code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''bert-generation''' def __init__(self : Dict , _UpperCAmelCase : Optional[int]=5_0358 , _UpperCAmelCase : List[Any]=1024 , _UpperCAmelCase : Optional[int]=24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Union[str, Any]=4096 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : int=1E-1_2 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Any="absolute" , _UpperCAmelCase : Optional[Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache
305
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
1
def UpperCamelCase ( __magic_name__ : int = 10 , __magic_name__ : int = 1000 , __magic_name__ : bool = True ) -> int: """simple docstring""" assert ( isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" ) return min_val if option else max_val def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((number_a + number_a) / 2 ) def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> None: """simple docstring""" assert ( isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""" ) if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""" ) def answer(__magic_name__ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""" ) lowercase__ = lower lowercase__ = higher lowercase__ = [] while True: lowercase__ = get_avg(__magic_name__ , __magic_name__ ) last_numbers.append(__magic_name__ ) if answer(__magic_name__ ) == "low": lowercase__ = number elif answer(__magic_name__ ) == "high": lowercase__ = number else: break print(f'''guess the number : {last_numbers[-1]}''' ) print(f'''details : {last_numbers!s}''' ) def UpperCamelCase ( ) -> None: """simple docstring""" lowercase__ = int(input("""Enter lower value : """ ).strip() ) lowercase__ = int(input("""Enter high value : """ ).strip() ) lowercase__ = int(input("""Enter value to guess : """ ).strip() ) guess_the_number(__magic_name__ , __magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
305
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
1
import itertools import math def UpperCamelCase ( __magic_name__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__magic_name__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase ( ) -> str: """simple docstring""" lowercase__ = 2 while True: if is_prime(__magic_name__ ): yield num num += 1 def UpperCamelCase ( __magic_name__ : int = 1_0001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __magic_name__ ) ) if __name__ == "__main__": print(F'{solution() = }')
305
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
1
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class A : '''simple docstring''' def __init__(self : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : Tuple=7 , _UpperCAmelCase : int=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Union[str, Any]=99 , _UpperCAmelCase : str=32 , _UpperCAmelCase : str=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : List[Any]=37 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Any=128 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Tuple=None , ) -> Any: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ (self : str ) -> str: """simple docstring""" return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = self.prepare_config_and_inputs() lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = NezhaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = True lowercase__ = NezhaModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = NezhaForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ) -> Any: """simple docstring""" lowercase__ = NezhaForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" lowercase__ = NezhaForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" lowercase__ = NezhaForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" lowercase__ = self.num_labels lowercase__ = NezhaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> str: """simple docstring""" lowercase__ = self.num_labels lowercase__ = NezhaForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = NezhaForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': NezhaModel, '''fill-mask''': NezhaForMaskedLM, '''question-answering''': NezhaForQuestionAnswering, '''text-classification''': NezhaForSequenceClassification, '''token-classification''': NezhaForTokenClassification, '''zero-shot''': NezhaForSequenceClassification, } if is_torch_available() else {} ) A__ = True def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ) -> Dict: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCamelCase__ (self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = NezhaModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> Optional[Any]: """simple docstring""" ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase__ = None self.model_tester.create_and_check_model_as_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = NezhaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """bert.pt""" ) ) lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """bert.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) lowercase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase__ = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" lowercase__ = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) lowercase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase__ = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 6, 2_1128) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) )
305
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class A : '''simple docstring''' def __init__(self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str]=100 , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : Any=30 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : List[Any]=37 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Union[str, Any]=10 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Union[str, Any]=[0, 1, 2, 3] , ) -> Dict: """simple docstring""" lowercase__ = parent lowercase__ = 100 lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = out_indices lowercase__ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def lowerCamelCase__ (self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase__ (self : Dict ) -> List[str]: """simple docstring""" return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[str]: """simple docstring""" lowercase__ = BeitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" lowercase__ = BeitForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = self.type_sequence_label_size lowercase__ = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = BeitForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) A__ = False A__ = False A__ = False def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = BeitModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[str]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" pass def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> str: """simple docstring""" if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling]: continue lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ = False lowercase__ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowercase__ = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: lowercase__ = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = BeitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(_UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).pixel_values.to(_UpperCAmelCase ) # prepare bool_masked_pos lowercase__ = torch.ones((1, 196) , dtype=torch.bool ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(pixel_values=_UpperCAmelCase , bool_masked_pos=_UpperCAmelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _UpperCAmelCase , atol=1E-2 ) ) @slow def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(_UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 1000) ) self.assertEqual(logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) lowercase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowerCamelCase__ (self : Dict ) -> Any: """simple docstring""" lowercase__ = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( _UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) lowercase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) lowercase__ = model.to(_UpperCAmelCase ) lowercase__ = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) lowercase__ = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) lowercase__ = Image.open(ds[0]["""file"""] ) lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _UpperCAmelCase ) lowercase__ = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: lowercase__ = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=_UpperCAmelCase , ) else: lowercase__ = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) lowercase__ = model.to(_UpperCAmelCase ) lowercase__ = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) lowercase__ = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) lowercase__ = Image.open(ds[0]["""file"""] ) lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) lowercase__ = outputs.logits.detach().cpu() lowercase__ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(500, 300)] ) lowercase__ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) lowercase__ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) lowercase__ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
305
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> str: """simple docstring""" lowercase__ = params lowercase__ = np.array(_UpperCAmelCase ) lowercase__ = np.array([len(_UpperCAmelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__(self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__(self : str ) -> Union[str, Any]: """simple docstring""" return len(self.lengths ) def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def lowerCamelCase__ (self : Dict ) -> Tuple: """simple docstring""" lowercase__ = self.params.max_model_input_size lowercase__ = self.lengths > max_len logger.info(f'''Splitting {sum(_UpperCAmelCase )} too long sequences.''' ) def divide_chunks(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ): return [l[i : i + n] for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase )] lowercase__ = [] lowercase__ = [] if self.params.mlm: lowercase__ , lowercase__ = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: lowercase__ , lowercase__ = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowercase__ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: lowercase__ = np.insert(_UpperCAmelCase , 0 , _UpperCAmelCase ) if sub_s[-1] != sep_id: lowercase__ = np.insert(_UpperCAmelCase , len(_UpperCAmelCase ) , _UpperCAmelCase ) assert len(_UpperCAmelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_UpperCAmelCase ) new_tok_ids.extend(_UpperCAmelCase ) new_lengths.extend([len(_UpperCAmelCase ) for l in sub_seqs] ) lowercase__ = np.array(_UpperCAmelCase ) lowercase__ = np.array(_UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" lowercase__ = len(self ) lowercase__ = self.lengths > 11 lowercase__ = self.token_ids[indices] lowercase__ = self.lengths[indices] lowercase__ = len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: lowercase__ = self.params.special_tok_ids["""unk_token"""] lowercase__ = len(self ) lowercase__ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowercase__ = (unk_occs / self.lengths) < 0.5 lowercase__ = self.token_ids[indices] lowercase__ = self.lengths[indices] lowercase__ = len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" lowercase__ = [t[0] for t in batch] lowercase__ = [t[1] for t in batch] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) # Max for paddings lowercase__ = max(_UpperCAmelCase ) # Pad token ids if self.params.mlm: lowercase__ = self.params.special_tok_ids["""pad_token"""] else: lowercase__ = self.params.special_tok_ids["""unk_token"""] lowercase__ = [list(t.astype(_UpperCAmelCase ) ) + [pad_idx] * (max_seq_len_ - len(_UpperCAmelCase )) for t in token_ids] assert len(tk_ ) == len(_UpperCAmelCase ) assert all(len(_UpperCAmelCase ) == max_seq_len_ for t in tk_ ) lowercase__ = torch.tensor(tk_ ) # (bs, max_seq_len_) lowercase__ = torch.tensor(_UpperCAmelCase ) # (bs) return tk_t, lg_t
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class A ( unittest.TestCase ): '''simple docstring''' A__ = inspect.getfile(accelerate.test_utils ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) A__ = ['''accelerate''', '''launch'''] A__ = Path.home() / '''.cache/huggingface/accelerate''' A__ = '''default_config.yaml''' A__ = config_folder / config_file A__ = config_folder / '''_default_config.yaml''' A__ = Path('''tests/test_configs''' ) @classmethod def lowerCamelCase__ (cls : List[str] ) -> int: """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowerCamelCase__ (cls : str ) -> List[str]: """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" for config in sorted(self.test_config_path.glob("""**/*.yaml""" ) ): with self.subTest(config_file=_UpperCAmelCase ): execute_subprocess_async( self.base_cmd + ["""--config_file""", str(_UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" execute_subprocess_async(["""accelerate""", """test"""] , env=os.environ.copy() ) class A ( unittest.TestCase ): '''simple docstring''' A__ = '''test-tpu''' A__ = '''us-central1-a''' A__ = '''ls''' A__ = ['''accelerate''', '''tpu-config'''] A__ = '''cd /usr/share''' A__ = '''tests/test_samples/test_command_file.sh''' A__ = '''Running gcloud compute tpus tpu-vm ssh''' def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = run_command( self.cmd + ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] , return_stdout=_UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> List[str]: """simple docstring""" lowercase__ = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=_UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" lowercase__ = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] , return_stdout=_UpperCAmelCase ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" lowercase__ = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] , return_stdout=_UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--command""", """echo \"Hello World\"""", """--debug""", ] , return_stdout=_UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , _UpperCAmelCase , ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] , return_stdout=_UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command_file""", self.command_file, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=_UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCamelCase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] , return_stdout=_UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> str: """simple docstring""" lowercase__ = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--accelerate_version""", """12.0.0""", """--debug""", ] , return_stdout=_UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
305
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A : List[Any] = logging.get_logger(__name__) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = ['''pixel_values'''] def __init__(self : Dict , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) lowercase__ = size if size is not None else {"""shortest_edge""": 256} lowercase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) lowercase__ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase__ = get_size_dict(_UpperCAmelCase , param_name="""crop_size""" ) lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase__ = get_resize_output_image_size(_UpperCAmelCase , size=size["""shortest_edge"""] , default_to_square=_UpperCAmelCase ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(_UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int ) -> np.ndarray: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_UpperCAmelCase : Tuple , ) -> int: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) lowercase__ = resample if resample is not None else self.resample lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(_UpperCAmelCase , param_name="""crop_size""" ) lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: lowercase__ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: lowercase__ = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] lowercase__ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] lowercase__ = {"""pixel_values""": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Tuple] = None ) -> Optional[Any]: """simple docstring""" lowercase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(_UpperCAmelCase ): lowercase__ = target_sizes.numpy() lowercase__ = [] for idx in range(len(_UpperCAmelCase ) ): lowercase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_UpperCAmelCase ) lowercase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_UpperCAmelCase ) else: lowercase__ = logits.argmax(dim=1 ) lowercase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
305
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Optional[Any] = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''trocr''' A__ = ['''past_key_values'''] A__ = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__(self : Tuple , _UpperCAmelCase : Dict=5_0265 , _UpperCAmelCase : int=1024 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[Any]=4096 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : str=512 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : List[Any]=2 , **_UpperCAmelCase : str , ) -> Any: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = activation_function lowercase__ = max_position_embeddings lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = init_std lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = scale_embedding lowercase__ = use_learned_position_embeddings lowercase__ = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
305
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
1
from sklearn.metrics import matthews_corrcoef import datasets A : Dict = '\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n' A : Optional[int] = '\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results[\'matthews_correlation\'], 2))\n -0.25\n' A : str = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict=None ) -> Dict: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(_UpperCAmelCase , _UpperCAmelCase , sample_weight=_UpperCAmelCase ) ), }
305
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Any , ) -> Tuple: """simple docstring""" lowercase__ = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } lowercase__ , lowercase__ = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase__ = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) assert base_extractor.is_extractable(__magic_name__ ) lowercase__ = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(__magic_name__ , __magic_name__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase__ = file_path.read_text(encoding="""utf-8""" ) else: lowercase__ = output_path.read_text(encoding="""utf-8""" ) lowercase__ = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : int , ) -> Dict: """simple docstring""" lowercase__ = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } lowercase__ = input_paths[compression_format] if input_path is None: lowercase__ = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase__ = Extractor.infer_extractor_format(__magic_name__ ) assert extractor_format is not None lowercase__ = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(__magic_name__ , __magic_name__ , __magic_name__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase__ = file_path.read_text(encoding="""utf-8""" ) else: lowercase__ = output_path.read_text(encoding="""utf-8""" ) lowercase__ = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" import tarfile lowercase__ = tmp_path / """data_dot_dot""" directory.mkdir() lowercase__ = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(__magic_name__ , """w""" ) as f: f.add(__magic_name__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" import tarfile lowercase__ = tmp_path / """data_sym_link""" directory.mkdir() lowercase__ = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=__magic_name__ ) with tarfile.TarFile(__magic_name__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : int ) -> List[Any]: """simple docstring""" lowercase__ = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } lowercase__ = insecure_tar_files[insecure_tar_file] lowercase__ = tmp_path / """extracted""" TarExtractor.extract(__magic_name__ , __magic_name__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Any: """simple docstring""" lowercase__ = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 lowercase__ = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(__magic_name__ ) assert zipfile.is_zipfile(str(__magic_name__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__magic_name__ ) # but we're right
305
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
1
from collections.abc import Callable import numpy as np def UpperCamelCase ( __magic_name__ : Callable , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ) -> np.array: """simple docstring""" lowercase__ = int(np.ceil((x_end - xa) / step_size ) ) lowercase__ = np.zeros((n + 1,) ) lowercase__ = ya lowercase__ = xa for k in range(__magic_name__ ): lowercase__ = y[k] + step_size * ode_func(__magic_name__ , y[k] ) lowercase__ = y[k] + ( (step_size / 2) * (ode_func(__magic_name__ , y[k] ) + ode_func(x + step_size , __magic_name__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
305
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset A : List[Any] = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) A : Union[str, Any] = dataset.iloc[:, 1:2].values A : Tuple = dataset.iloc[:, 2].values A , A , A , A : Any = train_test_split(X, y, test_size=0.2, random_state=0) A : int = PolynomialFeatures(degree=4) A : List[Any] = poly_reg.fit_transform(X) A : Optional[int] = LinearRegression() pol_reg.fit(X_poly, y) def UpperCamelCase ( ) -> List[Any]: """simple docstring""" plt.scatter(__magic_name__ , __magic_name__ , color="""red""" ) plt.plot(__magic_name__ , pol_reg.predict(poly_reg.fit_transform(__magic_name__ ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
