code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _lowercase ( UpperCamelCase_=None , UpperCamelCase_=None ) -> Any: '''simple docstring''' return field(default_factory=lambda: default , metadata=UpperCamelCase_ ) @dataclass class lowercase__ : A__ : List[str] =field( metadata={"""help""": """The csv file to plot."""} , ) A__ : Any =field( default=_UpperCAmelCase , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) A__ : str =field( default=_UpperCAmelCase , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) A__ : Union[str, Any] =field( default=_UpperCAmelCase , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) A__ : Union[str, Any] =field( default=_UpperCAmelCase , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) A__ : int =field( default=_UpperCAmelCase , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) A__ : List[Any] =list_field( default=_UpperCAmelCase , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def _lowercase ( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' try: int(UpperCamelCase_ ) return True except ValueError: return False def _lowercase ( UpperCamelCase_ ) -> List[str]: '''simple docstring''' try: float(UpperCamelCase_ ) return True except ValueError: return False class lowercase__ : def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: SCREAMING_SNAKE_CASE__ = csv.DictReader(_A ) for row in reader: SCREAMING_SNAKE_CASE__ = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None SCREAMING_SNAKE_CASE__ = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None SCREAMING_SNAKE_CASE__ = float(row['result'] ) def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = plt.subplots() SCREAMING_SNAKE_CASE__ = '''Time usage''' if self.args.is_time else '''Memory usage''' SCREAMING_SNAKE_CASE__ = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): SCREAMING_SNAKE_CASE__ = sorted(set(self.result_dict[model_name]['bsz'] ) ) SCREAMING_SNAKE_CASE__ = sorted(set(self.result_dict[model_name]['seq_len'] ) ) SCREAMING_SNAKE_CASE__ = self.result_dict[model_name]['''result'''] (SCREAMING_SNAKE_CASE__) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) SCREAMING_SNAKE_CASE__ = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: SCREAMING_SNAKE_CASE__ = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_A , ) else: SCREAMING_SNAKE_CASE__ = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) (SCREAMING_SNAKE_CASE__) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) SCREAMING_SNAKE_CASE__ = np.asarray(_A , _A )[: len(_A )] plt.scatter( _A , _A , label=F'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(_A , _A , '--' ) title_str += F' {label_model_name} vs.' SCREAMING_SNAKE_CASE__ = title_str[:-4] SCREAMING_SNAKE_CASE__ = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(_A ) plt.xlabel(_A ) plt.ylabel(_A ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _lowercase ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = HfArgumentParser(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = parser.parse_args_into_dataclasses()[0] SCREAMING_SNAKE_CASE__ = Plot(args=UpperCamelCase_ ) plot.plot() if __name__ == "__main__": main()
176
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ = logging.get_logger(__name__) class lowercase__ ( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' a : int = "maskformer-swin" a : Any = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, __magic_name__=224, __magic_name__=4, __magic_name__=3, __magic_name__=96, __magic_name__=[2, 2, 6, 2], __magic_name__=[3, 6, 12, 24], __magic_name__=7, __magic_name__=4.0, __magic_name__=True, __magic_name__=0.0, __magic_name__=0.0, __magic_name__=0.1, __magic_name__="gelu", __magic_name__=False, __magic_name__=0.02, __magic_name__=1E-5, __magic_name__=None, __magic_name__=None, **__magic_name__, ) -> List[Any]: """simple docstring""" super().__init__(**_A ) UpperCamelCase__ : Union[str, Any] = image_size UpperCamelCase__ : List[Any] = patch_size UpperCamelCase__ : Union[str, Any] = num_channels UpperCamelCase__ : int = embed_dim UpperCamelCase__ : Tuple = depths UpperCamelCase__ : Tuple = len(_A ) UpperCamelCase__ : Any = num_heads UpperCamelCase__ : Optional[int] = window_size UpperCamelCase__ : List[str] = mlp_ratio UpperCamelCase__ : Tuple = qkv_bias UpperCamelCase__ : Dict = hidden_dropout_prob UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob UpperCamelCase__ : str = drop_path_rate UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = use_absolute_embeddings UpperCamelCase__ : List[str] = layer_norm_eps UpperCamelCase__ : int = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ : List[Any] = int(embed_dim * 2 ** (len(_A ) - 1) ) UpperCamelCase__ : Optional[int] = ['''stem'''] + [f"stage{idx}" for idx in range(1, len(_A ) + 1 )] UpperCamelCase__ : str = get_aligned_output_features_output_indices( out_features=_A, out_indices=_A, stage_names=self.stage_names )
201
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
0
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = SwinConfig() _UpperCamelCase : List[str] = swin_name.split('_' ) _UpperCamelCase : Optional[Any] = name_split[1] _UpperCamelCase : Optional[Any] = int(name_split[4] ) _UpperCamelCase : Tuple = int(name_split[3][-1] ) if model_size == "tiny": _UpperCamelCase : List[Any] = 9_6 _UpperCamelCase : Any = (2, 2, 6, 2) _UpperCamelCase : Optional[int] = (3, 6, 1_2, 2_4) elif model_size == "small": _UpperCamelCase : str = 9_6 _UpperCamelCase : Union[str, Any] = (2, 2, 1_8, 2) _UpperCamelCase : str = (3, 6, 1_2, 2_4) elif model_size == "base": _UpperCamelCase : Dict = 1_2_8 _UpperCamelCase : Union[str, Any] = (2, 2, 1_8, 2) _UpperCamelCase : List[Any] = (4, 8, 1_6, 3_2) else: _UpperCamelCase : Optional[Any] = 1_9_2 _UpperCamelCase : Dict = (2, 2, 1_8, 2) _UpperCamelCase : List[Any] = (6, 1_2, 2_4, 4_8) if "in22k" in swin_name: _UpperCamelCase : int = 2_1_8_4_1 else: _UpperCamelCase : Optional[Any] = 1_0_0_0 _UpperCamelCase : Optional[int] = '''huggingface/label-files''' _UpperCamelCase : int = '''imagenet-1k-id2label.json''' _UpperCamelCase : Tuple = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) _UpperCamelCase : Union[str, Any] = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} _UpperCamelCase : Dict = idalabel _UpperCamelCase : Dict = {v: k for k, v in idalabel.items()} _UpperCamelCase : Optional[int] = img_size _UpperCamelCase : List[str] = num_classes _UpperCamelCase : Tuple = embed_dim _UpperCamelCase : Optional[int] = depths _UpperCamelCase : Any = num_heads _UpperCamelCase : Any = window_size return config def A__ ( UpperCAmelCase_ ): if "patch_embed.proj" in name: _UpperCamelCase : List[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _UpperCamelCase : int = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _UpperCamelCase : Union[str, Any] = '''encoder.''' + name if "attn.proj" in name: _UpperCamelCase : Dict = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _UpperCamelCase : List[str] = name.replace('attn' , 'attention.self' ) if "norm1" in name: _UpperCamelCase : List[str] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _UpperCamelCase : Tuple = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _UpperCamelCase : Dict = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _UpperCamelCase : str = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": _UpperCamelCase : Dict = '''layernorm.weight''' if name == "norm.bias": _UpperCamelCase : Union[str, Any] = '''layernorm.bias''' if "head" in name: _UpperCamelCase : List[Any] = name.replace('head' , 'classifier' ) else: _UpperCamelCase : str = '''swin.''' + name return name def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): for key in orig_state_dict.copy().keys(): _UpperCamelCase : Any = orig_state_dict.pop(UpperCAmelCase_ ) if "mask" in key: continue elif "qkv" in key: _UpperCamelCase : str = key.split('.' ) _UpperCamelCase : Tuple = int(key_split[1] ) _UpperCamelCase : List[Any] = int(key_split[3] ) _UpperCamelCase : str = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCamelCase : List[str] = val[:dim, :] _UpperCamelCase : Dict = val[ dim : dim * 2, : ] _UpperCamelCase : Dict = val[-dim:, :] else: _UpperCamelCase : Any = val[ :dim ] _UpperCamelCase : Dict = val[ dim : dim * 2 ] _UpperCamelCase : Optional[Any] = val[ -dim: ] else: _UpperCamelCase : Optional[Any] = val return orig_state_dict def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Dict = timm.create_model(UpperCAmelCase_ , pretrained=UpperCAmelCase_ ) timm_model.eval() _UpperCamelCase : Any = get_swin_config(UpperCAmelCase_ ) _UpperCamelCase : str = SwinForImageClassification(UpperCAmelCase_ ) model.eval() _UpperCamelCase : str = convert_state_dict(timm_model.state_dict() , UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase : Any = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) _UpperCamelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) _UpperCamelCase : Dict = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ) _UpperCamelCase : str = timm_model(inputs['pixel_values'] ) _UpperCamelCase : str = model(**UpperCAmelCase_ ).logits assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) print(f'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": snake_case_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) snake_case_ : List[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
83
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
0
def lowerCAmelCase_ ( _snake_case : str ) -> bool: '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) __magic_name__ : List[str] = sorted(string.lower() ) return len(_snake_case ) == len(set(_snake_case ) ) if __name__ == "__main__": snake_case : Dict = input("Enter a string ").strip() snake_case : Tuple = is_isogram(input_str) print(F"{input_str} is {'an' if isogram else 'not an'} isogram.")
281
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
0
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = len(__UpperCamelCase ) for i in range(__UpperCamelCase ): for j in range(i + 1 , __UpperCamelCase ): if numbers[j] < numbers[i]: SCREAMING_SNAKE_CASE__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": __lowerCamelCase : List[str] = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : Dict = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
219
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
0
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class __lowercase ( _lowercase ): def __init__(self , A , A , A=1_0_2_4 , A=1_0_2_4 , A=3.6 ): lowerCamelCase_ : Union[str, Any] = tokenizer lowerCamelCase_ : List[Any] = tokenizer.bos_token_id lowerCamelCase_ : Dict = dataset lowerCamelCase_ : Union[str, Any] = seq_length lowerCamelCase_ : Tuple = seq_length * chars_per_token * num_of_sequences def __iter__(self ): lowerCamelCase_ : Dict = iter(self.dataset ) lowerCamelCase_ : int = True while more_examples: lowerCamelCase_ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowerCamelCase_ : Optional[Any] = False break lowerCamelCase_ : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowerCamelCase_ : Any = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowerCamelCase_ : List[Any] = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def lowercase_ ( _lowercase ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ : Tuple = {'''streaming''': True} lowerCamelCase_ : int = load_dataset(args.dataset_name , split='''train''' , **_lowercase ) lowerCamelCase_ : Union[str, Any] = ConstantLengthDataset(_lowercase , _lowercase , seq_length=args.seq_length ) lowerCamelCase_ : Any = DataLoader(_lowercase , batch_size=args.batch_size ) return eval_dataloader def lowercase_ ( _lowercase ) -> Optional[Any]: '''simple docstring''' model.eval() lowerCamelCase_ : int = [] for step, batch in enumerate(_lowercase ): with torch.no_grad(): lowerCamelCase_ : Any = model(_lowercase , labels=_lowercase ) lowerCamelCase_ : str = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowercase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowerCamelCase_ : List[Any] = torch.mean(torch.cat(_lowercase ) ) try: lowerCamelCase_ : List[str] = torch.exp(_lowercase ) except OverflowError: lowerCamelCase_ : Any = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator __lowercase : Optional[int] = Accelerator() # Parse configuration __lowercase : Optional[Any] = HfArgumentParser(EvaluationArguments) __lowercase : List[Any] = parser.parse_args() set_seed(args.seed) # Logging __lowercase : Tuple = logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer __lowercase : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) __lowercase : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader __lowercase : int = create_dataloader(args) # Prepare everything with our `accelerator`. __lowercase : List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') __lowercase : Dict = evaluate(args) logger.info(f'loss/eval: {eval_loss}, perplexity: {perplexity}')
318
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
0
import pickle import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase=0.2,__lowerCamelCase=0.2 ): A__ = bp_numa A__ = bp_numa A__ = bp_numa A__ = conva_get[:2] A__ = conva_get[2] A__ = size_pa A__ = rate_w A__ = rate_t A__ = [ np.mat(-1 * np.random.rand(self.conva[0],self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] A__ = np.mat(-1 * np.random.rand(self.num_bpa,self.num_bpa ) + 0.5 ) A__ = np.mat(-1 * np.random.rand(self.num_bpa,self.num_bpa ) + 0.5 ) A__ = -2 * np.random.rand(self.conva[1] ) + 1 A__ = -2 * np.random.rand(self.num_bpa ) + 1 A__ = -2 * np.random.rand(self.num_bpa ) + 1 def UpperCamelCase ( self,__lowerCamelCase ): # save model dict with pickle A__ = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_A,'''wb''' ) as f: pickle.dump(_A,_A ) print(f"Model saved: {save_path}" ) @classmethod def UpperCamelCase ( cls,__lowerCamelCase ): # read saved model with open(_A,'''rb''' ) as f: A__ = pickle.load(_A ) # noqa: S301 A__ = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) A__ = model_dic.get('''size_pooling1''' ) A__ = model_dic.get('''num_bp1''' ) A__ = model_dic.get('''num_bp2''' ) A__ = model_dic.get('''num_bp3''' ) A__ = model_dic.get('''rate_weight''' ) A__ = model_dic.get('''rate_thre''' ) # create model instance A__ = CNN(_A,_A,_A,_A,_A,_A,_A ) # modify model parameter A__ = model_dic.get('''w_conv1''' ) A__ = model_dic.get('''wkj''' ) A__ = model_dic.get('''vji''' ) A__ = model_dic.get('''thre_conv1''' ) A__ = model_dic.get('''thre_bp2''' ) A__ = model_dic.get('''thre_bp3''' ) return conv_ins def UpperCamelCase ( self,__lowerCamelCase ): return 1 / (1 + np.exp(-1 * x )) def UpperCamelCase ( self,__lowerCamelCase ): return round(_A,3 ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): # convolution process A__ = convs[0] A__ = convs[1] A__ = np.shape(_A )[0] # get the data slice of original image data, data_focus A__ = [] for i_focus in range(0,size_data - size_conv + 1,_A ): for j_focus in range(0,size_data - size_conv + 1,_A ): A__ = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_A ) # calculate the feature map of every single kernel, and saved as list of matrix A__ = [] A__ = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_A ): A__ = [] for i_focus in range(len(_A ) ): A__ = ( np.sum(np.multiply(data_focus[i_focus],w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_A ) ) A__ = np.asmatrix(_A ).reshape( _A,_A ) data_featuremap.append(_A ) # expanding the data slice to One dimenssion A__ = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_A ) ) A__ = np.asarray(_A ) return focus_list, data_featuremap def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase="average_pool" ): # pooling process A__ = len(featuremaps[0] ) A__ = int(size_map / size_pooling ) A__ = [] for i_map in range(len(_A ) ): A__ = featuremaps[i_map] A__ = [] for i_focus in range(0,_A,_A ): for j_focus in range(0,_A,_A ): A__ = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_A ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_A ) ) A__ = np.asmatrix(_A ).reshape(_A,_A ) featuremap_pooled.append(_A ) return featuremap_pooled def UpperCamelCase ( self,__lowerCamelCase ): # expanding three dimension data to one dimension list A__ = [] for i in range(len(_A ) ): A__ = np.shape(data[i] ) A__ = data[i].reshape(1,shapes[0] * shapes[1] ) A__ = data_listed.getA().tolist()[0] data_expanded.extend(_A ) A__ = np.asarray(_A ) return data_expanded def UpperCamelCase ( self,__lowerCamelCase ): # expanding matrix to one dimension list A__ = np.asarray(_A ) A__ = np.shape(_A ) A__ = data_mat.reshape(1,shapes[0] * shapes[1] ) return data_expanded def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = [] A__ = 0 for i_map in range(_A ): A__ = np.ones((size_map, size_map) ) for i in range(0,_A,_A ): for j in range(0,_A,_A ): A__ = pd_pool[ i_pool ] A__ = i_pool + 1 A__ = np.multiply( _A,np.multiply(out_map[i_map],(1 - out_map[i_map]) ) ) pd_all.append(_A ) return pd_all def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_A )) ) print((''' - - Shape: Teach_Data ''', np.shape(_A )) ) A__ = 0 A__ = [] A__ = 1_0000 while rp < n_repeat and mse >= error_accuracy: A__ = 0 print(f"-------------Learning Time {rp}--------------" ) for p in range(len(_A ) ): # print('------------Learning Image: %d--------------'%p) A__ = np.asmatrix(datas_train[p] ) A__ = np.asarray(datas_teach[p] ) A__ = self.convolute( _A,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,) A__ = self.pooling(_A,self.size_poolinga ) A__ = np.shape(_A ) A__ = self._expand(_A ) A__ = data_bp_input A__ = np.dot(_A,self.vji.T ) - self.thre_bpa A__ = self.sig(_A ) A__ = np.dot(_A,self.wkj.T ) - self.thre_bpa A__ = self.sig(_A ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- A__ = np.multiply( (data_teach - bp_outa),np.multiply(_A,(1 - bp_outa) ) ) A__ = np.multiply( np.dot(_A,self.wkj ),np.multiply(_A,(1 - bp_outa) ) ) A__ = np.dot(_A,self.vji ) A__ = pd_i_all / (self.size_poolinga * self.size_poolinga) A__ = pd_conva_pooled.T.getA().tolist() A__ = self._calculate_gradient_from_pool( _A,_A,shape_featuremapa[0],shape_featuremapa[1],self.size_poolinga,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): A__ = self._expand_mat(pd_conva_all[k_conv] ) A__ = self.rate_weight * np.dot(_A,_A ) A__ = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) A__ = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer A__ = self.wkj + pd_k_all.T * bp_outa * self.rate_weight A__ = self.vji + pd_j_all.T * bp_outa * self.rate_weight A__ = self.thre_bpa - pd_k_all * self.rate_thre A__ = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image A__ = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) A__ = rp + 1 A__ = error_count / patterns all_mse.append(_A ) def draw_error(): A__ = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_A,'''+-''' ) plt.plot(_A,'''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_A,alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def UpperCamelCase ( self,__lowerCamelCase ): # model predict A__ = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_A )) ) for p in range(len(_A ) ): A__ = np.asmatrix(datas_test[p] ) A__ = self.convolute( _A,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,) A__ = self.pooling(_A,self.size_poolinga ) A__ = self._expand(_A ) A__ = data_bp_input A__ = bp_outa * self.vji.T - self.thre_bpa A__ = self.sig(_A ) A__ = bp_outa * self.wkj.T - self.thre_bpa A__ = self.sig(_A ) produce_out.extend(bp_outa.getA().tolist() ) A__ = [list(map(self.do_round,_A ) ) for each in produce_out] return np.asarray(_A ) def UpperCamelCase ( self,__lowerCamelCase ): # return the data of image after convoluting process so we can check it out A__ = np.asmatrix(_A ) A__ = self.convolute( _A,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,) A__ = self.pooling(_A,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
193
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
0
'''simple docstring''' import cva import numpy as np class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" if k in (0.0_4, 0.0_6): lowerCamelCase_ =k lowerCamelCase_ =window_size else: raise ValueError('''invalid k value''' ) def __str__( self ): """simple docstring""" return str(self.k ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =cva.imread(_A, 0 ) lowerCamelCase_ =img.shape lowerCamelCase_ =[] lowerCamelCase_ =img.copy() lowerCamelCase_ =cva.cvtColor(_A, cva.COLOR_GRAY2RGB ) lowerCamelCase_ =np.gradient(_A ) lowerCamelCase_ =dx**2 lowerCamelCase_ =dy**2 lowerCamelCase_ =dx * dy lowerCamelCase_ =0.0_4 lowerCamelCase_ =self.window_size // 2 for y in range(_A, h - offset ): for x in range(_A, w - offset ): lowerCamelCase_ =ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ =iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ =ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ =(wxx * wyy) - (wxy**2) lowerCamelCase_ =wxx + wyy lowerCamelCase_ =det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 255 ) return color_img, corner_list if __name__ == "__main__": a_ : Dict = HarrisCorner(0.04, 3) a_ : Union[str, Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
75
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
0
"""simple docstring""" import unittest from transformers import DonutProcessor _lowercase : Tuple = 'naver-clova-ix/donut-base' class _UpperCAmelCase ( unittest.TestCase ): def a ( self : str ): __UpperCAmelCase = DonutProcessor.from_pretrained(_A ) def a ( self : Optional[int] ): __UpperCAmelCase = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } __UpperCAmelCase = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) __UpperCAmelCase = self.processor.tokenajson(_A ) self.assertDictEqual(_A , _A )
332
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
0
from ... import PretrainedConfig __snake_case : List[Any] ={ 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP snake_case_ ="""nezha""" def __init__(self ,__lowerCamelCase=2_11_28 ,__lowerCamelCase=7_68 ,__lowerCamelCase=12 ,__lowerCamelCase=12 ,__lowerCamelCase=30_72 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.1 ,__lowerCamelCase=5_12 ,__lowerCamelCase=64 ,__lowerCamelCase=2 ,__lowerCamelCase=0.02 ,__lowerCamelCase=1e-12 ,__lowerCamelCase=0.1 ,__lowerCamelCase=0 ,__lowerCamelCase=2 ,__lowerCamelCase=3 ,__lowerCamelCase=True ,**__lowerCamelCase ,) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_A ,bos_token_id=_A ,eos_token_id=_A ,**_A ) lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : Dict = hidden_size lowerCAmelCase__ : Tuple = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : Any = hidden_act lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : Tuple = attention_probs_dropout_prob lowerCAmelCase__ : List[Any] = max_position_embeddings lowerCAmelCase__ : List[str] = max_relative_position lowerCAmelCase__ : str = type_vocab_size lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : Union[str, Any] = classifier_dropout lowerCAmelCase__ : List[str] = use_cache
129
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
0
import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __snake_case = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def _A ( ) -> List[str]: """simple docstring""" __UpperCamelCase = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __UpperCamelCase = get_sagemaker_input() else: __UpperCamelCase = get_cluster_input() return config def _A ( _lowercase=None ) -> Optional[int]: """simple docstring""" if subparsers is not None: __UpperCamelCase = subparsers.add_parser('config' , description=_lowercase ) else: __UpperCamelCase = argparse.ArgumentParser('Accelerate config command' , description=_lowercase ) parser.add_argument( '--config_file' , default=_lowercase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_lowercase ) return parser def _A ( _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = get_user_input() if args.config_file is not None: __UpperCamelCase = args.config_file else: if not os.path.isdir(_lowercase ): os.makedirs(_lowercase ) __UpperCamelCase = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_lowercase ) else: config.to_yaml_file(_lowercase ) print(f'''accelerate configuration saved at {config_file}''' ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = config_command_parser() __UpperCamelCase = parser.parse_args() config_command(_lowercase ) if __name__ == "__main__": main()
310
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
0
import re def _lowercase ( UpperCamelCase_ ) -> list: '''simple docstring''' return [char.split() for char in re.split(r'[^ a-z A-Z 0-9 \s]' , str_ )] def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' try: SCREAMING_SNAKE_CASE__ = split_input(UpperCamelCase_ ) if upper: SCREAMING_SNAKE_CASE__ = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: SCREAMING_SNAKE_CASE__ = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' return to_simple_case(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' try: SCREAMING_SNAKE_CASE__ = to_simple_case(UpperCamelCase_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' return to_complex_case(UpperCamelCase_ , UpperCamelCase_ , '_' ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' return to_complex_case(UpperCamelCase_ , UpperCamelCase_ , '-' ) if __name__ == "__main__": __import__("""doctest""").testmod()
176
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1 UpperCAmelCase_ : Dict = [] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator if len(str(A ) ) > len(str(A ) ): result.append(A ) UpperCAmelCase_ : Optional[Any] = numerator UpperCAmelCase_ : Optional[int] = denominator return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
304
0
import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> Dict: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, Any] ) -> str: UpperCamelCase__ : List[str] = create_tensor(__UpperCAmelCase ) UpperCamelCase__ : Any = gather(__UpperCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowerCAmelCase_ ( __UpperCAmelCase: Dict ) -> Optional[Any]: UpperCamelCase__ : Optional[Any] = [state.process_index] UpperCamelCase__ : Any = gather_object(__UpperCAmelCase ) assert len(__UpperCAmelCase ) == state.num_processes, f"{gathered_obj}, {len(__UpperCAmelCase )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), f"{gathered_obj} != {list(range(state.num_processes ) )}" def lowerCAmelCase_ ( __UpperCAmelCase: Any ) -> Tuple: UpperCamelCase__ : int = create_tensor(__UpperCAmelCase ) UpperCamelCase__ : Any = broadcast(__UpperCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowerCAmelCase_ ( __UpperCAmelCase: Dict ) -> Union[str, Any]: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: UpperCamelCase__ : int = torch.arange(state.num_processes + 1 ).to(state.device ) else: UpperCamelCase__ : Tuple = torch.arange(state.num_processes ).to(state.device ) UpperCamelCase__ : str = pad_across_processes(__UpperCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] ) -> Union[str, Any]: # For now runs on only two processes if state.num_processes != 2: return UpperCamelCase__ : Any = create_tensor(__UpperCAmelCase ) UpperCamelCase__ : Dict = reduce(__UpperCAmelCase , '''sum''' ) UpperCamelCase__ : List[Any] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), f"{reduced_tensor} != {truth_tensor}" def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> Tuple: # For now runs on only two processes if state.num_processes != 2: return UpperCamelCase__ : Union[str, Any] = create_tensor(__UpperCAmelCase ) UpperCamelCase__ : List[str] = reduce(__UpperCAmelCase , '''mean''' ) UpperCamelCase__ : Dict = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), f"{reduced_tensor} != {truth_tensor}" def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, Any] ) -> List[Any]: # For xla_spawn (TPUs) main() def lowerCAmelCase_ ( ) -> List[Any]: UpperCamelCase__ : Tuple = PartialState() state.print(f"State: {state}" ) state.print('''testing gather''' ) test_gather(__UpperCAmelCase ) state.print('''testing gather_object''' ) test_gather_object(__UpperCAmelCase ) state.print('''testing broadcast''' ) test_broadcast(__UpperCAmelCase ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(__UpperCAmelCase ) state.print('''testing reduce_sum''' ) test_reduce_sum(__UpperCAmelCase ) state.print('''testing reduce_mean''' ) test_reduce_mean(__UpperCAmelCase ) if __name__ == "__main__": main()
201
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels snake_case_ : Optional[int] = object() # For specifying empty leaf dict `{}` snake_case_ : List[Any] = object() def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Tuple = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(UpperCAmelCase_ ) - len(UpperCAmelCase_ ) + 1 ): _UpperCamelCase : Dict = [x.match(UpperCAmelCase_ ) for x, y in zip(UpperCAmelCase_ , ks[i:] )] if matches and all(UpperCAmelCase_ ): return True return False def A__ ( UpperCAmelCase_ ): def replace(UpperCAmelCase_ , UpperCAmelCase_ ): for rule, replacement in rules: if _match(UpperCAmelCase_ , UpperCAmelCase_ ): return replacement return val return replace def A__ ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , UpperCAmelCase_ )), (("transformer", "wte", "embedding"), P('mp' , UpperCAmelCase_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCAmelCase_ , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , UpperCAmelCase_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCAmelCase_ , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , UpperCAmelCase_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[Any] = _get_partition_rules() _UpperCamelCase : Any = _replacement_rules(UpperCAmelCase_ ) _UpperCamelCase : Any = {k: _unmatched for k in flatten_dict(UpperCAmelCase_ )} _UpperCamelCase : List[str] = {k: replace(UpperCAmelCase_ , UpperCAmelCase_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCAmelCase_ ) )
83
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
0
import colorsys from PIL import Image # type: ignore def lowerCAmelCase_ ( _snake_case : float , _snake_case : float , _snake_case : int ) -> float: '''simple docstring''' __magic_name__ : Dict = x __magic_name__ : List[str] = y for step in range(_snake_case ): # noqa: B007 __magic_name__ : Dict = a * a - b * b + x __magic_name__ : Tuple = 2 * a * b + y __magic_name__ : Dict = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCAmelCase_ ( _snake_case : float ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCAmelCase_ ( _snake_case : float ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_snake_case , 1 , 1 ) ) def lowerCAmelCase_ ( _snake_case : int = 800 , _snake_case : int = 600 , _snake_case : float = -0.6 , _snake_case : float = 0 , _snake_case : float = 3.2 , _snake_case : int = 50 , _snake_case : bool = True , ) -> Image.Image: '''simple docstring''' __magic_name__ : Union[str, Any] = Image.new("RGB" , (image_width, image_height) ) __magic_name__ : Any = img.load() # loop through the image-coordinates for image_x in range(_snake_case ): for image_y in range(_snake_case ): # determine the figure-coordinates based on the image-coordinates __magic_name__ : Tuple = figure_width / image_width * image_height __magic_name__ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width __magic_name__ : int = figure_center_y + (image_y / image_height - 0.5) * figure_height __magic_name__ : Optional[Any] = get_distance(_snake_case , _snake_case , _snake_case ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __magic_name__ : Dict = get_color_coded_rgb(_snake_case ) else: __magic_name__ : Tuple = get_black_and_white_rgb(_snake_case ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure snake_case : List[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
