ( self : List[Any] ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): A__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) A__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _snake_case ) self.assertEqual(post_processor_state['add_prefix_space'] , _snake_case ) self.assertEqual(post_processor_state['trim_offsets'] , _snake_case ) def _a ( self : Optional[Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A__ = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` A__ = F'''{text_of_1_token} {text_of_1_token}''' A__ = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ) + 1, len(_snake_case ) + 1 + len(_snake_case )) , ) A__ = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ) + 1, len(_snake_case ) + 1 + len(_snake_case )) , ) A__ = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ), len(_snake_case ) + 1 + len(_snake_case )) , ) A__ = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ), len(_snake_case ) + 1 + len(_snake_case )) , ) A__ = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) A__ = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_snake_case ) + 1, 1 + len(_snake_case ) + 1 + len(_snake_case )) , ) A__ = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_snake_case ), 1 + len(_snake_case ) + 1 + len(_snake_case )) , ) A__ = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) A__ = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_snake_case ), 1 + len(_snake_case ) + 1 + len(_snake_case )) , )
52
1
from collections import deque def A ( __UpperCamelCase ) -> List[Any]: A__ = len(__UpperCamelCase ) A__ = deque() A__ = [False for _ in range(__UpperCamelCase )] A__ = [-1 for _ in range(__UpperCamelCase )] A__ = index_of[:] def strong_connect(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A__ = index # the number when this node is seen A__ = index # lowest rank node reachable from here index += 1 stack.append(__UpperCamelCase ) A__ = True for w in g[v]: if index_of[w] == -1: A__ = strong_connect(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: A__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: A__ = [] A__ = stack.pop() A__ = False component.append(__UpperCamelCase ) while w != v: A__ = stack.pop() A__ = False component.append(__UpperCamelCase ) components.append(__UpperCamelCase ) return index A__ = [] for v in range(__UpperCamelCase ): if index_of[v] == -1: strong_connect(__UpperCamelCase , 0 , __UpperCamelCase ) return components def A ( __UpperCamelCase , __UpperCamelCase ) -> Dict: A__ = [[] for _ in range(__UpperCamelCase )] for u, v in edges: g[u].append(__UpperCamelCase ) return g if __name__ == "__main__": # Test SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = [0, 0, 1, 2, 3, 3, 4, 4, 6] SCREAMING_SNAKE_CASE__ = [1, 3, 2, 0, 1, 4, 5, 6, 5] SCREAMING_SNAKE_CASE__ = [(u, v) for u, v in zip(source, target)] SCREAMING_SNAKE_CASE__ = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
52
import pytest import datasets # Import fixture modules as plugins SCREAMING_SNAKE_CASE__ = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def A ( __UpperCamelCase ) -> str: config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=__UpperCamelCase ) def A ( __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? A__ = tmp_path_factory.getbasetemp() / 'cache' A__ = test_hf_cache_home / 'datasets' A__ = test_hf_cache_home / 'metrics' A__ = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(__UpperCamelCase ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(__UpperCamelCase ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(__UpperCamelCase ) ) A__ = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(__UpperCamelCase ) ) A__ = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(__UpperCamelCase ) ) @pytest.fixture(autouse=__UpperCamelCase , scope='session' ) def A ( ) -> Union[str, Any]: datasets.disable_progress_bar() @pytest.fixture(autouse=__UpperCamelCase ) def A ( __UpperCamelCase ) -> int: # don't take tests into account when counting downloads monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , __UpperCamelCase ) @pytest.fixture def A ( __UpperCamelCase ) -> Any: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , __UpperCamelCase )
52
1
from __future__ import annotations def A ( __UpperCamelCase ) -> list[int]: return [ord(__UpperCamelCase ) - 96 for elem in plain] def A ( __UpperCamelCase ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def A ( ) -> None: A__ = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , __UpperCamelCase ) print('Decoded:' , decode(__UpperCamelCase ) ) if __name__ == "__main__": main()
52