305
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = ['''image_processor''', '''tokenizer'''] A__ = '''LayoutLMv2ImageProcessor''' A__ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__(self : List[str] , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _UpperCAmelCase , ) lowercase__ = kwargs.pop("""feature_extractor""" ) lowercase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__(self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Optional[int] , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor lowercase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowercase__ = features["""words"""] lowercase__ = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values lowercase__ = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: lowercase__ = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs["""overflow_to_sample_mapping"""] ) lowercase__ = images return encoded_inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f''' {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}''' ) return images_with_overflow def lowerCamelCase__ (self : Tuple , *_UpperCAmelCase : int , **_UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , *_UpperCAmelCase : str , **_UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCamelCase__ (self : Optional[Any] ) -> str: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _UpperCAmelCase , ) return self.image_processor_class @property def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _UpperCAmelCase , ) return self.image_processor
305
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
1
def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] ) -> str: """simple docstring""" lowercase__ = [False] * len(__magic_name__ ) lowercase__ = [] queue.append(__magic_name__ ) lowercase__ = True while queue: lowercase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase__ = True lowercase__ = u return visited[t] def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Dict ) -> str: """simple docstring""" lowercase__ = [-1] * (len(__magic_name__ )) lowercase__ = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = float("""Inf""" ) lowercase__ = sink while s != source: # Find the minimum value in select path lowercase__ = min(__magic_name__ , graph[parent[s]][s] ) lowercase__ = parent[s] max_flow += path_flow lowercase__ = sink while v != source: lowercase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase__ = parent[v] return max_flow A : Optional[Any] = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] A , A : str = 0, 5 print(ford_fulkerson(graph, source, sink))
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = ['''image_processor''', '''tokenizer'''] A__ = '''ViltImageProcessor''' A__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__(self : List[Any] , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : int=None , **_UpperCAmelCase : Tuple ) -> str: """simple docstring""" lowercase__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _UpperCAmelCase , ) lowercase__ = kwargs.pop("""feature_extractor""" ) lowercase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = self.image_processor def __call__(self : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Optional[int] , ) -> BatchEncoding: """simple docstring""" lowercase__ = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel_values + pixel_mask lowercase__ = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) encoding.update(_UpperCAmelCase ) return encoding def lowerCamelCase__ (self : Any , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : int , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ) -> Dict: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase__ (self : int ) -> int: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _UpperCAmelCase , ) return self.image_processor_class @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _UpperCAmelCase , ) return self.image_processor
305
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class A ( TensorFormatter[Mapping, '''torch.Tensor''', Mapping] ): '''simple docstring''' def __init__(self : List[Any] , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Tuple ) -> int: """simple docstring""" super().__init__(features=_UpperCAmelCase ) lowercase__ = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Optional[int] ) -> Tuple: """simple docstring""" import torch if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and column: if all( isinstance(_UpperCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_UpperCAmelCase ) return column def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" import torch if isinstance(_UpperCAmelCase , (str, bytes, type(_UpperCAmelCase )) ): return value elif isinstance(_UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase__ = {} if isinstance(_UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowercase__ = {"""dtype""": torch.intaa} elif isinstance(_UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase__ = {"""dtype""": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_UpperCAmelCase , PIL.Image.Image ): lowercase__ = np.asarray(_UpperCAmelCase ) return torch.tensor(_UpperCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(_UpperCAmelCase , """__array__""" ) and not isinstance(_UpperCAmelCase , torch.Tensor ): lowercase__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(_UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : dict ) -> Union[str, Any]: """simple docstring""" return map_nested(self._recursive_tensorize , _UpperCAmelCase , map_list=_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : pa.Table ) -> Mapping: """simple docstring""" lowercase__ = self.numpy_arrow_extractor().extract_row(_UpperCAmelCase ) lowercase__ = self.python_features_decoder.decode_row(_UpperCAmelCase ) return self.recursive_tensorize(_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : pa.Table ) -> "torch.Tensor": """simple docstring""" lowercase__ = self.numpy_arrow_extractor().extract_column(_UpperCAmelCase ) lowercase__ = self.python_features_decoder.decode_column(_UpperCAmelCase , pa_table.column_names[0] ) lowercase__ = self.recursive_tensorize(_UpperCAmelCase ) lowercase__ = self._consolidate(_UpperCAmelCase ) return column def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : pa.Table ) -> Mapping: """simple docstring""" lowercase__ = self.numpy_arrow_extractor().extract_batch(_UpperCAmelCase ) lowercase__ = self.python_features_decoder.decode_batch(_UpperCAmelCase ) lowercase__ = self.recursive_tensorize(_UpperCAmelCase ) for column_name in batch: lowercase__ = self._consolidate(batch[column_name] ) return batch
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCamelCase ( __magic_name__ : str , __magic_name__ : complex , __magic_name__ : str = "x" , __magic_name__ : float = 10**-10 , __magic_name__ : int = 1 , ) -> complex: """simple docstring""" lowercase__ = symbols(__magic_name__ ) lowercase__ = lambdify(__magic_name__ , __magic_name__ ) lowercase__ = lambdify(__magic_name__ , diff(__magic_name__ , __magic_name__ ) ) lowercase__ = starting_point while True: if diff_function(__magic_name__ ) != 0: lowercase__ = prev_guess - multiplicity * func(__magic_name__ ) / diff_function( __magic_name__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( 'The root of log(y) - 1 = 0 is ', F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
305
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
1
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = TaConfig.from_json_file(__magic_name__ ) print(f'''Building PyTorch model from configuration: {config}''' ) lowercase__ = TaForConditionalGeneration(__magic_name__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
305
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor A : Union[str, Any] = logging.get_logger(__name__) class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : int , *_UpperCAmelCase : Any , **_UpperCAmelCase : Tuple ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
305
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : '''simple docstring''' def __init__(self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Dict=13 , _UpperCAmelCase : Tuple=[30, 30] , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[Any]=5 , _UpperCAmelCase : str=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Tuple=10 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Union[str, Any]=8 , _UpperCAmelCase : List[Any]=10 , ) -> List[str]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = scope lowercase__ = n_targets lowercase__ = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ = num_patches + 1 + self.num_detection_tokens def lowerCamelCase__ (self : int ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ = [] for i in range(self.batch_size ): lowercase__ = {} lowercase__ = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase ) lowercase__ = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase ) labels.append(_UpperCAmelCase ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = YolosModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = YolosForObjectDetection(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(pixel_values=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () A__ = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) A__ = False A__ = False A__ = False A__ = False def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=False ) -> Optional[Any]: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ = [] for i in range(self.model_tester.batch_size ): lowercase__ = {} lowercase__ = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long ) lowercase__ = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float ) labels.append(_UpperCAmelCase ) lowercase__ = labels return inputs_dict def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = YolosModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : List[Any] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCamelCase__ (self : str ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True # in YOLOS, the seq_len is different lowercase__ = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ = True lowercase__ = False lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ = len(_UpperCAmelCase ) # Check attention is always last and order is fine lowercase__ = True lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ): lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # YOLOS has a different seq_length lowercase__ = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = YolosModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> Any: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : str ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(_UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(inputs.pixel_values ) # verify outputs lowercase__ = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=_UpperCAmelCase , ) lowercase__ = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) # verify postprocessing lowercase__ = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(_UpperCAmelCase ) lowercase__ = [75, 75, 17, 63, 17] lowercase__ = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(_UpperCAmelCase ) self.assertEqual(len(results["""scores"""] ) , 5 ) self.assertTrue(torch.allclose(results["""scores"""] , _UpperCAmelCase , atol=1E-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() , _UpperCAmelCase ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , _UpperCAmelCase ) )
305
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = checkpoints.load_tax_checkpoint(__magic_name__ ) lowercase__ = flatten_dict(__magic_name__ ) return flax_params def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = {} lowercase__ = { """token_embedder""": """embeddings""", """encoder_norm""": """layernorm""", """kernel""": """weight""", """.out""": """.output""", """scale""": """weight""", """embedders_0.pos_embedding""": """row_embedder.weight""", """embedders_1.pos_embedding""": """column_embedder.weight""", } lowercase__ = { """query""": """attention.query""", """key""": """attention.key""", """value""": """attention.value""", """output.dense""": """output""", """encoder_decoder_attention.o""": """encoder_decoder_attention.attention.o""", """pre_self_attention_layer_norm""": """self_attention.layer_norm""", """pre_cross_attention_layer_norm""": """encoder_decoder_attention.layer_norm""", """mlp.""": """mlp.DenseReluDense.""", """pre_mlp_layer_norm""": """mlp.layer_norm""", """self_attention.o""": """self_attention.attention.o""", """decoder.embeddings.embedding""": """decoder.embed_tokens.weight""", """decoder.relpos_bias.rel_embedding""": """decoder.layer.0.self_attention.attention.relative_attention_bias.weight""", """decoder.decoder_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.logits_dense.weight""": """decoder.lm_head.weight""", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowercase__ = """.""".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowercase__ = new_key.replace(__magic_name__ , __magic_name__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowercase__ = new_key.replace(__magic_name__ , __magic_name__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowercase__ = re.sub(R"""layers_(\d+)""" , R"""layer.\1""" , __magic_name__ ) lowercase__ = new_key.replace("""encoder""" , """encoder.encoder""" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowercase__ = re.sub(R"""layers_(\d+)""" , R"""layer.\1""" , __magic_name__ ) lowercase__ = flax_dict[key] lowercase__ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowercase__ = torch.from_numpy(converted_dict[key].T ) else: lowercase__ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any]=False , __magic_name__ : List[Any]=False ) -> int: """simple docstring""" lowercase__ = get_flax_param(__magic_name__ ) if not use_large: lowercase__ = PixaStructVisionConfig() lowercase__ = PixaStructTextConfig() else: lowercase__ = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowercase__ = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowercase__ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__magic_name__ ) lowercase__ = PixaStructForConditionalGeneration(__magic_name__ ) lowercase__ = rename_and_convert_flax_params(__magic_name__ ) model.load_state_dict(__magic_name__ ) lowercase__ = AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" ) lowercase__ = PixaStructImageProcessor() lowercase__ = PixaStructProcessor(image_processor=__magic_name__ , tokenizer=__magic_name__ ) if use_large: lowercase__ = 4096 lowercase__ = True # mkdir if needed os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) print("""Model saved in {}""".format(__magic_name__ ) ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') A : Union[str, Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
305
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
1
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def UpperCamelCase ( __magic_name__ : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: """simple docstring""" lowercase__ = [] if isinstance(__magic_name__ , __magic_name__ ): for v in tree.values(): shapes.extend(_fetch_dims(__magic_name__ ) ) elif isinstance(__magic_name__ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__magic_name__ ) ) elif isinstance(__magic_name__ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def UpperCamelCase ( __magic_name__ : int , __magic_name__ : Tuple[int, ...] ) -> Tuple[int, ...]: """simple docstring""" lowercase__ = [] for d in reversed(__magic_name__ ): idx.append(flat_idx % d ) lowercase__ = flat_idx // d return tuple(reversed(__magic_name__ ) ) @torch.jit.ignore def UpperCamelCase ( __magic_name__ : Sequence[int] , __magic_name__ : Sequence[int] , __magic_name__ : Sequence[int] , __magic_name__ : Optional[Sequence[bool]] = None , __magic_name__ : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: """simple docstring""" def reduce_edge_list(__magic_name__ : List[bool] ) -> None: lowercase__ = True for i in range(len(__magic_name__ ) ): lowercase__ = -1 * (i + 1) l[reversed_idx] &= tally lowercase__ = l[reversed_idx] if start_edges is None: lowercase__ = [s == 0 for s in start] reduce_edge_list(__magic_name__ ) if end_edges is None: lowercase__ = [e == (d - 1) for e, d in zip(__magic_name__ , __magic_name__ )] reduce_edge_list(__magic_name__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__magic_name__ ) == 0: return [()] elif len(__magic_name__ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] lowercase__ = [] lowercase__ = [] # Dimensions common to start and end can be selected directly for s, e in zip(__magic_name__ , __magic_name__ ): if s == e: path_list.append(slice(__magic_name__ , s + 1 ) ) else: break lowercase__ = tuple(__magic_name__ ) lowercase__ = len(__magic_name__ ) # start == end, and we're done if divergence_idx == len(__magic_name__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ = start[divergence_idx] return tuple( path + (slice(__magic_name__ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ = end[divergence_idx] return tuple( path + (slice(__magic_name__ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) lowercase__ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def UpperCamelCase ( __magic_name__ : torch.Tensor , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> torch.Tensor: """simple docstring""" lowercase__ = t.shape[:no_batch_dims] lowercase__ = list(_flat_idx_to_idx(__magic_name__ , __magic_name__ ) ) # _get_minimal_slice_set is inclusive lowercase__ = list(_flat_idx_to_idx(flat_end - 1 , __magic_name__ ) ) # Get an ordered list of slices to perform lowercase__ = _get_minimal_slice_set( __magic_name__ , __magic_name__ , __magic_name__ , ) lowercase__ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def UpperCamelCase ( __magic_name__ : Callable , __magic_name__ : Dict[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : bool = False , __magic_name__ : Any = None , __magic_name__ : bool = False , ) -> Any: """simple docstring""" if not (len(__magic_name__ ) > 0): raise ValueError("""Must provide at least one input""" ) lowercase__ = [shape[:no_batch_dims] for shape in _fetch_dims(__magic_name__ )] lowercase__ = tuple([max(__magic_name__ ) for s in zip(*__magic_name__ )] ) def _prep_inputs(__magic_name__ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: lowercase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) lowercase__ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: lowercase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t lowercase__ = tensor_tree_map(_prep_inputs , __magic_name__ ) lowercase__ = None if _out is not None: lowercase__ = tensor_tree_map(lambda __magic_name__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) lowercase__ = 1 for d in orig_batch_dims: flat_batch_dim *= d lowercase__ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__magic_name__ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t lowercase__ = 0 lowercase__ = prepped_outputs for _ in range(__magic_name__ ): # Chunk the input if not low_mem: lowercase__ = _select_chunk else: lowercase__ = partial( _chunk_slice , flat_start=__magic_name__ , flat_end=min(__magic_name__ , i + chunk_size ) , no_batch_dims=len(__magic_name__ ) , ) lowercase__ = tensor_tree_map(__magic_name__ , __magic_name__ ) # Run the layer on the chunk lowercase__ = layer(**__magic_name__ ) # Allocate space for the output if out is None: lowercase__ = tensor_tree_map(lambda __magic_name__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __magic_name__ ) # Put the chunk in its pre-allocated space if isinstance(__magic_name__ , __magic_name__ ): def assign(__magic_name__ : dict , __magic_name__ : dict ) -> None: for k, v in da.items(): if isinstance(__magic_name__ , __magic_name__ ): assign(__magic_name__ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: lowercase__ = da[k] assign(__magic_name__ , __magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): for xa, xa in zip(__magic_name__ , __magic_name__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: lowercase__ = xa elif isinstance(__magic_name__ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: lowercase__ = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size lowercase__ = tensor_tree_map(lambda __magic_name__ : t.view(orig_batch_dims + t.shape[1:] ) , __magic_name__ ) return out class A : '''simple docstring''' def __init__(self : Tuple , _UpperCAmelCase : int = 512 , ) -> Any: """simple docstring""" lowercase__ = max_chunk_size lowercase__ = None lowercase__ = None def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Callable , _UpperCAmelCase : tuple , _UpperCAmelCase : int ) -> int: """simple docstring""" logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size lowercase__ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] lowercase__ = [c for c in candidates if c > min_chunk_size] lowercase__ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_UpperCAmelCase : int ) -> bool: try: with torch.no_grad(): fn(*_UpperCAmelCase , chunk_size=_UpperCAmelCase ) return True except RuntimeError: return False lowercase__ = 0 lowercase__ = len(_UpperCAmelCase ) - 1 while i > min_viable_chunk_size_index: lowercase__ = test_chunk_size(candidates[i] ) if not viable: lowercase__ = (min_viable_chunk_size_index + i) // 2 else: lowercase__ = i lowercase__ = (i + len(_UpperCAmelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Iterable , _UpperCAmelCase : Iterable ) -> bool: """simple docstring""" lowercase__ = True for aa, aa in zip(_UpperCAmelCase , _UpperCAmelCase ): assert type(_UpperCAmelCase ) == type(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , (list, tuple) ): consistent &= self._compare_arg_caches(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [v for _, v in sorted(aa.items() , key=lambda _UpperCAmelCase : x[0] )] lowercase__ = [v for _, v in sorted(aa.items() , key=lambda _UpperCAmelCase : x[0] )] consistent &= self._compare_arg_caches(_UpperCAmelCase , _UpperCAmelCase ) else: consistent &= aa == aa return consistent def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Callable , _UpperCAmelCase : tuple , _UpperCAmelCase : int , ) -> int: """simple docstring""" lowercase__ = True lowercase__ = tree_map(lambda _UpperCAmelCase : a.shape if isinstance(_UpperCAmelCase , torch.Tensor ) else a , _UpperCAmelCase , _UpperCAmelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_UpperCAmelCase ) lowercase__ = self._compare_arg_caches(self.cached_arg_data , _UpperCAmelCase ) else: # Otherwise, we can reuse the precomputed value lowercase__ = False if not consistent: lowercase__ = self._determine_favorable_chunk_size( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) lowercase__ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