281
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __lowerCamelCase : Union[str, Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __snake_case ( datasets.BuilderConfig ): lowerCAmelCase_ = None def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : "pyspark.sql.DataFrame" , __UpperCamelCase : List[int] , ) -> str: """simple docstring""" import pyspark def generate_fn(): SCREAMING_SNAKE_CASE__ = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: SCREAMING_SNAKE_CASE__ = df_with_partition_id.select("""*""" ).where(f"""part_id = {partition_id}""" ).drop("""part_id""" ) SCREAMING_SNAKE_CASE__ = partition_df.collect() SCREAMING_SNAKE_CASE__ = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class __snake_case ( _BaseExamplesIterable ): def __init__( self : int , _lowercase : "pyspark.sql.DataFrame" , _lowercase : Tuple=None , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = df SCREAMING_SNAKE_CASE__ = partition_order or range(self.df.rdd.getNumPartitions() ) SCREAMING_SNAKE_CASE__ = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[str] ): """simple docstring""" yield from self.generate_examples_fn() def __a ( self : Optional[Any] , _lowercase : np.random.Generator ): """simple docstring""" SCREAMING_SNAKE_CASE__ = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(_A ) return SparkExamplesIterable(self.df , partition_order=_A ) def __a ( self : List[Any] , _lowercase : int , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.split_shard_indices_by_worker(_A , _A ) return SparkExamplesIterable(self.df , partition_order=_A ) @property def __a ( self : List[str] ): """simple docstring""" return len(self.partition_order ) class __snake_case ( datasets.DatasetBuilder ): lowerCAmelCase_ = SparkConfig def __init__( self : Tuple , _lowercase : "pyspark.sql.DataFrame" , _lowercase : str = None , _lowercase : str = None , **_lowercase : Union[str, Any] , ): """simple docstring""" import pyspark SCREAMING_SNAKE_CASE__ = pyspark.sql.SparkSession.builder.getOrCreate() SCREAMING_SNAKE_CASE__ = df SCREAMING_SNAKE_CASE__ = working_dir super().__init__( cache_dir=_A , config_name=str(self.df.semanticHash() ) , **_A , ) def __a ( self : int ): """simple docstring""" def create_cache_and_write_probe(_lowercase : str ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=_A ) SCREAMING_SNAKE_CASE__ = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(_A , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: SCREAMING_SNAKE_CASE__ = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(_A ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def __a ( self : str ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __a ( self : Optional[Any] , _lowercase : datasets.download.download_manager.DownloadManager ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __a ( self : Any , _lowercase : Dict ): """simple docstring""" import pyspark def get_arrow_batch_size(_lowercase : Tuple ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) SCREAMING_SNAKE_CASE__ = self.df.count() SCREAMING_SNAKE_CASE__ = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. SCREAMING_SNAKE_CASE__ = ( self.df.limit(_A ) .repartition(1 ) .mapInArrow(_A , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) SCREAMING_SNAKE_CASE__ = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. SCREAMING_SNAKE_CASE__ = min(_A , int(approx_total_size / max_shard_size ) ) SCREAMING_SNAKE_CASE__ = self.df.repartition(_A ) def __a ( self : str , _lowercase : str , _lowercase : str , _lowercase : int , ): """simple docstring""" import pyspark SCREAMING_SNAKE_CASE__ = ParquetWriter if file_format == '''parquet''' else ArrowWriter SCREAMING_SNAKE_CASE__ = os.path.join(self._working_dir , os.path.basename(_A ) ) if self._working_dir else fpath SCREAMING_SNAKE_CASE__ = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. SCREAMING_SNAKE_CASE__ = self.config.features SCREAMING_SNAKE_CASE__ = self._writer_batch_size SCREAMING_SNAKE_CASE__ = self._fs.storage_options def write_arrow(_lowercase : Dict ): # Within the same SparkContext, no two task attempts will share the same attempt ID. SCREAMING_SNAKE_CASE__ = pyspark.TaskContext().taskAttemptId() SCREAMING_SNAKE_CASE__ = next(_A , _A ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = writer_class( features=_A , path=working_fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) SCREAMING_SNAKE_CASE__ = pa.Table.from_batches([first_batch] ) writer.write_table(_A ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: SCREAMING_SNAKE_CASE__ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 SCREAMING_SNAKE_CASE__ = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) SCREAMING_SNAKE_CASE__ = pa.Table.from_batches([batch] ) writer.write_table(_A ) if writer._num_bytes > 0: SCREAMING_SNAKE_CASE__ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(_A ) ): SCREAMING_SNAKE_CASE__ = os.path.join(os.path.dirname(_A ) , os.path.basename(_A ) ) shutil.move(_A , _A ) SCREAMING_SNAKE_CASE__ = ( self.df.mapInArrow(_A , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __a ( self : Optional[int] , _lowercase : "datasets.SplitGenerator" , _lowercase : str = "arrow" , _lowercase : Optional[Union[str, int]] = None , _lowercase : Optional[int] = None , **_lowercase : int , ): """simple docstring""" self._validate_cache_dir() SCREAMING_SNAKE_CASE__ = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(_A ) SCREAMING_SNAKE_CASE__ = not is_remote_filesystem(self._fs ) SCREAMING_SNAKE_CASE__ = os.path.join if is_local else posixpath.join SCREAMING_SNAKE_CASE__ = '''-TTTTT-SSSSS-of-NNNNN''' SCREAMING_SNAKE_CASE__ = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" SCREAMING_SNAKE_CASE__ = path_join(self._output_dir , _A ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for task_id, content in self._prepare_split_single(_A , _A , _A ): ( SCREAMING_SNAKE_CASE__ ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(_A ) SCREAMING_SNAKE_CASE__ = total_num_examples SCREAMING_SNAKE_CASE__ = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: SCREAMING_SNAKE_CASE__ = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. SCREAMING_SNAKE_CASE__ = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( _lowercase : int , _lowercase : int , _lowercase : int , ): rename( _A , fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , fpath.replace("""TTTTT-SSSSS""" , f"""{global_shard_id:05d}""" ).replace("""NNNNN""" , f"""{total_shards:05d}""" ) , ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 for i in range(len(_A ) ): SCREAMING_SNAKE_CASE__ = task_id_and_num_shards[i] for shard_id in range(_A ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(_A , len(_A ) ).map(lambda _lowercase : _rename_shard(*_A ) ).collect() else: # don't use any pattern SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , fpath.replace(_A , """""" ) , ) def __a ( self : List[Any] , _lowercase : "datasets.SplitGenerator" , ): """simple docstring""" return SparkExamplesIterable(self.df )
219
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = tf.convert_to_tensor( [ [ 8.2_22_09_91, # 3rd highest value; idx. 0 -0.5_62_00_44, 5.23_22_97_52, 4.0_38_63_93, -6.8_79_83_78, -0.54_78_58_02, -3.2_01_21_53, 2.92_77_71_76, 1.88_17_19_53, 7.35_34_12_76, # 5th highest value; idx. 9 8.43_20_78_33, # 2nd highest value; idx. 10 -9.85_71_18_36, -5.96_20_92_36, -1.13_03_91_61, -7.1_11_52_94, -0.8_36_96_33, -5.3_18_64_08, 7.06_42_74_07, 0.81_36_93_44, -0.82_02_38_17, -5.9_17_97_96, 0.58_81_34_43, -6.99_77_84_38, 4.71_55_11_89, -0.18_77_16_37, 7.44_02_07_59, # 4th highest value; idx. 25 9.38_45_09_87, # 1st highest value; idx. 26 2.12_66_29_41, -9.32_56_20_38, 2.35_65_25_22, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_42_55_18, 4.53_13_92_38, -5.57_51_04_64, -6.28_03_06_99, -7.19_52_95_03, -4.02_12_25_51, 1.39_33_70_37, -6.06_70_70_57, 1.59_48_05_17, -9.64_31_19, 0.03_90_77_99, 0.67_23_17_62, -8.88_20_67_26, 6.27_11_59_22, # 4th highest value; idx. 13 2.28_52_07_23, 4.82_76_75_06, 4.30_42_13_68, 8.8_27_53_13, # 2nd highest value; idx. 17 5.44_02_99_58, # 5th highest value; idx. 18 -4.4_73_57_94, 7.38_57_95_36, # 3rd highest value; idx. 20 -2.91_05_16_63, 2.61_94_60_77, -2.5_67_47_62, -9.48_95_93_02, -4.02_92_26_45, -1.35_41_69_18, 9.67_70_23_23, # 1st highest value; idx. 27 -5.89_47_85_53, 1.85_37_04_67, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowerCamelCase_ : List[Any] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowerCamelCase_ : List[str] = tf.convert_to_tensor( [8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above lowerCamelCase_ : Union[str, Any] = tf_top_k_top_p_filtering(_A , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) lowerCamelCase_ : Optional[int] = output[output != -float('''inf''' )] lowerCamelCase_ : Optional[Any] = tf.cast( tf.where(tf.not_equal(_A , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_A , _A , rtol=1E-12 ) tf.debugging.assert_equal(_A , _A ) @require_tf class __lowercase ( unittest.TestCase , _lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowerCamelCase : Union[str, Any] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def UpperCAmelCase__ (self ): # TF-only test: tf.saved_model export lowerCamelCase_ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase_ : Optional[int] = 2 lowerCamelCase_ : Any = 2 class __lowercase ( tf.Module ): def __init__(self , A ): super(_A , self ).__init__() lowerCamelCase_ : Optional[Any] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_A , ) def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : int = self.model.generate( input_ids=_A , attention_mask=_A , max_new_tokens=_A , return_dict_in_generate=_A , ) return {"sequences": outputs["sequences"]} lowerCamelCase_ : str = [[2, 0], [1_0_2, 1_0_3]] lowerCamelCase_ : Optional[int] = [[1, 0], [1, 1]] lowerCamelCase_ : Tuple = DummyModel(model=_A ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_A , _A , signatures={'''serving_default''': dummy_model.serving} ) lowerCamelCase_ : Union[str, Any] = tf.saved_model.load(_A ).signatures['''serving_default'''] for batch_size in range(1 , len(_A ) + 1 ): lowerCamelCase_ : Optional[Any] = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } lowerCamelCase_ : Any = serving_func(**_A )['''sequences'''] lowerCamelCase_ : int = test_model.generate(**_A , max_new_tokens=_A ) tf.debugging.assert_equal(_A , _A ) @slow def UpperCAmelCase__ (self ): # TF-only test: tf.saved_model export lowerCamelCase_ : Any = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase_ : List[str] = 1 lowerCamelCase_ : Union[str, Any] = 2 class __lowercase ( tf.Module ): def __init__(self , A ): super(_A , self ).__init__() lowerCamelCase_ : List[str] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_A , ) def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : Optional[Any] = self.model.generate( input_ids=_A , attention_mask=_A , max_new_tokens=_A , return_dict_in_generate=_A , ) return {"sequences": outputs["sequences"]} lowerCamelCase_ : Optional[Any] = [[2], [1_0_2, 1_0_3]] lowerCamelCase_ : Optional[Any] = [[1], [1, 1]] lowerCamelCase_ : Optional[Any] = DummyModel(model=_A ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_A , _A , signatures={'''serving_default''': dummy_model.serving} ) lowerCamelCase_ : Union[str, Any] = tf.saved_model.load(_A ).signatures['''serving_default'''] for input_row in range(len(_A ) ): lowerCamelCase_ : Optional[int] = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } lowerCamelCase_ : List[Any] = serving_func(**_A )['''sequences'''] lowerCamelCase_ : int = test_model.generate(**_A , max_new_tokens=_A ) tf.debugging.assert_equal(_A , _A ) @slow @require_tensorflow_text def UpperCAmelCase__ (self ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_A ) class __lowercase ( tf.keras.layers.Layer ): def __init__(self ): super().__init__() lowerCamelCase_ : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_A , '''spiece.model''' ) , '''rb''' ).read() ) lowerCamelCase_ : Any = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def UpperCAmelCase__ (self , A , *A , **A ): lowerCamelCase_ : Optional[Any] = self.tokenizer.tokenize(_A ) lowerCamelCase_ : Dict = text.pad_model_inputs( _A , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) lowerCamelCase_ : Optional[int] = self.model.generate(input_ids=_A , attention_mask=_A ) return self.tokenizer.detokenize(_A ) lowerCamelCase_ : List[Any] = CompleteSentenceTransformer() lowerCamelCase_ : List[Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) lowerCamelCase_ : str = complete_model(_A ) lowerCamelCase_ : Optional[Any] = tf.keras.Model(_A , _A ) keras_model.save(_A ) def UpperCAmelCase__ (self ): # Has PT equivalent: this test relies on random sampling lowerCamelCase_ : Tuple = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } lowerCamelCase_ : Union[str, Any] = 1_4 lowerCamelCase_ : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase_ : Any = '''Hello, my dog is cute and''' lowerCamelCase_ : Tuple = tokenizer(_A , return_tensors='''tf''' ) lowerCamelCase_ : int = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase_ : Any = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) lowerCamelCase_ : Optional[Any] = model.generate(**_A , eos_token_id=_A , **_A ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowerCamelCase_ : Any = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) lowerCamelCase_ : Dict = model.generate(**_A , eos_token_id=_A , **_A ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def UpperCAmelCase__ (self ): # Has PT equivalent: ample use of framework-specific code lowerCamelCase_ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) lowerCamelCase_ : Optional[int] = '''Hugging Face is a technology company based in New York and Paris.''' lowerCamelCase_ : Any = bart_tokenizer(_A , return_tensors='''tf''' ).input_ids lowerCamelCase_ : Dict = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) lowerCamelCase_ : Any = bart_model.generate(_A ).numpy() class __lowercase ( _lowercase ): def UpperCAmelCase__ (self , A , A=None , **A ): return super().call(_A , **_A ) lowerCamelCase_ : List[Any] = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) lowerCamelCase_ : int = bart_model.generate(_A , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_A , _A ) ) class __lowercase ( bart_model.model.encoder.__class__ ): def UpperCAmelCase__ (self , A , **A ): return super().call(_A , **_A ) lowerCamelCase_ : List[str] = FakeEncoder(bart_model.config , bart_model.model.shared ) lowerCamelCase_ : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCamelCase_ : Tuple = bart_model.generate(_A ).numpy() with self.assertRaises(_A ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_A , foo='''bar''' )
318
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a__: Union[str, Any] = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: List[Any] = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: Optional[int] = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys a__: Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
193
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def a_ ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ =[tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Any =StableDiffusionLatentUpscalePipeline lowercase : str =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } lowercase : Optional[Any] =PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} lowercase : Tuple =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase : int =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase : int =frozenset([] ) lowercase : List[str] =True @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =1 lowerCamelCase_ =4 lowerCamelCase_ =(16, 16) lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(_A ) return image def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =UNetaDConditionModel( act_fn='''gelu''', attention_head_dim=8, norm_num_groups=_A, block_out_channels=[32, 32, 64, 64], time_cond_proj_dim=160, conv_in_kernel=1, conv_out_kernel=1, cross_attention_dim=32, down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ), in_channels=8, mid_block_type=_A, only_cross_attention=_A, out_channels=5, resnet_time_scale_shift='''scale_shift''', time_embedding_type='''fourier''', timestep_post_act='''gelu''', up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D'''), ) lowerCamelCase_ =AutoencoderKL( block_out_channels=[32, 32, 64, 64], in_channels=3, out_channels=3, down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) lowerCamelCase_ =EulerDiscreteScheduler(prediction_type='''sample''' ) lowerCamelCase_ =CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='''quick_gelu''', projection_dim=512, ) lowerCamelCase_ =CLIPTextModel(_A ) lowerCamelCase_ =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowerCamelCase_ ={ '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(_A ) else: lowerCamelCase_ =torch.Generator(device=_A ).manual_seed(_A ) lowerCamelCase_ ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) lowerCamelCase_ =self.get_dummy_inputs(_A ) lowerCamelCase_ =pipe(**_A ).images lowerCamelCase_ =image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 256, 256, 3) ) lowerCamelCase_ =np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) lowerCamelCase_ =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A, 1e-3 ) def lowercase__ ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def lowercase__ ( self ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def lowercase__ ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowercase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def lowercase__ ( self ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def lowercase__ ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3 ) def lowercase__ ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) lowerCamelCase_ =self.get_dummy_inputs(_A ) lowerCamelCase_ =2 lowerCamelCase_ =[] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowerCamelCase_ =getattr(_A, scheduler_enum.name ) lowerCamelCase_ =scheduler_cls.from_config(pipe.scheduler.config ) lowerCamelCase_ =pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch.manual_seed(33 ) lowerCamelCase_ =StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''', torch_dtype=torch.floataa ) pipe.to('''cuda''' ) lowerCamelCase_ =StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''', torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) lowerCamelCase_ ='''a photo of an astronaut high resolution, unreal engine, ultra realistic''' lowerCamelCase_ =pipe(_A, generator=_A, output_type='''latent''' ).images lowerCamelCase_ =upscaler( prompt=_A, image=_A, num_inference_steps=20, guidance_scale=0, generator=_A, output_type='''np''', ).images[0] lowerCamelCase_ =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch.manual_seed(33 ) lowerCamelCase_ =StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''', torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) lowerCamelCase_ ='''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) lowerCamelCase_ =upscaler( prompt=_A, image=_A, num_inference_steps=20, guidance_scale=0, generator=_A, output_type='''np''', ).images[0] lowerCamelCase_ =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
75
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ReformerTokenizer a_ = ReformerTokenizerFast a_ = True a_ = False a_ = True def A ( self : Optional[Any] ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = '''<s>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 10_00 ) def A ( self : Optional[int] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(_A ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def A ( self : Tuple , _A : Dict=15 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Dict = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def A ( self : Union[str, Any] ) -> int: pass def A ( self : int ) -> Any: UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A ) UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : List[str] ) -> Optional[int]: return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : Tuple = '''Hello World!''' UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def A ( self : List[Any] ) -> str: UpperCAmelCase_ : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase_ : int = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def A ( self : List[str] ) -> Optional[int]: import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ : List[Any] = ''' '''.join(_A ) UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' ) UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape UpperCAmelCase_ : Optional[int] = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def A ( self : int ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ : Optional[Any] = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
304
0
"""simple docstring""" from collections.abc import Callable import numpy as np def lowercase__ ( snake_case_ :Callable , snake_case_ :float , snake_case_ :float , snake_case_ :float , snake_case_ :float ): __UpperCAmelCase = int(np.ceil((x_end - xa) / step_size ) ) __UpperCAmelCase = np.zeros((n + 1,) ) __UpperCAmelCase = ya __UpperCAmelCase = xa for k in range(snake_case_ ): __UpperCAmelCase = y[k] + step_size * ode_func(snake_case_ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
332
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Union[str, Any] =logging.get_logger(__name__) def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : List[str] = torch.load(lowerCamelCase_ ,map_location='''cpu''') if "model" in sd.keys(): lowerCAmelCase__ : Union[str, Any] = torch.load(lowerCamelCase_ ,map_location='''cpu''')['''model'''] # pop unnecessary weights lowerCAmelCase__ : Tuple = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_) lowerCAmelCase__ : str = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: lowerCAmelCase__ : Union[str, Any] = sd.pop(lowerCamelCase_) lowerCAmelCase__ : Dict = list(sd.keys()) for key in keys: if ".qkv_proj." in key: lowerCAmelCase__ : Any = sd[key] # We split QKV in separate Q,K,V lowerCAmelCase__ : Optional[int] = key.replace('''.qkv_proj.''' ,'''.q_proj.''') lowerCAmelCase__ : List[str] = key.replace('''.qkv_proj.''' ,'''.k_proj.''') lowerCAmelCase__ : Optional[int] = key.replace('''.qkv_proj.''' ,'''.v_proj.''') lowerCAmelCase__ : Tuple = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 lowerCAmelCase__ : Optional[Any] = torch.split(lowerCamelCase_ ,depth // 3 ,dim=0) lowerCAmelCase__ : Dict = q lowerCAmelCase__ : Optional[int] = k lowerCAmelCase__ : Optional[Any] = v del sd[key] return sd @torch.no_grad() def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Any=None): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = load_checkpoint(lowerCamelCase_) if config is not None: lowerCAmelCase__ : Any = OPTConfig.from_pretrained(lowerCamelCase_) else: lowerCAmelCase__ : Dict = OPTConfig() lowerCAmelCase__ : Union[str, Any] = OPTModel(lowerCamelCase_).half().eval() model.load_state_dict(lowerCamelCase_) # Check results Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) model.save_pretrained(lowerCamelCase_) if __name__ == "__main__": __snake_case : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __snake_case : List[str] =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
129
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
0
def _A ( _lowercase ) -> str: """simple docstring""" __UpperCamelCase = 0 # if input_string is "aba" than new_input_string become "a|b|a" __UpperCamelCase = '''''' __UpperCamelCase = '''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_lowercase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __UpperCamelCase = 0, 0 # length[i] shows the length of palindromic substring with center i __UpperCamelCase = [1 for i in range(len(_lowercase ) )] # for each character in new_string find corresponding palindromic string __UpperCamelCase = 0 for j in range(len(_lowercase ) ): __UpperCamelCase = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_lowercase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __UpperCamelCase = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __UpperCamelCase = j - k + 1 # noqa: E741 __UpperCamelCase = j + k - 1 # update max_length and start position if max_length < length[j]: __UpperCamelCase = length[j] __UpperCamelCase = j # create that string __UpperCamelCase = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
310
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class lowercase__ ( _UpperCAmelCase ): A__ : Any ="""nllb-moe""" A__ : Optional[int] =["""past_key_values"""] A__ : Tuple ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[int] , UpperCAmelCase_ : Any=128112 , UpperCAmelCase_ : List[Any]=1024 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Optional[Any]=4096 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Optional[int]=4096 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : int=0.05 , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]="relu" , UpperCAmelCase_ : Union[str, Any]=1024 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Optional[Any]="float32" , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[str]=128 , UpperCAmelCase_ : List[str]=64 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Union[str, Any]=0.001 , UpperCAmelCase_ : Optional[int]=0.001 , UpperCAmelCase_ : int="all" , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : int=1.0 , UpperCAmelCase_ : Dict=0.2 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Dict=False , **UpperCAmelCase_ : List[str] , ): SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = encoder_ffn_dim SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = encoder_attention_heads SCREAMING_SNAKE_CASE__ = decoder_ffn_dim SCREAMING_SNAKE_CASE__ = decoder_layers SCREAMING_SNAKE_CASE__ = decoder_attention_heads SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = encoder_layerdrop SCREAMING_SNAKE_CASE__ = decoder_layerdrop SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ = router_z_loss_coef SCREAMING_SNAKE_CASE__ = router_aux_loss_coef SCREAMING_SNAKE_CASE__ = decoder_sparse_step SCREAMING_SNAKE_CASE__ = encoder_sparse_step SCREAMING_SNAKE_CASE__ = num_experts SCREAMING_SNAKE_CASE__ = expert_capacity SCREAMING_SNAKE_CASE__ = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE__ = router_dtype SCREAMING_SNAKE_CASE__ = router_ignore_padding_tokens SCREAMING_SNAKE_CASE__ = batch_prioritized_routing SCREAMING_SNAKE_CASE__ = second_expert_policy SCREAMING_SNAKE_CASE__ = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE__ = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE__ = moe_token_dropout SCREAMING_SNAKE_CASE__ = output_router_logits super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , decoder_start_token_id=_A , **_A , )
176
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
0
UpperCAmelCase_ = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase_ = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
201
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
0
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Any = '''hf-internal-testing/tiny-random-t5''' _UpperCamelCase : Dict = AutoTokenizer.from_pretrained(_A ) _UpperCamelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) _UpperCamelCase : int = tokenizer('This is me' ,return_tensors='pt' ) _UpperCamelCase : Optional[int] = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) _UpperCamelCase : int = model.generate(**_A ) _UpperCamelCase : Tuple = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) _UpperCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) _UpperCamelCase : Tuple = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A ,_A ) ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Optional[Any] = '''hf-internal-testing/tiny-random-t5''' _UpperCamelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) _UpperCamelCase : str = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) _UpperCamelCase : Optional[int] = model.reverse_bettertransformer() model.save_pretrained(_A )
83
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Tuple = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
281
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
0
import csv import tweepy # Twitter API credentials __lowerCamelCase : str = '' __lowerCamelCase : Optional[int] = '' __lowerCamelCase : Tuple = '' __lowerCamelCase : Optional[Any] = '' def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = tweepy.OAuthHandler(__UpperCamelCase , __UpperCamelCase ) auth.set_access_token(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = tweepy.API(__UpperCamelCase ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE__ = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE__ = api.user_timeline(screen_name=__UpperCamelCase , count=2_00 ) # save most recent tweets alltweets.extend(__UpperCamelCase ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE__ = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__UpperCamelCase ) > 0: print(f"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE__ = api.user_timeline( screen_name=__UpperCamelCase , count=2_00 , max_id=__UpperCamelCase ) # save most recent tweets alltweets.extend(__UpperCamelCase ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE__ = alltweets[-1].id - 1 print(f"""...{len(__UpperCamelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE__ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"""new_{screen_name}_tweets.csv""" , """w""" ) as f: SCREAMING_SNAKE_CASE__ = csv.writer(__UpperCamelCase ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(__UpperCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
219
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
0
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union __lowercase : Optional[int] = TypeVar('''T''') __lowercase : List[str] = Union[List[T], Tuple[T, ...]] __lowercase : Dict = Union[T, List[T], Dict[str, T]] __lowercase : Union[str, Any] = Union[str, bytes, os.PathLike]
318
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__: Optional[int] = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: Optional[Any] = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: Optional[Any] = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: str = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys a__: List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