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( __UpperCamelCase , __UpperCamelCase ) -> Tuple: A__ = args.log_outputs A__ = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric A__ = load_metric('wer' ) A__ = load_metric('cer' ) # compute metrics A__ = wer.compute(references=result['target'] , predictions=result['prediction'] ) A__ = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results A__ = f'''WER: {wer_result}\nCER: {cer_result}''' print(__UpperCamelCase ) with open(f'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(__UpperCamelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f'''log_{dataset_id}_predictions.txt''' A__ = f'''log_{dataset_id}_targets.txt''' with open(__UpperCamelCase , 'w' ) as p, open(__UpperCamelCase , 'w' ) as t: # mapping function to write output def write_to_file(__UpperCamelCase , __UpperCamelCase ): p.write(f'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(__UpperCamelCase , with_indices=__UpperCamelCase ) def A ( __UpperCamelCase ) -> str: A__ = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(__UpperCamelCase , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: A__ = ' '.join(text.split(__UpperCamelCase ) ) return text def A ( __UpperCamelCase ) -> Union[str, Any]: # load dataset A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=__UpperCamelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('audio' , Audio(sampling_rate=__UpperCamelCase ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__UpperCamelCase ): A__ = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['text'] A__ = normalize_text(batch['sentence'] ) return batch # run inference on all examples A__ = dataset.map(__UpperCamelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() main(args)
52
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel SCREAMING_SNAKE_CASE__ = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def A ( __UpperCamelCase , __UpperCamelCase=False ) -> Tuple: A__ , A__ = create_model( 'HTSAT-tiny' , 'roberta' , __UpperCamelCase , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=__UpperCamelCase , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def A ( __UpperCamelCase ) -> Any: A__ = {} A__ = r'.*sequential.(\d+).*' A__ = r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: A__ = key.replace(__UpperCamelCase , __UpperCamelCase ) if re.match(__UpperCamelCase , __UpperCamelCase ): # replace sequential layers with list A__ = re.match(__UpperCamelCase , __UpperCamelCase ).group(1 ) A__ = key.replace(f'''sequential.{sequential_layer}.''' , f'''layers.{int(__UpperCamelCase )//3}.linear.''' ) elif re.match(__UpperCamelCase , __UpperCamelCase ): A__ = int(re.match(__UpperCamelCase , __UpperCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... A__ = 1 if projecton_layer == 0 else 2 A__ = key.replace(f'''_projection.{projecton_layer}.''' , f'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value A__ = value A__ = mixed_qkv.size(0 ) // 3 A__ = mixed_qkv[:qkv_dim] A__ = mixed_qkv[qkv_dim : qkv_dim * 2] A__ = mixed_qkv[qkv_dim * 2 :] A__ = query_layer A__ = key_layer A__ = value_layer else: A__ = value return model_state_dict def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> Union[str, Any]: A__ , A__ = init_clap(__UpperCamelCase , enable_fusion=__UpperCamelCase ) clap_model.eval() A__ = clap_model.state_dict() A__ = rename_state_dict(__UpperCamelCase ) A__ = ClapConfig() A__ = enable_fusion A__ = ClapModel(__UpperCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) transformers_config.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
52
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> YolosConfig: A__ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: A__ = 192 A__ = 768 A__ = 12 A__ = 3 A__ = [800, 1_333] A__ = False elif yolos_name == "yolos_s_dWr": A__ = 330 A__ = 14 A__ = 6 A__ = 1_320 elif "yolos_s" in yolos_name: A__ = 384 A__ = 1_536 A__ = 12 A__ = 6 elif "yolos_b" in yolos_name: A__ = [800, 1_344] A__ = 91 A__ = 'huggingface/label-files' A__ = 'coco-detection-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False ) -> str: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[: config.hidden_size, :] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[-config.hidden_size :, :] A__ = in_proj_bias[-config.hidden_size :] def A ( __UpperCamelCase ) -> str: if "backbone" in name: A__ = name.replace('backbone' , 'vit' ) if "cls_token" in name: A__ = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: A__ = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: A__ = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: A__ = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: A__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: A__ = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: A__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: A__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A__ = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: A__ = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: A__ = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: A__ = name.replace('vit.norm' , 'vit.layernorm' ) return name def A ( __UpperCamelCase , __UpperCamelCase ) -> dict: for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(__UpperCamelCase ) if "qkv" in key: A__ = key.split('.' ) A__ = int(key_split[2] ) A__ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: A__ = val[:dim, :] A__ = val[ dim : dim * 2, : ] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = val return orig_state_dict def A ( ) -> torch.Tensor: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False ) -> List[str]: A__ = get_yolos_config(__UpperCamelCase ) # load original state_dict A__ = torch.load(__UpperCamelCase , map_location='cpu' )['model'] # load 🤗 model A__ = YolosForObjectDetection(__UpperCamelCase ) model.eval() A__ = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by YolosImageProcessor A__ = 800 if yolos_name != 'yolos_ti' else 512 A__ = YolosImageProcessor(format='coco_detection' , size=__UpperCamelCase ) A__ = image_processor(images=prepare_img() , return_tensors='pt' ) A__ = model(**__UpperCamelCase ) A__ , A__ = outputs.logits, outputs.pred_boxes A__ , A__ = None, None if yolos_name == "yolos_ti": A__ = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) A__ = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": A__ = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) A__ = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": A__ = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) A__ = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": A__ = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) A__ = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": A__ = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) A__ = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , __UpperCamelCase , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: A__ = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) A__ = model_mapping[yolos_name] image_processor.push_to_hub(__UpperCamelCase , organization='hustvl' ) model.push_to_hub(__UpperCamelCase , organization='hustvl' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
52
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : List[str] = "align_text_model" def __init__( self : Optional[int] , _snake_case : List[str]=3_05_22 , _snake_case : int=7_68 , _snake_case : Any=12 , _snake_case : List[Any]=12 , _snake_case : Optional[int]=30_72 , _snake_case : List[str]="gelu" , _snake_case : str=0.1 , _snake_case : Optional[Any]=0.1 , _snake_case : str=5_12 , _snake_case : Union[str, Any]=2 , _snake_case : List[Any]=0.02 , _snake_case : str=1E-12 , _snake_case : Any=0 , _snake_case : Tuple="absolute" , _snake_case : Union[str, Any]=True , **_snake_case : str , ): """simple docstring""" super().__init__(**_snake_case ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = pad_token_id @classmethod def _a ( cls : str , _snake_case : Union[str, os.PathLike] , **_snake_case : Dict ): """simple docstring""" cls._set_token_in_kwargs(_snake_case ) A__ , A__ = cls.get_config_dict(_snake_case , **_snake_case ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": A__ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_snake_case , **_snake_case ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : str = "align_vision_model" def __init__( self : Optional[Any] , _snake_case : int = 3 , _snake_case : int = 6_00 , _snake_case : float = 2.0 , _snake_case : float = 3.1 , _snake_case : int = 8 , _snake_case : List[int] = [3, 3, 5, 3, 5, 5, 3] , _snake_case : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , _snake_case : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , _snake_case : List[int] = [] , _snake_case : List[int] = [1, 2, 2, 2, 1, 2, 1] , _snake_case : List[int] = [1, 2, 2, 3, 3, 4, 1] , _snake_case : List[int] = [1, 6, 6, 6, 6, 6, 6] , _snake_case : float = 0.25 , _snake_case : str = "swish" , _snake_case : int = 25_60 , _snake_case : str = "mean" , _snake_case : float = 0.02 , _snake_case : float = 0.001 , _snake_case : float = 0.99 , _snake_case : float = 0.2 , **_snake_case : int , ): """simple docstring""" super().__init__(**_snake_case ) A__ = num_channels A__ = image_size A__ = width_coefficient A__ = depth_coefficient A__ = depth_divisor A__ = kernel_sizes A__ = in_channels A__ = out_channels A__ = depthwise_padding A__ = strides A__ = num_block_repeats A__ = expand_ratios A__ = squeeze_expansion_ratio A__ = hidden_act A__ = hidden_dim A__ = pooling_type A__ = initializer_range A__ = batch_norm_eps A__ = batch_norm_momentum A__ = drop_connect_rate A__ = sum(_snake_case ) * 4 @classmethod def _a ( cls : Any , _snake_case : Union[str, os.PathLike] , **_snake_case : Optional[Any] ): """simple docstring""" cls._set_token_in_kwargs(_snake_case ) A__ , A__ = cls.get_config_dict(_snake_case , **_snake_case ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": A__ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_snake_case , **_snake_case ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[int] = "align" A__ : str = True def __init__( self : Any , _snake_case : List[str]=None , _snake_case : List[str]=None , _snake_case : str=6_40 , _snake_case : Union[str, Any]=1.0 , _snake_case : int=0.02 , **_snake_case : Tuple , ): """simple docstring""" super().