305
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
1
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A : str = datasets.utils.logging.get_logger(__name__) @dataclass class A ( datasets.BuilderConfig ): '''simple docstring''' A__ = None A__ = "utf-8" A__ = None A__ = None A__ = True # deprecated A__ = None # deprecated A__ = 10 << 20 # 10MB A__ = None class A ( datasets.ArrowBasedBuilder ): '''simple docstring''' A__ = JsonConfig def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) lowercase__ = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowercase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): lowercase__ = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [files] lowercase__ = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowercase__ = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [files] lowercase__ = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={"""files""": files} ) ) return splits def lowerCamelCase__ (self : str , _UpperCAmelCase : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): lowercase__ = self.config.features.arrow_schema.field(_UpperCAmelCase ).type lowercase__ = pa_table.append_column(_UpperCAmelCase , pa.array([None] * len(_UpperCAmelCase ) , type=_UpperCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowercase__ = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_UpperCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase__ = json.load(_UpperCAmelCase ) # We keep only the field we are interested in lowercase__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_UpperCAmelCase , (list, tuple) ): lowercase__ = set().union(*[row.keys() for row in dataset] ) lowercase__ = {col: [row.get(_UpperCAmelCase ) for row in dataset] for col in keys} else: lowercase__ = dataset lowercase__ = pa.Table.from_pydict(_UpperCAmelCase ) yield file_idx, self._cast_table(_UpperCAmelCase ) # If the file has one json object per line else: with open(_UpperCAmelCase , """rb""" ) as f: lowercase__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowercase__ = max(self.config.chunksize // 32 , 16 << 10 ) lowercase__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: lowercase__ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_UpperCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowercase__ = batch.decode(self.config.encoding , errors=_UpperCAmelCase ).encode("""utf-8""" ) try: while True: try: lowercase__ = paj.read_json( io.BytesIO(_UpperCAmelCase ) , read_options=paj.ReadOptions(block_size=_UpperCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_UpperCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(_UpperCAmelCase ) or block_size > len(_UpperCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(_UpperCAmelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _UpperCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase__ = json.load(_UpperCAmelCase ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(_UpperCAmelCase )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_UpperCAmelCase , _UpperCAmelCase ): # list is the only sequence type supported in JSON try: lowercase__ = set().union(*[row.keys() for row in dataset] ) lowercase__ = {col: [row.get(_UpperCAmelCase ) for row in dataset] for col in keys} lowercase__ = pa.Table.from_pydict(_UpperCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_UpperCAmelCase )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(_UpperCAmelCase ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(_UpperCAmelCase )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_UpperCAmelCase ) batch_idx += 1
305
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
1
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed A : Tuple = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCamelCase ( __magic_name__ : Tuple ) -> int: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" if args.student_type == "roberta": lowercase__ = False elif args.student_type == "gpt2": lowercase__ = False def UpperCamelCase ( __magic_name__ : int , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" if args.student_type == "roberta": lowercase__ = False def UpperCamelCase ( ) -> str: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=__magic_name__ , required=__magic_name__ , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=__magic_name__ , required=__magic_name__ , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=__magic_name__ , choices=["""distilbert""", """roberta""", """gpt2"""] , required=__magic_name__ , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=__magic_name__ , required=__magic_name__ , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=__magic_name__ , type=__magic_name__ , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=__magic_name__ , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=__magic_name__ , required=__magic_name__ , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=__magic_name__ , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=__magic_name__ , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=__magic_name__ , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=__magic_name__ , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=__magic_name__ , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=__magic_name__ , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.1_5 , type=__magic_name__ , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=__magic_name__ , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=__magic_name__ , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=__magic_name__ , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=__magic_name__ , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=__magic_name__ , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=__magic_name__ , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=__magic_name__ , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.0_5 , type=__magic_name__ , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__magic_name__ , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=__magic_name__ , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=__magic_name__ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=__magic_name__ , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.0_2 , type=__magic_name__ , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=__magic_name__ , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=__magic_name__ , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=__magic_name__ , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=__magic_name__ , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=__magic_name__ , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=__magic_name__ , default=4000 , help="""Checkpoint interval.""" ) lowercase__ = parser.parse_args() sanity_checks(__magic_name__ ) # ARGS # init_gpu_params(__magic_name__ ) set_seed(__magic_name__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(__magic_name__ ) , __magic_name__ , indent=4 ) git_log(args.dump_path ) lowercase__ , lowercase__ , lowercase__ = MODEL_CLASSES[args.student_type] lowercase__ , lowercase__ , lowercase__ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowercase__ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowercase__ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowercase__ = tokenizer.all_special_tokens.index(__magic_name__ ) lowercase__ = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) lowercase__ = special_tok_ids lowercase__ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file , """rb""" ) as fp: lowercase__ = pickle.load(__magic_name__ ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , """rb""" ) as fp: lowercase__ = pickle.load(__magic_name__ ) lowercase__ = np.maximum(__magic_name__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowercase__ = 0.0 # do not predict special tokens lowercase__ = torch.from_numpy(__magic_name__ ) else: lowercase__ = None lowercase__ = LmSeqsDataset(params=__magic_name__ , data=__magic_name__ ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) lowercase__ = student_config_class.from_pretrained(args.student_config ) lowercase__ = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) lowercase__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__magic_name__ ) else: lowercase__ = student_model_class(__magic_name__ ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info("""Student loaded.""" ) # TEACHER # lowercase__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__magic_name__ ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__magic_name__ , __magic_name__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__magic_name__ , __magic_name__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowercase__ = Distiller( params=__magic_name__ , dataset=__magic_name__ , token_probs=__magic_name__ , student=__magic_name__ , teacher=__magic_name__ ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
305
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
1
from __future__ import annotations import numpy as np def UpperCamelCase ( __magic_name__ : np.ndarray ) -> tuple[np.ndarray, np.ndarray]: """simple docstring""" lowercase__ , lowercase__ = np.shape(__magic_name__ ) if rows != columns: lowercase__ = ( """'table' has to be of square shaped array but got a """ f'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__magic_name__ ) lowercase__ = np.zeros((rows, columns) ) lowercase__ = np.zeros((rows, columns) ) for i in range(__magic_name__ ): for j in range(__magic_name__ ): lowercase__ = sum(lower[i][k] * upper[k][j] for k in range(__magic_name__ ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) lowercase__ = (table[i][j] - total) / upper[j][j] lowercase__ = 1 for j in range(__magic_name__ , __magic_name__ ): lowercase__ = sum(lower[i][k] * upper[k][j] for k in range(__magic_name__ ) ) lowercase__ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
1
from collections.abc import Generator from math import sin def UpperCamelCase ( __magic_name__ : bytes ) -> bytes: """simple docstring""" if len(__magic_name__ ) != 32: raise ValueError("""Input must be of length 32""" ) lowercase__ = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCamelCase ( __magic_name__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) lowercase__ = format(__magic_name__ , """08x""" )[-8:] lowercase__ = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def UpperCamelCase ( __magic_name__ : bytes ) -> bytes: """simple docstring""" lowercase__ = B"""""" for char in message: bit_string += format(__magic_name__ , """08b""" ).encode("""utf-8""" ) lowercase__ = format(len(__magic_name__ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__magic_name__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCamelCase ( __magic_name__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(__magic_name__ ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(__magic_name__ ) , 512 ): lowercase__ = bit_string[pos : pos + 512] lowercase__ = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) lowercase__ = format(__magic_name__ , """032b""" ) lowercase__ = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(__magic_name__ , 2 ) def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return (a + b) % 2**32 def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCamelCase ( __magic_name__ : bytes ) -> bytes: """simple docstring""" lowercase__ = preprocess(__magic_name__ ) lowercase__ = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowercase__ = 0x6745_2301 lowercase__ = 0xEFCD_AB89 lowercase__ = 0x98BA_DCFE lowercase__ = 0x1032_5476 lowercase__ = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__magic_name__ ): lowercase__ = aa lowercase__ = ba lowercase__ = ca lowercase__ = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowercase__ = d ^ (b & (c ^ d)) lowercase__ = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowercase__ = c ^ (d & (b ^ c)) lowercase__ = (5 * i + 1) % 16 elif i <= 47: lowercase__ = b ^ c ^ d lowercase__ = (3 * i + 5) % 16 else: lowercase__ = c ^ (b | not_aa(__magic_name__ )) lowercase__ = (7 * i) % 16 lowercase__ = (f + a + added_consts[i] + block_words[g]) % 2**32 lowercase__ = d lowercase__ = c lowercase__ = b lowercase__ = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) ) # Add hashed chunk to running total lowercase__ = sum_aa(__magic_name__ , __magic_name__ ) lowercase__ = sum_aa(__magic_name__ , __magic_name__ ) lowercase__ = sum_aa(__magic_name__ , __magic_name__ ) lowercase__ = sum_aa(__magic_name__ , __magic_name__ ) lowercase__ = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
305
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : int = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''mobilenet_v1''' def __init__(self : List[str] , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : List[Any]=1.0 , _UpperCAmelCase : int=8 , _UpperCAmelCase : int="relu6" , _UpperCAmelCase : Any=True , _UpperCAmelCase : Union[str, Any]=0.999 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Optional[Any]=0.001 , **_UpperCAmelCase : Optional[Any] , ) -> Dict: """simple docstring""" super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) lowercase__ = num_channels lowercase__ = image_size lowercase__ = depth_multiplier lowercase__ = min_depth lowercase__ = hidden_act lowercase__ = tf_padding lowercase__ = classifier_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def lowerCamelCase__ (self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def lowerCamelCase__ (self : Dict ) -> float: """simple docstring""" return 1E-4
305
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
1
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) A : Optional[Any] = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = ['BeitFeatureExtractor'] A : Dict = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : List[Any] = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''data2vec-audio''' def __init__(self : Dict , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : str=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Any=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase : List[str]=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase : Tuple=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=16 , _UpperCAmelCase : Tuple=19 , _UpperCAmelCase : str=5 , _UpperCAmelCase : Union[str, Any]=0.05 , _UpperCAmelCase : Union[str, Any]=10 , _UpperCAmelCase : int=2 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Any=10 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Any="sum" , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : List[str]=256 , _UpperCAmelCase : Tuple=(512, 512, 512, 512, 1500) , _UpperCAmelCase : Optional[int]=(5, 3, 3, 1, 1) , _UpperCAmelCase : List[Any]=(1, 2, 3, 1, 1) , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=False , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : str , ) -> Optional[Any]: """simple docstring""" super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = feat_extract_activation lowercase__ = list(_UpperCAmelCase ) lowercase__ = list(_UpperCAmelCase ) lowercase__ = list(_UpperCAmelCase ) lowercase__ = conv_bias lowercase__ = num_conv_pos_embeddings lowercase__ = num_conv_pos_embedding_groups lowercase__ = conv_pos_kernel_size lowercase__ = len(self.conv_dim ) lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_attention_heads lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = feat_proj_dropout lowercase__ = final_dropout lowercase__ = layerdrop lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = vocab_size lowercase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks # ctc loss lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # adapter lowercase__ = add_adapter lowercase__ = adapter_kernel_size lowercase__ = adapter_stride lowercase__ = num_adapter_layers lowercase__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__ = list(_UpperCAmelCase ) lowercase__ = list(_UpperCAmelCase ) lowercase__ = list(_UpperCAmelCase ) lowercase__ = xvector_output_dim @property def lowerCamelCase__ (self : Optional[Any] ) -> Dict: """simple docstring""" return math.prod(self.conv_stride )
305
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
305
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
1
from math import factorial A : dict[str, int] = {str(digit): factorial(digit) for digit in range(1_0)} def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__magic_name__ ) ) def UpperCamelCase ( __magic_name__ : int = 60 , __magic_name__ : int = 100_0000 ) -> int: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ) or not isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length lowercase__ = 0 # the cached sizes of the previous chains lowercase__ = {} for start_chain_element in range(1 , __magic_name__ ): # The temporary set will contain the elements of the chain lowercase__ = set() lowercase__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowercase__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__magic_name__ ) chain_set_length += 1 lowercase__ = digit_factorial_sum(__magic_name__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowercase__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
1
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter A : Union[str, Any] = logging.get_logger(__name__) A : Dict[Optional[str], Type[Formatter]] = {} A : Dict[Optional[str], str] = {} A : Dict[Optional[str], Exception] = {} def UpperCamelCase ( __magic_name__ : type , __magic_name__ : Optional[str] , __magic_name__ : Optional[List[str]] = None , ) -> List[str]: """simple docstring""" lowercase__ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) lowercase__ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) lowercase__ = format_type def UpperCamelCase ( __magic_name__ : Exception , __magic_name__ : Optional[str] , __magic_name__ : Optional[List[str]] = None ) -> int: """simple docstring""" lowercase__ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowercase__ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: A : List[str] = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: A : Union[str, Any] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: A : Optional[int] = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def UpperCamelCase ( __magic_name__ : Optional[str] ) -> Optional[str]: """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCamelCase ( __magic_name__ : Optional[str] , **__magic_name__ : List[Any] ) -> Formatter: """simple docstring""" lowercase__ = get_format_type_from_alias(__magic_name__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__magic_name__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
305
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
1
def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = [] lowercase__ = set({"""(""", """[""", """{"""} ) lowercase__ = set({""")""", """]""", """}"""} ) lowercase__ = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(__magic_name__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__magic_name__ ) == 0 or (len(__magic_name__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__magic_name__ ) == 0 def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = input("""Enter sequence of brackets: """ ) if is_balanced(__magic_name__ ): print(__magic_name__ , """is balanced""" ) else: print(__magic_name__ , """is not balanced""" ) if __name__ == "__main__": main()
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
1
from typing import Dict, Optional import numpy as np import datasets A : Optional[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' A : int = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' A : int = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : bool , __magic_name__ : Optional[Dict[int, int]] = None , __magic_name__ : bool = False , ) -> Dict: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase__ = new_id # turn into Numpy arrays lowercase__ = np.array(__magic_name__ ) lowercase__ = np.array(__magic_name__ ) if reduce_labels: lowercase__ = 255 lowercase__ = label - 1 lowercase__ = 255 lowercase__ = label != ignore_index lowercase__ = np.not_equal(__magic_name__ , __magic_name__ ) lowercase__ = pred_label[mask] lowercase__ = np.array(__magic_name__ )[mask] lowercase__ = pred_label[pred_label == label] lowercase__ = np.histogram(__magic_name__ , bins=__magic_name__ , range=(0, num_labels - 1) )[0] lowercase__ = np.histogram(__magic_name__ , bins=__magic_name__ , range=(0, num_labels - 1) )[0] lowercase__ = np.histogram(__magic_name__ , bins=__magic_name__ , range=(0, num_labels - 1) )[0] lowercase__ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : bool , __magic_name__ : Optional[Dict[int, int]] = None , __magic_name__ : bool = False , ) -> int: """simple docstring""" lowercase__ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase__ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase__ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase__ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(__magic_name__ , __magic_name__ ): lowercase__ , lowercase__ , lowercase__ , lowercase__ = intersect_and_union( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : bool , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[Dict[int, int]] = None , __magic_name__ : bool = False , ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ , lowercase__ , lowercase__ = total_intersect_and_union( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # compute metrics lowercase__ = {} lowercase__ = total_area_intersect.sum() / total_area_label.sum() lowercase__ = total_area_intersect / total_area_union lowercase__ = total_area_intersect / total_area_label lowercase__ = np.nanmean(__magic_name__ ) lowercase__ = np.nanmean(__magic_name__ ) lowercase__ = all_acc lowercase__ = iou lowercase__ = acc if nan_to_num is not None: lowercase__ = {metric: np.nan_to_num(__magic_name__ , nan=__magic_name__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), } ) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : bool , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Dict[int, int]] = None , _UpperCAmelCase : bool = False , ) -> Optional[int]: """simple docstring""" lowercase__ = mean_iou( results=_UpperCAmelCase , gt_seg_maps=_UpperCAmelCase , num_labels=_UpperCAmelCase , ignore_index=_UpperCAmelCase , nan_to_num=_UpperCAmelCase , label_map=_UpperCAmelCase , reduce_labels=_UpperCAmelCase , ) return iou_result