193
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Optional[Any] = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys a_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
75
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
0
"""simple docstring""" import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :Dict , snake_case_ :int , snake_case_ :str="attention" ): __UpperCAmelCase = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] __UpperCAmelCase = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] __UpperCAmelCase = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] __UpperCAmelCase = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def lowercase__ ( snake_case_ :Dict , snake_case_ :Union[str, Any] , snake_case_ :int , snake_case_ :Optional[int]=False ): if split_mlp_wi: __UpperCAmelCase = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] __UpperCAmelCase = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] __UpperCAmelCase = (wi_a, wi_a) else: __UpperCAmelCase = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] __UpperCAmelCase = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :Dict , snake_case_ :Any ): return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def lowercase__ ( snake_case_ :dict , *, snake_case_ :int , snake_case_ :bool ): __UpperCAmelCase = traverse_util.flatten_dict(variables['''target'''] ) __UpperCAmelCase = {'''/'''.join(snake_case_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __UpperCAmelCase = '''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , snake_case_ ) __UpperCAmelCase = collections.OrderedDict() # Shared embeddings. __UpperCAmelCase = old['''token_embedder/embedding'''] # Encoder. for i in range(snake_case_ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase = tax_layer_norm_lookup(snake_case_ , snake_case_ , '''encoder''' , '''pre_attention_layer_norm''' ) __UpperCAmelCase = tax_attention_lookup(snake_case_ , snake_case_ , '''encoder''' , '''attention''' ) __UpperCAmelCase = layer_norm __UpperCAmelCase = k.T __UpperCAmelCase = o.T __UpperCAmelCase = q.T __UpperCAmelCase = v.T # Block i, layer 1 (MLP). __UpperCAmelCase = tax_layer_norm_lookup(snake_case_ , snake_case_ , '''encoder''' , '''pre_mlp_layer_norm''' ) __UpperCAmelCase = tax_mlp_lookup(snake_case_ , snake_case_ , '''encoder''' , snake_case_ ) __UpperCAmelCase = layer_norm if split_mlp_wi: __UpperCAmelCase = wi[0].T __UpperCAmelCase = wi[1].T else: __UpperCAmelCase = wi.T __UpperCAmelCase = wo.T __UpperCAmelCase = old[ '''encoder/relpos_bias/rel_embedding''' ].T __UpperCAmelCase = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(snake_case_ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase = tax_layer_norm_lookup(snake_case_ , snake_case_ , '''decoder''' , '''pre_self_attention_layer_norm''' ) __UpperCAmelCase = tax_attention_lookup(snake_case_ , snake_case_ , '''decoder''' , '''self_attention''' ) __UpperCAmelCase = layer_norm __UpperCAmelCase = k.T __UpperCAmelCase = o.T __UpperCAmelCase = q.T __UpperCAmelCase = v.T # Block i, layer 1 (Cross Attention). __UpperCAmelCase = tax_layer_norm_lookup(snake_case_ , snake_case_ , '''decoder''' , '''pre_cross_attention_layer_norm''' ) __UpperCAmelCase = tax_attention_lookup(snake_case_ , snake_case_ , '''decoder''' , '''encoder_decoder_attention''' ) __UpperCAmelCase = layer_norm __UpperCAmelCase = k.T __UpperCAmelCase = o.T __UpperCAmelCase = q.T __UpperCAmelCase = v.T # Block i, layer 2 (MLP). __UpperCAmelCase = tax_layer_norm_lookup(snake_case_ , snake_case_ , '''decoder''' , '''pre_mlp_layer_norm''' ) __UpperCAmelCase = tax_mlp_lookup(snake_case_ , snake_case_ , '''decoder''' , snake_case_ ) __UpperCAmelCase = layer_norm if split_mlp_wi: __UpperCAmelCase = wi[0].T __UpperCAmelCase = wi[1].T else: __UpperCAmelCase = wi.T __UpperCAmelCase = wo.T __UpperCAmelCase = old['''decoder/decoder_norm/scale'''] __UpperCAmelCase = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __UpperCAmelCase = old['''decoder/logits_dense/kernel'''].T return new def lowercase__ ( snake_case_ :Any , snake_case_ :bool ): __UpperCAmelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) __UpperCAmelCase = state_dict['''shared.weight'''] return state_dict def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :Dict , snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = checkpoints.load_tax_checkpoint(snake_case_ ) __UpperCAmelCase = convert_tax_to_pytorch(snake_case_ , num_layers=config.num_layers , is_encoder_only=snake_case_ ) __UpperCAmelCase = make_state_dict(snake_case_ , snake_case_ ) model.load_state_dict(snake_case_ , strict=snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Optional[Any] , snake_case_ :Tuple , snake_case_ :bool = False ): __UpperCAmelCase = TaConfig.from_json_file(snake_case_ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __UpperCAmelCase = TaEncoderModel(snake_case_ ) else: __UpperCAmelCase = TaForConditionalGeneration(snake_case_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(snake_case_ ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case_ ) print('''Done''' ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) _lowercase : Optional[int] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
332
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case : Tuple ={ 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int =[ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] =[ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __snake_case : str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
129
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small',return_dict=_A ).to(_A ) __UpperCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __UpperCamelCase = tokenizer('Hello there',return_tensors='pt' ).input_ids __UpperCamelCase = tokenizer('Hi I am',return_tensors='pt' ).input_ids __UpperCamelCase = model(input_ids.to(_A ),labels=labels.to(_A ) ).loss __UpperCamelCase = -(labels.shape[-1] * loss.item()) __UpperCamelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
310
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase__ ( _UpperCAmelCase ): A__ : str =["""image_processor""", """tokenizer"""] A__ : str ="""ChineseCLIPImageProcessor""" A__ : int =("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Any , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _A , ) SCREAMING_SNAKE_CASE__ = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_A , _A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : Union[str, Any] ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(_A , return_tensors=_A , **_A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(_A , return_tensors=_A , **_A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_A ) , tensor_type=_A ) def A_ ( self : Union[str, Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): return self.tokenizer.batch_decode(*_A , **_A ) def A_ ( self : Optional[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): return self.tokenizer.decode(*_A , **_A ) @property def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A_ ( self : Dict ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _A , ) return self.image_processor_class
176
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1 UpperCAmelCase_ : Dict = [] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator if len(str(A ) ) > len(str(A ) ): result.append(A ) UpperCAmelCase_ : Optional[Any] = numerator UpperCAmelCase_ : Optional[int] = denominator return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
304
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'spiece.model'} UpperCAmelCase_ = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Dict = PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : int = ["input_ids", "attention_mask"] def __init__( self, __magic_name__, __magic_name__=False, __magic_name__=False, __magic_name__=False, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__ = None, **__magic_name__, ) -> None: """simple docstring""" UpperCamelCase__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase__ : Dict = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) UpperCamelCase__ : str = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing UpperCamelCase__ : Union[str, Any] = '''<|endoftext|>''' if eos_token is None else eos_token UpperCamelCase__ : Union[str, Any] = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: UpperCamelCase__ : Optional[int] = unk_token if pad_token is None else pad_token UpperCamelCase__ : Dict = eos_token if bos_token is None else bos_token else: UpperCamelCase__ : Any = '''<pad>''' if pad_token is None else pad_token UpperCamelCase__ : Any = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=_A, remove_space=_A, keep_accents=_A, bos_token=_A, eos_token=_A, unk_token=_A, pad_token=_A, sp_model_kwargs=self.sp_model_kwargs, **_A, ) UpperCamelCase__ : int = do_lower_case UpperCamelCase__ : Union[str, Any] = remove_space UpperCamelCase__ : Optional[Any] = keep_accents UpperCamelCase__ : Dict = vocab_file UpperCamelCase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) # Used for whitespace normalization in input texts # fmt : off UpperCamelCase__ : int = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing UpperCamelCase__ : Dict = re.compile( f"[{''.join(map(_A, list(range(0, 9 ) ) + list(range(11, 32 ) ) + list(range(127, 160 ) ) + [160, 173, 8203] ) )}]" ) def __getstate__( self ) -> int: """simple docstring""" UpperCamelCase__ : Optional[int] = self.__dict__.copy() UpperCamelCase__ : List[str] = None return state def __setstate__( self, __magic_name__ ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Any = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): UpperCamelCase__ : Optional[int] = {} UpperCamelCase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase__ ( self ) -> int: """simple docstring""" return len(self.sp_model ) def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" UpperCamelCase__ : List[str] = self.non_printing_characters_re.sub('''''', _A ) # Normalize whitespaces UpperCamelCase__ : Optional[Any] = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization UpperCamelCase__ : List[str] = unicodedata.normalize('''NFC''', _A ) return text def UpperCamelCase__ ( self, __magic_name__, **__magic_name__ ) -> List[str]: """simple docstring""" UpperCamelCase__ : List[str] = self.preprocess_text(_A ) return self.sp_model.encode(_A, out_type=_A ) def UpperCamelCase__ ( self, __magic_name__ ) -> int: """simple docstring""" return self.sp_model.PieceToId(_A ) def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" return self.sp_model.IdToPiece(_A ) @staticmethod def UpperCamelCase__ ( __magic_name__ ) -> str: """simple docstring""" return out_string def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" UpperCamelCase__ : int = [] UpperCamelCase__ : Optional[Any] = '''''' UpperCamelCase__ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = [] else: current_sub_tokens.append(_A ) UpperCamelCase__ : Any = False out_string += self.sp_model.decode(_A ) return out_string def UpperCamelCase__ ( self ) -> Dict[str, int]: """simple docstring""" UpperCamelCase__ : str = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_A ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase__ : Optional[int] = os.path.join( _A, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, _A ) elif not os.path.isfile(self.vocab_file ): with open(_A, '''wb''' ) as fi: UpperCamelCase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(_A, _A ): UpperCamelCase__ : int = self.preprocess_text(_A ) UpperCamelCase__ : str = self.sp_model.encode(_A ) else: UpperCamelCase__ : List[Any] = [self.preprocess_text(_A ) for t in text] UpperCamelCase__ : Union[str, Any] = self.sp_model.encode(_A ) if return_tensors is True or return_tensors == "pt": UpperCamelCase__ : Optional[int] = torch.tensor(_A ) return token_ids def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" return self.sp_model.decode(_A ) def UpperCamelCase__ ( self, __magic_name__ ) -> List[int]: """simple docstring""" UpperCamelCase__ : str = [f"User: {text}" if is_user else f"Bot: {text}" for is_user, text in conversation.iter_texts()] UpperCamelCase__ : Optional[int] = ( f"{self.eos_token}{self.bos_token}" + f"{self.bos_token}".join(_A ) + f"{self.bos_token}Bot:" ) return self.encode(text=_A )
201
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
0
'''simple docstring''' import random class lowercase__ : @staticmethod def UpperCamelCase_ ( lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Dict = [ord(_A ) for i in text] _UpperCamelCase : List[str] = [] _UpperCamelCase : Any = [] for i in plain: _UpperCamelCase : int = random.randint(1 ,300 ) _UpperCamelCase : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def UpperCamelCase_ ( lowerCamelCase__ : list[int] ,lowerCamelCase__ : list[int] ): '''simple docstring''' _UpperCamelCase : Dict = [] for i in range(len(_A ) ): _UpperCamelCase : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": snake_case_ : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
83
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self , _a , _a=3 , _a=32 , _a=3 , _a=10 , _a=[10, 20, 30, 40] , _a=[1, 1, 2, 1] , _a=True , _a=True , _a="relu" , _a=3 , _a=None , ): __magic_name__ : Optional[Any] = parent __magic_name__ : str = batch_size __magic_name__ : int = image_size __magic_name__ : Tuple = num_channels __magic_name__ : Dict = embeddings_size __magic_name__ : Union[str, Any] = hidden_sizes __magic_name__ : List[str] = depths __magic_name__ : int = is_training __magic_name__ : str = use_labels __magic_name__ : Optional[Any] = hidden_act __magic_name__ : str = num_labels __magic_name__ : Any = scope __magic_name__ : List[str] = len(_A ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Tuple = None if self.use_labels: __magic_name__ : Any = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : Tuple = TFRegNetModel(config=_A ) __magic_name__ : int = model(_A , training=_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : List[str] = self.num_labels __magic_name__ : Any = TFRegNetForImageClassification(_A ) __magic_name__ : List[str] = model(_A , labels=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = self.prepare_config_and_inputs() __magic_name__ : int = config_and_inputs __magic_name__ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () UpperCamelCase__ = ( {'feature-extraction': TFRegNetModel, 'image-classification': TFRegNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = TFRegNetModelTester(self ) __magic_name__ : Optional[int] = ConfigTester(self , config_class=_A , has_text_modality=_A ) def SCREAMING_SNAKE_CASE ( self ): return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def SCREAMING_SNAKE_CASE ( self ): super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = model_class(_A ) __magic_name__ : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Any = [*signature.parameters.keys()] __magic_name__ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def SCREAMING_SNAKE_CASE ( self ): def check_hidden_states_output(_a , _a , _a ): __magic_name__ : List[Any] = model_class(_A ) __magic_name__ : Optional[Any] = model(**self._prepare_for_class(_A , _A ) , training=_A ) __magic_name__ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__ : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __magic_name__ : Tuple = layer_type __magic_name__ : Any = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : List[str] = True check_hidden_states_output(_A , _A , _A ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_a , _a , _a , _a={} ): __magic_name__ : List[str] = model(_A , return_dict=_A , **_A ) __magic_name__ : Any = model(_A , return_dict=_A , **_A ).to_tuple() def recursive_check(_a , _a ): if isinstance(_A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_A , _A ): recursive_check(_A , _A ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_A , _A ) ) , msg=( "Tuple and dict output are not equal. Difference:" f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(_A , _A ) for model_class in self.all_model_classes: __magic_name__ : str = model_class(_A ) __magic_name__ : int = self._prepare_for_class(_A , _A ) __magic_name__ : Optional[Any] = self._prepare_for_class(_A , _A ) check_equivalence(_A , _A , _A ) __magic_name__ : str = self._prepare_for_class(_A , _A , return_labels=_A ) __magic_name__ : List[str] = self._prepare_for_class(_A , _A , return_labels=_A ) check_equivalence(_A , _A , _A ) __magic_name__ : Optional[int] = self._prepare_for_class(_A , _A ) __magic_name__ : List[Any] = self._prepare_for_class(_A , _A ) check_equivalence(_A , _A , _A , {"output_hidden_states": True} ) __magic_name__ : List[Any] = self._prepare_for_class(_A , _A , return_labels=_A ) __magic_name__ : Dict = self._prepare_for_class(_A , _A , return_labels=_A ) check_equivalence(_A , _A , _A , {"output_hidden_states": True} ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : str = TFRegNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' __magic_name__ : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _snake_case ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __magic_name__ : Dict = self.default_image_processor __magic_name__ : Any = prepare_img() __magic_name__ : List[Any] = image_processor(images=_A , return_tensors="tf" ) # forward pass __magic_name__ : int = model(**_A , training=_A ) # verify the logits __magic_name__ : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _A ) __magic_name__ : List[str] = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _A , atol=1e-4 )
281
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : List[str] = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = "trocr" lowerCAmelCase_ = ["past_key_values"] lowerCAmelCase_ = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : Optional[Any] , _lowercase : List[Any]=5_02_65 , _lowercase : Dict=10_24 , _lowercase : Any=12 , _lowercase : Dict=16 , _lowercase : int=40_96 , _lowercase : Any="gelu" , _lowercase : Tuple=5_12 , _lowercase : Dict=0.1 , _lowercase : Tuple=0.0 , _lowercase : str=0.0 , _lowercase : str=2 , _lowercase : List[Any]=0.02 , _lowercase : Any=0.0 , _lowercase : str=True , _lowercase : Dict=False , _lowercase : Dict=True , _lowercase : Optional[int]=True , _lowercase : List[Any]=1 , _lowercase : str=0 , _lowercase : Any=2 , **_lowercase : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = decoder_layers SCREAMING_SNAKE_CASE__ = decoder_attention_heads SCREAMING_SNAKE_CASE__ = decoder_ffn_dim SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = decoder_layerdrop SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = scale_embedding SCREAMING_SNAKE_CASE__ = use_learned_position_embeddings SCREAMING_SNAKE_CASE__ = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
219
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Tuple = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __lowercase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
318
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
0
from copy import deepcopy class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase = None,__lowerCamelCase = None ): if arr is None and size is not None: A__ = size A__ = [0] * size elif arr is not None: self.init(_A ) else: raise ValueError('''Either arr or size must be specified''' ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = len(_A ) A__ = deepcopy(_A ) for i in range(1,self.size ): A__ = self.next_(_A ) if j < self.size: self.tree[j] += self.tree[i] def UpperCamelCase ( self ): A__ = self.tree[:] for i in range(self.size - 1,0,-1 ): A__ = self.next_(_A ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def UpperCamelCase ( __lowerCamelCase ): return index + (index & (-index)) @staticmethod def UpperCamelCase ( __lowerCamelCase ): return index - (index & (-index)) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value A__ = self.next_(_A ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): self.add(_A,value - self.get(_A ) ) def UpperCamelCase ( self,__lowerCamelCase ): if right == 0: return 0 A__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] A__ = self.prev(_A ) return result def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): return self.prefix(_A ) - self.prefix(_A ) def UpperCamelCase ( self,__lowerCamelCase ): return self.query(_A,index + 1 ) def UpperCamelCase ( self,__lowerCamelCase ): value -= self.tree[0] if value < 0: return -1 A__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 A__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
193
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
0
'''simple docstring''' from math import factorial, radians def a_ ( __snake_case : float , __snake_case : int = 18 , __snake_case : int = 10 ) -> float: """simple docstring""" lowerCamelCase_ =angle_in_degrees - ((angle_in_degrees // 3_6_0.0) * 3_6_0.0) # Converting from degrees to radians lowerCamelCase_ =radians(__snake_case ) lowerCamelCase_ =angle_in_radians lowerCamelCase_ =3 lowerCamelCase_ =-1 for _ in range(__snake_case ): result += (b * (angle_in_radians**a)) / factorial(__snake_case ) lowerCamelCase_ =-b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__snake_case , __snake_case ) if __name__ == "__main__": __import__("""doctest""").testmod()
75
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ReformerTokenizer a_ = ReformerTokenizerFast a_ = True a_ = False a_ = True def A ( self : Optional[Any] ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = '''<s>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 10_00 ) def A ( self : Optional[int] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(_A ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def A ( self : Tuple , _A : Dict=15 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Dict = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def A ( self : Union[str, Any] ) -> int: pass def A ( self : int ) -> Any: UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A ) UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : List[str] ) -> Optional[int]: return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : Tuple = '''Hello World!''' UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def A ( self : List[Any] ) -> str: UpperCAmelCase_ : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase_ : int = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def A ( self : List[str] ) -> Optional[int]: import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ : List[Any] = ''' '''.join(_A ) UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' ) UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape UpperCAmelCase_ : Optional[int] = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def A ( self : int ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ : Optional[Any] = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
304
0
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : int , _lowercase : Union[str, Any] , _lowercase : Any=13 , _lowercase : Union[str, Any]=7 , _lowercase : str=True , _lowercase : Dict=True , _lowercase : List[Any]=True , _lowercase : List[Any]=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[Any]=False , _lowercase : Tuple=False , _lowercase : int=False , _lowercase : Optional[Any]=2 , _lowercase : Optional[Any]=99 , _lowercase : Optional[Any]=0 , _lowercase : Union[str, Any]=32 , _lowercase : Union[str, Any]=5 , _lowercase : Tuple=4 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]=0.1 , _lowercase : Union[str, Any]=5_12 , _lowercase : int=12 , _lowercase : List[str]=2 , _lowercase : Tuple=0.02 , _lowercase : List[str]=3 , _lowercase : Union[str, Any]=4 , _lowercase : List[Any]="last" , _lowercase : str=None , _lowercase : Any=None , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_lengths __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = gelu_activation __UpperCAmelCase = sinusoidal_embeddings __UpperCAmelCase = causal __UpperCAmelCase = asm __UpperCAmelCase = n_langs __UpperCAmelCase = vocab_size __UpperCAmelCase = n_special __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = summary_type __UpperCAmelCase = use_proj __UpperCAmelCase = scope def a ( self : Optional[int] ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_input_lengths: __UpperCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , 2 ).float() __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a ( self : Any ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def a ( self : List[Any] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : str , _lowercase : Dict , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , ): __UpperCAmelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() __UpperCAmelCase = model(_A , lengths=_A , langs=_A ) __UpperCAmelCase = model(_A , langs=_A ) __UpperCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : Optional[int] , _lowercase : List[Any] , _lowercase : int , _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : str , _lowercase : Any , ): __UpperCAmelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() __UpperCAmelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : Optional[int] , _lowercase : Dict , _lowercase : Union[str, Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Any , _lowercase : List[Any] , _lowercase : List[str] , _lowercase : Tuple , ): __UpperCAmelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() __UpperCAmelCase = model(_A ) __UpperCAmelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self : Dict , _lowercase : Tuple , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Dict , ): __UpperCAmelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() __UpperCAmelCase = model(_A ) __UpperCAmelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) __UpperCAmelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) (__UpperCAmelCase ) = result_with_labels.to_tuple() __UpperCAmelCase = model(_A , start_positions=_A , end_positions=_A ) (__UpperCAmelCase ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a ( self : List[str] , _lowercase : List[str] , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : List[Any] , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Tuple , _lowercase : Optional[int] , ): __UpperCAmelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() __UpperCAmelCase = model(_A ) __UpperCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a ( self : Tuple , _lowercase : List[str] , _lowercase : Tuple , _lowercase : str , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : str , _lowercase : List[Any] , _lowercase : int , ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() __UpperCAmelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self : Optional[int] , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : int , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : Dict , ): __UpperCAmelCase = self.num_choices __UpperCAmelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() __UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self : Any ): __UpperCAmelCase = self.prepare_config_and_inputs() ( __UpperCAmelCase ) = config_and_inputs __UpperCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Optional[Any] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) a__ : Any = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def a ( self : Any , _lowercase : int , _lowercase : Dict , _lowercase : List[str] , _lowercase : int , _lowercase : Dict ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a ( self : str , _lowercase : str , _lowercase : Optional[int] , _lowercase : Dict=False ): __UpperCAmelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) __UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def a ( self : List[Any] ): __UpperCAmelCase = FlaubertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def a ( self : Union[str, Any] ): self.config_tester.run_common_tests() def a ( self : Optional[int] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def a ( self : Tuple ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def a ( self : str ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def a ( self : Tuple ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def a ( self : int ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def a ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def a ( self : Dict ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __UpperCAmelCase = True __UpperCAmelCase = model_class(config=_A ) __UpperCAmelCase = self._prepare_for_class(_A , _A ) __UpperCAmelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) __UpperCAmelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : str ): __UpperCAmelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) __UpperCAmelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): __UpperCAmelCase = model(_A )[0] __UpperCAmelCase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _A ) __UpperCAmelCase = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1E-4 ) )
332
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
0
def lowerCAmelCase__ ( lowerCamelCase_ : int = 1000): '''simple docstring''' return sum(e for e in range(3 ,lowerCamelCase_) if e % 3 == 0 or e % 5 == 0) if __name__ == "__main__": print(f"""{solution() = }""")
129
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_a ) class __lowerCamelCase (_a ): _lowercase = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _lowercase = Features({"""text""": Value("""string""" )} ) _lowercase = Features({} ) _lowercase = """text""" @property def snake_case_ ( self: List[str] ): '''simple docstring''' return {self.text_column: "text"}
310
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
0