__init__(**_snake_case ) if text_config is None: A__ = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: A__ = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) A__ = AlignTextConfig(**_snake_case ) A__ = AlignVisionConfig(**_snake_case ) A__ = projection_dim A__ = temperature_init_value A__ = initializer_range @classmethod def _a ( cls : Optional[int] , _snake_case : AlignTextConfig , _snake_case : AlignVisionConfig , **_snake_case : Union[str, Any] ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_snake_case ) def _a ( self : Union[str, Any] ): """simple docstring""" A__ = copy.deepcopy(self.__dict__ ) A__ = self.text_config.to_dict() A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
52
from typing import TYPE_CHECKING from ..utils import _LazyModule SCREAMING_SNAKE_CASE__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def A ( ) -> Tuple: A__ = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=__UpperCamelCase , default=__UpperCamelCase , required=__UpperCamelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=__UpperCamelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=__UpperCamelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=__UpperCamelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=__UpperCamelCase , default=0 , help='cuda_id.' , ) A__ = parser.parse_args() return args def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: if not len(__UpperCamelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) A__ , A__ = imgs[0].size A__ = Image.new('RGB' , size=(cols * w, rows * h) ) A__ , A__ = grid.size for i, img in enumerate(__UpperCamelCase ): grid.paste(__UpperCamelCase , box=(i % cols * w, i // cols * h) ) return grid def A ( __UpperCamelCase , __UpperCamelCase="robotic cat with wings" , __UpperCamelCase=7.5 , __UpperCamelCase=50 , __UpperCamelCase=1 , __UpperCamelCase=42 , ) -> Union[str, Any]: A__ = torch.Generator(pipeline.device ).manual_seed(__UpperCamelCase ) A__ = pipeline( __UpperCamelCase , guidance_scale=__UpperCamelCase , num_inference_steps=__UpperCamelCase , generator=__UpperCamelCase , num_images_per_prompt=__UpperCamelCase , ).images A__ = int(math.sqrt(__UpperCamelCase ) ) A__ = image_grid(__UpperCamelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images SCREAMING_SNAKE_CASE__ = parse_args() # Load models and create wrapper for stable diffusion SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') SCREAMING_SNAKE_CASE__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') SCREAMING_SNAKE_CASE__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') SCREAMING_SNAKE_CASE__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) SCREAMING_SNAKE_CASE__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): SCREAMING_SNAKE_CASE__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: SCREAMING_SNAKE_CASE__ = unet.to(torch.device('''cuda''', args.cuda_id)) SCREAMING_SNAKE_CASE__ = pipeline.to(unet.device) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) SCREAMING_SNAKE_CASE__ = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
52
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE__ = { '''google/rembert''': 2_5_6, } SCREAMING_SNAKE_CASE__ = '''▁''' class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Any = VOCAB_FILES_NAMES A__ : str = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = RemBertTokenizer def __init__( self : Union[str, Any] , _snake_case : Any=None , _snake_case : Optional[Any]=None , _snake_case : Any=True , _snake_case : Optional[int]=True , _snake_case : Dict=False , _snake_case : Dict="[CLS]" , _snake_case : List[Any]="[SEP]" , _snake_case : Union[str, Any]="<unk>" , _snake_case : List[str]="[SEP]" , _snake_case : List[str]="<pad>" , _snake_case : str="[CLS]" , _snake_case : Any="[MASK]" , **_snake_case : Any , ): """simple docstring""" A__ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , remove_space=_snake_case , keep_accents=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , **_snake_case , ) A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = False if not self.vocab_file else True def _a ( self : Any , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ): """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self : Tuple , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def _a ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ): """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : Any , _snake_case : str , _snake_case : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_snake_case ): logger.error('Vocabulary path ({}) should be a directory'.format(_snake_case ) ) return A__ = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file , _snake_case ) return (out_vocab_file,)
52