305
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer A : Any = logging.get_logger(__name__) A : Any = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} A : Union[str, Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } A : List[Any] = {'allegro/herbert-base-cased': 5_1_4} A : Optional[Any] = {} class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_INIT_CONFIGURATION A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = HerbertTokenizer def __init__(self : Tuple , _UpperCAmelCase : str=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Any="<pad>" , _UpperCAmelCase : int="<mask>" , _UpperCAmelCase : Optional[Any]="</s>" , **_UpperCAmelCase : str , ) -> Any: """simple docstring""" super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
305
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType A : Optional[List[str]] = None A : Optional[Any] = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image A : Optional[int] = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class A : '''simple docstring''' A__ = True A__ = None # Automatically constructed A__ = "PIL.Image.Image" A__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) A__ = field(default='''Image''' , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__(self : Union[str, Any] ) -> int: """simple docstring""" return self.pa_type def lowerCamelCase__ (self : Any , _UpperCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = np.array(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return {"path": value, "bytes": None} elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return {"path": None, "bytes": value} elif isinstance(_UpperCAmelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_UpperCAmelCase ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def lowerCamelCase__ (self : str , _UpperCAmelCase : dict , _UpperCAmelCase : Tuple=None ) -> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase__ = {} lowercase__ , lowercase__ = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_UpperCAmelCase ): lowercase__ = PIL.Image.open(_UpperCAmelCase ) else: lowercase__ = path.split("""::""" )[-1] try: lowercase__ = string_to_dict(_UpperCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""] lowercase__ = token_per_repo_id.get(_UpperCAmelCase ) except ValueError: lowercase__ = None with xopen(_UpperCAmelCase , """rb""" , use_auth_token=_UpperCAmelCase ) as f: lowercase__ = BytesIO(f.read() ) lowercase__ = PIL.Image.open(bytes_ ) else: lowercase__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowerCamelCase__ (self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): lowercase__ = pa.array([None] * len(_UpperCAmelCase ) , type=pa.binary() ) lowercase__ = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase__ = pa.array([None] * len(_UpperCAmelCase ) , type=pa.string() ) lowercase__ = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase__ = storage.field("""bytes""" ) else: lowercase__ = pa.array([None] * len(_UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase__ = storage.field("""path""" ) else: lowercase__ = pa.array([None] * len(_UpperCAmelCase ) , type=pa.string() ) lowercase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase__ = pa.array( [encode_np_array(np.array(_UpperCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase__ = pa.array([None] * len(_UpperCAmelCase ) , type=pa.string() ) lowercase__ = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_UpperCAmelCase , self.pa_type ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_UpperCAmelCase : Any ): with xopen(_UpperCAmelCase , """rb""" ) as f: lowercase__ = f.read() return bytes_ lowercase__ = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase__ = pa.array( [os.path.basename(_UpperCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_UpperCAmelCase , self.pa_type ) def UpperCamelCase ( ) -> List[str]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCamelCase ( __magic_name__ : "PIL.Image.Image" ) -> bytes: """simple docstring""" lowercase__ = BytesIO() if image.format in list_image_compression_formats(): lowercase__ = image.format else: lowercase__ = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(__magic_name__ , format=__magic_name__ ) return buffer.getvalue() def UpperCamelCase ( __magic_name__ : "PIL.Image.Image" ) -> dict: """simple docstring""" if hasattr(__magic_name__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__magic_name__ )} def UpperCamelCase ( __magic_name__ : np.ndarray ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase__ = array.dtype lowercase__ = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase__ = dtype.kind lowercase__ = dtype.itemsize lowercase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase__ = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase__ = dtype_byteorder + dtype_kind + str(__magic_name__ ) lowercase__ = np.dtype(__magic_name__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase__ = PIL.Image.fromarray(array.astype(__magic_name__ ) ) return {"path": None, "bytes": image_to_bytes(__magic_name__ )} def UpperCamelCase ( __magic_name__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase__ , lowercase__ = first_non_null_value(__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__magic_name__ , np.ndarray ): lowercase__ = no_op_if_value_is_null(__magic_name__ ) return [obj_to_image_dict_func(__magic_name__ ) for obj in objs] elif isinstance(__magic_name__ , PIL.Image.Image ): lowercase__ = no_op_if_value_is_null(__magic_name__ ) return [obj_to_image_dict_func(__magic_name__ ) for obj in objs] else: return objs else: return objs
305
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A : str = logging.get_logger(__name__) A : Union[str, Any] = '▁' A : Optional[int] = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } A : str = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } A : Any = { 'facebook/s2t-small-librispeech-asr': 1_0_2_4, } A : Dict = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] A : Union[str, Any] = {'mustc': MUSTC_LANGS} class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = MAX_MODEL_INPUT_SIZES A__ = ['''input_ids''', '''attention_mask'''] A__ = [] def __init__(self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]="<s>" , _UpperCAmelCase : Optional[int]="</s>" , _UpperCAmelCase : Optional[Any]="<pad>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Any=False , _UpperCAmelCase : Dict=False , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : List[Any] , ) -> None: """simple docstring""" lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) lowercase__ = do_upper_case lowercase__ = do_lower_case lowercase__ = load_json(_UpperCAmelCase ) lowercase__ = {v: k for k, v in self.encoder.items()} lowercase__ = spm_file lowercase__ = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: lowercase__ = lang_codes lowercase__ = LANGUAGES[lang_codes] lowercase__ = [f'''<lang:{lang}>''' for lang in self.langs] lowercase__ = {lang: self.sp_model.PieceToId(f'''<lang:{lang}>''' ) for lang in self.langs} lowercase__ = self.lang_tokens lowercase__ = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowercase__ = {} @property def lowerCamelCase__ (self : str ) -> int: """simple docstring""" return len(self.encoder ) @property def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" return self._tgt_lang @tgt_lang.setter def lowerCamelCase__ (self : Any , _UpperCAmelCase : int ) -> None: """simple docstring""" lowercase__ = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowerCamelCase__ (self : str , _UpperCAmelCase : str ) -> None: """simple docstring""" lowercase__ = self.lang_code_to_id[tgt_lang] lowercase__ = [lang_code_id] def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : int ) -> Dict: """simple docstring""" return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : int ) -> str: """simple docstring""" return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowercase__ = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowercase__ = [] else: current_sub_tokens.append(_UpperCAmelCase ) lowercase__ = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) lowercase__ = [1] * len(self.prefix_tokens ) lowercase__ = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__(self : Optional[Any] , _UpperCAmelCase : Dict ) -> None: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase__ = {} lowercase__ = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase__ = Path(_UpperCAmelCase ) assert save_dir.is_dir(), f'''{save_directory} should be a directory''' lowercase__ = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) lowercase__ = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , """wb""" ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" lowercase__ = sentencepiece.SentencePieceProcessor(**__magic_name__ ) spm.Load(str(__magic_name__ ) ) return spm def UpperCamelCase ( __magic_name__ : str ) -> Union[Dict, List]: """simple docstring""" with open(__magic_name__ , """r""" ) as f: return json.load(__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str ) -> None: """simple docstring""" with open(__magic_name__ , """w""" ) as f: json.dump(__magic_name__ , __magic_name__ , indent=2 )
305
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
1
def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : Dict ) -> Any: """simple docstring""" lowercase__ = [0 for i in range(r + 1 )] # nc0 = 1 lowercase__ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowercase__ = min(__magic_name__ , __magic_name__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
305
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
1
def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""Input value must be an 'int' type""" ) lowercase__ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
305
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : str = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''roc_bert''' def __init__(self : int , _UpperCAmelCase : List[str]=3_0522 , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Union[str, Any]=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Optional[Any]=512 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[int]="absolute" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : str=768 , _UpperCAmelCase : Dict=910 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : Optional[int]=2_4858 , _UpperCAmelCase : List[Any]=True , **_UpperCAmelCase : List[str] , ) -> str: """simple docstring""" lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps lowercase__ = use_cache lowercase__ = enable_pronunciation lowercase__ = enable_shape lowercase__ = pronunciation_embed_dim lowercase__ = pronunciation_vocab_size lowercase__ = shape_embed_dim lowercase__ = shape_vocab_size lowercase__ = concat_input lowercase__ = position_embedding_type lowercase__ = classifier_dropout super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
305
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
1
from math import pi, sqrt, tan def UpperCamelCase ( __magic_name__ : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError("""surface_area_cube() only accepts non-negative values""" ) return 6 * side_length**2 def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError("""surface_area_cuboid() only accepts non-negative values""" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCamelCase ( __magic_name__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError("""surface_area_sphere() only accepts non-negative values""" ) return 4 * pi * radius**2 def UpperCamelCase ( __magic_name__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" ) return 3 * pi * radius**2 def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError("""surface_area_cone() only accepts non-negative values""" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( """surface_area_conical_frustum() only accepts non-negative values""" ) lowercase__ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError("""surface_area_cylinder() only accepts non-negative values""" ) return 2 * pi * radius * (height + radius) def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError("""surface_area_torus() only accepts non-negative values""" ) if torus_radius < tube_radius: raise ValueError( """surface_area_torus() does not support spindle or self intersecting tori""" ) return 4 * pow(__magic_name__ , 2 ) * torus_radius * tube_radius def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError("""area_rectangle() only accepts non-negative values""" ) return length * width def UpperCamelCase ( __magic_name__ : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError("""area_square() only accepts non-negative values""" ) return side_length**2 def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError("""area_triangle() only accepts non-negative values""" ) return (base * height) / 2 def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("""Given three sides do not form a triangle""" ) lowercase__ = (sidea + sidea + sidea) / 2 lowercase__ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError("""area_parallelogram() only accepts non-negative values""" ) return base * height def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError("""area_trapezium() only accepts non-negative values""" ) return 1 / 2 * (basea + basea) * height def UpperCamelCase ( __magic_name__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError("""area_circle() only accepts non-negative values""" ) return pi * radius**2 def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError("""area_ellipse() only accepts non-negative values""" ) return pi * radius_x * radius_y def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError("""area_rhombus() only accepts non-negative values""" ) return 1 / 2 * diagonal_a * diagonal_a def UpperCamelCase ( __magic_name__ : int , __magic_name__ : float ) -> float: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ) or sides < 3: raise ValueError( """area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides""" ) elif length < 0: raise ValueError( """area_reg_polygon() only accepts non-negative values as \ length of a side""" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'Rectangle: {area_rectangle(1_0, 2_0) = }') print(F'Square: {area_square(1_0) = }') print(F'Triangle: {area_triangle(1_0, 1_0) = }') print(F'Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }') print(F'Parallelogram: {area_parallelogram(1_0, 2_0) = }') print(F'Rhombus: {area_rhombus(1_0, 2_0) = }') print(F'Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }') print(F'Circle: {area_circle(2_0) = }') print(F'Ellipse: {area_ellipse(1_0, 2_0) = }') print('\nSurface Areas of various geometric shapes: \n') print(F'Cube: {surface_area_cube(2_0) = }') print(F'Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }') print(F'Sphere: {surface_area_sphere(2_0) = }') print(F'Hemisphere: {surface_area_hemisphere(2_0) = }') print(F'Cone: {surface_area_cone(1_0, 2_0) = }') print(F'Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }') print(F'Cylinder: {surface_area_cylinder(1_0, 2_0) = }') print(F'Torus: {surface_area_torus(2_0, 1_0) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 1_0) = }') print(F'Square: {area_reg_polygon(4, 1_0) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 1_0) = }')
305
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() A : List[str] = logging.get_logger(__name__) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = UniSpeechSatForSequenceClassification.from_pretrained(__magic_name__ , config=__magic_name__ ) lowercase__ = downstream_dict["""projector.weight"""] lowercase__ = downstream_dict["""projector.bias"""] lowercase__ = downstream_dict["""model.post_net.linear.weight"""] lowercase__ = downstream_dict["""model.post_net.linear.bias"""] return model def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = UniSpeechSatForAudioFrameClassification.from_pretrained(__magic_name__ , config=__magic_name__ ) lowercase__ = downstream_dict["""model.linear.weight"""] lowercase__ = downstream_dict["""model.linear.bias"""] return model def UpperCamelCase ( __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = UniSpeechSatForXVector.from_pretrained(__magic_name__ , config=__magic_name__ ) lowercase__ = downstream_dict["""connector.weight"""] lowercase__ = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowercase__ = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] lowercase__ = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] lowercase__ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] lowercase__ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] lowercase__ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] lowercase__ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] lowercase__ = downstream_dict["""objective.W"""] return model @torch.no_grad() def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" ) lowercase__ = checkpoint["""Downstream"""] lowercase__ = UniSpeechSatConfig.from_pretrained(__magic_name__ ) lowercase__ = WavaVecaFeatureExtractor.from_pretrained( __magic_name__ , return_attention_mask=__magic_name__ , do_normalize=__magic_name__ ) lowercase__ = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): lowercase__ = convert_classification(__magic_name__ , __magic_name__ , __magic_name__ ) elif arch.endswith("""ForAudioFrameClassification""" ): lowercase__ = convert_diarization(__magic_name__ , __magic_name__ , __magic_name__ ) elif arch.endswith("""ForXVector""" ): lowercase__ = convert_xvector(__magic_name__ , __magic_name__ , __magic_name__ ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: lowercase__ = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(__magic_name__ ) hf_model.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') A : int = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
305
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A : List[str] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = v.to_dict() return d
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets A : str = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' A : Tuple = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' A : List[Any] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any="auto" , _UpperCAmelCase : Optional[int]=-1 , _UpperCAmelCase : Tuple=0.9 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Any=500 , _UpperCAmelCase : int="gpt2-large" , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : Any=1024 , _UpperCAmelCase : int=25 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=25 , ) -> Union[str, Any]: """simple docstring""" lowercase__ = compute_mauve( p_text=_UpperCAmelCase , q_text=_UpperCAmelCase , p_features=_UpperCAmelCase , q_features=_UpperCAmelCase , p_tokens=_UpperCAmelCase , q_tokens=_UpperCAmelCase , num_buckets=_UpperCAmelCase , pca_max_data=_UpperCAmelCase , kmeans_explained_var=_UpperCAmelCase , kmeans_num_redo=_UpperCAmelCase , kmeans_max_iter=_UpperCAmelCase , featurize_model_name=_UpperCAmelCase , device_id=_UpperCAmelCase , max_text_length=_UpperCAmelCase , divergence_curve_discretization_size=_UpperCAmelCase , mauve_scaling_factor=_UpperCAmelCase , verbose=_UpperCAmelCase , seed=_UpperCAmelCase , ) return out
305
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = CpmAntTokenizer A__ = False def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" super().setUp() lowercase__ = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) lowercase__ = """今天天气真好!""" lowercase__ = ["""今天""", """天气""", """真""", """好""", """!"""] lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = """今天天气真好!""" lowercase__ = [tokenizer.bos_token] + tokens lowercase__ = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
305
