code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Dict = StableDiffusionSAGPipeline lowercase_ : List[Any] = TEXT_TO_IMAGE_PARAMS lowercase_ : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase_ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase_ : List[str] = False def UpperCamelCase ( self) -> Dict: """simple docstring""" torch.manual_seed(0) _lowercase : int = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) _lowercase : Tuple = DDIMScheduler( beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, beta_schedule='scaled_linear', clip_sample=lowerCamelCase, set_alpha_to_one=lowerCamelCase, ) torch.manual_seed(0) _lowercase : str = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) torch.manual_seed(0) _lowercase : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, ) _lowercase : Dict = CLIPTextModel(lowerCamelCase) _lowercase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _lowercase : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Dict: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : str = torch.manual_seed(lowerCamelCase) else: _lowercase : List[Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : List[Any] = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Dict = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') _lowercase : Optional[Any] = sag_pipe.to(lowerCamelCase) sag_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = '.' _lowercase : int = torch.manual_seed(0) _lowercase : Optional[Any] = sag_pipe( [prompt], generator=lowerCamelCase, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type='np') _lowercase : Tuple = output.images _lowercase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Tuple = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : List[Any] = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') _lowercase : Dict = sag_pipe.to(lowerCamelCase) sag_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Union[str, Any] = '.' _lowercase : str = torch.manual_seed(0) _lowercase : Any = sag_pipe( [prompt], generator=lowerCamelCase, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type='np') _lowercase : List[str] = output.images _lowercase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : int = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') _lowercase : List[str] = sag_pipe.to(lowerCamelCase) sag_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Union[str, Any] = '.' _lowercase : Tuple = torch.manual_seed(0) _lowercase : List[Any] = sag_pipe( [prompt], width=7_68, height=5_12, generator=lowerCamelCase, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type='np', ) _lowercase : Tuple = output.images assert image.shape == (1, 5_12, 7_68, 3)
21
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Dict = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = """layoutlmv3""" def __init__( self : int , snake_case_ : List[Any]=5_0_2_6_5 , snake_case_ : int=7_6_8 , snake_case_ : Optional[int]=1_2 , snake_case_ : Dict=1_2 , snake_case_ : Union[str, Any]=3_0_7_2 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Optional[Any]=0.1 , snake_case_ : List[Any]=5_1_2 , snake_case_ : Any=2 , snake_case_ : Any=0.0_2 , snake_case_ : Union[str, Any]=1e-5 , snake_case_ : Tuple=1 , snake_case_ : Any=0 , snake_case_ : Optional[int]=2 , snake_case_ : List[str]=1_0_2_4 , snake_case_ : int=1_2_8 , snake_case_ : List[Any]=1_2_8 , snake_case_ : List[str]=True , snake_case_ : int=3_2 , snake_case_ : Union[str, Any]=1_2_8 , snake_case_ : Dict=6_4 , snake_case_ : int=2_5_6 , snake_case_ : Tuple=True , snake_case_ : str=True , snake_case_ : Tuple=True , snake_case_ : Optional[Any]=2_2_4 , snake_case_ : List[str]=3 , snake_case_ : Tuple=1_6 , snake_case_ : Any=None , **snake_case_ : Union[str, Any] , ): super().__init__( vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) _UpperCAmelCase = max_ad_position_embeddings _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = has_relative_attention_bias _UpperCAmelCase = rel_pos_bins _UpperCAmelCase = max_rel_pos _UpperCAmelCase = has_spatial_attention_bias _UpperCAmelCase = rel_ad_pos_bins _UpperCAmelCase = max_rel_ad_pos _UpperCAmelCase = text_embed _UpperCAmelCase = visual_embed _UpperCAmelCase = input_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = classifier_dropout class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Tuple = version.parse("""1.12""" ) @property def lowercase ( self : List[str] ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def lowercase ( self : Union[str, Any] ): return 1e-5 @property def lowercase ( self : Dict ): return 1_2 def lowercase ( self : Optional[Any] , snake_case_ : "ProcessorMixin" , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional["TensorType"] = None , snake_case_ : int = 3 , snake_case_ : int = 4_0 , snake_case_ : int = 4_0 , ): setattr(processor.image_processor , "apply_ocr" , snake_case_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(snake_case_ ) _UpperCAmelCase = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _UpperCAmelCase = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _UpperCAmelCase = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _UpperCAmelCase = dict( processor( snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) ) return inputs