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> Dict: A__ = 'huggingface/label-files' A__ = 'imagenet-1k-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = {v: k for k, v in idalabel.items()} A__ = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" A__ = BitConfig( conv_layer=__UpperCamelCase , num_labels=1_000 , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase , ) return config def A ( __UpperCamelCase ) -> List[str]: if "stem.conv" in name: A__ = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: A__ = name.replace('blocks' , 'layers' ) if "head.fc" in name: A__ = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): A__ = 'bit.' + name if "bit" not in name and "classifier" not in name: A__ = 'bit.encoder.' + name return name def A ( ) -> List[Any]: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> Tuple: A__ = get_config(__UpperCamelCase ) # load original model from timm A__ = create_model(__UpperCamelCase , pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model A__ = timm_model.state_dict() for key in state_dict.copy().keys(): A__ = state_dict.pop(__UpperCamelCase ) A__ = val.squeeze() if 'head' in key else val # load HuggingFace model A__ = BitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # create image processor A__ = create_transform(**resolve_data_config({} , model=__UpperCamelCase ) ) A__ = transform.transforms A__ = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } A__ = BitImageProcessor( do_resize=__UpperCamelCase , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__UpperCamelCase , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=__UpperCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A__ = prepare_img() A__ = transform(__UpperCamelCase ).unsqueeze(0 ) A__ = processor(__UpperCamelCase , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(__UpperCamelCase , __UpperCamelCase ) # verify logits with torch.no_grad(): A__ = model(__UpperCamelCase ) A__ = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) A__ = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase , outputs.logits , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''resnetv2_50x1_bitm''', type=str, help='''Name of the BiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub.''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
52
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch SCREAMING_SNAKE_CASE__ = '''sshleifer/bart-tiny-random''' SCREAMING_SNAKE_CASE__ = '''patrickvonplaten/t5-tiny-random''' @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : Optional[int] ): """simple docstring""" return AutoConfig.from_pretrained(_snake_case ) def _a ( self : Optional[Any] ): """simple docstring""" A__ , *A__ = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _a ( self : Optional[int] ): """simple docstring""" A__ , *A__ = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=_snake_case ) def _a ( self : int ): """simple docstring""" A__ , *A__ = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=_snake_case ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _a ( self : str ): """simple docstring""" A__ , *A__ = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _a ( self : str ): """simple docstring""" with self.assertRaises(_snake_case ): create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=_snake_case , d=_snake_case )
52
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def A ( __UpperCamelCase ) -> Tuple: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: return max(metric_fn(__UpperCamelCase , __UpperCamelCase ) for gt in ground_truths ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = [line.strip() for line in open(__UpperCamelCase , 'r' ).readlines()] A__ = [] if args.gold_data_mode == "qa": A__ = pd.read_csv(__UpperCamelCase , sep='\t' , header=__UpperCamelCase ) for answer_list in data[1]: A__ = ast.literal_eval(__UpperCamelCase ) answers.append(__UpperCamelCase ) else: A__ = [line.strip() for line in open(__UpperCamelCase , 'r' ).readlines()] A__ = [[reference] for reference in references] A__ = A__ = A__ = 0 for prediction, ground_truths in zip(__UpperCamelCase , __UpperCamelCase ): total += 1 em += metric_max_over_ground_truths(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) fa += metric_max_over_ground_truths(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A__ = 100.0 * em / total A__ = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: A__ = args.k A__ = [line.strip() for line in open(__UpperCamelCase , 'r' ).readlines()] A__ = [line.strip() for line in open(__UpperCamelCase , 'r' ).readlines()] A__ = A__ = 0 for hypo, reference in zip(__UpperCamelCase , __UpperCamelCase ): A__ = set(hypo.split('\t' )[:k] ) A__ = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k A__ = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: def strip_title(__UpperCamelCase ): if title.startswith('"' ): A__ = title[1:] if title.endswith('"' ): A__ = title[:-1] return title A__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __UpperCamelCase , return_tensors='pt' , padding=__UpperCamelCase , truncation=__UpperCamelCase , )['input_ids'].to(args.device ) A__ = rag_model.rag.question_encoder(__UpperCamelCase ) A__ = question_enc_outputs[0] A__ = rag_model.retriever( __UpperCamelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) A__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) A__ = [] for docs in all_docs: A__ = [strip_title(__UpperCamelCase ) for title in docs['title']] provenance_strings.append('\t'.join(__UpperCamelCase ) ) return provenance_strings def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: with torch.no_grad(): A__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __UpperCamelCase , return_tensors='pt' , padding=__UpperCamelCase , truncation=__UpperCamelCase ) A__ = inputs_dict.input_ids.to(args.device ) A__ = inputs_dict.attention_mask.to(args.device ) A__ = rag_model.generate( # rag_model overwrites generate __UpperCamelCase , attention_mask=__UpperCamelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__UpperCamelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) A__ = rag_model.retriever.generator_tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) if args.print_predictions: for q, a in zip(__UpperCamelCase , __UpperCamelCase ): logger.info('Q: {} - A: {}'.format(__UpperCamelCase , __UpperCamelCase ) ) return answers def A ( ) -> Any: A__ = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=__UpperCamelCase , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=__UpperCamelCase , choices=['exact', 'compressed', 'legacy'] , type=__UpperCamelCase , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=__UpperCamelCase , type=__UpperCamelCase , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=__UpperCamelCase , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=__UpperCamelCase , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=__UpperCamelCase , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=__UpperCamelCase , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=__UpperCamelCase , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=__UpperCamelCase , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=__UpperCamelCase , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=__UpperCamelCase , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=__UpperCamelCase , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) A__ = parser.parse_args() A__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def A ( __UpperCamelCase ) -> int: A__ = {} if args.model_type is None: A__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): A__ = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration A__ = args.n_docs if args.index_name is not None: A__ = args.index_name if args.index_path is not None: A__ = args.index_path else: A__ = BartForConditionalGeneration A__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , __UpperCamelCase ) A__ = get_scores if args.eval_mode == 'e2e' else get_precision_at_k A__ = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(__UpperCamelCase , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(__UpperCamelCase ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): A__ = RagRetriever.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) A__ = model_class.from_pretrained(__UpperCamelCase , retriever=__UpperCamelCase , **__UpperCamelCase ) model.retriever.init_retrieval() else: A__ = model_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: A__ = [] for line in tqdm(__UpperCamelCase ): questions.append(line.strip() ) if len(__UpperCamelCase ) == args.eval_batch_size: A__ = evaluate_batch_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) preds_file.write('\n'.join(__UpperCamelCase ) + '\n' ) preds_file.flush() A__ = [] if len(__UpperCamelCase ) > 0: A__ = evaluate_batch_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) preds_file.write('\n'.join(__UpperCamelCase ) ) preds_file.flush() score_fn(__UpperCamelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = get_args() main(args)
52
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Union[str, Any] = ["image_processor", "tokenizer"] A__ : Optional[Any] = "BridgeTowerImageProcessor" A__ : List[Any] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : List[Any] , _snake_case : Optional[Any] , _snake_case : Optional[int] ): """simple docstring""" super().__init__(_snake_case , _snake_case ) def __call__( self : List[Any] , _snake_case : int , _snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _snake_case : bool = True , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Union[bool, str, TruncationStrategy] = None , _snake_case : Optional[int] = None , _snake_case : int = 0 , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = True , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Optional[int] , ): """simple docstring""" A__ = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) # add pixel_values + pixel_mask A__ = self.image_processor( _snake_case , return_tensors=_snake_case , do_normalize=_snake_case , do_center_crop=_snake_case , **_snake_case ) encoding.update(_snake_case ) return encoding def _a ( self : Any , *_snake_case : Tuple , **_snake_case : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def _a ( self : Dict , *_snake_case : Dict , **_snake_case : List[str] ): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def _a ( self : Tuple ): """simple docstring""" A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