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : Any = logging.get_logger(__name__) A : List[Any] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''table-transformer''' A__ = ['''past_key_values'''] A__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__(self : Optional[int] , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=3 , _UpperCAmelCase : str=100 , _UpperCAmelCase : List[Any]=6 , _UpperCAmelCase : Any=2048 , _UpperCAmelCase : Optional[Any]=8 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : Tuple=2048 , _UpperCAmelCase : Optional[int]=8 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[str]="relu" , _UpperCAmelCase : Tuple=256 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : Any=False , _UpperCAmelCase : str="sine" , _UpperCAmelCase : Optional[int]="resnet50" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Any=5 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Optional[Any]=0.1 , **_UpperCAmelCase : int , ) -> str: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowercase__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = backbone_config.get("""model_type""" ) lowercase__ = CONFIG_MAPPING[backbone_model_type] lowercase__ = config_class.from_dict(_UpperCAmelCase ) # set timm attributes to None lowercase__ , lowercase__ , lowercase__ = None, None, None lowercase__ = use_timm_backbone lowercase__ = backbone_config lowercase__ = num_channels lowercase__ = num_queries lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = init_xavier_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = encoder_layers lowercase__ = auxiliary_loss lowercase__ = position_embedding_type lowercase__ = backbone lowercase__ = use_pretrained_backbone lowercase__ = dilation # Hungarian matcher lowercase__ = class_cost lowercase__ = bbox_cost lowercase__ = giou_cost # Loss coefficients lowercase__ = mask_loss_coefficient lowercase__ = dice_loss_coefficient lowercase__ = bbox_loss_coefficient lowercase__ = giou_loss_coefficient lowercase__ = eos_coefficient super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" return self.d_model class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowerCamelCase__ (self : int ) -> float: """simple docstring""" return 1E-5 @property def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" return 12
305
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class A : '''simple docstring''' def __init__(self : Tuple , _UpperCAmelCase : str , ) -> List[str]: """simple docstring""" lowercase__ = parent lowercase__ = 13 lowercase__ = 7 lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = 99 lowercase__ = 32 lowercase__ = 2 lowercase__ = 4 lowercase__ = 37 lowercase__ = """gelu""" lowercase__ = 0.1 lowercase__ = 0.1 lowercase__ = 512 lowercase__ = 16 lowercase__ = 2 lowercase__ = 0.02 lowercase__ = 3 lowercase__ = 4 lowercase__ = None def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = self.prepare_config_and_inputs() lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = TFEsmModel(config=_UpperCAmelCase ) lowercase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowercase__ = model(_UpperCAmelCase ) lowercase__ = [input_ids, input_mask] lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = True lowercase__ = TFEsmModel(config=_UpperCAmelCase ) lowercase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } lowercase__ = model(_UpperCAmelCase ) lowercase__ = [input_ids, input_mask] lowercase__ = model(_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ) # Also check the case where encoder outputs are not passed lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFEsmForMaskedLM(config=_UpperCAmelCase ) lowercase__ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFEsmForTokenClassification(config=_UpperCAmelCase ) lowercase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) A__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) A__ = False A__ = False def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = TFEsmModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Dict ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFEsmModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def lowerCamelCase__ (self : Tuple ) -> Tuple: """simple docstring""" pass def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowercase__ = model.get_bias() assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) for k, v in name.items(): assert isinstance(_UpperCAmelCase , tf.Variable ) else: lowercase__ = model.get_output_embeddings() assert x is None lowercase__ = model.get_bias() assert name is None @require_tf class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : int ) -> str: """simple docstring""" lowercase__ = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _UpperCAmelCase ) # compare the actual values for a slice. lowercase__ = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) lowercase__ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase__ = model(_UpperCAmelCase )[0] # compare the actual values for a slice. lowercase__ = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
305
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
1
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
1
from __future__ import annotations import collections import pprint from pathlib import Path def UpperCamelCase ( __magic_name__ : str ) -> str: """simple docstring""" return "".join(sorted(__magic_name__ ) ) def UpperCamelCase ( __magic_name__ : str ) -> list[str]: """simple docstring""" return word_by_signature[signature(__magic_name__ )] A : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') A : Tuple = sorted({word.strip().lower() for word in data.splitlines()}) A : str = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": A : Optional[int] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
305
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any=1024 , _UpperCAmelCase : Tuple=1024 , _UpperCAmelCase : str=3.6 ) -> str: """simple docstring""" lowercase__ = tokenizer lowercase__ = tokenizer.bos_token_id lowercase__ = dataset lowercase__ = seq_length lowercase__ = seq_length * chars_per_token * num_of_sequences def __iter__(self : Any ) -> Tuple: """simple docstring""" lowercase__ = iter(self.dataset ) lowercase__ = True while more_examples: lowercase__ , lowercase__ = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_UpperCAmelCase )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase__ = False break lowercase__ = tokenizer(_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_UpperCAmelCase ) , self.seq_length ): lowercase__ = all_token_ids[i : i + self.seq_length] if len(_UpperCAmelCase ) == self.seq_length: yield torch.tensor(_UpperCAmelCase ) def UpperCamelCase ( __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = {"""streaming""": True} lowercase__ = load_dataset(args.dataset_name , split="""train""" , **__magic_name__ ) lowercase__ = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase__ = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" model.eval() lowercase__ = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase__ = model(__magic_name__ , labels=__magic_name__ ) lowercase__ = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase__ = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase__ = torch.exp(__magic_name__ ) except OverflowError: lowercase__ = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator A : int = Accelerator() # Parse configuration A : List[Any] = HfArgumentParser(EvaluationArguments) A : List[Any] = parser.parse_args() set_seed(args.seed) # Logging A : Union[str, Any] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer A : str = AutoModelForCausalLM.from_pretrained(args.model_ckpt) A : int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader A : Dict = create_dataloader(args) # Prepare everything with our `accelerator`. A , A : List[str] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') A , A : List[str] = evaluate(args) logger.info(F'loss/eval: {eval_loss}, perplexity: {perplexity}')
305
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : Dict = logging.get_logger(__name__) A : List[str] = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''blenderbot-small''' A__ = ['''past_key_values'''] A__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self : Union[str, Any] , _UpperCAmelCase : str=5_0265 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Any=2048 , _UpperCAmelCase : str=16 , _UpperCAmelCase : List[str]=8 , _UpperCAmelCase : str=2048 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : str=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : Union[str, Any]=512 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : Any , ) -> Optional[int]: """simple docstring""" lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowercase__ = {0: """batch"""} lowercase__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowercase__ = {0: """batch""", 1: """decoder_sequence"""} lowercase__ = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowercase__ , lowercase__ = self.num_layers for i in range(_UpperCAmelCase ): lowercase__ = {0: """batch""", 2: """past_sequence + sequence"""} lowercase__ = {0: """batch""", 2: """past_sequence + sequence"""} else: lowercase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def lowerCamelCase__ (self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase__ = super().outputs else: lowercase__ = super(_UpperCAmelCase , self ).outputs if self.use_past: lowercase__ , lowercase__ = self.num_layers for i in range(_UpperCAmelCase ): lowercase__ = {0: """batch""", 2: """past_sequence + sequence"""} lowercase__ = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCamelCase__ (self : int , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowercase__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Generate decoder inputs lowercase__ = seq_length if not self.use_past else 1 lowercase__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowercase__ = dict(**_UpperCAmelCase , **_UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase__ , lowercase__ = common_inputs["""input_ids"""].shape lowercase__ = common_inputs["""decoder_input_ids"""].shape[1] lowercase__ , lowercase__ = self.num_attention_heads lowercase__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ = decoder_seq_length + 3 lowercase__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase__ = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_UpperCAmelCase , _UpperCAmelCase )] , dim=1 ) lowercase__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase__ , lowercase__ = self.num_layers lowercase__ = min(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = max(_UpperCAmelCase , _UpperCAmelCase ) - min_num_layers lowercase__ = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase ), ) ) # TODO: test this. lowercase__ = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_UpperCAmelCase , _UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) ) return common_inputs def lowerCamelCase__ (self : Any , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowercase__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase__ , lowercase__ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase__ = seqlen + 2 lowercase__ , lowercase__ = self.num_layers lowercase__ , lowercase__ = self.num_attention_heads lowercase__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ = common_inputs["""attention_mask"""].dtype lowercase__ = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) lowercase__ = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(_UpperCAmelCase ) ] return common_inputs def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowercase__ = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ = tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) lowercase__ = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowercase__ = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase__ = dict(tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) ) return common_inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) elif self.task == "causal-lm": lowercase__ = self._generate_dummy_inputs_for_causal_lm( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) else: lowercase__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) return common_inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ) -> str: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase__ = super()._flatten_past_key_values_(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: lowercase__ = super(_UpperCAmelCase , self )._flatten_past_key_values_( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCamelCase ( __magic_name__ : Tuple ) -> int: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A ( nn.Module ): '''simple docstring''' def __init__(self : List[Any] , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ = module lowercase__ = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) lowercase__ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Dict , *_UpperCAmelCase : int , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' A__ = '''bigscience/bloom-1b7''' # Constant values A__ = 2.1_09_65_95_52_69_25_74 A__ = '''Hello my name is''' A__ = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) A__ = 10 def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained(self.model_name ) class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" super().setUp() # Models and tokenizer lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> Tuple: """simple docstring""" lowercase__ = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , """quantization_config""" ) ) lowercase__ = config.to_dict() lowercase__ = config.to_diff_dict() lowercase__ = config.to_json_string() def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" from bitsandbytes.nn import Paramsabit lowercase__ = self.model_fpaa.get_memory_footprint() lowercase__ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowercase__ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) lowercase__ = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase__ (self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = BitsAndBytesConfig() lowercase__ = True lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map="""auto""" ) lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) lowercase__ = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) lowercase__ = self.model_fpaa.to(torch.floataa ) lowercase__ = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error lowercase__ = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error lowercase__ = self.model_fpaa.half() # Check this does not throw an error lowercase__ = self.model_fpaa.float() def lowerCamelCase__ (self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCamelCase__ (cls : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = """t5-small""" lowercase__ = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense lowercase__ = AutoTokenizer.from_pretrained(cls.model_name ) lowercase__ = """Translate in German: Hello, my dog is cute""" def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" from transformers import TaForConditionalGeneration lowercase__ = TaForConditionalGeneration._keep_in_fpaa_modules lowercase__ = None # test with `t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) lowercase__ = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) lowercase__ = model.generate(**_UpperCAmelCase ) lowercase__ = modules def lowerCamelCase__ (self : Dict ) -> Dict: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) lowercase__ = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) lowercase__ = model.generate(**_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" super().setUp() # model_name lowercase__ = """bigscience/bloom-560m""" lowercase__ = """t5-small""" # Different types of model lowercase__ = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # Sequence classification model lowercase__ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # CausalLM model lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # Seq2seq model lowercase__ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" super().setUp() def lowerCamelCase__ (self : str ) -> Optional[int]: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowercase__ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" super().setUp() def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch lowercase__ = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """facebook/opt-350m""" super().setUp() def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowercase__ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowercase__ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): lowercase__ = LoRALayer(module.q_proj , rank=16 ) lowercase__ = LoRALayer(module.k_proj , rank=16 ) lowercase__ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch lowercase__ = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowercase__ = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''gpt2-xl''' A__ = 3.31_91_85_48_54_15_21_87
305
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
1
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = s.rsplit(__magic_name__ , __magic_name__ ) return new.join(__magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase ( __magic_name__ : Tuple ) -> Any: """simple docstring""" lowercase__ = {} lowercase__ = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase__ = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowercase__ = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowercase__ = rreplace(__magic_name__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowercase__ = rreplace(__magic_name__ , """.b""" , """.bias""" , 1 ) lowercase__ = value.float() return upgrade @torch.no_grad() def UpperCamelCase ( __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : str=None , __magic_name__ : Tuple=True ) -> Any: """simple docstring""" from dall_e import Encoder lowercase__ = Encoder() if os.path.exists(__magic_name__ ): lowercase__ = torch.load(__magic_name__ ) else: lowercase__ = torch.hub.load_state_dict_from_url(__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ): lowercase__ = ckpt.state_dict() encoder.load_state_dict(__magic_name__ ) if config_path is not None: lowercase__ = FlavaImageCodebookConfig.from_pretrained(__magic_name__ ) else: lowercase__ = FlavaImageCodebookConfig() lowercase__ = FlavaImageCodebook(__magic_name__ ).eval() lowercase__ = encoder.state_dict() lowercase__ = upgrade_state_dict(__magic_name__ ) hf_model.load_state_dict(__magic_name__ ) lowercase__ = hf_model.state_dict() lowercase__ = count_parameters(__magic_name__ ) lowercase__ = count_parameters(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__magic_name__ ) else: return hf_state_dict if __name__ == "__main__": A : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A : Dict = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A : Optional[Any] = ['bert-base-uncased', 'bert-base-cased'] A : Any = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class A ( tf.keras.Model ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" super().__init__() lowercase__ = tokenizer lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) lowercase__ = TFAutoModel.from_config(_UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.tokenizer(_UpperCAmelCase ) lowercase__ = self.bert(**_UpperCAmelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" super().setUp() lowercase__ = [ BertTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowercase__ = [TFBertTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_UpperCAmelCase , use_fast_bert_tokenizer=_UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowercase__ = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] lowercase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowerCamelCase__ (self : Tuple ) -> List[str]: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowercase__ = tokenizer(_UpperCAmelCase , return_tensors="""tf""" , padding="""longest""" ) lowercase__ = tf_tokenizer(_UpperCAmelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase__ = tf_tokenizer(self.paired_sentences ) lowercase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def lowerCamelCase__ (self : Union[str, Any] ) -> List[str]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase__ = tf.function(_UpperCAmelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): lowercase__ = tf.constant(_UpperCAmelCase ) lowercase__ = compiled_tokenizer(_UpperCAmelCase ) lowercase__ = tf_tokenizer(_UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase__ = ModelToSave(tokenizer=_UpperCAmelCase ) lowercase__ = tf.convert_to_tensor(self.test_sentences ) lowercase__ = model(_UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowercase__ = Path(_UpperCAmelCase ) / """saved.model""" model.save(_UpperCAmelCase ) lowercase__ = tf.keras.models.load_model(_UpperCAmelCase ) lowercase__ = loaded_model(_UpperCAmelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
305
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
1
from __future__ import annotations A : Any = '#' class A : '''simple docstring''' def __init__(self : int ) -> None: """simple docstring""" lowercase__ = {} def lowerCamelCase__ (self : Any , _UpperCAmelCase : str ) -> None: """simple docstring""" lowercase__ = self._trie for char in text: if char not in trie: lowercase__ = {} lowercase__ = trie[char] lowercase__ = True def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : str ) -> tuple | list: """simple docstring""" lowercase__ = self._trie for char in prefix: if char in trie: lowercase__ = trie[char] else: return [] return self._elements(_UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : dict ) -> tuple: """simple docstring""" lowercase__ = [] for c, v in d.items(): lowercase__ = [""" """] if c == END else [(c + s) for s in self._elements(_UpperCAmelCase )] result.extend(_UpperCAmelCase ) return tuple(_UpperCAmelCase ) A : str = Trie() A : Tuple = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def UpperCamelCase ( __magic_name__ : str ) -> tuple: """simple docstring""" lowercase__ = trie.find_word(__magic_name__ ) return tuple(string + word for word in suffixes ) def UpperCamelCase ( ) -> None: """simple docstring""" print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
305
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
1
from math import isqrt def UpperCamelCase ( __magic_name__ : int ) -> list[int]: """simple docstring""" lowercase__ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __magic_name__ , __magic_name__ ): lowercase__ = False return [i for i in range(2 , __magic_name__ ) if is_prime[i]] def UpperCamelCase ( __magic_name__ : int = 10**8 ) -> int: """simple docstring""" lowercase__ = calculate_prime_numbers(max_number // 2 ) lowercase__ = 0 lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
305