22
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1 UpperCAmelCase_ : Dict = [] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator if len(str(A ) ) > len(str(A ) ): result.append(A ) UpperCAmelCase_ : Optional[Any] = numerator UpperCAmelCase_ : Optional[int] = denominator return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
304
0
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Dict = tempfile.mkdtemp() UpperCAmelCase : List[Any] = 8 # DPR tok UpperCAmelCase : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) UpperCAmelCase : List[Any] = os.path.join(__snake_case , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok UpperCAmelCase : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase : Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) UpperCAmelCase : List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase : str = {'''unk_token''': '''<unk>'''} UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) UpperCAmelCase : Tuple = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase : Optional[Any] = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def A ( self : str ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def A ( self : List[Any] ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def A ( self : Dict ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def A ( self : List[str] ) -> Dict: shutil.rmtree(self.tmpdirname ) def A ( self : List[str] ) -> List[str]: UpperCAmelCase : Union[str, Any] = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : str = self.get_dummy_dataset() UpperCAmelCase : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: UpperCAmelCase : List[str] = dataset UpperCAmelCase : str = RagRetriever( __snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def A ( self : List[Any] , __snake_case : bool ) -> List[str]: UpperCAmelCase : Optional[int] = self.get_dummy_dataset() UpperCAmelCase : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: UpperCAmelCase : int = os.path.join(self.tmpdirname , '''dataset''' ) UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset UpperCAmelCase : str = RagRetriever( __snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: UpperCAmelCase : Union[str, Any] = RagRetriever( __snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __snake_case ) , ) return retriever def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : Optional[int] = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase : Dict = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) UpperCAmelCase : int = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__snake_case , open(__snake_case , '''wb''' ) ) UpperCAmelCase : List[str] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) UpperCAmelCase : Dict = RagRetriever( __snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def A ( self : Dict ) -> Optional[Any]: UpperCAmelCase : List[Any] = 1 UpperCAmelCase : Optional[int] = self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = retriever.retrieve(__snake_case , n_docs=__snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __snake_case ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A ( self : Any ) -> List[str]: UpperCAmelCase : List[Any] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: UpperCAmelCase : List[Any] = self.get_dummy_dataset() retriever.save_pretrained(__snake_case ) UpperCAmelCase : Tuple = RagRetriever.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Optional[int] = retriever.retrieve(__snake_case , n_docs=1 ) self.assertTrue(out is not None ) def A ( self : Union[str, Any] ) -> Any: UpperCAmelCase : Any = 1 UpperCAmelCase : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case ) UpperCAmelCase : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = retriever.retrieve(__snake_case , n_docs=__snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __snake_case ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A ( self : Tuple ) -> Any: UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__snake_case ) UpperCAmelCase : Dict = RagRetriever.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : List[Any] = retriever.retrieve(__snake_case , n_docs=1 ) self.assertTrue(out is not None ) def A ( self : Any ) -> Optional[Any]: UpperCAmelCase : Optional[int] = 1 UpperCAmelCase : int = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case ) UpperCAmelCase : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = retriever.retrieve(__snake_case , n_docs=__snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __snake_case ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__snake_case ) UpperCAmelCase : Optional[Any] = RagRetriever.