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __snake_case = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_80_00, 'sample_size': 6_55_36, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_80_00, 'sample_size': 6_55_36, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_80_00, 'sample_size': 13_10_72, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_60_00, 'sample_size': 6_55_36, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_60_00, 'sample_size': 6_55_36, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_60_00, 'sample_size': 6_55_36, }, } def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' return torch.atana(UpperCamelCase_ , UpperCamelCase_ ) / math.pi * 2 def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.sin(t * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE__ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(UpperCamelCase_ , UpperCamelCase_ ) class lowercase__ ( _UpperCAmelCase ): pass class lowercase__ ( nn.Module ): def __init__( self : List[str] , UpperCAmelCase_ : Dict ): super().__init__() SCREAMING_SNAKE_CASE__ = DiffusionAttnUnetaD(_A , n_attn_layers=4 ) SCREAMING_SNAKE_CASE__ = deepcopy(self.diffusion ) SCREAMING_SNAKE_CASE__ = torch.quasirandom.SobolEngine(1 , scramble=_A ) def _lowercase ( UpperCamelCase_ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ = MODELS_MAP[model_name]['''url'''] os.system(F'wget {url} ./' ) return F'./{model_name}.ckpt' __snake_case = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } __snake_case = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } __snake_case = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } __snake_case = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } __snake_case = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } __snake_case = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def _lowercase ( UpperCamelCase_ ) -> Tuple: '''simple docstring''' if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(F'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def _lowercase ( UpperCamelCase_ ) -> Tuple: '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(UpperCamelCase_ ) and not isinstance(UpperCamelCase_ , UpperCamelCase_ ): return name.replace(UpperCamelCase_ , UpperCamelCase_ ) elif name.startswith(UpperCamelCase_ ): return [name.replace(UpperCamelCase_ , UpperCamelCase_ ) for v in value] raise ValueError(F'Attn error with {name}' ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_=13 ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) SCREAMING_SNAKE_CASE__ = 0 if string.startswith('net.3.' ): depth += 1 SCREAMING_SNAKE_CASE__ = string[6:] elif string.startswith('net.' ): SCREAMING_SNAKE_CASE__ = string[4:] while string.startswith('main.7.' ): depth += 1 SCREAMING_SNAKE_CASE__ = string[7:] if string.startswith('main.' ): SCREAMING_SNAKE_CASE__ = string[5:] # mid block if string[:2].isdigit(): SCREAMING_SNAKE_CASE__ = string[:2] SCREAMING_SNAKE_CASE__ = string[2:] else: SCREAMING_SNAKE_CASE__ = string[0] SCREAMING_SNAKE_CASE__ = string[1:] if depth == max_depth: SCREAMING_SNAKE_CASE__ = MID_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE__ = '''mid_block''' elif depth > 0 and int(UpperCamelCase_ ) < 7: SCREAMING_SNAKE_CASE__ = DOWN_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE__ = F'down_blocks.{depth}' elif depth > 0 and int(UpperCamelCase_ ) > 7: SCREAMING_SNAKE_CASE__ = UP_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE__ = F'up_blocks.{max_depth - depth - 1}' elif depth == 0: SCREAMING_SNAKE_CASE__ = DEPTH_0_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE__ = F'up_blocks.{max_depth - 1}' if int(UpperCamelCase_ ) > 3 else '''down_blocks.0''' if not string_left.startswith('.' ): raise ValueError(F'Naming error with {input_string} and string_left: {string_left}.' ) SCREAMING_SNAKE_CASE__ = string_left[1:] if "resnets" in new_layer: SCREAMING_SNAKE_CASE__ = convert_resconv_naming(UpperCamelCase_ ) elif "attentions" in new_layer: SCREAMING_SNAKE_CASE__ = convert_attn_naming(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = new_string_left if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = prefix + '''.''' + new_layer + '''.''' + string_left else: SCREAMING_SNAKE_CASE__ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue SCREAMING_SNAKE_CASE__ = rename(UpperCamelCase_ ) # check if we need to transform from Conv => Linear for attention if isinstance(UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = transform_conv_attns(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE__ = v return new_state_dict def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' if len(UpperCamelCase_ ) == 1: if len(v.shape ) == 3: # weight SCREAMING_SNAKE_CASE__ = v[:, :, 0] else: # bias SCREAMING_SNAKE_CASE__ = v else: # qkv matrices SCREAMING_SNAKE_CASE__ = v.shape[0] SCREAMING_SNAKE_CASE__ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: SCREAMING_SNAKE_CASE__ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: SCREAMING_SNAKE_CASE__ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) SCREAMING_SNAKE_CASE__ = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'Make sure to provide one of the official model names {MODELS_MAP.keys()}' SCREAMING_SNAKE_CASE__ = download(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = MODELS_MAP[model_name]['''sample_rate'''] SCREAMING_SNAKE_CASE__ = MODELS_MAP[model_name]['''sample_size'''] SCREAMING_SNAKE_CASE__ = Object() SCREAMING_SNAKE_CASE__ = sample_size SCREAMING_SNAKE_CASE__ = sample_rate SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = UNetaDModel(sample_size=UpperCamelCase_ , sample_rate=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = diffusers_model.state_dict() SCREAMING_SNAKE_CASE__ = DiffusionUncond(UpperCamelCase_ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=UpperCamelCase_ )['state_dict'] ) SCREAMING_SNAKE_CASE__ = orig_model.diffusion_ema.eval() SCREAMING_SNAKE_CASE__ = orig_model.state_dict() SCREAMING_SNAKE_CASE__ = rename_orig_weights(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) SCREAMING_SNAKE_CASE__ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(UpperCamelCase_ ) == 0, F'Problem with {renamed_minus_diffusers}' assert all(k.endswith('kernel' ) for k in list(UpperCamelCase_ ) ), F'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": SCREAMING_SNAKE_CASE__ = value.squeeze() SCREAMING_SNAKE_CASE__ = value diffusers_model.load_state_dict(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = 100 SCREAMING_SNAKE_CASE__ = 33 SCREAMING_SNAKE_CASE__ = IPNDMScheduler(num_train_timesteps=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = torch.manual_seed(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = torch.randn([1, 2, config.sample_size] , generator=UpperCamelCase_ ).to(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = torch.linspace(1 , 0 , steps + 1 , device=UpperCamelCase_ )[:-1] SCREAMING_SNAKE_CASE__ = get_crash_schedule(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = DanceDiffusionPipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE__ = pipe(num_inference_steps=UpperCamelCase_ , generator=UpperCamelCase_ ).audios SCREAMING_SNAKE_CASE__ = sampling.iplms_sample(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , {} ) SCREAMING_SNAKE_CASE__ = generated.clamp(-1 , 1 ) SCREAMING_SNAKE_CASE__ = (generated - audio).abs().sum() SCREAMING_SNAKE_CASE__ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , UpperCamelCase_ ) print('Diff max' , UpperCamelCase_ ) assert diff_max < 1e-3, F'Diff max: {diff_max} is too much :-/' print(F'Conversion for {model_name} successful!' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") __snake_case = parser.parse_args() main(args)
176
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCAmelCase_ = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase__ ( cls ) -> Tuple: """simple docstring""" UpperCamelCase__ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def UpperCamelCase__ ( cls ) -> Tuple: """simple docstring""" try: delete_repo(token=cls._token, repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[Any] = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) UpperCamelCase__ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''', use_auth_token=self._token ) UpperCamelCase__ : Any = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax" ) UpperCamelCase__ : int = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A, 1E-3, msg=f"{key} not identical" ) # Reset repo delete_repo(token=self._token, repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A, repo_id='''test-model-flax''', push_to_hub=_A, use_auth_token=self._token ) UpperCamelCase__ : Union[str, Any] = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax" ) UpperCamelCase__ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A, 1E-3, msg=f"{key} not identical" ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : List[str] = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) UpperCamelCase__ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''', use_auth_token=self._token ) UpperCamelCase__ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCamelCase__ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A, 1E-3, msg=f"{key} not identical" ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A, repo_id='''valid_org/test-model-flax-org''', push_to_hub=_A, use_auth_token=self._token ) UpperCamelCase__ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCamelCase__ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A, 1E-3, msg=f"{key} not identical" ) def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: Optional[int] ) -> List[Any]: UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : Optional[int] = flatten_dict(modela.params ) UpperCamelCase__ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCamelCase__ : int = False return models_are_equal @require_flax class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCamelCase__ : Any = FlaxBertModel(_A ) UpperCamelCase__ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A, _A ) ) with self.assertRaises(_A ): UpperCamelCase__ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCamelCase__ : List[Any] = FlaxBertModel.from_pretrained(_A, subfolder=_A ) self.assertTrue(check_models_equal(_A, _A ) ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCamelCase__ : Tuple = FlaxBertModel(_A ) UpperCamelCase__ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A, _A ), max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCamelCase__ : str = FlaxBertModel.from_pretrained(_A ) UpperCamelCase__ : Dict = FlaxBertModel.from_pretrained(_A, subfolder=_A ) self.assertTrue(check_models_equal(_A, _A ) ) def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : int = '''bert''' UpperCamelCase__ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCamelCase__ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCamelCase__ : int = FlaxBertModel.from_pretrained(_A, subfolder=_A ) self.assertIsNotNone(_A ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : Optional[Any] = '''bert''' UpperCamelCase__ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCamelCase__ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCamelCase__ : List[Any] = FlaxBertModel.from_pretrained(_A, subfolder=_A ) self.assertIsNotNone(_A )
201
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Tuple = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
83
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
0
from math import factorial class _snake_case : def __init__( self , _a , _a ): __magic_name__ : str = real if isinstance(_A , _A ): __magic_name__ : Dict = [1] * rank else: __magic_name__ : Optional[Any] = rank def __repr__( self ): return ( f'''{self.real}+''' f'''{"+".join(str(_A )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , _A ) def __add__( self , _a ): if not isinstance(_A , _A ): return Dual(self.real + other , self.duals ) __magic_name__ : Optional[Any] = self.duals.copy() __magic_name__ : Union[str, Any] = other.duals.copy() if len(_A ) > len(_A ): o_dual.extend([1] * (len(_A ) - len(_A )) ) elif len(_A ) < len(_A ): s_dual.extend([1] * (len(_A ) - len(_A )) ) __magic_name__ : str = [] for i in range(len(_A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , _A ) UpperCamelCase__ = __add__ def __sub__( self , _a ): return self + other * -1 def __mul__( self , _a ): if not isinstance(_A , _A ): __magic_name__ : Optional[Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , _A ) __magic_name__ : Dict = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , _A ) UpperCamelCase__ = __mul__ def __truediv__( self , _a ): if not isinstance(_A , _A ): __magic_name__ : Union[str, Any] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , _A ) raise ValueError def __floordiv__( self , _a ): if not isinstance(_A , _A ): __magic_name__ : Union[str, Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , _A ) raise ValueError def __pow__( self , _a ): if n < 0 or isinstance(_A , _A ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self __magic_name__ : Union[str, Any] = self for _ in range(n - 1 ): x *= self return x def lowerCAmelCase_ ( _snake_case : Tuple , _snake_case : Any , _snake_case : Union[str, Any] ) -> Tuple: '''simple docstring''' if not callable(_snake_case ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(_snake_case , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(_snake_case , _snake_case ): raise ValueError("differentiate() requires an int as input for order" ) __magic_name__ : Any = Dual(_snake_case , 1 ) __magic_name__ : Any = func(_snake_case ) if order == 0: return result.real return result.duals[order - 1] * factorial(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() def lowerCAmelCase_ ( _snake_case : Union[str, Any] ) -> List[Any]: '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
281
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Dict = {'vocab_file': 'vocab.txt'} __lowerCamelCase : Dict = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } __lowerCamelCase : Dict = { 'openbmb/cpm-ant-10b': 1024, } def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = collections.OrderedDict() with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as reader: SCREAMING_SNAKE_CASE__ = reader.readlines() for index, token in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = token.rstrip("""\n""" ) SCREAMING_SNAKE_CASE__ = index return vocab class __snake_case ( lowerCamelCase_ ): def __init__( self : Dict , _lowercase : int , _lowercase : int="<unk>" , _lowercase : Dict=2_00 ): """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab SCREAMING_SNAKE_CASE__ = unk_token SCREAMING_SNAKE_CASE__ = max_input_chars_per_word def __a ( self : str , _lowercase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [] while start < len(_A ): SCREAMING_SNAKE_CASE__ = len(_A ) SCREAMING_SNAKE_CASE__ = None while start < end: SCREAMING_SNAKE_CASE__ = ''''''.join(chars[start:end] ) if substr in self.vocab: SCREAMING_SNAKE_CASE__ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) SCREAMING_SNAKE_CASE__ = end return sub_tokens class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["input_ids", "attention_mask"] lowerCAmelCase_ = False def __init__( self : Optional[int] , _lowercase : Tuple , _lowercase : int="<d>" , _lowercase : str="</d>" , _lowercase : Any="<s>" , _lowercase : Dict="</s>" , _lowercase : Union[str, Any]="<pad>" , _lowercase : Optional[int]="<unk>" , _lowercase : int="</n>" , _lowercase : Optional[Any]="</_>" , _lowercase : Union[str, Any]="left" , **_lowercase : Tuple , ): """simple docstring""" requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) SCREAMING_SNAKE_CASE__ = bod_token SCREAMING_SNAKE_CASE__ = eod_token SCREAMING_SNAKE_CASE__ = load_vocab(_A ) SCREAMING_SNAKE_CASE__ = self.encoder[space_token] SCREAMING_SNAKE_CASE__ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] SCREAMING_SNAKE_CASE__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowercase : x[1] ) ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : int ): """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Dict ): """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : int ): """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ): """simple docstring""" return len(self.encoder ) def __a ( self : Any ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Optional[int] , _lowercase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[str] , _lowercase : List[str] , **_lowercase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [i for i in token_ids if i >= 0] SCREAMING_SNAKE_CASE__ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[str] , _lowercase : Tuple ): """simple docstring""" return token in self.encoder def __a ( self : Optional[Any] , _lowercase : List[str] ): """simple docstring""" return "".join(_A ) def __a ( self : Any , _lowercase : int ): """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Optional[Any] , _lowercase : Tuple ): """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : int , _lowercase : str , _lowercase : Optional[str] = None ): """simple docstring""" if os.path.isdir(_A ): SCREAMING_SNAKE_CASE__ = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: SCREAMING_SNAKE_CASE__ = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory SCREAMING_SNAKE_CASE__ = 0 if " " in self.encoder: SCREAMING_SNAKE_CASE__ = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: SCREAMING_SNAKE_CASE__ = self.encoder['''\n'''] del self.encoder["\n"] SCREAMING_SNAKE_CASE__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowercase : x[1] ) ) with open(_A , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) SCREAMING_SNAKE_CASE__ = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def __a ( self : List[str] , _lowercase : List[int] , _lowercase : List[int] = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
219
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __lowercase : def __init__(self , A=2 , A=3 , A=6_4 , A=None ): lowerCamelCase_ : Any = np.random.default_rng(_A ) lowerCamelCase_ : List[str] = length lowerCamelCase_ : List[str] = rng.normal(size=(length,) ).astype(np.floataa ) lowerCamelCase_ : Optional[int] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__(self ): return self.length def __getitem__(self , A ): return {"x": self.x[i], "y": self.y[i]} class __lowercase ( torch.nn.Module ): def __init__(self , A=0 , A=0 , A=False ): super().__init__() lowerCamelCase_ : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCamelCase_ : int = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCamelCase_ : str = True def UpperCAmelCase__ (self , A=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCamelCase_ : str = False return x * self.a[0] + self.b[0] class __lowercase ( torch.nn.Module ): def __init__(self , A=0 , A=0 , A=False ): super().__init__() lowerCamelCase_ : str = torch.nn.Parameter(torch.tensor(_A ).float() ) lowerCamelCase_ : str = torch.nn.Parameter(torch.tensor(_A ).float() ) lowerCamelCase_ : List[Any] = True def UpperCAmelCase__ (self , A=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCamelCase_ : Optional[int] = False return x * self.a + self.b def lowercase_ ( _lowercase , _lowercase = 16 ) -> Tuple: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCamelCase_ : Union[str, Any] = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} lowerCamelCase_ : List[Any] = load_dataset('''csv''' , data_files=_lowercase ) lowerCamelCase_ : Dict = datasets['''train'''].unique('''label''' ) lowerCamelCase_ : Dict = {v: i for i, v in enumerate(_lowercase )} def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ : Any = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' ) if "label" in examples: lowerCamelCase_ : Any = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase_ : Tuple = datasets.map( _lowercase , batched=_lowercase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(_lowercase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowerCamelCase_ : List[str] = DataLoader(tokenized_datasets['''train'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=2 ) lowerCamelCase_ : str = DataLoader(tokenized_datasets['''validation'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=1 ) return train_dataloader, eval_dataloader
318
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__: Dict = logging.get_logger(__name__) a__: Optional[int] = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''transfo-xl''' __SCREAMING_SNAKE_CASE = ['''mems'''] __SCREAMING_SNAKE_CASE = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self,__lowerCamelCase=26_7735,__lowerCamelCase=[2_0000, 4_0000, 20_0000],__lowerCamelCase=1024,__lowerCamelCase=1024,__lowerCamelCase=16,__lowerCamelCase=64,__lowerCamelCase=4096,__lowerCamelCase=4,__lowerCamelCase=False,__lowerCamelCase=18,__lowerCamelCase=1600,__lowerCamelCase=1000,__lowerCamelCase=True,__lowerCamelCase=True,__lowerCamelCase=0,__lowerCamelCase=-1,__lowerCamelCase=True,__lowerCamelCase=0.1,__lowerCamelCase=0.0,__lowerCamelCase=True,__lowerCamelCase="normal",__lowerCamelCase=0.01,__lowerCamelCase=0.01,__lowerCamelCase=0.02,__lowerCamelCase=1E-5,__lowerCamelCase=0,**__lowerCamelCase,): A__ = vocab_size A__ = [] self.cutoffs.extend(_A ) if proj_share_all_but_first: A__ = [False] + [True] * len(self.cutoffs ) else: A__ = [False] + [False] * len(self.cutoffs ) A__ = d_model A__ = d_embed A__ = d_head A__ = d_inner A__ = div_val A__ = pre_lnorm A__ = n_layer A__ = n_head A__ = mem_len A__ = same_length A__ = attn_type A__ = clamp_len A__ = sample_softmax A__ = adaptive A__ = dropout A__ = dropatt A__ = untie_r A__ = init A__ = init_range A__ = proj_init_std A__ = init_std A__ = layer_norm_epsilon super().__init__(eos_token_id=_A,**_A ) @property def UpperCamelCase ( self ): # Message copied from Transformer-XL documentation logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCamelCase ( self,__lowerCamelCase ): # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
193
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
0
'''simple docstring''' a_ : Tuple = [ 9_99, 8_00, 7_99, 6_00, 5_99, 5_00, 4_00, 3_99, 3_77, 3_55, 3_33, 3_11, 2_88, 2_66, 2_44, 2_22, 2_00, 1_99, 1_77, 1_55, 1_33, 1_11, 88, 66, 44, 22, 0, ] a_ : Tuple = [ 9_99, 9_76, 9_52, 9_28, 9_05, 8_82, 8_58, 8_57, 8_10, 7_62, 7_15, 7_14, 5_72, 4_29, 4_28, 2_86, 2_85, 2_38, 1_90, 1_43, 1_42, 1_18, 95, 71, 47, 24, 0, ] a_ : Dict = [ 9_99, 9_88, 9_77, 9_66, 9_55, 9_44, 9_33, 9_22, 9_11, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_50, 3_00, 2_99, 2_66, 2_33, 2_00, 1_99, 1_79, 1_59, 1_40, 1_20, 1_00, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] a_ : int = [ 9_99, 9_95, 9_92, 9_89, 9_85, 9_81, 9_78, 9_75, 9_71, 9_67, 9_64, 9_61, 9_57, 9_56, 9_51, 9_47, 9_42, 9_37, 9_33, 9_28, 9_23, 9_19, 9_14, 9_13, 9_08, 9_03, 8_97, 8_92, 8_87, 8_81, 8_76, 8_71, 8_70, 8_64, 8_58, 8_52, 8_46, 8_40, 8_34, 8_28, 8_27, 8_20, 8_13, 8_06, 7_99, 7_92, 7_85, 7_84, 7_77, 7_70, 7_63, 7_56, 7_49, 7_42, 7_41, 7_33, 7_24, 7_16, 7_07, 6_99, 6_98, 6_88, 6_77, 6_66, 6_56, 6_55, 6_45, 6_34, 6_23, 6_13, 6_12, 5_98, 5_84, 5_70, 5_69, 5_55, 5_41, 5_27, 5_26, 5_05, 4_84, 4_83, 4_62, 4_40, 4_39, 3_96, 3_95, 3_52, 3_51, 3_08, 3_07, 2_64, 2_63, 2_20, 2_19, 1_76, 1_32, 88, 44, 0, ] a_ : List[str] = [ 9_99, 9_97, 9_95, 9_92, 9_90, 9_88, 9_86, 9_84, 9_81, 9_79, 9_77, 9_75, 9_72, 9_70, 9_68, 9_66, 9_64, 9_61, 9_59, 9_57, 9_56, 9_54, 9_51, 9_49, 9_46, 9_44, 9_41, 9_39, 9_36, 9_34, 9_31, 9_29, 9_26, 9_24, 9_21, 9_19, 9_16, 9_14, 9_13, 9_10, 9_07, 9_05, 9_02, 8_99, 8_96, 8_93, 8_91, 8_88, 8_85, 8_82, 8_79, 8_77, 8_74, 8_71, 8_70, 8_67, 8_64, 8_61, 8_58, 8_55, 8_52, 8_49, 8_46, 8_43, 8_40, 8_37, 8_34, 8_31, 8_28, 8_27, 8_24, 8_21, 8_17, 8_14, 8_11, 8_08, 8_04, 8_01, 7_98, 7_95, 7_91, 7_88, 7_85, 7_84, 7_80, 7_77, 7_74, 7_70, 7_66, 7_63, 7_60, 7_56, 7_52, 7_49, 7_46, 7_42, 7_41, 7_37, 7_33, 7_30, 7_26, 7_22, 7_18, 7_14, 7_10, 7_07, 7_03, 6_99, 6_98, 6_94, 6_90, 6_85, 6_81, 6_77, 6_73, 6_69, 6_64, 6_60, 6_56, 6_55, 6_50, 6_46, 6_41, 6_36, 6_32, 6_27, 6_22, 6_18, 6_13, 6_12, 6_07, 6_02, 5_96, 5_91, 5_86, 5_80, 5_75, 5_70, 5_69, 5_63, 5_57, 5_51, 5_45, 5_39, 5_33, 5_27, 5_26, 5_19, 5_12, 5_05, 4_98, 4_91, 4_84, 4_83, 4_74, 4_66, 4_57, 4_49, 4_40, 4_39, 4_28, 4_18, 4_07, 3_96, 3_95, 3_81, 3_66, 3_52, 3_51, 3_30, 3_08, 3_07, 2_86, 2_64, 2_63, 2_42, 2_20, 2_19, 1_76, 1_75, 1_32, 1_31, 88, 44, 0, ] a_ : Optional[int] = [ 9_99, 9_91, 9_82, 9_74, 9_66, 9_58, 9_50, 9_41, 9_33, 9_25, 9_16, 9_08, 9_00, 8_99, 8_74, 8_50, 8_25, 8_00, 7_99, 7_00, 6_00, 5_00, 4_00, 3_00, 2_00, 1_00, 0, ] a_ : List[Any] = [ 9_99, 9_92, 9_85, 9_78, 9_71, 9_64, 9_57, 9_49, 9_42, 9_35, 9_28, 9_21, 9_14, 9_07, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_00, 2_99, 2_00, 1_99, 1_00, 99, 0, ] a_ : int = [ 9_99, 9_96, 9_92, 9_89, 9_85, 9_82, 9_79, 9_75, 9_72, 9_68, 9_65, 9_61, 9_58, 9_55, 9_51, 9_48, 9_44, 9_41, 9_38, 9_34, 9_31, 9_27, 9_24, 9_20, 9_17, 9_14, 9_10, 9_07, 9_03, 9_00, 8_99, 8_91, 8_84, 8_76, 8_69, 8_61, 8_53, 8_46, 8_38, 8_30, 8_23, 8_15, 8_08, 8_00, 7_99, 7_88, 7_77, 7_66, 7_55, 7_44, 7_33, 7_22, 7_11, 7_00, 6_99, 6_88, 6_77, 6_66, 6_55, 6_44, 6_33, 6_22, 6_11, 6_00, 5_99, 5_85, 5_71, 5_57, 5_42, 5_28, 5_14, 5_00, 4_99, 4_85, 4_71, 4_57, 4_42, 4_28, 4_14, 4_00, 3_99, 3_79, 3_59, 3_40, 3_20, 3_00, 2_99, 2_79, 2_59, 2_40, 2_20, 2_00, 1_99, 1_66, 1_33, 1_00, 99, 66, 33, 0, ]
75
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
0
"""simple docstring""" import string def lowercase__ ( snake_case_ :str ): for key in range(len(string.ascii_uppercase ) ): __UpperCAmelCase = '''''' for symbol in message: if symbol in string.ascii_uppercase: __UpperCAmelCase = string.ascii_uppercase.find(snake_case_ ) __UpperCAmelCase = num - key if num < 0: __UpperCAmelCase = num + len(string.ascii_uppercase ) __UpperCAmelCase = translated + string.ascii_uppercase[num] else: __UpperCAmelCase = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def lowercase__ ( ): __UpperCAmelCase = input('''Encrypted message: ''' ) __UpperCAmelCase = message.upper() decrypt(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
332
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __snake_case : int =logging.get_logger(__name__) def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : Optional[int]=False ,lowerCamelCase_ : Union[str, Any]=False): '''simple docstring''' lowerCAmelCase__ : Optional[int] = '''backbone.''' if is_semantic else '''''' lowerCAmelCase__ : List[str] = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""")) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""")) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""")) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""")) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""")) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""")) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""")) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""")) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""")) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""")) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", '''beit.embeddings.cls_token'''), (f"""{prefix}patch_embed.proj.weight""", '''beit.embeddings.patch_embeddings.projection.weight'''), (f"""{prefix}patch_embed.proj.bias""", '''beit.embeddings.patch_embeddings.projection.bias'''), (f"""{prefix}pos_embed""", '''beit.embeddings.position_embeddings'''), ]) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ]) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) return rename_keys def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Optional[Any]=False ,lowerCamelCase_ : Tuple=False): '''simple docstring''' for i in range(config.num_hidden_layers): lowerCAmelCase__ : Union[str, Any] = '''backbone.''' if is_semantic else '''''' # queries, keys and values lowerCAmelCase__ : Dict = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""") lowerCAmelCase__ : str = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""") lowerCAmelCase__ : Optional[int] = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""") lowerCAmelCase__ : Any = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Any = q_bias lowerCAmelCase__ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCAmelCase__ : Dict = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""") lowerCAmelCase__ : List[str] = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""") lowerCAmelCase__ : Optional[Any] = gamma_a lowerCAmelCase__ : Optional[Any] = gamma_a def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : int ,lowerCamelCase_ : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = dct.pop(lowerCamelCase_) lowerCAmelCase__ : str = val def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : Dict = Image.open(requests.get(lowerCamelCase_ ,stream=lowerCamelCase_).raw) return im @torch.no_grad() def lowerCAmelCase__ ( lowerCamelCase_ : List[str] ,lowerCamelCase_ : int ,lowerCamelCase_ : Tuple=False): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = False if '''rvlcdip''' in checkpoint_url else True lowerCAmelCase__ : List[str] = BeitConfig(use_absolute_position_embeddings=lowerCamelCase_ ,use_mask_token=lowerCamelCase_) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCAmelCase__ : Union[str, Any] = 1024 lowerCAmelCase__ : List[str] = 4096 lowerCAmelCase__ : Union[str, Any] = 24 lowerCAmelCase__ : List[str] = 16 # labels if "rvlcdip" in checkpoint_url: lowerCAmelCase__ : Optional[int] = 16 lowerCAmelCase__ : Optional[Any] = '''huggingface/label-files''' lowerCAmelCase__ : str = '''rvlcdip-id2label.json''' lowerCAmelCase__ : Union[str, Any] = json.load(open(hf_hub_download(lowerCamelCase_ ,lowerCamelCase_ ,repo_type='''dataset''') ,'''r''')) lowerCAmelCase__ : Optional[Any] = {int(lowerCamelCase_): v for k, v in idalabel.items()} lowerCAmelCase__ : int = idalabel lowerCAmelCase__ : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : List[Any] = torch.hub.load_state_dict_from_url(lowerCamelCase_ ,map_location='''cpu''')['''model'''] lowerCAmelCase__ : str = create_rename_keys(lowerCamelCase_ ,has_lm_head=lowerCamelCase_) for src, dest in rename_keys: rename_key(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) read_in_q_k_v(lowerCamelCase_ ,lowerCamelCase_ ,has_lm_head=lowerCamelCase_) # load HuggingFace model lowerCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling(lowerCamelCase_) if has_lm_head else BeitForImageClassification(lowerCamelCase_) model.eval() model.load_state_dict(lowerCamelCase_) # Check outputs on an image lowerCAmelCase__ : Tuple = BeitImageProcessor( size=config.image_size ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCamelCase_) lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : List[Any] = image_processor(images=lowerCamelCase_ ,return_tensors='''pt''') lowerCAmelCase__ : Tuple = encoding['''pixel_values'''] lowerCAmelCase__ : str = model(lowerCamelCase_) lowerCAmelCase__ : List[Any] = outputs.logits # verify logits lowerCAmelCase__ : Dict = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCamelCase_), "Shape of logits not as expected" Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f"""Saving model to {pytorch_dump_folder_path}""") model.save_pretrained(lowerCamelCase_) print(f"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: if has_lm_head: lowerCAmelCase__ : str = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: lowerCAmelCase__ : Optional[int] = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ ,lowerCamelCase_) ,organization='''nielsr''' ,commit_message='''Add image processor''' ,use_temp_dir=lowerCamelCase_ ,) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ ,lowerCamelCase_) ,organization='''nielsr''' ,commit_message='''Add model''' ,use_temp_dir=lowerCamelCase_ ,) if __name__ == "__main__": __snake_case : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) __snake_case : List[Any] =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
129
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
0
def _A ( _lowercase = 10_00 ) -> int: """simple docstring""" __UpperCamelCase = 1, 1 __UpperCamelCase = [] for i in range(1 , n + 1 ): __UpperCamelCase = prev_numerator + 2 * prev_denominator __UpperCamelCase = prev_numerator + prev_denominator if len(str(_lowercase ) ) > len(str(_lowercase ) ): result.append(_lowercase ) __UpperCamelCase = numerator __UpperCamelCase = denominator return len(_lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