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = KandinskyVaaInpaintPipeline A__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] A__ = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] A__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Tuple ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : Dict ) -> Tuple: """simple docstring""" return self.time_input_dim @property def lowerCamelCase__ (self : List[str] ) -> str: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" return 100 @property def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase__ = UNetaDConditionModel(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ (self : Tuple ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.dummy_unet lowercase__ = self.dummy_movq lowercase__ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_UpperCAmelCase , ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any]=0 ) -> Tuple: """simple docstring""" lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCAmelCase ) # create init_image lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase__ = np.ones((64, 64) , dtype=np.floataa ) lowercase__ = 0 if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images lowercase__ = pipe( **self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : int ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> Optional[Any]: """simple docstring""" lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase__ = np.ones((768, 768) , dtype=np.floataa ) lowercase__ = 0 lowercase__ = """a hat""" lowercase__ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCAmelCase ) lowercase__ = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) lowercase__ = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase__ , lowercase__ = pipe_prior( _UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase__ = pipeline( image=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
1
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A : Dict = logging.get_logger(__name__) A : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A : '''simple docstring''' A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(UpperCAmelCase__ )} ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) A__ = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A__ = field( default=1_28 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) A__ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) A__ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) A__ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) A__ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) A__ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) A__ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''train''' A__ = '''dev''' class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = 42 A__ = 42 A__ = 42 A__ = 42 def __init__(self : Optional[int] , _UpperCAmelCase : SquadDataTrainingArguments , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Union[str, Split] = Split.train , _UpperCAmelCase : Optional[bool] = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = "pt" , ) -> Tuple: """simple docstring""" lowercase__ = args lowercase__ = is_language_sensitive lowercase__ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: lowercase__ = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) lowercase__ = mode # Load data features from cache or dataset file lowercase__ = """v2""" if args.version_2_with_negative else """v1""" lowercase__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase__ = cached_features_file + """.lock""" with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not args.overwrite_cache: lowercase__ = time.time() lowercase__ = torch.load(_UpperCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowercase__ = self.old_features["""features"""] lowercase__ = self.old_features.get("""dataset""" , _UpperCAmelCase ) lowercase__ = self.old_features.get("""examples""" , _UpperCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' """ future run""" ) else: if mode == Split.dev: lowercase__ = self.processor.get_dev_examples(args.data_dir ) else: lowercase__ = self.processor.get_train_examples(args.data_dir ) lowercase__ , lowercase__ = squad_convert_examples_to_features( examples=self.examples , tokenizer=_UpperCAmelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_UpperCAmelCase , ) lowercase__ = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _UpperCAmelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__(self : List[str] ) -> Dict: """simple docstring""" return len(self.features ) def __getitem__(self : Union[str, Any] , _UpperCAmelCase : Dict ) -> Dict[str, torch.Tensor]: """simple docstring""" lowercase__ = self.features[i] lowercase__ = torch.tensor(feature.input_ids , dtype=torch.long ) lowercase__ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowercase__ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowercase__ = torch.tensor(feature.cls_index , dtype=torch.long ) lowercase__ = torch.tensor(feature.p_mask , dtype=torch.float ) lowercase__ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowercase__ = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowercase__ = torch.tensor(feature.start_position , dtype=torch.long ) lowercase__ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
305
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A : int = logging.get_logger(__name__) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = ['''pixel_values'''] def __init__(self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) lowercase__ = size if size is not None else {"""shortest_edge""": 256} lowercase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) lowercase__ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase__ = get_size_dict(_UpperCAmelCase ) lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ (self : Any , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase__ = get_resize_output_image_size(_UpperCAmelCase , size=size["""shortest_edge"""] , default_to_square=_UpperCAmelCase ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(_UpperCAmelCase ) return center_crop(_UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[Any] ) -> np.ndarray: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> str: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) lowercase__ = resample if resample is not None else self.resample lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(_UpperCAmelCase ) lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: lowercase__ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: lowercase__ = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] lowercase__ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] lowercase__ = {"""pixel_values""": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
305
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Dict ) -> Any: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer lowercase__ = flax_key_tuple[:-1] + ("""weight""",) lowercase__ = torch.permute(__magic_name__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__magic_name__ ): # linear layer lowercase__ = flax_key_tuple[:-1] + ("""weight""",) lowercase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase__ = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> str: """simple docstring""" if "metadata" in layer: lowercase__ = layer.split("""metadata""" ) lowercase__ = """""".join(split_layer[0] )[:-1] lowercase__ = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: lowercase__ = layer.split("""kvstore""" ) lowercase__ = """""".join(split_layer[0] )[:-1] lowercase__ = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: lowercase__ = layer.split("""/""" ) lowercase__ = """/""".join(split_layer[:-1] ) lowercase__ = (split_layer[-1],) if "kvstore/path" in layer: lowercase__ = f'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: lowercase__ = """file""" else: lowercase__ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = rename_keys(__magic_name__ ) lowercase__ = {} for k, v in current_block.items(): lowercase__ = v lowercase__ = new_current_block torch.save(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : str = WEIGHTS_NAME ) -> int: """simple docstring""" lowercase__ = convert_file_size_to_int(__magic_name__ ) lowercase__ = [] lowercase__ = {} lowercase__ = 0 lowercase__ = 0 os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: lowercase__ = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] lowercase__ = flatten_dict(__magic_name__ , sep="""/""" ) lowercase__ = {} for layer in checkpoint_info.keys(): lowercase__ , lowercase__ , lowercase__ = get_key_and_tensorstore_dict( __magic_name__ , __magic_name__ , __magic_name__ ) if curr_real_layer_name in all_layers: lowercase__ = content else: lowercase__ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file lowercase__ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() lowercase__ = torch.tensor(__magic_name__ ) lowercase__ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts lowercase__ , lowercase__ = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __magic_name__ ) lowercase__ = """/""".join(__magic_name__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: lowercase__ = os.path.join( __magic_name__ , weights_name.replace(""".bin""" , f'''-{len(__magic_name__ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__magic_name__ , __magic_name__ ) sharded_state_dicts.append(current_block.keys() ) del current_block lowercase__ = {} lowercase__ = 0 lowercase__ = raw_weights.to(getattr(__magic_name__ , __magic_name__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block lowercase__ = os.path.join(__magic_name__ , weights_name.replace(""".bin""" , f'''-{len(__magic_name__ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__magic_name__ , __magic_name__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__magic_name__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index lowercase__ = {} lowercase__ = {} for idx, shard in enumerate(__magic_name__ ): lowercase__ = weights_name.replace( """.bin""" , f'''-{idx+1:05d}-of-{len(__magic_name__ ):05d}.bin''' ) # len(sharded_state_dicts):05d} lowercase__ = os.path.join(__magic_name__ , weights_name.replace(""".bin""" , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__magic_name__ , os.path.join(__magic_name__ , __magic_name__ ) ) lowercase__ = shard for key in shard: lowercase__ = shard_file # Add the metadata lowercase__ = {"""total_size""": total_size} lowercase__ = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__magic_name__ , __magic_name__ ) , """w""" , encoding="""utf-8""" ) as f: lowercase__ = json.dumps(__magic_name__ , indent=2 , sort_keys=__magic_name__ ) + """\n""" f.write(__magic_name__ ) return metadata, index if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) A : Optional[int] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def UpperCamelCase ( ) -> Dict: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer lowercase__ = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) lowercase__ = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) lowercase__ = TaTokenizer.from_pretrained("""t5-small""" ) lowercase__ = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" lowercase__ = tokenizer(__magic_name__ , return_tensors="""pt""" ).input_ids lowercase__ = model.generate(__magic_name__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
305
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
1
from collections.abc import Callable class A : '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : Callable | None = None ) -> None: """simple docstring""" lowercase__ = [] # Stores indexes of each item for supporting updates and deletion. lowercase__ = {} # Stores current size of heap. lowercase__ = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowercase__ = key or (lambda _UpperCAmelCase : x) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : int ) -> int | None: """simple docstring""" return int((i - 1) / 2 ) if i > 0 else None def lowerCamelCase__ (self : int , _UpperCAmelCase : int ) -> int | None: """simple docstring""" lowercase__ = int(2 * i + 1 ) return left if 0 < left < self.size else None def lowerCamelCase__ (self : int , _UpperCAmelCase : int ) -> int | None: """simple docstring""" lowercase__ = int(2 * i + 2 ) return right if 0 < right < self.size else None def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: """simple docstring""" lowercase__ , lowercase__ = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowercase__ , lowercase__ = self.arr[j], self.arr[i] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> bool: """simple docstring""" return self.arr[i][1] < self.arr[j][1] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : int ) -> int: """simple docstring""" lowercase__ = self._left(_UpperCAmelCase ) lowercase__ = self._right(_UpperCAmelCase ) lowercase__ = i if left is not None and not self._cmp(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = left if right is not None and not self._cmp(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = right return valid_parent def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : int ) -> None: """simple docstring""" lowercase__ = self._parent(_UpperCAmelCase ) while parent is not None and not self._cmp(_UpperCAmelCase , _UpperCAmelCase ): self._swap(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ , lowercase__ = parent, self._parent(_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : int ) -> None: """simple docstring""" lowercase__ = self._get_valid_parent(_UpperCAmelCase ) while valid_parent != index: self._swap(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ , lowercase__ = valid_parent, self._get_valid_parent(_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: """simple docstring""" if item not in self.pos_map: return lowercase__ = self.pos_map[item] lowercase__ = [item, self.key(_UpperCAmelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_UpperCAmelCase ) self._heapify_down(_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : int ) -> None: """simple docstring""" if item not in self.pos_map: return lowercase__ = self.pos_map[item] del self.pos_map[item] lowercase__ = self.arr[self.size - 1] lowercase__ = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_UpperCAmelCase ) self._heapify_down(_UpperCAmelCase ) def lowerCamelCase__ (self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: """simple docstring""" lowercase__ = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_UpperCAmelCase )] ) else: lowercase__ = [item, self.key(_UpperCAmelCase )] lowercase__ = self.size self.size += 1 self._heapify_up(self.size - 1 ) def lowerCamelCase__ (self : List[str] ) -> tuple | None: """simple docstring""" return self.arr[0] if self.size else None def lowerCamelCase__ (self : Dict ) -> tuple | None: """simple docstring""" lowercase__ = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def UpperCamelCase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
305
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
1
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() A : Optional[Any] = logging.get_logger('transformers.models.speecht5') A : List[Any] = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } A : Tuple = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } A : Optional[Any] = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } A : Dict = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } A : int = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } A : List[str] = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } A : Dict = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } A : str = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } A : List[str] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } A : str = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A : Dict = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A : str = [] A : int = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] A : Tuple = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] A : Optional[int] = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] A : Optional[Any] = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for attribute in key.split(""".""" ): lowercase__ = getattr(__magic_name__ , __magic_name__ ) if weight_type is not None: lowercase__ = getattr(__magic_name__ , __magic_name__ ).shape else: lowercase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value elif weight_type == "running_mean": lowercase__ = value elif weight_type == "running_var": lowercase__ = value elif weight_type == "num_batches_tracked": lowercase__ = value else: lowercase__ = value logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Any: """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowercase__ , lowercase__ = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Dict ) -> int: """simple docstring""" lowercase__ = [] if task == "s2t": lowercase__ = hf_model.speechta.encoder.prenet.feature_encoder lowercase__ = MAPPING_S2T lowercase__ = IGNORE_KEYS_S2T elif task == "t2s": lowercase__ = None lowercase__ = MAPPING_T2S lowercase__ = IGNORE_KEYS_T2S elif task == "s2s": lowercase__ = hf_model.speechta.encoder.prenet.feature_encoder lowercase__ = MAPPING_S2S lowercase__ = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(__magic_name__ , __magic_name__ ): logger.info(f'''{name} was ignored''' ) continue lowercase__ = False if "conv_layers" in name: load_conv_layer( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowercase__ , lowercase__ = key.split(""".*.""" ) if prefix in name and suffix in name: lowercase__ = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(__magic_name__ )[0].split(""".""" )[-2] lowercase__ = mapped_key.replace("""*""" , __magic_name__ ) if "weight_g" in name: lowercase__ = """weight_g""" elif "weight_v" in name: lowercase__ = """weight_v""" elif "bias" in name: lowercase__ = """bias""" elif "weight" in name: lowercase__ = """weight""" elif "running_mean" in name: lowercase__ = """running_mean""" elif "running_var" in name: lowercase__ = """running_var""" elif "num_batches_tracked" in name: lowercase__ = """num_batches_tracked""" else: lowercase__ = None set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = full_name.split("""conv_layers.""" )[-1] lowercase__ = name.split(""".""" ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__magic_name__ ) @torch.no_grad() def UpperCamelCase ( __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : List[str]=None , __magic_name__ : Dict=None , __magic_name__ : Dict=None , ) -> Tuple: """simple docstring""" if config_path is not None: lowercase__ = SpeechTaConfig.from_pretrained(__magic_name__ ) else: lowercase__ = SpeechTaConfig() if task == "s2t": lowercase__ = config.max_text_positions lowercase__ = SpeechTaForSpeechToText(__magic_name__ ) elif task == "t2s": lowercase__ = 1876 lowercase__ = 600 lowercase__ = config.max_speech_positions lowercase__ = SpeechTaForTextToSpeech(__magic_name__ ) elif task == "s2s": lowercase__ = 1876 lowercase__ = config.max_speech_positions lowercase__ = SpeechTaForSpeechToSpeech(__magic_name__ ) else: raise ValueError(f'''Unknown task name: {task}''' ) if vocab_path: lowercase__ = SpeechTaTokenizer(__magic_name__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowercase__ = AddedToken("""<mask>""" , lstrip=__magic_name__ , rstrip=__magic_name__ ) lowercase__ = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) lowercase__ = SpeechTaFeatureExtractor() lowercase__ = SpeechTaProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ ) processor.save_pretrained(__magic_name__ ) lowercase__ = torch.load(__magic_name__ ) recursively_load_weights(fairseq_checkpoint["""model"""] , __magic_name__ , __magic_name__ ) model.save_pretrained(__magic_name__ ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(__magic_name__ ) model.push_to_hub(__magic_name__ ) if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) A : Optional[int] = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
305
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
1
from __future__ import annotations A : Optional[Any] = 1.6_0_2_1e-1_9 # units = C def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> tuple[str, float]: """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
1
import argparse from collections import defaultdict import yaml A : int = 'docs/source/en/_toctree.yml' def UpperCamelCase ( __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = defaultdict(__magic_name__ ) for doc in model_doc: counts[doc["local"]] += 1 lowercase__ = [key for key, value in counts.items() if value > 1] lowercase__ = [] for duplicate_key in duplicates: lowercase__ = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(__magic_name__ ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() ) def UpperCamelCase ( __magic_name__ : str=False ) -> Tuple: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = yaml.safe_load(f.read() ) # Get to the API doc lowercase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__ = content[api_idx]["""sections"""] # Then to the model doc lowercase__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowercase__ = api_doc[model_idx]["""sections"""] lowercase__ = [(idx, section) for idx, section in enumerate(__magic_name__ ) if """sections""" in section] lowercase__ = False for idx, modality_doc in modalities_docs: lowercase__ = modality_doc["""sections"""] lowercase__ = clean_model_doc_toc(__magic_name__ ) if old_modality_doc != new_modality_doc: lowercase__ = True if overwrite: lowercase__ = new_modality_doc if diff: if overwrite: lowercase__ = model_doc lowercase__ = api_doc with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A : Any = parser.parse_args() check_model_doc(args.fix_and_overwrite)
305
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
1