52
1
from __future__ import annotations from typing import Any def A ( __UpperCamelCase ) -> None: create_state_space_tree(__UpperCamelCase , [] , 0 ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> None: if index == len(__UpperCamelCase ): print(__UpperCamelCase ) return create_state_space_tree(__UpperCamelCase , __UpperCamelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__UpperCamelCase , __UpperCamelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
52
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , _snake_case : TransformeraDModel , _snake_case : AutoencoderKL , _snake_case : KarrasDiffusionSchedulers , _snake_case : Optional[Dict[int, str]] = None , ): """simple docstring""" super().__init__() self.register_modules(transformer=_snake_case , vae=_snake_case , scheduler=_snake_case ) # create a imagenet -> id dictionary for easier use A__ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): A__ = int(_snake_case ) A__ = dict(sorted(self.labels.items() ) ) def _a ( self : int , _snake_case : Union[str, List[str]] ): """simple docstring""" if not isinstance(_snake_case , _snake_case ): A__ = list(_snake_case ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : List[Any] , _snake_case : List[int] , _snake_case : float = 4.0 , _snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _snake_case : int = 50 , _snake_case : Optional[str] = "pil" , _snake_case : bool = True , ): """simple docstring""" A__ = len(_snake_case ) A__ = self.transformer.config.sample_size A__ = self.transformer.config.in_channels A__ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_snake_case , device=self.device , dtype=self.transformer.dtype , ) A__ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents A__ = torch.tensor(_snake_case , device=self.device ).reshape(-1 ) A__ = torch.tensor([10_00] * batch_size , device=self.device ) A__ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: A__ = latent_model_input[: len(_snake_case ) // 2] A__ = torch.cat([half, half] , dim=0 ) A__ = self.scheduler.scale_model_input(_snake_case , _snake_case ) A__ = t if not torch.is_tensor(_snake_case ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) A__ = latent_model_input.device.type == 'mps' if isinstance(_snake_case , _snake_case ): A__ = torch.floataa if is_mps else torch.floataa else: A__ = torch.intaa if is_mps else torch.intaa A__ = torch.tensor([timesteps] , dtype=_snake_case , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: A__ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A__ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output A__ = self.transformer( _snake_case , timestep=_snake_case , class_labels=_snake_case ).sample # perform guidance if guidance_scale > 1: A__ , A__ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] A__ , A__ = torch.split(_snake_case , len(_snake_case ) // 2 , dim=0 ) A__ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) A__ = torch.cat([half_eps, half_eps] , dim=0 ) A__ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: A__ , A__ = torch.split(_snake_case , _snake_case , dim=1 ) else: A__ = noise_pred # compute previous image: x_t -> x_t-1 A__ = self.scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample if guidance_scale > 1: A__ , A__ = latent_model_input.chunk(2 , dim=0 ) else: A__ = latent_model_input A__ = 1 / self.vae.config.scaling_factor * latents A__ = self.vae.decode(_snake_case ).sample A__ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A__ = self.numpy_to_pil(_snake_case ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_snake_case )
52
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def A ( __UpperCamelCase ) -> Tuple: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: return max(metric_fn(__UpperCamelCase , __UpperCamelCase ) for gt in ground_truths ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = [line.strip() for line in open(__UpperCamelCase , 'r' ).readlines()] A__ = [] if args.gold_data_mode == "qa": A__ = pd.read_csv(__UpperCamelCase , sep='\t' , header=__UpperCamelCase ) for answer_list in data[1]: A__ = ast.literal_eval(__UpperCamelCase ) answers.append(__UpperCamelCase ) else: A__ = [line.strip() for line in open(__UpperCamelCase , 'r' ).readlines()] A__ = [[reference] for reference in references] A__ = A__ = A__ = 0 for prediction, ground_truths in zip(__UpperCamelCase , __UpperCamelCase ): total += 1 em += metric_max_over_ground_truths(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) fa += metric_max_over_ground_truths(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A__ = 100.0 * em / total A__ = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: A__ = args.k A__ = [line.strip() for line in open(__UpperCamelCase , 'r' ).readlines()] A__ = [line.strip() for line in open(__UpperCamelCase , 'r' ).readlines()] A__ = A__ = 0 for hypo, reference in zip(__UpperCamelCase , __UpperCamelCase ): A__ = set(hypo.split('\t' )[:k] ) A__ = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k A__ = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: def strip_title(__UpperCamelCase ): if title.startswith('"' ): A__ = title[1:] if title.endswith('"' ): A__ = title[:-1] return title A__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __UpperCamelCase , return_tensors='pt' , padding=__UpperCamelCase , truncation=__UpperCamelCase , )['input_ids'].to(args.device ) A__ = rag_model.rag.question_encoder(__UpperCamelCase ) A__ = question_enc_outputs[0] A__ = rag_model.retriever( __UpperCamelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) A__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) A__ = [] for docs in all_docs: A__ = [strip_title(__UpperCamelCase ) for title in docs['title']] provenance_strings.append('\t'.join(__UpperCamelCase ) ) return provenance_strings def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: with torch.no_grad(): A__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __UpperCamelCase , return_tensors='pt' , padding=__UpperCamelCase , truncation=__UpperCamelCase ) A__ = inputs_dict.input_ids.to(args.device ) A__ = inputs_dict.attention_mask.to(args.device ) A__ = rag_model.generate( # rag_model overwrites generate __UpperCamelCase , attention_mask=__UpperCamelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__UpperCamelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) A__ = rag_model.retriever.generator_tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) if args.print_predictions: for q, a in zip(__UpperCamelCase , __UpperCamelCase ): logger.info('Q: {} - A: {}'.format(__UpperCamelCase , __UpperCamelCase ) ) return answers def A ( ) -> Any: A__ = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=__UpperCamelCase , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=__UpperCamelCase , choices=['exact', 'compressed', 'legacy'] , type=__UpperCamelCase , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=__UpperCamelCase , type=__UpperCamelCase , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=__UpperCamelCase , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=__UpperCamelCase , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=__UpperCamelCase , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=__UpperCamelCase , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=__UpperCamelCase , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=__UpperCamelCase , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=__UpperCamelCase , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=__UpperCamelCase , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=__UpperCamelCase , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) A__ = parser.parse_args() A__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def A ( __UpperCamelCase ) -> int: A__ = {} if args.model_type is None: A__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): A__ = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration A__ = args.n_docs if args.index_name is not None: A__ = args.index_name if args.index_path is not None: A__ = args.index_path else: A__ = BartForConditionalGeneration A__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , __UpperCamelCase ) A__ = get_scores if args.eval_mode == 'e2e' else get_precision_at_k A__ = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(__UpperCamelCase , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(__UpperCamelCase ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): A__ = RagRetriever.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) A__ = model_class.from_pretrained(__UpperCamelCase , retriever=__UpperCamelCase , **__UpperCamelCase ) model.retriever.init_retrieval() else: A__ = model_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: A__ = [] for line in tqdm(__UpperCamelCase ): questions.append(line.strip() ) if len(__UpperCamelCase ) == args.eval_batch_size: A__ = evaluate_batch_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) preds_file.write('\n'.join(__UpperCamelCase ) + '\n' ) preds_file.flush() A__ = [] if len(__UpperCamelCase ) > 0: A__ = evaluate_batch_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) preds_file.write('\n'.join(__UpperCamelCase ) ) preds_file.flush() score_fn(__UpperCamelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = get_args() main(args)
52
1