310
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
0
def _lowercase ( UpperCamelCase_ ) -> list: '''simple docstring''' def merge(UpperCamelCase_ , UpperCamelCase_ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(UpperCamelCase_ ) <= 1: return collection SCREAMING_SNAKE_CASE__ = len(UpperCamelCase_ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input("""Enter numbers separated by a comma:\n""").strip() __snake_case = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
176
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1 UpperCAmelCase_ : Dict = [] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator if len(str(A ) ) > len(str(A ) ): result.append(A ) UpperCAmelCase_ : Optional[Any] = numerator UpperCAmelCase_ : Optional[int] = denominator return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
304
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ = {'UserAgent': UserAgent().random} def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> dict: UpperCamelCase__ : Tuple = script.contents[0] UpperCamelCase__ : Any = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Dict = f"https://www.instagram.com/{username}/" UpperCamelCase__ : Optional[int] = self.get_json() def UpperCamelCase__ ( self ) -> dict: """simple docstring""" UpperCamelCase__ : List[Any] = requests.get(self.url, headers=_A ).text UpperCamelCase__ : Tuple = BeautifulSoup(_A, '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ) -> str: """simple docstring""" return f"{self.__class__.__name__}('{self.username}')" def __str__( self ) -> str: """simple docstring""" return f"{self.fullname} ({self.username}) is {self.biography}" @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" return self.user_data["username"] @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" return self.user_data["full_name"] @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" return self.user_data["biography"] @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" return self.user_data["business_email"] @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" return self.user_data["external_url"] @property def UpperCamelCase__ ( self ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def UpperCamelCase__ ( self ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def UpperCamelCase__ ( self ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def UpperCamelCase__ ( self ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def UpperCamelCase__ ( self ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowerCAmelCase_ ( __UpperCAmelCase: str = "github" ) -> None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions UpperCamelCase__ : List[str] = InstagramUser(__UpperCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __UpperCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = InstagramUser('github') print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
201
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
0
'''simple docstring''' from __future__ import annotations import numpy as np def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[str] = np.shape(UpperCAmelCase_ ) if rows != columns: _UpperCamelCase : Tuple = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = np.zeros((rows, columns) ) _UpperCamelCase : int = np.zeros((rows, columns) ) for i in range(UpperCAmelCase_ ): for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[Any] = sum(lower[i][k] * upper[k][j] for k in range(UpperCAmelCase_ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) _UpperCamelCase : str = (table[i][j] - total) / upper[j][j] _UpperCamelCase : str = 1 for j in range(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = sum(lower[i][k] * upper[k][j] for k in range(UpperCAmelCase_ ) ) _UpperCamelCase : List[str] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
83
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
0
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup snake_case : List[str] = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def lowerCAmelCase_ ( _snake_case : str = "dhaka" , _snake_case : int = 5 ) -> int: '''simple docstring''' __magic_name__ : Union[str, Any] = min(_snake_case , 50 ) # Prevent abuse! __magic_name__ : List[Any] = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } __magic_name__ : Tuple = requests.get("https://www.google.com/search" , params=_snake_case , headers=_snake_case ) __magic_name__ : Dict = BeautifulSoup(html.text , "html.parser" ) __magic_name__ : List[str] = ''''''.join( re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) __magic_name__ : Optional[int] = json.dumps(_snake_case ) __magic_name__ : Optional[Any] = json.loads(_snake_case ) __magic_name__ : int = re.findall( R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , _snake_case , ) if not matched_google_image_data: return 0 __magic_name__ : int = re.sub( R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(_snake_case ) , ) __magic_name__ : Optional[Any] = re.findall( R"(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , _snake_case , ) for index, fixed_full_res_image in enumerate(_snake_case ): if index >= max_images: return index __magic_name__ : Optional[Any] = bytes(_snake_case , "ascii" ).decode( "unicode-escape" ) __magic_name__ : Optional[int] = bytes(_snake_case , "ascii" ).decode( "unicode-escape" ) __magic_name__ : Dict = urllib.request.build_opener() __magic_name__ : int = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(_snake_case ) __magic_name__ : Tuple = F'''query_{query.replace(" " , "_" )}''' if not os.path.exists(_snake_case ): os.makedirs(_snake_case ) urllib.request.urlretrieve( # noqa: S310 _snake_case , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: snake_case : Tuple = download_images_from_google_query(sys.argv[1]) print(F"{image_count} images were downloaded to disk.") except IndexError: print("Please provide a search term.") raise
281
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
0
import math from datetime import datetime, timedelta def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> datetime: """simple docstring""" SCREAMING_SNAKE_CASE__ = year % 19 SCREAMING_SNAKE_CASE__ = year % 4 SCREAMING_SNAKE_CASE__ = year % 7 SCREAMING_SNAKE_CASE__ = math.floor(year / 1_00 ) SCREAMING_SNAKE_CASE__ = math.floor((13 + 8 * leap_day_inhibits) / 25 ) SCREAMING_SNAKE_CASE__ = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE__ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 SCREAMING_SNAKE_CASE__ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE__ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE__ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 18 ) else: return datetime(__UpperCamelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): __lowerCamelCase : List[str] = 'will be' if year > datetime.now().year else 'was' print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
219
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
0
'''simple docstring''' import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
318
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
0
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = DDIMPipeline __SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } __SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ): torch.manual_seed(0 ) A__ = UNetaDModel( block_out_channels=(32, 64),layers_per_block=2,sample_size=32,in_channels=3,out_channels=3,down_block_types=('''DownBlock2D''', '''AttnDownBlock2D'''),up_block_types=('''AttnUpBlock2D''', '''UpBlock2D'''),) A__ = DDIMScheduler() A__ = {'''unet''': unet, '''scheduler''': scheduler} return components def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=0 ): if str(_A ).startswith('''mps''' ): A__ = torch.manual_seed(_A ) else: A__ = torch.Generator(device=_A ).manual_seed(_A ) A__ = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase ( self ): A__ = '''cpu''' A__ = self.get_dummy_components() A__ = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) A__ = self.get_dummy_inputs(_A ) A__ = pipe(**_A ).images A__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 32, 32, 3) ) A__ = np.array( [1.0_00E00, 5.7_17E-01, 4.7_17E-01, 1.0_00E00, 0.0_00E00, 1.0_00E00, 3.0_00E-04, 0.0_00E00, 9.0_00E-04] ) A__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A,1E-3 ) def UpperCamelCase ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCamelCase ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def UpperCamelCase ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def UpperCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): A__ = '''google/ddpm-cifar10-32''' A__ = UNetaDModel.from_pretrained(_A ) A__ = DDIMScheduler() A__ = DDIMPipeline(unet=_A,scheduler=_A ) ddim.to(_A ) ddim.set_progress_bar_config(disable=_A ) A__ = torch.manual_seed(0 ) A__ = ddim(generator=_A,eta=0.0,output_type='''numpy''' ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): A__ = '''google/ddpm-ema-bedroom-256''' A__ = UNetaDModel.from_pretrained(_A ) A__ = DDIMScheduler.from_pretrained(_A ) A__ = DDIMPipeline(unet=_A,scheduler=_A ) ddpm.to(_A ) ddpm.set_progress_bar_config(disable=_A ) A__ = torch.manual_seed(0 ) A__ = ddpm(generator=_A,output_type='''numpy''' ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) A__ = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
193
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
0
'''simple docstring''' import os def a_ ( ) -> int: """simple docstring""" lowerCamelCase_ =os.path.join(os.path.dirname(__snake_case ) , '''num.txt''' ) with open(__snake_case ) as file_hand: return str(sum(int(__snake_case ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
75
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ReformerTokenizer a_ = ReformerTokenizerFast a_ = True a_ = False a_ = True def A ( self : Optional[Any] ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = '''<s>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 10_00 ) def A ( self : Optional[int] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(_A ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def A ( self : Tuple , _A : Dict=15 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Dict = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def A ( self : Union[str, Any] ) -> int: pass def A ( self : int ) -> Any: UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A ) UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : List[str] ) -> Optional[int]: return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : Tuple = '''Hello World!''' UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def A ( self : List[Any] ) -> str: UpperCAmelCase_ : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase_ : int = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def A ( self : List[str] ) -> Optional[int]: import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ : List[Any] = ''' '''.join(_A ) UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' ) UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape UpperCAmelCase_ : Optional[int] = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def A ( self : int ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ : Optional[Any] = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
304
0
"""simple docstring""" import tensorflow as tf from ...tf_utils import shape_list class _UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self : Dict , _lowercase : Dict , _lowercase : str , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Optional[Any]=1 , _lowercase : Any=False , **_lowercase : Optional[Any] ): super().__init__(**_A ) __UpperCAmelCase = vocab_size __UpperCAmelCase = d_embed __UpperCAmelCase = d_proj __UpperCAmelCase = cutoffs + [vocab_size] __UpperCAmelCase = [0] + self.cutoffs __UpperCAmelCase = div_val __UpperCAmelCase = self.cutoffs[0] __UpperCAmelCase = len(self.cutoffs ) - 1 __UpperCAmelCase = self.shortlist_size + self.n_clusters __UpperCAmelCase = keep_order __UpperCAmelCase = [] __UpperCAmelCase = [] def a ( self : str , _lowercase : str ): if self.n_clusters > 0: __UpperCAmelCase = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=_A , name='''cluster_weight''' ) __UpperCAmelCase = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=_A , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: __UpperCAmelCase = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=_A , name=F'''out_projs_._{i}''' , ) self.out_projs.append(_A ) else: self.out_projs.append(_A ) __UpperCAmelCase = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=_A , name=F'''out_layers_._{i}_._weight''' , ) __UpperCAmelCase = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=_A , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): __UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __UpperCAmelCase = self.d_embed // (self.div_val**i) __UpperCAmelCase = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=_A , name=F'''out_projs_._{i}''' ) self.out_projs.append(_A ) __UpperCAmelCase = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=_A , name=F'''out_layers_._{i}_._weight''' , ) __UpperCAmelCase = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=_A , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(_A ) @staticmethod def a ( _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : Union[str, Any]=None ): __UpperCAmelCase = x if proj is not None: __UpperCAmelCase = tf.einsum('''ibd,ed->ibe''' , _A , _A ) return tf.einsum('''ibd,nd->ibn''' , _A , _A ) + b @staticmethod def a ( _lowercase : Union[str, Any] , _lowercase : Union[str, Any] ): __UpperCAmelCase = shape_list(_A ) __UpperCAmelCase = tf.range(lp_size[0] , dtype=target.dtype ) __UpperCAmelCase = tf.stack([r, target] , 1 ) return tf.gather_nd(_A , _A ) def a ( self : int , _lowercase : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Any=True , _lowercase : Optional[Any]=False ): __UpperCAmelCase = 0 if self.n_clusters == 0: __UpperCAmelCase = self._logit(_A , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: __UpperCAmelCase = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_A , logits=_A ) __UpperCAmelCase = tf.nn.log_softmax(_A , axis=-1 ) else: __UpperCAmelCase = shape_list(_A ) __UpperCAmelCase = [] __UpperCAmelCase = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): __UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: __UpperCAmelCase = (target >= l_idx) & (target < r_idx) __UpperCAmelCase = tf.where(_A ) __UpperCAmelCase = tf.boolean_mask(_A , _A ) - l_idx if self.div_val == 1: __UpperCAmelCase = self.out_layers[0][0][l_idx:r_idx] __UpperCAmelCase = self.out_layers[0][1][l_idx:r_idx] else: __UpperCAmelCase = self.out_layers[i][0] __UpperCAmelCase = self.out_layers[i][1] if i == 0: __UpperCAmelCase = tf.concat([cur_W, self.cluster_weight] , 0 ) __UpperCAmelCase = tf.concat([cur_b, self.cluster_bias] , 0 ) __UpperCAmelCase = self._logit(_A , _A , _A , self.out_projs[0] ) __UpperCAmelCase = tf.nn.log_softmax(_A ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: __UpperCAmelCase = tf.boolean_mask(_A , _A ) __UpperCAmelCase = self._gather_logprob(_A , _A ) else: __UpperCAmelCase = self._logit(_A , _A , _A , self.out_projs[i] ) __UpperCAmelCase = tf.nn.log_softmax(_A ) __UpperCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster __UpperCAmelCase = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_A ) if target is not None: __UpperCAmelCase = tf.boolean_mask(_A , _A ) __UpperCAmelCase = tf.boolean_mask(_A , _A ) __UpperCAmelCase = self._gather_logprob(_A , _A ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_A , -cur_logprob , shape_list(_A ) ) __UpperCAmelCase = tf.concat(_A , axis=-1 ) if target is not None: if return_mean: __UpperCAmelCase = tf.reduce_mean(_A ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_A ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_A , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
332
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
0
import numpy as np from transformers import Pipeline def lowerCAmelCase__ ( lowerCamelCase_ : List[str]): '''simple docstring''' lowerCAmelCase__ : List[str] = np.max(lowerCamelCase_ ,axis=-1 ,keepdims=lowerCamelCase_) lowerCAmelCase__ : Dict = np.exp(outputs - maxes) return shifted_exp / shifted_exp.sum(axis=-1 ,keepdims=lowerCamelCase_) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def lowerCAmelCase__ (self ,**__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : int = {} if "second_text" in kwargs: lowerCAmelCase__ : List[Any] = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=None ) -> Optional[int]: """simple docstring""" return self.tokenizer(_A ,text_pair=_A ,return_tensors=self.framework ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" return self.model(**_A ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Optional[int] = model_outputs.logits[0].numpy() lowerCAmelCase__ : List[Any] = softmax(_A ) lowerCAmelCase__ : Tuple = np.argmax(_A ) lowerCAmelCase__ : List[Any] = self.model.config.idalabel[best_class] lowerCAmelCase__ : int = probabilities[best_class].item() lowerCAmelCase__ : Any = logits.tolist() return {"label": label, "score": score, "logits": logits}
129
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
0
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp __snake_case = 5 __snake_case = 1_0 @require_sentencepiece @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = SpeechaTextTokenizer _lowercase = False _lowercase = True def snake_case_ ( self: str ): '''simple docstring''' super().setUp() __UpperCamelCase = sp.SentencePieceProcessor() spm_model.Load(_A ) __UpperCamelCase = ['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_A ) )] __UpperCamelCase = dict(zip(_A,range(len(_A ) ) ) ) __UpperCamelCase = Path(self.tmpdirname ) save_json(_A,save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_A,save_dir / VOCAB_FILES_NAMES['spm_file'] ) __UpperCamelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = '''<pad>''' __UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ),_A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ),_A ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],'<s>' ) self.assertEqual(vocab_keys[1],'<pad>' ) self.assertEqual(vocab_keys[-1],'j' ) self.assertEqual(len(_A ),1001 ) def snake_case_ ( self: List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size,1001 ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __UpperCamelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_A,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ),[289, 50, 14, 174, 386],) __UpperCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _A,[SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'],) __UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual(_A,[12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A,[SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'],) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = {'''input_ids''': [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A,model_name='facebook/s2t-small-mustc-en-de-st',revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad',) @require_sentencepiece class __lowerCamelCase (unittest.TestCase ): _lowercase = """valhalla/s2t_mustc_multilinguial_medium""" _lowercase = """C'est trop cool""" _lowercase = """Esto es genial""" @classmethod def snake_case_ ( cls: str ): '''simple docstring''' __UpperCamelCase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' self.assertEqual(self.tokenizer.lang_code_to_id['pt'],4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'],6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'],9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'],11 ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' self.assertEqual(self.tokenizer.vocab_size,1_0000 ) def snake_case_ ( self: int ): '''simple docstring''' self.assertIn(_A,self.tokenizer.all_special_ids ) __UpperCamelCase = [ES_CODE, 4, 1601, 47, 7647, 2] __UpperCamelCase = self.tokenizer.decode(_A,skip_special_tokens=_A ) __UpperCamelCase = self.tokenizer.decode(generated_ids[1:],skip_special_tokens=_A ) self.assertEqual(_A,_A ) self.assertNotIn(self.tokenizer.eos_token,_A ) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = '''fr''' __UpperCamelCase = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0],_A ) self.assertEqual(encoded[-1],self.tokenizer.eos_token_id ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = '''fr''' self.assertListEqual(self.tokenizer.prefix_tokens,[FR_CODE] ) __UpperCamelCase = '''es''' self.assertListEqual(self.tokenizer.prefix_tokens,[ES_CODE] )
310
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __snake_case = logging.get_logger("""transformers.models.speecht5""") def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE__ = checkpoint['''input_conv.weight_g'''] SCREAMING_SNAKE_CASE__ = checkpoint['''input_conv.weight_v'''] SCREAMING_SNAKE_CASE__ = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE__ = checkpoint[F'upsamples.{i}.1.weight_g'] SCREAMING_SNAKE_CASE__ = checkpoint[F'upsamples.{i}.1.weight_v'] SCREAMING_SNAKE_CASE__ = checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE__ = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] SCREAMING_SNAKE_CASE__ = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] SCREAMING_SNAKE_CASE__ = checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] SCREAMING_SNAKE_CASE__ = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] SCREAMING_SNAKE_CASE__ = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] SCREAMING_SNAKE_CASE__ = checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] SCREAMING_SNAKE_CASE__ = checkpoint['''output_conv.1.weight_g'''] SCREAMING_SNAKE_CASE__ = checkpoint['''output_conv.1.weight_v'''] SCREAMING_SNAKE_CASE__ = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , ) -> Dict: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE__ = SpeechTaHifiGanConfig.from_pretrained(UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE__ = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE__ = SpeechTaHifiGan(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase_ ) load_weights(orig_checkpoint['model']['generator'] , UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = np.load(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE__ = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase_ ).float() SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase_ ).float() model.save_pretrained(UpperCamelCase_ ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
176
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase__ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : str = StableDiffusionDiffEditPipeline a : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a : Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a : Optional[int] = frozenset([] ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : str = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=_A, ) UpperCamelCase__ : Optional[Any] = DDIMScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=_A, set_alpha_to_one=_A, ) UpperCamelCase__ : Optional[int] = DDIMInverseScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=_A, set_alpha_to_zero=_A, ) torch.manual_seed(0 ) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) UpperCamelCase__ : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='''gelu''', projection_dim=512, ) UpperCamelCase__ : Union[str, Any] = CLIPTextModel(_A ) UpperCamelCase__ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCamelCase__ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase__ ( self, __magic_name__, __magic_name__=0 ) -> str: """simple docstring""" UpperCamelCase__ : Optional[Any] = floats_tensor((1, 16, 16), rng=random.Random(_A ) ).to(_A ) UpperCamelCase__ : Dict = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCamelCase__ : Any = torch.manual_seed(_A ) else: UpperCamelCase__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCamelCase__ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self, __magic_name__, __magic_name__=0 ) -> List[str]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 32, 32), rng=random.Random(_A ) ).to(_A ) UpperCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] UpperCamelCase__ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCamelCase__ : Dict = torch.manual_seed(_A ) else: UpperCamelCase__ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCamelCase__ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self, __magic_name__, __magic_name__=0 ) -> Any: """simple docstring""" UpperCamelCase__ : str = floats_tensor((1, 3, 32, 32), rng=random.Random(_A ) ).to(_A ) UpperCamelCase__ : List[str] = image.cpu().permute(0, 2, 3, 1 )[0] UpperCamelCase__ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCamelCase__ : Optional[int] = torch.manual_seed(_A ) else: UpperCamelCase__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCamelCase__ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" if not hasattr(self.pipeline_class, '''_optional_components''' ): return UpperCamelCase__ : str = self.get_dummy_components() UpperCamelCase__ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A, _A, _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCamelCase__ : List[str] = self.get_dummy_inputs(_A ) UpperCamelCase__ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCamelCase__ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A, _A ) is None, f"`{optional_component}` did not stay set to None after loading.", ) UpperCamelCase__ : Tuple = self.get_dummy_inputs(_A ) UpperCamelCase__ : List[Any] = pipe_loaded(**_A )[0] UpperCamelCase__ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A, 1E-4 ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : Optional[Any] = '''cpu''' UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCamelCase__ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCamelCase__ : int = pipe.generate_mask(**_A ) UpperCamelCase__ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) UpperCamelCase__ : List[Any] = np.array([0] * 9 ) UpperCamelCase__ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A, 1E-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = '''cpu''' UpperCamelCase__ : str = self.get_dummy_components() UpperCamelCase__ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCamelCase__ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCamelCase__ : Optional[Any] = pipe.invert(**_A ).images UpperCamelCase__ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) UpperCamelCase__ : int = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799], ) UpperCamelCase__ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A, 1E-3 ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : Any = '''cpu''' UpperCamelCase__ : Union[str, Any] = self.get_dummy_components() UpperCamelCase__ : Any = {'''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCamelCase__ : Any = DPMSolverMultistepScheduler(**_A ) UpperCamelCase__ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCamelCase__ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCamelCase__ : Optional[Any] = pipe.invert(**_A ).images UpperCamelCase__ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) UpperCamelCase__ : List[Any] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799], ) UpperCamelCase__ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A, 1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase__ ( cls ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCamelCase__ : int = raw_image.convert('''RGB''' ).resize((768, 768) ) UpperCamelCase__ : Any = raw_image def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : int = torch.manual_seed(0 ) UpperCamelCase__ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''', safety_checker=_A, torch_dtype=torch.floataa ) UpperCamelCase__ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCamelCase__ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCamelCase__ : Optional[Any] = '''a bowl of fruit''' UpperCamelCase__ : Tuple = '''a bowl of pears''' UpperCamelCase__ : Optional[int] = pipe.generate_mask( image=self.raw_image, source_prompt=_A, target_prompt=_A, generator=_A, ) UpperCamelCase__ : List[str] = pipe.invert( prompt=_A, image=self.raw_image, inpaint_strength=0.7, generator=_A ).latents UpperCamelCase__ : Any = pipe( prompt=_A, mask_image=_A, image_latents=_A, generator=_A, negative_prompt=_A, inpaint_strength=0.7, output_type='''numpy''', ).images[0] UpperCamelCase__ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Dict = torch.manual_seed(0 ) UpperCamelCase__ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''', safety_checker=_A, torch_dtype=torch.floataa ) UpperCamelCase__ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCamelCase__ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCamelCase__ : Optional[Any] = '''a bowl of fruit''' UpperCamelCase__ : Dict = '''a bowl of pears''' UpperCamelCase__ : Union[str, Any] = pipe.generate_mask( image=self.raw_image, source_prompt=_A, target_prompt=_A, generator=_A, ) UpperCamelCase__ : List[Any] = pipe.invert( prompt=_A, image=self.raw_image, inpaint_strength=0.7, generator=_A, num_inference_steps=25, ).latents UpperCamelCase__ : Dict = pipe( prompt=_A, mask_image=_A, image_latents=_A, generator=_A, negative_prompt=_A, inpaint_strength=0.7, num_inference_steps=25, output_type='''numpy''', ).images[0] UpperCamelCase__ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
201
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
83
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = inspect.getfile(accelerate.test_utils ) __magic_name__ : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) __magic_name__ : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) __magic_name__ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def SCREAMING_SNAKE_CASE ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) __magic_name__ : Optional[Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) __magic_name__ : Union[str, Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE ( self ): print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) __magic_name__ : Optional[int] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(_A , env=os.environ.copy() ) if __name__ == "__main__": snake_case : Optional[Any] = Accelerator() snake_case : str = (accelerator.state.process_index + 2, 10) snake_case : List[str] = torch.randint(0, 10, shape).to(accelerator.device) snake_case : List[str] = '' snake_case : Any = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." snake_case : List[str] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." snake_case : Tuple = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
281