from __future__ import annotations import pandas as pd def UpperCamelCase ( __magic_name__ : list[int] , __magic_name__ : list[int] , __magic_name__ : int ) -> list[int]: """simple docstring""" lowercase__ = [0] * no_of_processes lowercase__ = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__magic_name__ ): lowercase__ = burst_time[i] lowercase__ = 0 lowercase__ = 0 lowercase__ = 9_9999_9999 lowercase__ = 0 lowercase__ = False # Process until all processes are completed while complete != no_of_processes: for j in range(__magic_name__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: lowercase__ = remaining_time[j] lowercase__ = j lowercase__ = True if not check: increment_time += 1 continue remaining_time[short] -= 1 lowercase__ = remaining_time[short] if minm == 0: lowercase__ = 9_9999_9999 if remaining_time[short] == 0: complete += 1 lowercase__ = False # Find finish time of current process lowercase__ = increment_time + 1 # Calculate waiting time lowercase__ = finish_time - arrival_time[short] lowercase__ = finar - burst_time[short] if waiting_time[short] < 0: lowercase__ = 0 # Increment time increment_time += 1 return waiting_time def UpperCamelCase ( __magic_name__ : list[int] , __magic_name__ : int , __magic_name__ : list[int] ) -> list[int]: """simple docstring""" lowercase__ = [0] * no_of_processes for i in range(__magic_name__ ): lowercase__ = burst_time[i] + waiting_time[i] return turn_around_time def UpperCamelCase ( __magic_name__ : list[int] , __magic_name__ : list[int] , __magic_name__ : int ) -> None: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in range(__magic_name__ ): lowercase__ = total_waiting_time + waiting_time[i] lowercase__ = total_turn_around_time + turn_around_time[i] print(f'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') A : str = int(input()) A : List[Any] = [0] * no_of_processes A : List[Any] = [0] * no_of_processes A : Any = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) A , A : Union[str, Any] = map(int, input().split()) A : Union[str, Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) A : Any = burst_time A : Optional[int] = no_of_processes A : Tuple = waiting_time A : int = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) A : Any = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
305
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
1
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCamelCase ( __magic_name__ : int ) -> str: """simple docstring""" if "img_encoder.pos_embed" in name: lowercase__ = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase__ = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase__ = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase__ = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase__ = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase__ = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase__ = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase__ = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase__ = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase__ = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase__ = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase__ = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase__ = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase__ = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase__ = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase__ = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase__ = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase__ = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase__ = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase__ = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase__ = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase__ = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase__ = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCamelCase ( __magic_name__ : int , __magic_name__ : str ) -> Any: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase__ = key.split(""".""" ) lowercase__ , lowercase__ = int(key_split[2] ), int(key_split[4] ) lowercase__ = config.vision_config.hidden_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = config.text_config.hidden_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[ dim : dim * 2, : ] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] else: lowercase__ = rename_key(__magic_name__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase__ = val.squeeze_() else: lowercase__ = val return orig_state_dict def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase__ = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any]="groupvit-gcc-yfcc" , __magic_name__ : List[Any]=False ) -> str: """simple docstring""" lowercase__ = GroupViTConfig() lowercase__ = GroupViTModel(__magic_name__ ).eval() lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ = model.load_state_dict(__magic_name__ , strict=__magic_name__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__magic_name__ ) == 0) # verify result lowercase__ = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase__ = prepare_img() lowercase__ = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) if model_name == "groupvit-gcc-yfcc": lowercase__ = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": lowercase__ = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(f'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image , __magic_name__ , atol=1E-3 ) processor.save_pretrained(__magic_name__ ) model.save_pretrained(__magic_name__ ) print("""Successfully saved processor and model to""" , __magic_name__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(__magic_name__ , organization="""nielsr""" ) model.push_to_hub(__magic_name__ , organization="""nielsr""" ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) A : int = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
305
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available A : Any = {'tokenization_herbert': ['HerbertTokenizer']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['HerbertTokenizerFast'] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) A__ = Features({'''text''': Value('''string''' )} ) A__ = Features({'''summary''': Value('''string''' )} ) A__ = "text" A__ = "summary" @property def lowerCamelCase__ (self : Any ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
305
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = BertJapaneseTokenizer A__ = False A__ = True def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" super().setUp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" lowercase__ = """こんにちは、世界。 \nこんばんは、世界。""" lowercase__ = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def lowerCamelCase__ (self : int , _UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" pass # TODO add if relevant def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" pass # TODO add if relevant def lowerCamelCase__ (self : List[str] ) -> str: """simple docstring""" pass # TODO add if relevant def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = self.tokenizer_class(self.vocab_file ) lowercase__ = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(_UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" lowercase__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(_UpperCAmelCase ) lowercase__ = """こんにちは、世界。\nこんばんは、世界。""" lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase__ = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(_UpperCAmelCase , """wb""" ) as handle: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , """rb""" ) as handle: lowercase__ = pickle.load(_UpperCAmelCase ) lowercase__ = tokenizer_new.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowerCamelCase__ (self : str ) -> Optional[int]: """simple docstring""" try: lowercase__ = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" try: lowercase__ = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowerCamelCase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = MecabTokenizer(do_lower_case=_UpperCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowerCamelCase__ (self : str ) -> int: """simple docstring""" try: lowercase__ = MecabTokenizer( do_lower_case=_UpperCAmelCase , normalize_text=_UpperCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def lowerCamelCase__ (self : Dict ) -> Any: """simple docstring""" lowercase__ = MecabTokenizer(normalize_text=_UpperCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def lowerCamelCase__ (self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(_UpperCAmelCase ) lowercase__ = """こんにちは、世界。\nこんばんは、世界。""" lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase__ = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(_UpperCAmelCase , """wb""" ) as handle: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , """rb""" ) as handle: lowercase__ = pickle.load(_UpperCAmelCase ) lowercase__ = tokenizer_new.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_sudachi def lowerCamelCase__ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def lowerCamelCase__ (self : Tuple ) -> List[str]: """simple docstring""" lowercase__ = SudachiTokenizer(do_lower_case=_UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def lowerCamelCase__ (self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = SudachiTokenizer(normalize_text=_UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def lowerCamelCase__ (self : Dict ) -> Any: """simple docstring""" lowercase__ = SudachiTokenizer(trim_whitespace=_UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(_UpperCAmelCase ) lowercase__ = """こんにちは、世界。\nこんばんは、世界。""" lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase__ = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(_UpperCAmelCase , """wb""" ) as handle: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , """rb""" ) as handle: lowercase__ = pickle.load(_UpperCAmelCase ) lowercase__ = tokenizer_new.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_jumanpp def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = JumanppTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def lowerCamelCase__ (self : Dict ) -> Dict: """simple docstring""" lowercase__ = JumanppTokenizer(normalize_text=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = JumanppTokenizer(trim_whitespace=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" lowercase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] lowercase__ = {} for i, token in enumerate(_UpperCAmelCase ): lowercase__ = i lowercase__ = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" lowercase__ = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) lowercase__ = tokenizer.subword_tokenizer lowercase__ = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(_UpperCAmelCase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) lowercase__ = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(_UpperCAmelCase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) lowercase__ = tokenizer.encode("""ありがとう。""" , add_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.encode("""どういたしまして。""" , add_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = BertJapaneseTokenizer A__ = False def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" super().setUp() lowercase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : int ) -> Dict: """simple docstring""" lowercase__ = """こんにちは、世界。 \nこんばんは、世界。""" lowercase__ = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" pass # TODO add if relevant def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" pass # TODO add if relevant def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" pass # TODO add if relevant def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) lowercase__ = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( _UpperCAmelCase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" lowercase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] lowercase__ = {} for i, token in enumerate(_UpperCAmelCase ): lowercase__ = i lowercase__ = CharacterTokenizer(vocab=_UpperCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) lowercase__ = tokenizer.encode("""ありがとう。""" , add_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.encode("""どういたしまして。""" , add_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cl-tohoku/bert-base-japanese""" lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Any: """simple docstring""" lowercase__ = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(_UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) lowercase__ = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(_UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
305
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
1
import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : int ) -> int: """simple docstring""" lowercase__ = len(__magic_name__ ) lowercase__ = int(math.floor(math.sqrt(__magic_name__ ) ) ) lowercase__ = 0 while arr[min(__magic_name__ , __magic_name__ ) - 1] < x: lowercase__ = step step += int(math.floor(math.sqrt(__magic_name__ ) ) ) if prev >= n: return -1 while arr[prev] < x: lowercase__ = prev + 1 if prev == min(__magic_name__ , __magic_name__ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A : int = input('Enter numbers separated by a comma:\n').strip() A : Tuple = [int(item) for item in user_input.split(',')] A : Union[str, Any] = int(input('Enter the number to be searched:\n')) A : Optional[Any] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F'Number {x} is at index {res}')
305
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
1
import torch def UpperCamelCase ( ) -> List[Any]: """simple docstring""" if torch.cuda.is_available(): lowercase__ = torch.cuda.device_count() else: lowercase__ = 0 print(f'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() A : Dict = logging.get_logger(__name__) set_seed(7_7_0) A : int = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } A : int = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } A : Dict = os.path.dirname(os.path.abspath(__file__)) A : Dict = os.path.join(os.path.expanduser('~'), '.cache') A : str = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : int=False ) -> int: """simple docstring""" lowercase__ = model_type if use_small: key += "_small" return os.path.join(__magic_name__ , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : Any ) -> int: """simple docstring""" os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) hf_hub_download(repo_id=__magic_name__ , filename=__magic_name__ , local_dir=__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str=False , __magic_name__ : str="text" ) -> int: """simple docstring""" if model_type == "text": lowercase__ = BarkSemanticModel lowercase__ = BarkSemanticConfig lowercase__ = BarkSemanticGenerationConfig elif model_type == "coarse": lowercase__ = BarkCoarseModel lowercase__ = BarkCoarseConfig lowercase__ = BarkCoarseGenerationConfig elif model_type == "fine": lowercase__ = BarkFineModel lowercase__ = BarkFineConfig lowercase__ = BarkFineGenerationConfig else: raise NotImplementedError() lowercase__ = f'''{model_type}_small''' if use_small else model_type lowercase__ = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__magic_name__ ): logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) lowercase__ = torch.load(__magic_name__ , map_location=__magic_name__ ) # this is a hack lowercase__ = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: lowercase__ = model_args["""vocab_size"""] lowercase__ = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowercase__ = model_args.pop("""n_head""" ) lowercase__ = model_args.pop("""n_embd""" ) lowercase__ = model_args.pop("""n_layer""" ) lowercase__ = ConfigClass(**checkpoint["""model_args"""] ) lowercase__ = ModelClass(config=__magic_name__ ) lowercase__ = GenerationConfigClass() lowercase__ = model_generation_config lowercase__ = checkpoint["""model"""] # fixup checkpoint lowercase__ = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(__magic_name__ ): # replace part of the key with corresponding layer name in HF implementation lowercase__ = k[len(__magic_name__ ) :] for old_layer_name in new_layer_name_dict: lowercase__ = new_k.replace(__magic_name__ , new_layer_name_dict[old_layer_name] ) lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowercase__ = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} lowercase__ = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowercase__ = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(__magic_name__ ) != 0: raise ValueError(f'''extra keys found: {extra_keys}''' ) if len(__magic_name__ ) != 0: raise ValueError(f'''missing keys: {missing_keys}''' ) model.load_state_dict(__magic_name__ , strict=__magic_name__ ) lowercase__ = model.num_parameters(exclude_embeddings=__magic_name__ ) lowercase__ = checkpoint["""best_val_loss"""].item() logger.info(f'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(__magic_name__ , 3 )} loss''' ) model.eval() model.to(__magic_name__ ) del checkpoint, state_dict return model def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : str=False , __magic_name__ : int="text" ) -> Dict: """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowercase__ = """cpu""" # do conversion on cpu lowercase__ = _get_ckpt_path(__magic_name__ , use_small=__magic_name__ ) lowercase__ = _load_model(__magic_name__ , __magic_name__ , model_type=__magic_name__ , use_small=__magic_name__ ) # load bark initial model lowercase__ = _bark_load_model(__magic_name__ , """cpu""" , model_type=__magic_name__ , use_small=__magic_name__ ) if model_type == "text": lowercase__ = bark_model["""model"""] if model.num_parameters(exclude_embeddings=__magic_name__ ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model lowercase__ = 5 lowercase__ = 10 if model_type in ["text", "coarse"]: lowercase__ = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowercase__ = bark_model(__magic_name__ )[0] lowercase__ = model(__magic_name__ ) # take last logits lowercase__ = output_new_model_total.logits[:, [-1], :] else: lowercase__ = 3 lowercase__ = 8 lowercase__ = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowercase__ = model(__magic_name__ , __magic_name__ ) lowercase__ = bark_model(__magic_name__ , __magic_name__ ) lowercase__ = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("""initial and new outputs are not equal""" ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[Any] , ) -> Any: """simple docstring""" lowercase__ = os.path.join(__magic_name__ , __magic_name__ ) lowercase__ = BarkSemanticConfig.from_pretrained(os.path.join(__magic_name__ , """config.json""" ) ) lowercase__ = BarkCoarseConfig.from_pretrained(os.path.join(__magic_name__ , """config.json""" ) ) lowercase__ = BarkFineConfig.from_pretrained(os.path.join(__magic_name__ , """config.json""" ) ) lowercase__ = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) lowercase__ = BarkSemanticModel.from_pretrained(__magic_name__ ) lowercase__ = BarkCoarseModel.from_pretrained(__magic_name__ ) lowercase__ = BarkFineModel.from_pretrained(__magic_name__ ) lowercase__ = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) lowercase__ = BarkConfig.from_sub_model_configs( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowercase__ = BarkModel(__magic_name__ ) lowercase__ = semantic lowercase__ = coarseAcoustic lowercase__ = fineAcoustic lowercase__ = codec lowercase__ = bark_generation_config Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) bark.save_pretrained(__magic_name__ , repo_id=__magic_name__ , push_to_hub=__magic_name__ ) if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') A : int = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
305
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
1
def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : int ) -> List[str]: """simple docstring""" lowercase__ = [1] for i in range(2 , __magic_name__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" lowercase__ = [] lowercase__ = list(range(__magic_name__ ) ) # Find permutation while factorials: lowercase__ = factorials.pop() lowercase__ , lowercase__ = divmod(__magic_name__ , __magic_name__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
1
# using dfs for finding eulerian path traversal def UpperCamelCase ( __magic_name__ : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple=None ) -> Optional[Any]: """simple docstring""" lowercase__ = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowercase__ , lowercase__ = True, True lowercase__ = dfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return path def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Any ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = -1 for i in range(__magic_name__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowercase__ = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[str] ) -> int: """simple docstring""" lowercase__ = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowercase__ , lowercase__ = check_circuit_or_path(__magic_name__ , __magic_name__ ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return lowercase__ = 1 if check == 2: lowercase__ = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) lowercase__ = dfs(__magic_name__ , __magic_name__ , __magic_name__ ) print(__magic_name__ ) def UpperCamelCase ( ) -> int: """simple docstring""" lowercase__ = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowercase__ = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowercase__ = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowercase__ = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowercase__ = { 1: [], 2: [] # all degree is zero } lowercase__ = 10 check_euler(__magic_name__ , __magic_name__ ) check_euler(__magic_name__ , __magic_name__ ) check_euler(__magic_name__ , __magic_name__ ) check_euler(__magic_name__ , __magic_name__ ) check_euler(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
305