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : List[Any] = retriever.retrieve(__snake_case , n_docs=1 ) self.assertTrue(out is not None ) def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase : List[str] = 1 UpperCAmelCase : Union[str, Any] = self.get_dummy_legacy_index_retriever() UpperCAmelCase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = retriever.retrieve(__snake_case , n_docs=__snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __snake_case ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A ( self : List[str] ) -> List[str]: UpperCAmelCase : int = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__snake_case ) UpperCAmelCase : int = RagRetriever.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : int = retriever.retrieve(__snake_case , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def A ( self : int ) -> Tuple: import torch UpperCAmelCase : List[str] = 1 UpperCAmelCase : List[str] = self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase : str = [[5, 7], [10, 11]] UpperCAmelCase : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Optional[int] = retriever(__snake_case , __snake_case , prefix=retriever.config.generator.prefix , n_docs=__snake_case ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(__snake_case , np.ndarray ) UpperCAmelCase : Tuple = retriever( __snake_case , __snake_case , prefix=retriever.config.generator.prefix , n_docs=__snake_case , return_tensors='''pt''' , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__snake_case , torch.Tensor ) self.assertIsInstance(__snake_case , torch.Tensor ) self.assertIsInstance(__snake_case , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def A ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = self.get_dpr_ctx_encoder_tokenizer() UpperCAmelCase : List[Any] = 1 UpperCAmelCase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case ) retriever.set_ctx_encoder_tokenizer(__snake_case ) UpperCAmelCase : Union[str, Any] = [[5, 7], [10, 11]] UpperCAmelCase : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Optional[int] = retriever(__snake_case , __snake_case , prefix=retriever.config.generator.prefix , n_docs=__snake_case ) self.assertEqual( len(__snake_case ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __snake_case ) # check for doc token related keys in dictionary.
23
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__(self : Union[str, Any] , a__ : List[str] , a__ : Any=2 , a__ : Dict=3 , a__ : Dict=4 , a__ : Tuple=2 , a__ : str=7 , a__ : List[Any]=True , a__ : str=True , a__ : Optional[Any]=True , a__ : Optional[Any]=True , a__ : Optional[Any]=99 , a__ : List[Any]=36 , a__ : Optional[Any]=3 , a__ : List[str]=4 , a__ : Tuple=37 , a__ : Any="gelu" , a__ : str=0.1 , a__ : Any=0.1 , a__ : List[str]=512 , a__ : Any=16 , a__ : Tuple=2 , a__ : List[str]=0.0_2 , a__ : int=6 , a__ : Union[str, Any]=6 , a__ : str=3 , a__ : Union[str, Any]=4 , a__ : Tuple=None , a__ : List[Any]=1000 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = patch_size __snake_case = text_seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = coordinate_size __snake_case = shape_size __snake_case = num_labels __snake_case = num_choices __snake_case = scope __snake_case = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case = text_seq_length __snake_case = (image_size // patch_size) ** 2 + 1 __snake_case = self.text_seq_length + self.image_seq_length def a (self : Dict ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def a (self : int , a__ : int , a__ : List[Any] , a__ : Any , a__ : Union[str, Any] , a__ : Dict , a__ : Any , a__ : Dict , a__ : Optional[Any] ): """simple docstring""" __snake_case = LayoutLMvaModel(config=a__ ) model.to(a__ ) model.eval() # text + image __snake_case = model(a__ , pixel_values=a__ ) __snake_case = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ , pixel_values=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ , pixel_values=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case = model(a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case = model(pixel_values=a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def a (self : Dict , a__ : Dict , a__ : Tuple , a__ : Tuple , a__ : List[Any] , a__ : Union[str, Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : List[Any] ): """simple docstring""" __snake_case = self.num_labels __snake_case = LayoutLMvaForSequenceClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a (self : Optional[Any] , a__ : Optional[Any] , a__ : List[Any] , a__ : Optional[int] , a__ : Tuple , a__ : Optional[Any] , a__ : int , a__ : Union[str, Any] , a__ : Dict ): """simple docstring""" __snake_case = self.num_labels __snake_case = LayoutLMvaForTokenClassification(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def a (self : List[str] , a__ : Dict , a__ : Tuple , a__ : Dict , a__ : int , a__ : str , a__ : List[str] , a__ : List[Any] , a__ : List[Any] ): """simple docstring""" __snake_case = LayoutLMvaForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a (self : Any ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = False A_ : Any = False A_ : Optional[int] = False A_ : List[str] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) A_ : Union[str, Any] = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def a (self : Any , a__ : Optional[Any] , a__ : Dict , a__ : Optional[Any] , a__ : Tuple , a__ : List[str] ): """simple docstring""" return True def a (self : List[str] ): """simple docstring""" __snake_case = LayoutLMvaModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : Optional[int] , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Tuple=False ): """simple docstring""" __snake_case = copy.deepcopy(a__ ) if model_class in get_values(a__ ): __snake_case = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(a__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(a__ ): __snake_case = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in get_values(a__ ): __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in [ *get_values(a__ ), ]: __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in [ *get_values(a__ ), ]: __snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=a__ , ) return inputs_dict def a (self : str ): """simple docstring""" self.config_tester.run_common_tests() def a (self : Any ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def a (self : List[str] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def a (self : List[Any] ): """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = LayoutLMvaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ) -> Optional[int]: __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def a (self : int ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=a__ ) if is_vision_available() else None @slow def a (self : Any ): """simple docstring""" __snake_case = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(a__ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=a__ , return_tensors='''pt''' ).pixel_values.to(a__ ) __snake_case = torch.tensor([[1, 2]] ) __snake_case = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __snake_case = model( input_ids=input_ids.to(a__ ) , bbox=bbox.to(a__ ) , pixel_values=pixel_values.to(a__ ) , ) # verify the logits __snake_case = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , a__ ) __snake_case = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1E-4 ) )
24
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase__ : Optional[Any] = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : str = '''dpt''' def __init__(self , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=3_84 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=[2, 5, 8, 11] , SCREAMING_SNAKE_CASE__="project" , SCREAMING_SNAKE_CASE__=[4, 2, 1, 0.5] , SCREAMING_SNAKE_CASE__=[96, 1_92, 3_84, 7_68] , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=-1 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.4 , SCREAMING_SNAKE_CASE__=2_55 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=[1, 10_24, 24, 24] , SCREAMING_SNAKE_CASE__=[0, 1] , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = hidden_size SCREAMING_SNAKE_CASE__ : Optional[int] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) SCREAMING_SNAKE_CASE__ : Any = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } SCREAMING_SNAKE_CASE__ : Optional[Any] = BitConfig(**SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): logger.info("""Initializing the config with a `BiT` backbone.""" ) SCREAMING_SNAKE_CASE__ : str = BitConfig(**SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[Any] = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) SCREAMING_SNAKE_CASE__ : Dict = backbone_featmap_shape SCREAMING_SNAKE_CASE__ : List[Any] = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : int = intermediate_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Tuple = image_size SCREAMING_SNAKE_CASE__ : Tuple = patch_size SCREAMING_SNAKE_CASE__ : Tuple = num_channels SCREAMING_SNAKE_CASE__ : Any = qkv_bias SCREAMING_SNAKE_CASE__ : List[Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) SCREAMING_SNAKE_CASE__ : Dict = readout_type SCREAMING_SNAKE_CASE__ : Optional[int] = reassemble_factors SCREAMING_SNAKE_CASE__ : List[str] = neck_hidden_sizes SCREAMING_SNAKE_CASE__ : Dict = fusion_hidden_size SCREAMING_SNAKE_CASE__ : int = head_in_index SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE__ : Tuple = use_auxiliary_head SCREAMING_SNAKE_CASE__ : List[Any] = auxiliary_loss_weight SCREAMING_SNAKE_CASE__ : Tuple = semantic_loss_ignore_index SCREAMING_SNAKE_CASE__ : List[str] = semantic_classifier_dropout def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE__ : str = self.__class__.model_type return output
25
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
0
import random def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = num - 1 _A : Optional[int] = 0 while s % 2 == 0: _A : str = s // 2 t += 1 for _ in range(5 ): _A : Tuple = random.randrange(2,num - 1 ) _A : Dict = pow(snake_case_,snake_case_,snake_case_ ) if v != 1: _A : int = 0 while v != (num - 1): if i == t - 1: return False else: _A : int = i + 1 _A : Dict = (v**2) % num return True def lowerCAmelCase_ ( snake_case_ ): if num < 2: return False _A : int = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case_ ) def lowerCAmelCase_ ( snake_case_ = 1024 ): while True: _A : List[Any] = random.randrange(2 ** (keysize - 1),2 ** (keysize) ) if is_prime_low_num(snake_case_ ): return num if __name__ == "__main__": _snake_case = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