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = k_size // 2 SCREAMING_SNAKE_CASE__ = mgrid[0 - center : k_size - center, 0 - center : k_size - center] SCREAMING_SNAKE_CASE__ = 1 / (2 * pi * sigma) * exp(-(square(__UpperCamelCase ) + square(__UpperCamelCase )) / (2 * square(__UpperCamelCase )) ) return g def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = image.shape[0], image.shape[1] # dst image height and width SCREAMING_SNAKE_CASE__ = height - k_size + 1 SCREAMING_SNAKE_CASE__ = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows SCREAMING_SNAKE_CASE__ = zeros((dst_height * dst_width, k_size * k_size) ) SCREAMING_SNAKE_CASE__ = 0 for i, j in product(range(__UpperCamelCase ) , range(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE__ = ravel(image[i : i + k_size, j : j + k_size] ) SCREAMING_SNAKE_CASE__ = window row += 1 # turn the kernel into shape(k*k, 1) SCREAMING_SNAKE_CASE__ = gen_gaussian_kernel(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = ravel(__UpperCamelCase ) # reshape and get the dst image SCREAMING_SNAKE_CASE__ = dot(__UpperCamelCase , __UpperCamelCase ).reshape(__UpperCamelCase , __UpperCamelCase ).astype(__UpperCamelCase ) return dst if __name__ == "__main__": # read original image __lowerCamelCase : Any = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value __lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __lowerCamelCase : Optional[Any] = gaussian_filter(gray, 3, sigma=1) __lowerCamelCase : List[str] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
219
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
0
'''simple docstring''' from __future__ import annotations import numpy as np def lowercase_ ( _lowercase ) -> Tuple: '''simple docstring''' return np.maximum(0 , _lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
318
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
0
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__: Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ReformerTokenizer __SCREAMING_SNAKE_CASE = ReformerTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True def UpperCamelCase ( self ): super().setUp() A__ = ReformerTokenizer(_A,keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self ): A__ = '''<s>''' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ),_A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ),_A ) def UpperCamelCase ( self ): A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],'''<unk>''' ) self.assertEqual(vocab_keys[1],'''<s>''' ) self.assertEqual(vocab_keys[-1],'''j''' ) self.assertEqual(len(_A ),1000 ) def UpperCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size,1000 ) def UpperCamelCase ( self ): if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = '''I was born in 92000, and this is falsé.''' A__ = tokenizer.tokenize(_A ) A__ = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A,_A ) A__ = tokenizer.encode(_A,add_special_tokens=_A ) A__ = rust_tokenizer.encode(_A,add_special_tokens=_A ) self.assertListEqual(_A,_A ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(_A ) A__ = rust_tokenizer.encode(_A ) self.assertListEqual(_A,_A ) def UpperCamelCase ( self,__lowerCamelCase=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ = self.rust_tokenizer_class.from_pretrained(_A,**_A ) # Simple input A__ = '''This is a simple input''' A__ = ['''This is a simple input 1''', '''This is a simple input 2'''] A__ = ('''This is a simple input''', '''This is a pair''') A__ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A,tokenizer_r.encode,_A,max_length=_A,padding='''max_length''' ) # Simple input self.assertRaises(_A,tokenizer_r.encode_plus,_A,max_length=_A,padding='''max_length''' ) # Simple input self.assertRaises( _A,tokenizer_r.batch_encode_plus,_A,max_length=_A,padding='''max_length''',) # Pair input self.assertRaises(_A,tokenizer_r.encode,_A,max_length=_A,padding='''max_length''' ) # Pair input self.assertRaises(_A,tokenizer_r.encode_plus,_A,max_length=_A,padding='''max_length''' ) # Pair input self.assertRaises( _A,tokenizer_r.batch_encode_plus,_A,max_length=_A,padding='''max_length''',) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): A__ = ReformerTokenizer(_A,keep_accents=_A ) A__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ),[285, 46, 10, 170, 382],) A__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ],) A__ = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4],) A__ = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ],) @cached_property def UpperCamelCase ( self ): return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def UpperCamelCase ( self ): A__ = '''Hello World!''' A__ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_A,self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase ( self ): A__ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) A__ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_A,self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase ( self ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence A__ = list(self.big_tokenizer.get_vocab().keys() )[:10] A__ = ''' '''.join(_A ) A__ = self.big_tokenizer.encode_plus(_A,return_tensors='''pt''' ) A__ = self.big_tokenizer.batch_encode_plus([sequence, sequence],return_tensors='''pt''' ) A__ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) A__ = encoded_sequence['''input_ids'''].shape A__ = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase ( self ): # fmt: off A__ = {'''input_ids''': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 A__ = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A,model_name='''google/reformer-crime-and-punishment''',revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''',padding=_A,sequences=_A,)
193
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None ): """simple docstring""" super().__init__() lowerCamelCase_ =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" lowerCamelCase_ =torch.zeros(_A, _A ) else: lowerCamelCase_ =None lowerCamelCase_ =torch.nn.Parameter(_A ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int =42 lowercase : Optional[int] =42 lowercase : Any =42 lowercase : str =42 lowercase : int =42 lowercase : int =42 def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" super().__init__() self.register_modules( vqvae=_A, transformer=_A, text_encoder=_A, tokenizer=_A, scheduler=_A, learned_classifier_free_sampling_embeddings=_A, ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =len(_A ) if isinstance(_A, _A ) else 1 # get prompt text embeddings lowerCamelCase_ =self.tokenizer( _A, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowerCamelCase_ =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase_ =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCamelCase_ =text_input_ids[:, : self.tokenizer.model_max_length] lowerCamelCase_ =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 lowerCamelCase_ =prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=_A ) # duplicate text embeddings for each generation per prompt lowerCamelCase_ =prompt_embeds.repeat_interleave(_A, dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: lowerCamelCase_ =self.learned_classifier_free_sampling_embeddings.embeddings lowerCamelCase_ =negative_prompt_embeds.unsqueeze(0 ).repeat(_A, 1, 1 ) else: lowerCamelCase_ =[''''''] * batch_size lowerCamelCase_ =text_input_ids.shape[-1] lowerCamelCase_ =self.tokenizer( _A, padding='''max_length''', max_length=_A, truncation=_A, return_tensors='''pt''', ) lowerCamelCase_ =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings lowerCamelCase_ =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1, keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ =negative_prompt_embeds.shape[1] lowerCamelCase_ =negative_prompt_embeds.repeat(1, _A, 1 ) lowerCamelCase_ =negative_prompt_embeds.view(batch_size * num_images_per_prompt, _A, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self, lowerCAmelCase, lowerCAmelCase = 100, lowerCAmelCase = 5.0, lowerCAmelCase = 1.0, lowerCAmelCase = 1, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = "pil", lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = 1, ): """simple docstring""" if isinstance(_A, _A ): lowerCamelCase_ =1 elif isinstance(_A, _A ): lowerCamelCase_ =len(_A ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) lowerCamelCase_ =batch_size * num_images_per_prompt lowerCamelCase_ =guidance_scale > 1.0 lowerCamelCase_ =self._encode_prompt(_A, _A, _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A, _A ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it lowerCamelCase_ =(batch_size, self.transformer.num_latent_pixels) if latents is None: lowerCamelCase_ =self.transformer.num_vector_embeds - 1 lowerCamelCase_ =torch.full(_A, _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) lowerCamelCase_ =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A, device=self.device ) lowerCamelCase_ =self.scheduler.timesteps.to(self.device ) lowerCamelCase_ =latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance lowerCamelCase_ =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` lowerCamelCase_ =self.transformer(_A, encoder_hidden_states=_A, timestep=_A ).sample if do_classifier_free_guidance: lowerCamelCase_ =model_output.chunk(2 ) lowerCamelCase_ =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A, dim=1, keepdim=_A ) lowerCamelCase_ =self.truncate(_A, _A ) # remove `log(0)`'s (`-inf`s) lowerCamelCase_ =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ =self.scheduler.step(_A, timestep=_A, sample=_A, generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A, _A, _A ) lowerCamelCase_ =self.vqvae.config.vq_embed_dim lowerCamelCase_ =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) lowerCamelCase_ =self.vqvae.quantize.get_codebook_entry(_A, shape=_A ) lowerCamelCase_ =self.vqvae.decode(_A, force_not_quantize=_A ).sample lowerCamelCase_ =(image / 2 + 0.5).clamp(0, 1 ) lowerCamelCase_ =image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowerCamelCase_ =self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =torch.sort(_A, 1, descending=_A ) lowerCamelCase_ =torch.exp(_A ) lowerCamelCase_ =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out lowerCamelCase_ =torch.full_like(keep_mask[:, 0:1, :], _A ) lowerCamelCase_ =torch.cat((all_true, keep_mask), dim=1 ) lowerCamelCase_ =keep_mask[:, :-1, :] lowerCamelCase_ =keep_mask.gather(1, indices.argsort(1 ) ) lowerCamelCase_ =log_p_x_0.clone() lowerCamelCase_ =-torch.inf # -inf = log(0) return rv
75
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): a__ : Dict = ViTImageProcessor if is_vision_available() else None @property def a ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def a ( self : Tuple ): __UpperCAmelCase = (3, 32, 1_28) __UpperCAmelCase = tempfile.mkdtemp() # fmt: off __UpperCAmelCase = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __UpperCAmelCase = dict(zip(_A , range(len(_A ) ) ) ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) __UpperCAmelCase = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 1_28}, } __UpperCAmelCase = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_A , _A ) def a ( self : Optional[Any] , **_lowercase : Any ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_A ) def a ( self : Union[str, Any] , **_lowercase : Union[str, Any] ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def a ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def a ( self : List[str] ): __UpperCAmelCase = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) __UpperCAmelCase = Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) return image_input def a ( self : Dict ): __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = MgpstrProcessor(tokenizer=_A , image_processor=_A ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def a ( self : Any ): __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = MgpstrProcessor(tokenizer=_A , image_processor=_A ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __UpperCAmelCase = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) __UpperCAmelCase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __UpperCAmelCase = self.prepare_image_inputs() __UpperCAmelCase = image_processor(_A , return_tensors='''np''' ) __UpperCAmelCase = processor(images=_A , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __UpperCAmelCase = '''test''' __UpperCAmelCase = processor(text=_A ) __UpperCAmelCase = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __UpperCAmelCase = '''test''' __UpperCAmelCase = self.prepare_image_inputs() __UpperCAmelCase = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def a ( self : List[Any] ): __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase = processor.char_decode(_A ) __UpperCAmelCase = tokenizer.batch_decode(_A ) __UpperCAmelCase = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(_A , _A ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __UpperCAmelCase = None __UpperCAmelCase = self.prepare_image_inputs() __UpperCAmelCase = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def a ( self : Dict ): __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __UpperCAmelCase = torch.randn(1 , 27 , 38 ) __UpperCAmelCase = torch.randn(1 , 27 , 5_02_57 ) __UpperCAmelCase = torch.randn(1 , 27 , 3_05_22 ) __UpperCAmelCase = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
332
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
0
from collections import deque class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = process_name # process name lowerCAmelCase__ : int = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCAmelCase__ : List[str] = arrival_time lowerCAmelCase__ : List[str] = burst_time # remaining burst time lowerCAmelCase__ : List[Any] = 0 # total time of the process wait in ready queue lowerCAmelCase__ : Optional[int] = 0 # time from arrival time to completion time class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,) -> None: """simple docstring""" lowerCAmelCase__ : Optional[int] = number_of_queues # time slice of queues that round robin algorithm applied lowerCAmelCase__ : Any = time_slices # unfinished process is in this ready_queue lowerCAmelCase__ : List[str] = queue # current time lowerCAmelCase__ : Dict = current_time # finished process is in this sequence queue lowerCAmelCase__ : deque[Process] = deque() def lowerCAmelCase__ (self ) -> list[str]: """simple docstring""" lowerCAmelCase__ : int = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCAmelCase__ (self ,__lowerCamelCase ) -> list[int]: """simple docstring""" lowerCAmelCase__ : List[str] = [] for i in range(len(_A ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCAmelCase__ (self ,__lowerCamelCase ) -> list[int]: """simple docstring""" lowerCAmelCase__ : Dict = [] for i in range(len(_A ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCAmelCase__ (self ,__lowerCamelCase ) -> list[int]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [] for i in range(len(_A ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCAmelCase__ (self ,__lowerCamelCase ) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def lowerCAmelCase__ (self ,__lowerCamelCase ) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCAmelCase__ (self ,__lowerCamelCase ) -> deque[Process]: """simple docstring""" lowerCAmelCase__ : deque[Process] = deque() # sequence deque of finished process while len(_A ) != 0: lowerCAmelCase__ : Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_A ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCAmelCase__ : Dict = 0 # set the process's turnaround time because it is finished lowerCAmelCase__ : str = self.current_time - cp.arrival_time # set the completion time lowerCAmelCase__ : Any = self.current_time # add the process to queue that has finished queue finished.append(_A ) self.finish_queue.extend(_A ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> tuple[deque[Process], deque[Process]]: """simple docstring""" lowerCAmelCase__ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_A ) ): lowerCAmelCase__ : Optional[int] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_A ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCAmelCase__ : Union[str, Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_A ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCAmelCase__ : Union[str, Any] = 0 # set the finish time lowerCAmelCase__ : Tuple = self.current_time # update the process' turnaround time because it is finished lowerCAmelCase__ : List[str] = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_A ) self.finish_queue.extend(_A ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCAmelCase__ (self ) -> deque[Process]: """simple docstring""" for i in range(self.number_of_queues - 1 ): lowerCAmelCase__ : str = self.round_robin( self.ready_queue ,self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __snake_case : Tuple =Process('P1', 0, 5_3) __snake_case : Optional[Any] =Process('P2', 0, 1_7) __snake_case : int =Process('P3', 0, 6_8) __snake_case : int =Process('P4', 0, 2_4) __snake_case : List[Any] =3 __snake_case : Any =[1_7, 2_5] __snake_case : Optional[Any] =deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) __snake_case : Optional[Any] =Process('P1', 0, 5_3) __snake_case : List[str] =Process('P2', 0, 1_7) __snake_case : int =Process('P3', 0, 6_8) __snake_case : Union[str, Any] =Process('P4', 0, 2_4) __snake_case : Optional[Any] =3 __snake_case : Tuple =[1_7, 2_5] __snake_case : Tuple =deque([Pa, Pa, Pa, Pa]) __snake_case : Dict =MLFQ(number_of_queues, time_slices, queue, 0) __snake_case : Optional[Any] =mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
129
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
0
import numpy as np class __lowerCamelCase : def __init__( self: Optional[Any],A_: Optional[Any]=None,A_: List[str]=None,A_: Dict=None,A_: Union[str, Any]=None,A_: Optional[int]=None ): '''simple docstring''' self.set_matricies(red=_A,green=_A,blue=_A,red_edge=_A,nir=_A ) def snake_case_ ( self: List[str],A_: Dict=None,A_: Union[str, Any]=None,A_: Optional[int]=None,A_: Optional[int]=None,A_: Any=None ): '''simple docstring''' if red is not None: __UpperCamelCase = red if green is not None: __UpperCamelCase = green if blue is not None: __UpperCamelCase = blue if red_edge is not None: __UpperCamelCase = red_edge if nir is not None: __UpperCamelCase = nir return True def snake_case_ ( self: Dict,A_: Tuple="",A_: List[str]=None,A_: str=None,A_: List[str]=None,A_: Tuple=None,A_: Union[str, Any]=None ): '''simple docstring''' self.set_matricies(red=_A,green=_A,blue=_A,red_edge=_A,nir=_A ) __UpperCamelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def snake_case_ ( self: Tuple ): '''simple docstring''' return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def snake_case_ ( self: str ): '''simple docstring''' return self.nir * (self.red / (self.green**2)) def snake_case_ ( self: Dict ): '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def snake_case_ ( self: Dict ): '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def snake_case_ ( self: List[Any] ): '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def snake_case_ ( self: int ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def snake_case_ ( self: int ): '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def snake_case_ ( self: Tuple ): '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def snake_case_ ( self: Any ): '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def snake_case_ ( self: Dict ): '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def snake_case_ ( self: int,A_: Tuple=0.0_8,A_: str=1.2_2,A_: List[Any]=0.0_3 ): '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def snake_case_ ( self: Tuple ): '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def snake_case_ ( self: Optional[int] ): '''simple docstring''' return (self.nir / self.green) - 1 def snake_case_ ( self: Tuple ): '''simple docstring''' return (self.nir / self.redEdge) - 1 def snake_case_ ( self: List[str] ): '''simple docstring''' return (self.red - self.blue) / self.red def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def snake_case_ ( self: int ): '''simple docstring''' return self.nir - self.green def snake_case_ ( self: int ): '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def snake_case_ ( self: Optional[Any],A_: int=0.1_6 ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def snake_case_ ( self: List[Any],A_: List[Any]=0.5 ): '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def snake_case_ ( self: str ): '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def snake_case_ ( self: Union[str, Any],A_: Tuple=None,A_: str=None ): '''simple docstring''' return (self.nir - b) / (a * self.red) def snake_case_ ( self: List[Any] ): '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def snake_case_ ( self: List[str] ): '''simple docstring''' return (self.red + self.green + self.blue) / 3_0.5 def snake_case_ ( self: List[Any] ): '''simple docstring''' return self.nir / self.red def snake_case_ ( self: Tuple ): '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def snake_case_ ( self: str ): '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def snake_case_ ( self: Optional[int] ): '''simple docstring''' return self.green / (self.nir + self.red + self.green) def snake_case_ ( self: Any ): '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def snake_case_ ( self: List[str] ): '''simple docstring''' return self.red / (self.nir + self.red + self.green) def snake_case_ ( self: Any ): '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def snake_case_ ( self: List[Any] ): '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __UpperCamelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def snake_case_ ( self: int ): '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def snake_case_ ( self: List[Any] ): '''simple docstring''' return self.nir / self.red def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def snake_case_ ( self: Any ): '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
310
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( UpperCamelCase_ , UpperCamelCase_=0.999 , UpperCamelCase_="cosine" , ) -> Union[str, Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) SCREAMING_SNAKE_CASE__ = [] for i in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase_ ) / alpha_bar_fn(UpperCamelCase_ ) , UpperCamelCase_ ) ) return torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ): A__ : Tuple =[e.name for e in KarrasDiffusionSchedulers] A__ : Optional[Any] =2 @register_to_config def __init__( self : Optional[Any] , UpperCAmelCase_ : int = 1000 , UpperCAmelCase_ : float = 0.00_085 , UpperCAmelCase_ : float = 0.012 , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , UpperCAmelCase_ : str = "epsilon" , UpperCAmelCase_ : Optional[bool] = False , UpperCAmelCase_ : Optional[bool] = False , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : str = "linspace" , UpperCAmelCase_ : int = 0 , ): if trained_betas is not None: SCREAMING_SNAKE_CASE__ = torch.tensor(_A , dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE__ = torch.linspace(_A , _A , _A , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _A , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE__ = betas_for_alpha_bar(_A , alpha_transform_type='cosine' ) elif beta_schedule == "exp": SCREAMING_SNAKE_CASE__ = betas_for_alpha_bar(_A , alpha_transform_type='exp' ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) SCREAMING_SNAKE_CASE__ = 1.0 - self.betas SCREAMING_SNAKE_CASE__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_A , _A , _A ) SCREAMING_SNAKE_CASE__ = use_karras_sigmas def A_ ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any=None ): if schedule_timesteps is None: SCREAMING_SNAKE_CASE__ = self.timesteps SCREAMING_SNAKE_CASE__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: SCREAMING_SNAKE_CASE__ = 1 if len(_A ) > 1 else 0 else: SCREAMING_SNAKE_CASE__ = timestep.cpu().item() if torch.is_tensor(_A ) else timestep SCREAMING_SNAKE_CASE__ = self._index_counter[timestep_int] return indices[pos].item() @property def A_ ( self : Optional[int] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def A_ ( self : Any , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Union[float, torch.FloatTensor] , ): SCREAMING_SNAKE_CASE__ = self.index_for_timestep(_A ) SCREAMING_SNAKE_CASE__ = self.sigmas[step_index] SCREAMING_SNAKE_CASE__ = sample / ((sigma**2 + 1) ** 0.5) return sample def A_ ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, torch.device] = None , UpperCAmelCase_ : Optional[int] = None , ): SCREAMING_SNAKE_CASE__ = num_inference_steps SCREAMING_SNAKE_CASE__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": SCREAMING_SNAKE_CASE__ = np.linspace(0 , num_train_timesteps - 1 , _A , dtype=_A )[::-1].copy() elif self.config.timestep_spacing == "leading": SCREAMING_SNAKE_CASE__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE__ = (np.arange(0 , _A ) * step_ratio).round()[::-1].copy().astype(_A ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": SCREAMING_SNAKE_CASE__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE__ = (np.arange(_A , 0 , -step_ratio )).round().copy().astype(_A ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) SCREAMING_SNAKE_CASE__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) SCREAMING_SNAKE_CASE__ = np.log(_A ) SCREAMING_SNAKE_CASE__ = np.interp(_A , np.arange(0 , len(_A ) ) , _A ) if self.config.use_karras_sigmas: SCREAMING_SNAKE_CASE__ = self._convert_to_karras(in_sigmas=_A , num_inference_steps=self.num_inference_steps ) SCREAMING_SNAKE_CASE__ = np.array([self._sigma_to_t(_A , _A ) for sigma in sigmas] ) SCREAMING_SNAKE_CASE__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(_A ).to(device=_A ) SCREAMING_SNAKE_CASE__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(_A ) SCREAMING_SNAKE_CASE__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_A ).startswith('mps' ): # mps does not support float64 SCREAMING_SNAKE_CASE__ = timesteps.to(_A , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE__ = timesteps.to(device=_A ) # empty dt and derivative SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter SCREAMING_SNAKE_CASE__ = defaultdict(_A ) def A_ ( self : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple ): # get log sigma SCREAMING_SNAKE_CASE__ = np.log(_A ) # get distribution SCREAMING_SNAKE_CASE__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range SCREAMING_SNAKE_CASE__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) SCREAMING_SNAKE_CASE__ = low_idx + 1 SCREAMING_SNAKE_CASE__ = log_sigmas[low_idx] SCREAMING_SNAKE_CASE__ = log_sigmas[high_idx] # interpolate sigmas SCREAMING_SNAKE_CASE__ = (low - log_sigma) / (low - high) SCREAMING_SNAKE_CASE__ = np.clip(_A , 0 , 1 ) # transform interpolation to time range SCREAMING_SNAKE_CASE__ = (1 - w) * low_idx + w * high_idx SCREAMING_SNAKE_CASE__ = t.reshape(sigma.shape ) return t def A_ ( self : Dict , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = in_sigmas[-1].item() SCREAMING_SNAKE_CASE__ = in_sigmas[0].item() SCREAMING_SNAKE_CASE__ = 7.0 # 7.0 is the value used in the paper SCREAMING_SNAKE_CASE__ = np.linspace(0 , 1 , _A ) SCREAMING_SNAKE_CASE__ = sigma_min ** (1 / rho) SCREAMING_SNAKE_CASE__ = sigma_max ** (1 / rho) SCREAMING_SNAKE_CASE__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def A_ ( self : Any ): return self.dt is None def A_ ( self : str , UpperCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , UpperCAmelCase_ : Union[float, torch.FloatTensor] , UpperCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , UpperCAmelCase_ : bool = True , ): SCREAMING_SNAKE_CASE__ = self.index_for_timestep(_A ) # advance index counter by 1 SCREAMING_SNAKE_CASE__ = timestep.cpu().item() if torch.is_tensor(_A ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: SCREAMING_SNAKE_CASE__ = self.sigmas[step_index] SCREAMING_SNAKE_CASE__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method SCREAMING_SNAKE_CASE__ = self.sigmas[step_index - 1] SCREAMING_SNAKE_CASE__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE__ = sigma_hat if self.state_in_first_order else sigma_next SCREAMING_SNAKE_CASE__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE__ = sigma_hat if self.state_in_first_order else sigma_next SCREAMING_SNAKE_CASE__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE__ = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: SCREAMING_SNAKE_CASE__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order SCREAMING_SNAKE_CASE__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep SCREAMING_SNAKE_CASE__ = sigma_next - sigma_hat # store for 2nd order step SCREAMING_SNAKE_CASE__ = derivative SCREAMING_SNAKE_CASE__ = dt SCREAMING_SNAKE_CASE__ = sample else: # 2. 2nd order / Heun's method SCREAMING_SNAKE_CASE__ = (sample - pred_original_sample) / sigma_next SCREAMING_SNAKE_CASE__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample SCREAMING_SNAKE_CASE__ = self.dt SCREAMING_SNAKE_CASE__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_A ) def A_ ( self : Optional[int] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples SCREAMING_SNAKE_CASE__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_A ): # mps does not support float64 SCREAMING_SNAKE_CASE__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE__ = self.timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE__ = timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE__ = [self.index_for_timestep(_A , _A ) for t in timesteps] SCREAMING_SNAKE_CASE__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): SCREAMING_SNAKE_CASE__ = sigma.unsqueeze(-1 ) SCREAMING_SNAKE_CASE__ = original_samples + noise * sigma return noisy_samples def __len__( self : List[Any] ): return self.config.num_train_timesteps
176
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1 UpperCAmelCase_ : Dict = [] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator if len(str(A ) ) > len(str(A ) ): result.append(A ) UpperCAmelCase_ : Optional[Any] = numerator UpperCAmelCase_ : Optional[int] = denominator return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
304