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Optional[Any] = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''informer''' A__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__(self : Any , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : str = "student_t" , _UpperCAmelCase : str = "nll" , _UpperCAmelCase : int = 1 , _UpperCAmelCase : List[int] = None , _UpperCAmelCase : Optional[Union[str, bool]] = "mean" , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 32 , _UpperCAmelCase : int = 32 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , _UpperCAmelCase : str = "gelu" , _UpperCAmelCase : float = 0.05 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : int = 100 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str = "prob" , _UpperCAmelCase : int = 5 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Dict , ) -> int: """simple docstring""" lowercase__ = prediction_length lowercase__ = context_length or prediction_length lowercase__ = distribution_output lowercase__ = loss lowercase__ = input_size lowercase__ = num_time_features lowercase__ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowercase__ = scaling lowercase__ = num_dynamic_real_features lowercase__ = num_static_real_features lowercase__ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) lowercase__ = cardinality else: lowercase__ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) lowercase__ = embedding_dimension else: lowercase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase__ = num_parallel_samples # Transformer architecture configuration lowercase__ = input_size * len(self.lags_sequence ) + self._number_of_features lowercase__ = d_model lowercase__ = encoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = encoder_ffn_dim lowercase__ = decoder_ffn_dim lowercase__ = encoder_layers lowercase__ = decoder_layers lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = activation_function lowercase__ = init_std lowercase__ = use_cache # Informer lowercase__ = attention_type lowercase__ = sampling_factor lowercase__ = distil super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
305
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast A : Any = datasets.utils.logging.get_logger(__name__) @dataclass class A ( datasets.BuilderConfig ): '''simple docstring''' A__ = 1_00_00 A__ = None A__ = None class A ( datasets.ArrowBasedBuilder ): '''simple docstring''' A__ = ParquetConfig def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowercase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): lowercase__ = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase__ = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowercase__ = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase__ = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_UpperCAmelCase ): with open(_UpperCAmelCase , """rb""" ) as f: lowercase__ = datasets.Features.from_arrow_schema(pq.read_schema(_UpperCAmelCase ) ) break splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={"""files""": files} ) ) return splits def lowerCamelCase__ (self : str , _UpperCAmelCase : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowercase__ = table_cast(_UpperCAmelCase , self.info.features.arrow_schema ) return pa_table def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , """rb""" ) as f: lowercase__ = pq.ParquetFile(_UpperCAmelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowercase__ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(_UpperCAmelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_UpperCAmelCase )}: {e}''' ) raise
305
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
1
import math A : Optional[Any] = 1_0 A : List[str] = 7 A : str = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( __magic_name__ : int = 20 ) -> str: """simple docstring""" lowercase__ = math.comb(__magic_name__ , __magic_name__ ) lowercase__ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __magic_name__ ) lowercase__ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
305
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = AlbertConfig.from_json_file(__magic_name__ ) print(f'''Building PyTorch model from configuration: {config}''' ) lowercase__ = AlbertForPreTraining(__magic_name__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
305
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
1
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None A : Union[str, Any] = namedtuple('CoinsDistribResult', 'moves excess') def UpperCamelCase ( __magic_name__ : TreeNode | None ) -> int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(__magic_name__ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__magic_name__ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__magic_name__ ) != count_coins(__magic_name__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(__magic_name__ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase__ , lowercase__ = get_distrib(node.left ) lowercase__ , lowercase__ = get_distrib(node.right ) lowercase__ = 1 - left_distrib_excess lowercase__ = 1 - right_distrib_excess lowercase__ = ( left_distrib_moves + right_distrib_moves + abs(__magic_name__ ) + abs(__magic_name__ ) ) lowercase__ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__magic_name__ , __magic_name__ ) return get_distrib(__magic_name__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
305
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A : int = logging.get_logger(__name__) class A ( enum.Enum ): '''simple docstring''' A__ = 0 A__ = 1 @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''generated''' def __init__(self : Optional[int] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict , ) -> List[str]: """simple docstring""" lowercase__ = {} if truncation is not None: lowercase__ = truncation lowercase__ = generate_kwargs lowercase__ = {} if return_tensors is not None and return_type is None: lowercase__ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase__ = return_type if clean_up_tokenization_spaces is not None: lowercase__ = clean_up_tokenization_spaces if stop_sequence is not None: lowercase__ = self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) lowercase__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" return True def lowerCamelCase__ (self : Union[str, Any] , *_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , _UpperCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) lowercase__ = ([prefix + arg for arg in args[0]],) lowercase__ = True elif isinstance(args[0] , _UpperCAmelCase ): lowercase__ = (prefix + args[0],) lowercase__ = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) lowercase__ = self.tokenizer(*_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__(self : Optional[int] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" lowercase__ = super().__call__(*_UpperCAmelCase , **_UpperCAmelCase ) if ( isinstance(args[0] , _UpperCAmelCase ) and all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for el in args[0] ) and all(len(_UpperCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" lowercase__ = self._parse_and_tokenize(_UpperCAmelCase , truncation=_UpperCAmelCase , **_UpperCAmelCase ) return inputs def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : str , **_UpperCAmelCase : Any ) -> List[str]: """simple docstring""" if self.framework == "pt": lowercase__ , lowercase__ = model_inputs["""input_ids"""].shape elif self.framework == "tf": lowercase__ , lowercase__ = tf.shape(model_inputs["""input_ids"""] ).numpy() lowercase__ = generate_kwargs.get("""min_length""" , self.model.config.min_length ) lowercase__ = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(_UpperCAmelCase , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) lowercase__ = self.model.generate(**_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = output_ids.shape[0] if self.framework == "pt": lowercase__ = output_ids.reshape(_UpperCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase__ = tf.reshape(_UpperCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int=ReturnType.TEXT , _UpperCAmelCase : Any=False ) -> Dict: """simple docstring""" lowercase__ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase__ = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: lowercase__ = { f'''{self.return_name}_text''': self.tokenizer.decode( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , ) } records.append(_UpperCAmelCase ) return records @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''summary''' def __call__(self : List[str] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : str ) -> int: """simple docstring""" return super().__call__(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' """a summarization task, where outputs shorter than the input are typically wanted, you might """ f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''translation''' def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[str]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def lowerCamelCase__ (self : List[str] , *_UpperCAmelCase : Any , _UpperCAmelCase : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[str]=None ) -> Optional[int]: """simple docstring""" if getattr(self.tokenizer , """_build_translation_inputs""" , _UpperCAmelCase ): return self.tokenizer._build_translation_inputs( *_UpperCAmelCase , return_tensors=self.framework , truncation=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase ) else: return super()._parse_and_tokenize(*_UpperCAmelCase , truncation=_UpperCAmelCase ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Any=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = super()._sanitize_parameters(**_UpperCAmelCase ) if src_lang is not None: lowercase__ = src_lang if tgt_lang is not None: lowercase__ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase__ = kwargs.get("""task""" , self.task ) lowercase__ = task.split("""_""" ) if task and len(_UpperCAmelCase ) == 4: # translation, XX, to YY lowercase__ = items[1] lowercase__ = items[3] return preprocess_params, forward_params, postprocess_params def __call__(self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" return super().__call__(*_UpperCAmelCase , **_UpperCAmelCase )
305
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Any ) -> List[Any]: """simple docstring""" lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val def UpperCamelCase ( __magic_name__ : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__ = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) lowercase__ = value else: lowercase__ = value return new_state_dict def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int=False ) -> Optional[Any]: """simple docstring""" lowercase__ = """""" if is_panoptic: lowercase__ = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:256, :] lowercase__ = in_proj_bias[:256] lowercase__ = in_proj_weight[256:512, :] lowercase__ = in_proj_bias[256:512] lowercase__ = in_proj_weight[-256:, :] lowercase__ = in_proj_bias[-256:] def UpperCamelCase ( ) -> Tuple: """simple docstring""" lowercase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase__ = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowercase__ = """resnet101""" if "dc5" in model_name: lowercase__ = True lowercase__ = """panoptic""" in model_name if is_panoptic: lowercase__ = 250 else: lowercase__ = 91 lowercase__ = """huggingface/label-files""" lowercase__ = """coco-detection-id2label.json""" lowercase__ = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) lowercase__ = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} # load image processor lowercase__ = """coco_panoptic""" if is_panoptic else """coco_detection""" lowercase__ = ConditionalDetrImageProcessor(format=__magic_name__ ) # prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=__magic_name__ , return_tensors="""pt""" ) lowercase__ = encoding["""pixel_values"""] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub lowercase__ = torch.hub.load("""DeppMeng/ConditionalDETR""" , __magic_name__ , pretrained=__magic_name__ ).eval() lowercase__ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowercase__ = """conditional_detr.""" + src rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ , is_panoptic=__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__ = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val # finally, create HuggingFace model and load state dict lowercase__ = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() model.push_to_hub(repo_id=__magic_name__ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion lowercase__ = conditional_detr(__magic_name__ ) lowercase__ = model(__magic_name__ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) A : str = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
305
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
1
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = (DDPMParallelScheduler,) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = { """num_train_timesteps""": 1000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_UpperCAmelCase ) return config def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Optional[int]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = len(_UpperCAmelCase ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0 ) lowercase__ = torch.arange(_UpperCAmelCase )[0:3, None].repeat(1 , _UpperCAmelCase ) lowercase__ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowercase__ = scheduler.batch_step_no_noise(_UpperCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 1_153.1_833 ) < 1E-2 assert abs(result_mean.item() - 0.5_005 ) < 1E-3 def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = len(_UpperCAmelCase ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual lowercase__ = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowercase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__ = pred_prev_sample lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = len(_UpperCAmelCase ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual lowercase__ = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowercase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__ = pred_prev_sample lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ (self : List[str] ) -> Any: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) lowercase__ = scheduler.timesteps for i, timestep in enumerate(_UpperCAmelCase ): if i == len(_UpperCAmelCase ) - 1: lowercase__ = -1 else: lowercase__ = timesteps[i + 1] lowercase__ = scheduler.previous_timestep(_UpperCAmelCase ) lowercase__ = prev_t.item() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCAmelCase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = [100, 87, 50, 1, 0] lowercase__ = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
305
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
1
import math import qiskit def UpperCamelCase ( __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(__magic_name__ , __magic_name__ ) or isinstance(__magic_name__ , __magic_name__ ) or isinstance(__magic_name__ , __magic_name__ ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(__magic_name__ ) != input_a) or (math.floor(__magic_name__ ) != input_a) or (math.floor(__magic_name__ ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers lowercase__ = qiskit.QuantumRegister(4 , """qr""" ) lowercase__ = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries lowercase__ = [input_a, input_a, carry_in] lowercase__ = qiskit.QuantumCircuit(__magic_name__ , __magic_name__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__magic_name__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__magic_name__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__magic_name__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __magic_name__ ) # measure the last two qbits lowercase__ = qiskit.Aer.get_backend("""aer_simulator""" ) lowercase__ = qiskit.execute(__magic_name__ , __magic_name__ , shots=1000 ) return job.result().get_counts(__magic_name__ ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
1
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: A : Optional[int] = None A : str = logging.get_logger(__name__) A : Tuple = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } A : List[str] = { 'google/bigbird-roberta-base': 4_0_9_6, 'google/bigbird-roberta-large': 4_0_9_6, 'google/bigbird-base-trivia-itc': 4_0_9_6, } A : List[str] = '▁' class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = BigBirdTokenizer A__ = ['''input_ids''', '''attention_mask'''] A__ = [] def __init__(self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Tuple="<unk>" , _UpperCAmelCase : Tuple="<s>" , _UpperCAmelCase : Optional[Any]="</s>" , _UpperCAmelCase : str="<pad>" , _UpperCAmelCase : List[str]="[SEP]" , _UpperCAmelCase : Union[str, Any]="[MASK]" , _UpperCAmelCase : Optional[int]="[CLS]" , **_UpperCAmelCase : Tuple , ) -> Tuple: """simple docstring""" lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : int , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
305
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
1
def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" for n in range(1 , 100_0000 ): yield n * (n + 1) // 2 def UpperCamelCase ( __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = 1 lowercase__ = 2 while i * i <= n: lowercase__ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def UpperCamelCase ( ) -> Tuple: """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(__magic_name__ ) > 500 ) if __name__ == "__main__": print(solution())
305
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
1
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class A : '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowercase__ = deepcopy(_UpperCAmelCase ) elif os.path.exists(_UpperCAmelCase ): with io.open(_UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: lowercase__ = json.load(_UpperCAmelCase ) else: try: lowercase__ = baseaa.urlsafe_baadecode(_UpperCAmelCase ).decode("""utf-8""" ) lowercase__ = json.loads(_UpperCAmelCase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) lowercase__ = config self.set_stage_and_offload() def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_value("""zero_optimization.stage""" , -1 ) # offload lowercase__ = False if self.is_zeroa() or self.is_zeroa(): lowercase__ = set(["""cpu""", """nvme"""] ) lowercase__ = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowercase__ = True def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.config # find the config node of interest if it exists lowercase__ = ds_key_long.split(""".""" ) lowercase__ = nodes.pop() for node in nodes: lowercase__ = config.get(_UpperCAmelCase ) if config is None: return None, ds_key return config, ds_key def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int]=None ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.find_config_node(_UpperCAmelCase ) if config is None: return default return config.get(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=False ) -> Optional[Any]: """simple docstring""" lowercase__ = self.config # find the config node of interest if it exists lowercase__ = ds_key_long.split(""".""" ) for node in nodes: lowercase__ = config lowercase__ = config.get(_UpperCAmelCase ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(_UpperCAmelCase ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" lowercase__ = self.get_value(_UpperCAmelCase ) return False if value is None else bool(_UpperCAmelCase ) def lowerCamelCase__ (self : int , _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_value(_UpperCAmelCase ) return False if value is None else not bool(_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" return self._stage == 2 def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" return self._stage == 3 def lowerCamelCase__ (self : Dict ) -> Any: """simple docstring""" return self._offload class A : '''simple docstring''' def __init__(self : Union[str, Any] , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = engine def lowerCamelCase__ (self : int , _UpperCAmelCase : Dict , **_UpperCAmelCase : Optional[int] ) -> Tuple: """simple docstring""" self.engine.backward(_UpperCAmelCase , **_UpperCAmelCase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" super().__init__(_UpperCAmelCase , device_placement=_UpperCAmelCase , scaler=_UpperCAmelCase ) lowercase__ = hasattr(self.optimizer , """overflow""" ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : str=None ) -> Union[str, Any]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ) -> str: """simple docstring""" super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class A : '''simple docstring''' def __init__(self : int , _UpperCAmelCase : int , _UpperCAmelCase : int=0.001 , _UpperCAmelCase : str=0 , **_UpperCAmelCase : List[Any] ) -> str: """simple docstring""" lowercase__ = params lowercase__ = lr lowercase__ = weight_decay lowercase__ = kwargs class A : '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : int=0 , **_UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = optimizer lowercase__ = total_num_steps lowercase__ = warmup_num_steps lowercase__ = kwargs
305
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
1
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): '''simple docstring''' @property def lowerCamelCase__ (self : Union[str, Any] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowerCamelCase__ (self : List[str] ) -> Any: """simple docstring""" lowercase__ = self.dummy_uncond_unet lowercase__ = PNDMScheduler() lowercase__ = PNDMPipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) pndm.to(_UpperCAmelCase ) pndm.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pndm(generator=_UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" ).images lowercase__ = torch.manual_seed(0 ) lowercase__ = pndm(generator=_UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" , return_dict=_UpperCAmelCase )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[str]: """simple docstring""" lowercase__ = """google/ddpm-cifar10-32""" lowercase__ = UNetaDModel.from_pretrained(_UpperCAmelCase ) lowercase__ = PNDMScheduler() lowercase__ = PNDMPipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) pndm.to(_UpperCAmelCase ) pndm.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pndm(generator=_UpperCAmelCase , output_type="""numpy""" ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
305
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
1