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) UpperCAmelCase_ = { 'sample_size': 32, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': 1000, 'block_out_channels': [32, 64], 'attention_head_dim': 8, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } UpperCAmelCase_ = { 'sample_size': 64, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 3, 'num_class_embeds': 1000, 'block_out_channels': [192, 192 * 2, 192 * 3, 192 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } UpperCAmelCase_ = { 'sample_size': 256, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': None, 'block_out_channels': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'default', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } UpperCAmelCase_ = { 'num_train_timesteps': 40, 'sigma_min': 0.002, 'sigma_max': 80.0, } UpperCAmelCase_ = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } UpperCAmelCase_ = { 'num_train_timesteps': 151, 'sigma_min': 0.002, 'sigma_max': 80.0, } def lowerCAmelCase_ ( __UpperCAmelCase: Dict ) -> int: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: Dict , __UpperCAmelCase: List[Any]=False ) -> Optional[int]: UpperCamelCase__ : List[str] = checkpoint[f"{old_prefix}.in_layers.0.weight"] UpperCamelCase__ : Optional[Any] = checkpoint[f"{old_prefix}.in_layers.0.bias"] UpperCamelCase__ : List[str] = checkpoint[f"{old_prefix}.in_layers.2.weight"] UpperCamelCase__ : Optional[int] = checkpoint[f"{old_prefix}.in_layers.2.bias"] UpperCamelCase__ : Tuple = checkpoint[f"{old_prefix}.emb_layers.1.weight"] UpperCamelCase__ : List[str] = checkpoint[f"{old_prefix}.emb_layers.1.bias"] UpperCamelCase__ : Optional[Any] = checkpoint[f"{old_prefix}.out_layers.0.weight"] UpperCamelCase__ : List[Any] = checkpoint[f"{old_prefix}.out_layers.0.bias"] UpperCamelCase__ : str = checkpoint[f"{old_prefix}.out_layers.3.weight"] UpperCamelCase__ : str = checkpoint[f"{old_prefix}.out_layers.3.bias"] if has_skip: UpperCamelCase__ : int = checkpoint[f"{old_prefix}.skip_connection.weight"] UpperCamelCase__ : List[str] = checkpoint[f"{old_prefix}.skip_connection.bias"] return new_checkpoint def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: List[Any] , __UpperCAmelCase: int , __UpperCAmelCase: List[str] , __UpperCAmelCase: int=None ) -> Optional[int]: UpperCamelCase__ : Union[str, Any] = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) UpperCamelCase__ : Dict = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) UpperCamelCase__ : List[Any] = checkpoint[f"{old_prefix}.norm.weight"] UpperCamelCase__ : List[Any] = checkpoint[f"{old_prefix}.norm.bias"] UpperCamelCase__ : Dict = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCamelCase__ : int = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCamelCase__ : List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCamelCase__ : int = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCamelCase__ : List[str] = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCamelCase__ : List[str] = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCamelCase__ : Any = ( checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) UpperCamelCase__ : str = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: Tuple ) -> Any: UpperCamelCase__ : Tuple = torch.load(__UpperCAmelCase , map_location='''cpu''' ) UpperCamelCase__ : str = {} UpperCamelCase__ : Optional[Any] = checkpoint['''time_embed.0.weight'''] UpperCamelCase__ : Any = checkpoint['''time_embed.0.bias'''] UpperCamelCase__ : Optional[int] = checkpoint['''time_embed.2.weight'''] UpperCamelCase__ : List[Any] = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: UpperCamelCase__ : Optional[int] = checkpoint['''label_emb.weight'''] UpperCamelCase__ : Any = checkpoint['''input_blocks.0.0.weight'''] UpperCamelCase__ : int = checkpoint['''input_blocks.0.0.bias'''] UpperCamelCase__ : List[str] = unet_config['''down_block_types'''] UpperCamelCase__ : Dict = unet_config['''layers_per_block'''] UpperCamelCase__ : str = unet_config['''attention_head_dim'''] UpperCamelCase__ : Union[str, Any] = unet_config['''block_out_channels'''] UpperCamelCase__ : List[str] = 1 UpperCamelCase__ : List[str] = channels_list[0] for i, layer_type in enumerate(__UpperCAmelCase ): UpperCamelCase__ : List[Any] = channels_list[i] UpperCamelCase__ : Union[str, Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__UpperCAmelCase ): UpperCamelCase__ : int = f"down_blocks.{i}.resnets.{j}" UpperCamelCase__ : List[Any] = f"input_blocks.{current_layer}.0" UpperCamelCase__ : List[str] = True if j == 0 and downsample_block_has_skip else False UpperCamelCase__ : Optional[Any] = convert_resnet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , has_skip=__UpperCAmelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__UpperCAmelCase ): UpperCamelCase__ : List[str] = f"down_blocks.{i}.resnets.{j}" UpperCamelCase__ : List[str] = f"input_blocks.{current_layer}.0" UpperCamelCase__ : List[Any] = True if j == 0 and downsample_block_has_skip else False UpperCamelCase__ : Any = convert_resnet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , has_skip=__UpperCAmelCase ) UpperCamelCase__ : Union[str, Any] = f"down_blocks.{i}.attentions.{j}" UpperCamelCase__ : Union[str, Any] = f"input_blocks.{current_layer}.1" UpperCamelCase__ : Union[str, Any] = convert_attention( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) current_layer += 1 if i != len(__UpperCAmelCase ) - 1: UpperCamelCase__ : Optional[Any] = f"down_blocks.{i}.downsamplers.0" UpperCamelCase__ : Any = f"input_blocks.{current_layer}.0" UpperCamelCase__ : str = convert_resnet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) current_layer += 1 UpperCamelCase__ : List[str] = current_channels # hardcoded the mid-block for now UpperCamelCase__ : Union[str, Any] = '''mid_block.resnets.0''' UpperCamelCase__ : str = '''middle_block.0''' UpperCamelCase__ : str = convert_resnet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : str = '''mid_block.attentions.0''' UpperCamelCase__ : Tuple = '''middle_block.1''' UpperCamelCase__ : Any = convert_attention(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : Optional[int] = '''mid_block.resnets.1''' UpperCamelCase__ : Union[str, Any] = '''middle_block.2''' UpperCamelCase__ : List[str] = convert_resnet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : Dict = 0 UpperCamelCase__ : Tuple = unet_config['''up_block_types'''] for i, layer_type in enumerate(__UpperCAmelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCamelCase__ : Tuple = f"up_blocks.{i}.resnets.{j}" UpperCamelCase__ : Optional[int] = f"output_blocks.{current_layer}.0" UpperCamelCase__ : str = convert_resnet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , has_skip=__UpperCAmelCase ) current_layer += 1 if i != len(__UpperCAmelCase ) - 1: UpperCamelCase__ : int = f"up_blocks.{i}.upsamplers.0" UpperCamelCase__ : Dict = f"output_blocks.{current_layer-1}.1" UpperCamelCase__ : int = convert_resnet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCamelCase__ : Any = f"up_blocks.{i}.resnets.{j}" UpperCamelCase__ : int = f"output_blocks.{current_layer}.0" UpperCamelCase__ : Optional[int] = convert_resnet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , has_skip=__UpperCAmelCase ) UpperCamelCase__ : int = f"up_blocks.{i}.attentions.{j}" UpperCamelCase__ : Any = f"output_blocks.{current_layer}.1" UpperCamelCase__ : Any = convert_attention( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) current_layer += 1 if i != len(__UpperCAmelCase ) - 1: UpperCamelCase__ : Optional[Any] = f"up_blocks.{i}.upsamplers.0" UpperCamelCase__ : Dict = f"output_blocks.{current_layer-1}.2" UpperCamelCase__ : Union[str, Any] = convert_resnet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : Optional[int] = checkpoint['''out.0.weight'''] UpperCamelCase__ : Optional[Any] = checkpoint['''out.0.bias'''] UpperCamelCase__ : Tuple = checkpoint['''out.2.weight'''] UpperCamelCase__ : str = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.') parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.' ) parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.') UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = strabool(args.class_cond) UpperCAmelCase_ = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: UpperCAmelCase_ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCAmelCase_ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: UpperCAmelCase_ = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: UpperCAmelCase_ = None UpperCAmelCase_ = con_pt_to_diffuser(args.unet_path, unet_config) UpperCAmelCase_ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: UpperCAmelCase_ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: UpperCAmelCase_ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCAmelCase_ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') UpperCAmelCase_ = CMStochasticIterativeScheduler(**scheduler_config) UpperCAmelCase_ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
201
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ : def __init__( self : Dict ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[Any]=13 ,lowerCamelCase__ : str=30 ,lowerCamelCase__ : int=2 ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : Any=32 ,lowerCamelCase__ : int=2 ,lowerCamelCase__ : List[str]=4 ,lowerCamelCase__ : List[Any]=37 ,lowerCamelCase__ : Any="gelu" ,lowerCamelCase__ : List[str]=0.1 ,lowerCamelCase__ : int=0.1 ,lowerCamelCase__ : Optional[int]=10 ,lowerCamelCase__ : List[str]=0.0_2 ,lowerCamelCase__ : str=3 ,lowerCamelCase__ : str=None ,): '''simple docstring''' _UpperCamelCase : Tuple = parent _UpperCamelCase : int = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : str = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : int = is_training _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : Optional[Any] = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = type_sequence_label_size _UpperCamelCase : int = initializer_range _UpperCamelCase : int = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : str = (image_size // patch_size) ** 2 _UpperCamelCase : Optional[int] = num_patches + 1 def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Union[str, Any] = None if self.use_labels: _UpperCamelCase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCamelCase : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_A ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : List[str] = TFViTModel(config=_A ) _UpperCamelCase : Dict = model(_A ,training=_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _UpperCamelCase : Optional[int] = self.image_size // 2 _UpperCamelCase : List[str] = pixel_values[:, :, :image_size, :image_size] _UpperCamelCase : Optional[Any] = model(_A ,interpolate_pos_encoding=_A ,training=_A ) _UpperCamelCase : Optional[int] = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.type_sequence_label_size _UpperCamelCase : Dict = TFViTForImageClassification(_A ) _UpperCamelCase : Tuple = model(_A ,labels=_A ,training=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _UpperCamelCase : List[str] = self.image_size // 2 _UpperCamelCase : List[str] = pixel_values[:, :, :image_size, :image_size] _UpperCamelCase : List[Any] = model(_A ,interpolate_pos_encoding=_A ,training=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Dict = 1 _UpperCamelCase : List[Any] = TFViTForImageClassification(_A ) _UpperCamelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : Any = model(_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : str = self.prepare_config_and_inputs() _UpperCamelCase : Dict = config_and_inputs _UpperCamelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowercase__ ( lowercase , lowercase , unittest.TestCase ): lowercase__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowercase__ = ( {"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[int] = TFViTModelTester(self ) _UpperCamelCase : Union[str, Any] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[str] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) _UpperCamelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A ,tf.keras.layers.Layer ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Optional[Any] = model_class(_A ) _UpperCamelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Union[str, Any] = [*signature.parameters.keys()] _UpperCamelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_A ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : str = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def A__ ( ): _UpperCamelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : int ): '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Tuple = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) _UpperCamelCase : Union[str, Any] = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : List[Any] = image_processor(images=_A ,return_tensors='tf' ) # forward pass _UpperCamelCase : Optional[int] = model(**_A ) # verify the logits _UpperCamelCase : Any = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _UpperCamelCase : Tuple = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] ,_A ,atol=1E-4 )
83
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
0
def lowerCAmelCase_ ( _snake_case : Tuple , _snake_case : List[str] ) -> List[str]: '''simple docstring''' __magic_name__ : Union[str, Any] = '''''' for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( _snake_case : Tuple ) -> Union[str, Any]: '''simple docstring''' return data[1:] + data[0] def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : Tuple ) -> Dict: '''simple docstring''' __magic_name__ : Any = '''''' for i in range(len(_snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( _snake_case : int , _snake_case : int ) -> Dict: '''simple docstring''' __magic_name__ : List[str] = int("0b" + data[0] + data[-1] , 2 ) __magic_name__ : str = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( _snake_case : int , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Optional[int] ) -> Any: '''simple docstring''' __magic_name__ : Dict = message[:4] __magic_name__ : List[Any] = message[4:] __magic_name__ : Tuple = apply_table(_snake_case , _snake_case ) __magic_name__ : Tuple = xor(_snake_case , _snake_case ) __magic_name__ : str = apply_sbox(_snake_case , temp[:4] ) # noqa: E741 __magic_name__ : List[str] = apply_sbox(_snake_case , temp[4:] ) __magic_name__ : Tuple = '''0''' * (2 - len(_snake_case )) + l # noqa: E741 __magic_name__ : Union[str, Any] = '''0''' * (2 - len(_snake_case )) + r __magic_name__ : str = apply_table(l + r , _snake_case ) __magic_name__ : int = xor(_snake_case , _snake_case ) return temp + right if __name__ == "__main__": snake_case : Optional[int] = input("Enter 10 bit key: ") snake_case : Union[str, Any] = input("Enter 8 bit message: ") snake_case : Any = [6, 3, 7, 4, 8, 5, 10, 9] snake_case : Dict = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] snake_case : Union[str, Any] = [2, 4, 3, 1] snake_case : Union[str, Any] = [2, 6, 3, 1, 4, 8, 5, 7] snake_case : List[Any] = [4, 1, 3, 5, 7, 2, 8, 6] snake_case : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] snake_case : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] snake_case : Optional[int] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation snake_case : Tuple = apply_table(key, paa_table) snake_case : Any = temp[:5] snake_case : Any = temp[5:] snake_case : Optional[Any] = left_shift(left) snake_case : int = left_shift(right) snake_case : Tuple = apply_table(left + right, pa_table) snake_case : Union[str, Any] = left_shift(left) snake_case : str = left_shift(right) snake_case : Dict = left_shift(left) snake_case : Any = left_shift(right) snake_case : int = apply_table(left + right, pa_table) # encryption snake_case : List[Any] = apply_table(message, IP) snake_case : List[Any] = function(expansion, sa, sa, keya, temp) snake_case : Dict = temp[4:] + temp[:4] snake_case : List[str] = function(expansion, sa, sa, keya, temp) snake_case : Any = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption snake_case : Union[str, Any] = apply_table(CT, IP) snake_case : Any = function(expansion, sa, sa, keya, temp) snake_case : List[Any] = temp[4:] + temp[:4] snake_case : Optional[int] = function(expansion, sa, sa, keya, temp) snake_case : Any = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
281
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCamelCase : Union[str, Any] = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
219
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
0
'''simple docstring''' from collections import defaultdict class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[Any] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 lowerCamelCase_ : Union[str, Any] = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(_A ) ) ] lowerCamelCase_ : Optional[Any] = defaultdict(_A ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 lowerCamelCase_ : Optional[int] = (1 << len(_A )) - 1 def UpperCAmelCase__ (self , A , A ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement lowerCamelCase_ : Tuple = self.count_ways_until(_A , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. lowerCamelCase_ : List[Any] = total_ways_util return self.dp[mask][task_no] def UpperCAmelCase__ (self , A ): # Store the list of persons for each task for i in range(len(_A ) ): for j in task_performed[i]: self.task[j].append(_A ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __lowercase : Dict = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __lowercase : Union[str, Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
318
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process a__: List[Any] = logging.getLogger(__name__) a__: Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) a__: Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCamelCase__ )} , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) __SCREAMING_SNAKE_CASE = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def UpperCamelCase ( self ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __SCREAMING_SNAKE_CASE = field(default=UpperCamelCase__ , metadata={'''help''': '''The input training data file (a text file).'''} ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) __SCREAMING_SNAKE_CASE = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) __SCREAMING_SNAKE_CASE = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def UpperCamelCase ( self ): if self.train_file is not None: A__ = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: A__ = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] )->List[str]: with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' ) as f: A__ = [json.loads(UpperCamelCase__ ) for line in f.read().splitlines() if (len(UpperCamelCase__ ) > 0 and not line.isspace())] assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) A__ = {c: dataset[c] for c in dataset.column_names} A__ = refs return Dataset.from_dict(UpperCamelCase__ ) def UpperCamelCase__( )->Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , UpperCamelCase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. A__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"train[:{data_args.validation_split_percentage}%]" , ) A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"train[{data_args.validation_split_percentage}%:]" , ) else: A__ = {} if data_args.train_file is not None: A__ = data_args.train_file if data_args.validation_file is not None: A__ = data_args.validation_file A__ = data_args.train_file.split('''.''' )[-1] if extension == "txt": A__ = '''text''' A__ = load_dataset(UpperCamelCase__ , data_files=UpperCamelCase__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: A__ = AutoConfig.from_pretrained(model_args.config_name , **UpperCamelCase__ ) elif model_args.model_name_or_path: A__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ ) else: A__ = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) A__ = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: A__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **UpperCamelCase__ ) elif model_args.model_name_or_path: A__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: A__ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) A__ = AutoModelForMaskedLM.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: A__ = datasets['''train'''].column_names else: A__ = datasets['''validation'''].column_names A__ = '''text''' if '''text''' in column_names else column_names[0] A__ = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(UpperCamelCase__ : Any ): # Remove empty lines A__ = [line for line in examples['''text'''] if len(UpperCamelCase__ ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=data_args.max_seq_length ) A__ = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: A__ = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: A__ = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer A__ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: A__ = False # Data collator # This one will take care of randomly masking the tokens. A__ = DataCollatorForWholeWordMask(tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A__ = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: if last_checkpoint is not None: A__ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): A__ = model_args.model_name_or_path else: A__ = None A__ = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload A__ = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation A__ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A__ = trainer.evaluate() A__ = math.exp(eval_output['''eval_loss'''] ) A__ = perplexity A__ = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) return results def UpperCamelCase__( UpperCamelCase__ : Tuple )->List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
193
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
0
'''simple docstring''' import math def a_ ( __snake_case : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __snake_case : float = 0.1 ) -> int: """simple docstring""" lowerCamelCase_ =3 lowerCamelCase_ =3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
75
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ReformerTokenizer a_ = ReformerTokenizerFast a_ = True a_ = False a_ = True def A ( self : Optional[Any] ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = '''<s>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 10_00 ) def A ( self : Optional[int] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(_A ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def A ( self : Tuple , _A : Dict=15 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Dict = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def A ( self : Union[str, Any] ) -> int: pass def A ( self : int ) -> Any: UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A ) UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : List[str] ) -> Optional[int]: return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : Tuple = '''Hello World!''' UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def A ( self : List[Any] ) -> str: UpperCAmelCase_ : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase_ : int = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def A ( self : List[str] ) -> Optional[int]: import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ : List[Any] = ''' '''.join(_A ) UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' ) UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape UpperCAmelCase_ : Optional[int] = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def A ( self : int ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ : Optional[Any] = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
304
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _lowercase : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): a__ : Dict = 10_000 a__ : Dict = None a__ : Optional[Any] = None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): a__ : Any = ParquetConfig def a ( self : str ): return datasets.DatasetInfo(features=self.config.features ) def a ( self : Optional[Any] , _lowercase : Dict ): if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A , (str, list, tuple) ): __UpperCAmelCase = data_files if isinstance(_A , _A ): __UpperCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __UpperCAmelCase = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCAmelCase = [] for split_name, files in data_files.items(): if isinstance(_A , _A ): __UpperCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __UpperCAmelCase = [dl_manager.iter_files(_A ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_A ): with open(_A , '''rb''' ) as f: __UpperCAmelCase = datasets.Features.from_arrow_schema(pq.read_schema(_A ) ) break splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'''files''': files} ) ) return splits def a ( self : Optional[Any] , _lowercase : pa.Table ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __UpperCAmelCase = table_cast(_A , self.info.features.arrow_schema ) return pa_table def a ( self : Optional[int] , _lowercase : Optional[Any] ): __UpperCAmelCase = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_A ) ): with open(_A , '''rb''' ) as f: __UpperCAmelCase = pq.ParquetFile(_A ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __UpperCAmelCase = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(_A ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_A )}: {e}''' ) raise
332
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
0
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =PriorTransformer snake_case_ ="""hidden_states""" @property def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[str] = 4 lowerCAmelCase__ : Union[str, Any] = 8 lowerCAmelCase__ : Optional[int] = 7 lowerCAmelCase__ : List[Any] = floats_tensor((batch_size, embedding_dim) ).to(_A ) lowerCAmelCase__ : Optional[int] = floats_tensor((batch_size, embedding_dim) ).to(_A ) lowerCAmelCase__ : Tuple = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCAmelCase__ (self ,__lowerCamelCase=0 ) -> str: """simple docstring""" torch.manual_seed(_A ) lowerCAmelCase__ : List[Any] = 4 lowerCAmelCase__ : Optional[int] = 8 lowerCAmelCase__ : Optional[int] = 7 lowerCAmelCase__ : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(_A ) lowerCAmelCase__ : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(_A ) lowerCAmelCase__ : Any = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" return (4, 8) @property def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" return (4, 8) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } lowerCAmelCase__ : int = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' ,output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(_A ) lowerCAmelCase__ : Optional[Any] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : List[str] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase__ : Optional[Any] = self.model_class(**_A ) lowerCAmelCase__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : int = [*signature.parameters.keys()] lowerCAmelCase__ : Tuple = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] ,_A ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) lowerCAmelCase__ : List[Any] = model.to(_A ) if hasattr(_A ,'''set_default_attn_processor''' ): model.set_default_attn_processor() lowerCAmelCase__ : Optional[int] = self.get_dummy_seed_input() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(**_A )[0] lowerCAmelCase__ : Any = output[0, :5].flatten().cpu() print(_A ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowerCAmelCase__ : Dict = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(_A ,_A ,rtol=1e-2 ) ) @slow class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ,__lowerCamelCase=1 ,__lowerCamelCase=7_68 ,__lowerCamelCase=77 ,__lowerCamelCase=0 ) -> int: """simple docstring""" torch.manual_seed(_A ) lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : Optional[int] = embedding_dim lowerCAmelCase__ : Union[str, Any] = num_embeddings lowerCAmelCase__ : Tuple = torch.randn((batch_size, embedding_dim) ).to(_A ) lowerCAmelCase__ : List[Any] = torch.randn((batch_size, embedding_dim) ).to(_A ) lowerCAmelCase__ : int = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : List[str] = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' ,subfolder='''prior''' ) model.to(_A ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_seed_input(seed=_A ) with torch.no_grad(): lowerCAmelCase__ : Tuple = model(**_A )[0] assert list(sample.shape ) == [1, 7_68] lowerCAmelCase__ : Optional[int] = sample[0, :8].flatten().cpu() print(_A ) lowerCAmelCase__ : str = torch.tensor(_A ) assert torch_all_close(_A ,_A ,atol=1e-3 )
129
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
0
from importlib import import_module from .logging import get_logger __snake_case = get_logger(__name__) class __lowerCamelCase : def __init__( self: int,A_: str,A_: Optional[int]=None ): '''simple docstring''' __UpperCamelCase = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self,_A,getattr(_A,_A ) ) __UpperCamelCase = module._original_module if isinstance(_A,_PatchedModuleObj ) else module class __lowerCamelCase : _lowercase = [] def __init__( self: Optional[Any],A_: Optional[int],A_: str,A_: List[Any],A_: int=None ): '''simple docstring''' __UpperCamelCase = obj __UpperCamelCase = target __UpperCamelCase = new __UpperCamelCase = target.split('.' )[0] __UpperCamelCase = {} __UpperCamelCase = attrs or [] def __enter__( self: Any ): '''simple docstring''' __UpperCamelCase = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(_A ) ): try: __UpperCamelCase = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __UpperCamelCase = getattr(self.obj,_A ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(_A,_PatchedModuleObj ) and obj_attr._original_module is submodule) ): __UpperCamelCase = obj_attr # patch at top level setattr(self.obj,_A,_PatchedModuleObj(_A,attrs=self.attrs ) ) __UpperCamelCase = getattr(self.obj,_A ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(_A,_A,_PatchedModuleObj(getattr(_A,_A,_A ),attrs=self.attrs ) ) __UpperCamelCase = getattr(_A,_A ) # finally set the target attribute setattr(_A,_A,self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __UpperCamelCase = getattr(import_module('.'.join(_A ) ),_A ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj,_A ) is attr_value: __UpperCamelCase = getattr(self.obj,_A ) setattr(self.obj,_A,self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __UpperCamelCase = globals()['''__builtins__'''][target_attr] setattr(self.obj,_A,self.new ) else: raise RuntimeError(F'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self: int,*A_: Any ): '''simple docstring''' for attr in list(self.original ): setattr(self.obj,_A,self.original.pop(_A ) ) def snake_case_ ( self: int ): '''simple docstring''' self.__enter__() self._active_patches.append(self ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
310
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
0
from __future__ import annotations def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' print(F'Vertex\tShortest Distance from vertex {src}' ) for i, d in enumerate(UpperCamelCase_ ): print(F'{i}\t\t{d}' ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' for j in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: return True return False def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list[float]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [float('inf' )] * vertex_count SCREAMING_SNAKE_CASE__ = 0.0 for _ in range(vertex_count - 1 ): for j in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: SCREAMING_SNAKE_CASE__ = distance[u] + w SCREAMING_SNAKE_CASE__ = check_negative_cycle(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if negative_cycle_exists: raise Exception('Negative cycle found' ) return distance if __name__ == "__main__": import doctest doctest.testmod() __snake_case = int(input("""Enter number of vertices: """).strip()) __snake_case = int(input("""Enter number of edges: """).strip()) __snake_case = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) __snake_case = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) __snake_case = {'src': src, 'dst': dest, 'weight': weight} __snake_case = int(input("""\nEnter shortest path source:""").strip()) __snake_case = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
176
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: Optional[int]=10 ) -> int: UpperCamelCase__ : List[str] = [] for _ in range(__UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: Optional[Any]=10 ) -> Dict: UpperCamelCase__ : Optional[int] = [] for step in range(__UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Union[str, Any] = os.path.join(__UpperCAmelCase , '''schedule.bin''' ) torch.save(scheduler.state_dict() , __UpperCAmelCase ) UpperCamelCase__ : Union[str, Any] = torch.load(__UpperCAmelCase ) scheduler.load_state_dict(__UpperCAmelCase ) return lrs @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Union[str, Any]: """simple docstring""" self.assertEqual(len(_A ), len(_A ) ) for a, b in zip(_A, _A ): self.assertAlmostEqual(_A, _A, delta=_A ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = torch.tensor([0.1, -0.2, -0.1], requires_grad=_A ) UpperCamelCase__ : Tuple = torch.tensor([0.4, 0.2, -0.5] ) UpperCamelCase__ : Optional[int] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCamelCase__ : Any = AdamW(params=[w], lr=2E-1, weight_decay=0.0 ) for _ in range(100 ): UpperCamelCase__ : Dict = criterion(_A, _A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1E-2 ) def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[str] = torch.tensor([0.1, -0.2, -0.1], requires_grad=_A ) UpperCamelCase__ : int = torch.tensor([0.4, 0.2, -0.5] ) UpperCamelCase__ : str = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCamelCase__ : Any = Adafactor( params=[w], lr=1E-2, eps=(1E-30, 1E-3), clip_threshold=1.0, decay_rate=-0.8, betaa=_A, weight_decay=0.0, relative_step=_A, scale_parameter=_A, warmup_init=_A, ) for _ in range(1000 ): UpperCamelCase__ : List[Any] = criterion(_A, _A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1E-2 ) @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' a : str = nn.Linear(50 , 50 ) if is_torch_available() else None a : Optional[int] = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None a : Any = 10 def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__=None ) -> List[Any]: """simple docstring""" self.assertEqual(len(_A ), len(_A ) ) for a, b in zip(_A, _A ): self.assertAlmostEqual(_A, _A, delta=_A, msg=_A ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : Union[str, Any] = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) UpperCamelCase__ : List[str] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): UpperCamelCase__ : Any = data UpperCamelCase__ : List[str] = scheduler_func(self.optimizer, **_A ) self.assertEqual(len([scheduler.get_lr()[0]] ), 1 ) UpperCamelCase__ : Optional[int] = unwrap_schedule(_A, self.num_steps ) self.assertListAlmostEqual( _A, _A, tol=1E-2, msg=f"failed for {scheduler_func} in normal scheduler", ) UpperCamelCase__ : int = scheduler_func(self.optimizer, **_A ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_A ) # wrap to test picklability of the schedule UpperCamelCase__ : List[str] = unwrap_and_save_reload_schedule(_A, self.num_steps ) self.assertListEqual(_A, _A, msg=f"failed for {scheduler_func} in save and reload" ) class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = fn def __call__( self, *__magic_name__, **__magic_name__ ) -> List[Any]: """simple docstring""" return self.fn(*_A, **_A ) @classmethod def UpperCamelCase__ ( self, __magic_name__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Tuple = list(map(self, scheduler.lr_lambdas ) )
201
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
0
'''simple docstring''' from math import isqrt, loga def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[str] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : int = False return [i for i in range(2 , UpperCAmelCase_ ) if is_prime[i]] def A__ ( UpperCAmelCase_ = 8_0_0_8_0_0 , UpperCAmelCase_ = 8_0_0_8_0_0 ): _UpperCamelCase : Union[str, Any] = degree * loga(UpperCAmelCase_ ) _UpperCamelCase : Tuple = int(UpperCAmelCase_ ) _UpperCamelCase : Any = calculate_prime_numbers(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : str = 0 _UpperCamelCase : List[Any] = len(UpperCAmelCase_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
83
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version snake_case : Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") snake_case : List[str] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) snake_case : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowerCAmelCase_ ( _snake_case : str ) -> Optional[Any]: '''simple docstring''' with open(_snake_case , "rb" ) as f: __magic_name__ : int = Image.open(_snake_case ) return im.convert("RGB" ) @dataclass class _snake_case : UpperCamelCase__ = field( default=snake_case , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) UpperCamelCase__ = field( default=snake_case , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) UpperCamelCase__ = field(default=snake_case , metadata={'help': 'A folder containing the training data.'} ) UpperCamelCase__ = field(default=snake_case , metadata={'help': 'A folder containing the validation data.'} ) UpperCamelCase__ = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) UpperCamelCase__ = field( default=snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) UpperCamelCase__ = field( default=snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def SCREAMING_SNAKE_CASE ( self ): if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class _snake_case : UpperCamelCase__ = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) UpperCamelCase__ = field( default=snake_case , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(snake_case )} , ) UpperCamelCase__ = field( default=snake_case , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) UpperCamelCase__ = field( default=snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) UpperCamelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) UpperCamelCase__ = field(default=snake_case , metadata={'help': 'Name or path of preprocessor config.'} ) UpperCamelCase__ = field( default=snake_case , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) UpperCamelCase__ = field( default=snake_case , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCAmelCase_ ( _snake_case : Union[str, Any] ) -> Tuple: '''simple docstring''' __magic_name__ : Tuple = torch.stack([example["pixel_values"] for example in examples] ) __magic_name__ : Optional[int] = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __magic_name__ : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __magic_name__ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __magic_name__ : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __magic_name__ : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __magic_name__ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __magic_name__ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: __magic_name__ : str = {} if data_args.train_dir is not None: __magic_name__ : int = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: __magic_name__ : str = os.path.join(data_args.validation_dir , "**" ) __magic_name__ : Optional[int] = load_dataset( "imagefolder" , data_files=_snake_case , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. __magic_name__ : Union[str, Any] = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: __magic_name__ : List[str] = dataset['''train'''].train_test_split(data_args.train_val_split ) __magic_name__ : str = split['''train'''] __magic_name__ : Optional[Any] = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __magic_name__ : List[Any] = dataset['''train'''].features['''labels'''].names __magic_name__ : Tuple = {}, {} for i, label in enumerate(_snake_case ): __magic_name__ : Tuple = str(_snake_case ) __magic_name__ : Dict = label # Load the accuracy metric from the datasets package __magic_name__ : List[str] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : int ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __magic_name__ : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_snake_case ) , labelaid=_snake_case , idalabel=_snake_case , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __magic_name__ : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __magic_name__ : int = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __magic_name__ : Dict = image_processor.size['''shortest_edge'''] else: __magic_name__ : Optional[Any] = (image_processor.size['''height'''], image_processor.size['''width''']) __magic_name__ : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __magic_name__ : str = Compose( [ RandomResizedCrop(_snake_case ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __magic_name__ : List[str] = Compose( [ Resize(_snake_case ), CenterCrop(_snake_case ), ToTensor(), normalize, ] ) def train_transforms(_snake_case : Optional[Any] ): __magic_name__ : str = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_snake_case : List[Any] ): __magic_name__ : List[Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: __magic_name__ : List[str] = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: __magic_name__ : Optional[Any] = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_snake_case ) # Initalize our trainer __magic_name__ : Union[str, Any] = Trainer( model=_snake_case , args=_snake_case , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __magic_name__ : Any = None if training_args.resume_from_checkpoint is not None: __magic_name__ : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __magic_name__ : Dict = last_checkpoint __magic_name__ : Tuple = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __magic_name__ : List[str] = trainer.evaluate() trainer.log_metrics("eval" , _snake_case ) trainer.save_metrics("eval" , _snake_case ) # Write model card and (optionally) push to hub __magic_name__ : str = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) if __name__ == "__main__": main()
281
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
0
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __snake_case ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = ConsistencyModelPipeline lowerCAmelCase_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCAmelCase_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowerCAmelCase_ = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet""" , ) return unet @property def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , ) return unet def __a ( self : Dict , _lowercase : List[str]=False ): """simple docstring""" if class_cond: SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet else: SCREAMING_SNAKE_CASE__ = self.dummy_uncond_unet # Default to CM multistep sampler SCREAMING_SNAKE_CASE__ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) SCREAMING_SNAKE_CASE__ = { '''unet''': unet, '''scheduler''': scheduler, } return components def __a ( self : int , _lowercase : Dict , _lowercase : List[str]=0 ): """simple docstring""" if str(_A ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE__ = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = ConsistencyModelPipeline(**_A ) SCREAMING_SNAKE_CASE__ = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE__ = pipe(**_A ).images assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components(class_cond=_A ) SCREAMING_SNAKE_CASE__ = ConsistencyModelPipeline(**_A ) SCREAMING_SNAKE_CASE__ = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = pipe(**_A ).images assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = ConsistencyModelPipeline(**_A ) SCREAMING_SNAKE_CASE__ = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = pipe(**_A ).images assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components(class_cond=_A ) SCREAMING_SNAKE_CASE__ = ConsistencyModelPipeline(**_A ) SCREAMING_SNAKE_CASE__ = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = pipe(**_A ).images assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self : List[str] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple , _lowercase : Tuple=0 , _lowercase : Tuple=False , _lowercase : int="cpu" , _lowercase : Any=torch.floataa , _lowercase : Dict=(1, 3, 64, 64) ): """simple docstring""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(_A ) SCREAMING_SNAKE_CASE__ = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: SCREAMING_SNAKE_CASE__ = self.get_fixed_latents(seed=_A , device=_A , dtype=_A , shape=_A ) SCREAMING_SNAKE_CASE__ = latents return inputs def __a ( self : List[Any] , _lowercase : Tuple=0 , _lowercase : Optional[Any]="cpu" , _lowercase : Union[str, Any]=torch.floataa , _lowercase : List[Any]=(1, 3, 64, 64) ): """simple docstring""" if type(_A ) == str: SCREAMING_SNAKE_CASE__ = torch.device(_A ) SCREAMING_SNAKE_CASE__ = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE__ = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) return latents def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) SCREAMING_SNAKE_CASE__ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) SCREAMING_SNAKE_CASE__ = ConsistencyModelPipeline(unet=_A , scheduler=_A ) pipe.to(torch_device=_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ = self.get_inputs() SCREAMING_SNAKE_CASE__ = pipe(**_A ).images assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) SCREAMING_SNAKE_CASE__ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) SCREAMING_SNAKE_CASE__ = ConsistencyModelPipeline(unet=_A , scheduler=_A ) pipe.to(torch_device=_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ = self.get_inputs() SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = pipe(**_A ).images assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) SCREAMING_SNAKE_CASE__ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) SCREAMING_SNAKE_CASE__ = ConsistencyModelPipeline(unet=_A , scheduler=_A ) pipe.to(torch_device=_A , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ = self.get_inputs(get_fixed_latents=_A , device=_A ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_A , enable_math=_A , enable_mem_efficient=_A ): SCREAMING_SNAKE_CASE__ = pipe(**_A ).images assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) SCREAMING_SNAKE_CASE__ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) SCREAMING_SNAKE_CASE__ = ConsistencyModelPipeline(unet=_A , scheduler=_A ) pipe.to(torch_device=_A , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE__ = self.get_inputs(get_fixed_latents=_A , device=_A ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_A , enable_math=_A , enable_mem_efficient=_A ): SCREAMING_SNAKE_CASE__ = pipe(**_A ).images assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
219
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowercase : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __lowercase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
318
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__: Dict = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: int = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys a__: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
193
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
0
'''simple docstring''' a_ : Tuple = [ (10_00, 'M'), (9_00, 'CM'), (5_00, 'D'), (4_00, 'CD'), (1_00, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def a_ ( __snake_case : str ) -> int: """simple docstring""" lowerCamelCase_ ={'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} lowerCamelCase_ =0 lowerCamelCase_ =0 while place < len(__snake_case ): if (place + 1 < len(__snake_case )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def a_ ( __snake_case : int ) -> str: """simple docstring""" lowerCamelCase_ =[] for arabic, roman in ROMAN: (lowerCamelCase_) =divmod(__snake_case , __snake_case ) result.append(roman * factor ) if number == 0: break return "".join(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
75
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
0
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _lowercase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _lowercase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _lowercase : Tuple = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _lowercase : str = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : Optional[int] = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _lowercase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowercase__ ( snake_case_ :Optional[int] ): __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , snake_case_ ) return [m.group(0 ) for m in matches] def lowercase__ ( ): __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(snake_case_ ) __UpperCAmelCase = collections.defaultdict(snake_case_ ) __UpperCAmelCase = collections.defaultdict(snake_case_ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(snake_case_ ): __UpperCAmelCase = None if _re_tf_models.match(snake_case_ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(snake_case_ ).groups()[0] elif _re_flax_models.match(snake_case_ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(snake_case_ ).groups()[0] elif _re_pt_models.match(snake_case_ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(snake_case_ ).groups()[0] if lookup_dict is not None: while len(snake_case_ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(snake_case_ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(snake_case_ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(snake_case_ ) def lowercase__ ( snake_case_ :Optional[int] ): __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}'''] __UpperCAmelCase = [auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}'''] # Loop through all three frameworks for module, cls, mapping in zip(snake_case_ , snake_case_ , snake_case_ ): # The type of pipeline may not exist in this framework if not hasattr(snake_case_ , snake_case_ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(snake_case_ , snake_case_ ).values(): if isinstance(snake_case_ , snake_case_ ): model_names.append(snake_case_ ) else: model_names.extend(list(snake_case_ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowercase__ ( snake_case_ :int , snake_case_ :Any ): __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(snake_case_ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=snake_case_ ) __UpperCAmelCase = Dataset.from_json(snake_case_ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(snake_case_ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(snake_case_ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(snake_case_ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(snake_case_ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(snake_case_ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( F'''Update with commit {commit_sha}\n\nSee: ''' F'''https://github.com/huggingface/transformers/commit/{commit_sha}''' ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=snake_case_ , repo_type='''dataset''' , token=snake_case_ , commit_message=snake_case_ , ) def lowercase__ ( ): __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(snake_case_ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(snake_case_ ) if len(snake_case_ ) > 0: __UpperCAmelCase = ''', '''.join(snake_case_ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F'''`utils/update_metadata.py`: {msg}. Please add them!''' ) if __name__ == "__main__": _lowercase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _lowercase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
332
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : Dict =logging.get_logger(__name__) __snake_case : int ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : Union[str, Any] ={ 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } __snake_case : str ={ 'RUCAIBox/mvp': 1_0_2_4, } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =VOCAB_FILES_NAMES snake_case_ =PRETRAINED_VOCAB_FILES_MAP snake_case_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ =["""input_ids""", """attention_mask"""] snake_case_ =MvpTokenizer def __init__(self ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase="replace" ,__lowerCamelCase="<s>" ,__lowerCamelCase="</s>" ,__lowerCamelCase="</s>" ,__lowerCamelCase="<s>" ,__lowerCamelCase="<unk>" ,__lowerCamelCase="<pad>" ,__lowerCamelCase="<mask>" ,__lowerCamelCase=False ,__lowerCamelCase=True ,**__lowerCamelCase ,) -> Union[str, Any]: """simple docstring""" super().__init__( _A ,_A ,tokenizer_file=_A ,errors=_A ,bos_token=_A ,eos_token=_A ,sep_token=_A ,cls_token=_A ,unk_token=_A ,pad_token=_A ,mask_token=_A ,add_prefix_space=_A ,trim_offsets=_A ,**_A ,) lowerCAmelCase__ : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_A ) != add_prefix_space: lowerCAmelCase__ : Optional[Any] = getattr(_A ,pre_tok_state.pop('''type''' ) ) lowerCAmelCase__ : Optional[Any] = add_prefix_space lowerCAmelCase__ : Any = pre_tok_class(**_A ) lowerCAmelCase__ : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCAmelCase__ : List[Any] = '''post_processor''' lowerCAmelCase__ : str = getattr(self.backend_tokenizer ,_A ,_A ) if tokenizer_component_instance: lowerCAmelCase__ : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase__ : str = tuple(state['''sep'''] ) if "cls" in state: lowerCAmelCase__ : List[str] = tuple(state['''cls'''] ) lowerCAmelCase__ : List[str] = False if state.get('''add_prefix_space''' ,_A ) != add_prefix_space: lowerCAmelCase__ : Optional[int] = add_prefix_space lowerCAmelCase__ : int = True if state.get('''trim_offsets''' ,_A ) != trim_offsets: lowerCAmelCase__ : str = trim_offsets lowerCAmelCase__ : List[str] = True if changes_to_apply: lowerCAmelCase__ : Any = getattr(_A ,state.pop('''type''' ) ) lowerCAmelCase__ : str = component_class(**_A ) setattr(self.backend_tokenizer ,_A ,_A ) @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else value lowerCAmelCase__ : str = value def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> BatchEncoding: """simple docstring""" lowerCAmelCase__ : Dict = kwargs.get('''is_split_into_words''' ,_A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_A ,**_A ) def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> BatchEncoding: """simple docstring""" lowerCAmelCase__ : Dict = kwargs.get('''is_split_into_words''' ,_A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_A ,**_A ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" lowerCAmelCase__ : Dict = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=None ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> List[int]: """simple docstring""" lowerCAmelCase__ : Optional[int] = [self.sep_token_id] lowerCAmelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
129
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
0
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowerCamelCase (_a ): def __init__( self: Optional[int],*A_: Tuple,A_: Optional[Any]=None,A_: Union[str, Any]=None,**A_: Dict ): '''simple docstring''' super().__init__(*_A,**_A ) __UpperCamelCase = eval_examples __UpperCamelCase = post_process_function def snake_case_ ( self: Optional[Any],A_: str=None,A_: Optional[Any]=None,A_: List[str]=None,A_: str = "eval" ): '''simple docstring''' __UpperCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset __UpperCamelCase = self.get_eval_dataloader(_A ) __UpperCamelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __UpperCamelCase = self.compute_metrics __UpperCamelCase = None __UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __UpperCamelCase = time.time() try: __UpperCamelCase = eval_loop( _A,description='Evaluation',prediction_loss_only=True if compute_metrics is None else None,ignore_keys=_A,metric_key_prefix=_A,) finally: __UpperCamelCase = compute_metrics __UpperCamelCase = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _A,_A,num_samples=output.num_samples,num_steps=math.ceil(output.num_samples / total_batch_size ),) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __UpperCamelCase = self.post_process_function(_A,_A,output.predictions ) __UpperCamelCase = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __UpperCamelCase = metrics.pop(_A ) metrics.update(output.metrics ) else: __UpperCamelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __UpperCamelCase = self.callback_handler.on_evaluate(self.args,self.state,self.control,_A ) return metrics def snake_case_ ( self: List[str],A_: Optional[Any],A_: List[str],A_: Tuple=None,A_: str = "test" ): '''simple docstring''' __UpperCamelCase = self.get_test_dataloader(_A ) # Temporarily disable metric computation, we will do it in the loop here. __UpperCamelCase = self.compute_metrics __UpperCamelCase = None __UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __UpperCamelCase = time.time() try: __UpperCamelCase = eval_loop( _A,description='Prediction',prediction_loss_only=True if compute_metrics is None else None,ignore_keys=_A,metric_key_prefix=_A,) finally: __UpperCamelCase = compute_metrics __UpperCamelCase = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _A,_A,num_samples=output.num_samples,num_steps=math.ceil(output.num_samples / total_batch_size ),) ) if self.post_process_function is None or self.compute_metrics is None: return output __UpperCamelCase = self.post_process_function(_A,_A,output.predictions,'predict' ) __UpperCamelCase = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __UpperCamelCase = metrics.pop(_A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions,label_ids=predictions.label_ids,metrics=_A )
310
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = 42 A__ = 42 class A ( nn.Module ): '''simple docstring''' A__ = 42 A__ = (16, 32, 96, 2_56) A__ = jnp.floataa def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase__ = [] for i in range(len(self.block_out_channels ) - 1 ): lowercase__ = self.block_out_channels[i] lowercase__ = self.block_out_channels[i + 1] lowercase__ = nn.Conv( _UpperCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_UpperCAmelCase ) lowercase__ = nn.Conv( _UpperCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_UpperCAmelCase ) lowercase__ = blocks lowercase__ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__(self : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.conv_in(_UpperCAmelCase ) lowercase__ = nn.silu(_UpperCAmelCase ) for block in self.blocks: lowercase__ = block(_UpperCAmelCase ) lowercase__ = nn.silu(_UpperCAmelCase ) lowercase__ = self.conv_out(_UpperCAmelCase ) return embedding @flax_register_to_config class A ( nn.Module , UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = 32 A__ = 4 A__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) A__ = False A__ = (3_20, 6_40, 12_80, 12_80) A__ = 2 A__ = 8 A__ = None A__ = 12_80 A__ = 0.0 A__ = False A__ = jnp.floataa A__ = True A__ = 0 A__ = "rgb" A__ = (16, 32, 96, 2_56) def lowerCamelCase__ (self : Any , _UpperCAmelCase : jax.random.KeyArray ) -> FrozenDict: """simple docstring""" lowercase__ = (1, self.in_channels, self.sample_size, self.sample_size) lowercase__ = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa ) lowercase__ = jnp.ones((1,) , dtype=jnp.intaa ) lowercase__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowercase__ = (1, 3, self.sample_size * 8, self.sample_size * 8) lowercase__ = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa ) lowercase__ , lowercase__ = jax.random.split(_UpperCAmelCase ) lowercase__ = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )["params"] def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.block_out_channels lowercase__ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowercase__ = self.num_attention_heads or self.attention_head_dim # input lowercase__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowercase__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowercase__ = FlaxTimestepEmbedding(_UpperCAmelCase , dtype=self.dtype ) lowercase__ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowercase__ = self.only_cross_attention if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = (num_attention_heads,) * len(self.down_block_types ) # down lowercase__ = [] lowercase__ = [] lowercase__ = block_out_channels[0] lowercase__ = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): lowercase__ = output_channel lowercase__ = block_out_channels[i] lowercase__ = i == len(_UpperCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowercase__ = FlaxCrossAttnDownBlockaD( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowercase__ = FlaxDownBlockaD( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_UpperCAmelCase ) for _ in range(self.layers_per_block ): lowercase__ = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) if not is_final_block: lowercase__ = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) lowercase__ = down_blocks lowercase__ = controlnet_down_blocks # mid lowercase__ = block_out_channels[-1] lowercase__ = FlaxUNetMidBlockaDCrossAttn( in_channels=_UpperCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowercase__ = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__(self : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False , ) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" lowercase__ = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowercase__ = jnp.flip(_UpperCAmelCase , axis=1 ) # 1. time if not isinstance(_UpperCAmelCase , jnp.ndarray ): lowercase__ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: lowercase__ = timesteps.astype(dtype=jnp.floataa ) lowercase__ = jnp.expand_dims(_UpperCAmelCase , 0 ) lowercase__ = self.time_proj(_UpperCAmelCase ) lowercase__ = self.time_embedding(_UpperCAmelCase ) # 2. pre-process lowercase__ = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) ) lowercase__ = self.conv_in(_UpperCAmelCase ) lowercase__ = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) ) lowercase__ = self.controlnet_cond_embedding(_UpperCAmelCase ) sample += controlnet_cond # 3. down lowercase__ = (sample,) for down_block in self.down_blocks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ , lowercase__ = down_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) else: lowercase__ , lowercase__ = down_block(_UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowercase__ = self.mid_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) # 5. contronet blocks lowercase__ = () for down_block_res_sample, controlnet_block in zip(_UpperCAmelCase , self.controlnet_down_blocks ): lowercase__ = controlnet_block(_UpperCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) lowercase__ = controlnet_down_block_res_samples lowercase__ = self.controlnet_mid_block(_UpperCAmelCase ) # 6. scaling lowercase__ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_UpperCAmelCase , mid_block_res_sample=_UpperCAmelCase )
305
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
1