26
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : List[Any] = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase_ ): A_ = ["pixel_values"] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = 1 / 255 , __a = True , __a = None , __a = None , __a = True , **__a , ): '''simple docstring''' super().__init__(**__a ) __a : int = size if size is not None else {'height': 384, 'width': 384} __a : Any = get_size_dict(__a , default_to_square=__a ) __a : Union[str, Any] = do_resize __a : Tuple = size __a : Optional[int] = resample __a : str = do_rescale __a : List[Any] = rescale_factor __a : Tuple = do_normalize __a : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __a : List[str] = image_std if image_std is not None else OPENAI_CLIP_STD __a : str = do_convert_rgb def __UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BICUBIC , __a = None , **__a , ): '''simple docstring''' __a : str = get_size_dict(__a , default_to_square=__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __a : Optional[Any] = (size['height'], size['width']) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __UpperCAmelCase ( self , __a , __a , __a = None , **__a , ): '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a ) def __UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ): '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ): '''simple docstring''' __a : str = do_resize if do_resize is not None else self.do_resize __a : Tuple = resample if resample is not None else self.resample __a : Dict = do_rescale if do_rescale is not None else self.do_rescale __a : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __a : str = do_normalize if do_normalize is not None else self.do_normalize __a : Optional[int] = image_mean if image_mean is not None else self.image_mean __a : Any = image_std if image_std is not None else self.image_std __a : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __a : Any = size if size is not None else self.size __a : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __a : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __a : List[Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __a : int = [to_numpy_array(__a ) for image in images] if do_resize: __a : Any = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_rescale: __a : Union[str, Any] = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __a : List[str] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __a : Tuple = [to_channel_dimension_format(__a , __a ) for image in images] __a : int = BatchFeature(data={'pixel_values': images} , tensor_type=__a ) return encoded_outputs
27
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _lowerCamelCase : int = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , **UpperCamelCase__ : List[Any] ): """simple docstring""" UpperCamelCase = feature_size UpperCamelCase = sampling_rate UpperCamelCase = padding_value UpperCamelCase = kwargs.pop('padding_side' , 'right' ) UpperCamelCase = kwargs.pop('return_attention_mask' , UpperCamelCase__ ) super().__init__(**UpperCamelCase__ ) def A ( self : int , UpperCamelCase__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = True , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , ): """simple docstring""" if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCamelCase = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' f""" to this method that includes {self.model_input_names[0]}, but you provided""" f""" {list(processed_features.keys() )}""" ) UpperCamelCase = processed_features[self.model_input_names[0]] UpperCamelCase = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(UpperCamelCase__ ) == 0: if return_attention_mask: UpperCamelCase = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCamelCase = required_input[0] if isinstance(UpperCamelCase__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCamelCase = 0 while len(required_input[index] ) == 0: index += 1 if index < len(UpperCamelCase__ ): UpperCamelCase = required_input[index][0] if return_tensors is None: if is_tf_tensor(UpperCamelCase__ ): UpperCamelCase = 'tf' elif is_torch_tensor(UpperCamelCase__ ): UpperCamelCase = 'pt' elif isinstance(UpperCamelCase__ , (int, float, list, tuple, np.ndarray) ): UpperCamelCase = 'np' else: raise ValueError( f"""type of {first_element} unknown: {type(UpperCamelCase__ )}. """ 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCamelCase = to_numpy(UpperCamelCase__ ) else: UpperCamelCase = [to_numpy(UpperCamelCase__ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCamelCase = self._get_padding_strategies(padding=UpperCamelCase__ , max_length=UpperCamelCase__ ) UpperCamelCase = processed_features[self.model_input_names[0]] UpperCamelCase = len(UpperCamelCase__ ) if not all(len(UpperCamelCase__ ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) UpperCamelCase = [] for i in range(UpperCamelCase__ ): UpperCamelCase = {k: v[i] for k, v in processed_features.items()} # truncation UpperCamelCase = self._truncate( UpperCamelCase__ , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , truncation=UpperCamelCase__ , ) truncated_inputs.append(UpperCamelCase__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCamelCase = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCamelCase = PaddingStrategy.MAX_LENGTH UpperCamelCase = {} for i in range(UpperCamelCase__ ): # padding UpperCamelCase = self._pad( truncated_inputs[i] , max_length=UpperCamelCase__ , padding_strategy=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCamelCase = [] if value.dtype is np.dtype(np.floataa ): UpperCamelCase = value.astype(np.floataa ) batch_outputs[key].append(UpperCamelCase__ ) return BatchFeature(UpperCamelCase__ , tensor_type=UpperCamelCase__ ) def A ( self : Union[str, Any] , UpperCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , ): """simple docstring""" UpperCamelCase = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCamelCase = len(UpperCamelCase__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCamelCase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCamelCase = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(UpperCamelCase__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCamelCase = np.ones(len(UpperCamelCase__ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCamelCase = max_length - len(UpperCamelCase__ ) if self.padding_side == "right": if return_attention_mask: UpperCamelCase = np.pad( processed_features['attention_mask'] , (0, difference) ) UpperCamelCase = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCamelCase = np.pad( UpperCamelCase__ , UpperCamelCase__ , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCamelCase = np.pad( processed_features['attention_mask'] , (difference, 0) ) UpperCamelCase = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCamelCase = np.pad( UpperCamelCase__ , UpperCamelCase__ , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def A ( self : Any , UpperCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) UpperCamelCase = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCamelCase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCamelCase = len(UpperCamelCase__ ) > max_length if needs_to_be_truncated: UpperCamelCase = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCamelCase = processed_features['attention_mask'][:max_length] return processed_features def A ( self : List[Any] , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Optional[Any]=None ): """simple docstring""" if padding is not False: if padding is True: UpperCamelCase = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = PaddingStrategy(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = padding else: UpperCamelCase = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
28
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
29
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ReformerTokenizer a_ = ReformerTokenizerFast a_ = True a_ = False a_ = True def A ( self : Optional[Any] ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = '''<s>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 10_00 ) def A ( self : Optional[int] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(_A ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def A ( self : Tuple , _A : Dict=15 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Dict = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def A ( self : Union[str, Any] ) -> int: pass def A ( self : int ) -> Any: UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A ) UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : List[str] ) -> Optional[int]: return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : Tuple = '''Hello World!''' UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def A ( self : List[Any] ) -> str: UpperCAmelCase_ : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase_ : int = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def A ( self : List[str] ) -> Optional[int]: import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ : List[Any] = ''' '''.join(_A ) UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' ) UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape UpperCAmelCase_ : Optional[int] = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def A ( self : int ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ : Optional[Any] = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
304
0
import math def a ( snake_case__: int ): '''simple docstring''' lowercase_ = [True] * n lowercase_ = False lowercase_ = False lowercase_ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): lowercase_ = i * 2 while index < n: lowercase_ = False lowercase_ = index + i lowercase_ = [2] for i in range(3 , snake_case__ , 2 ): if is_prime[i]: primes.append(snake_case__ ) return primes def a ( snake_case__: int = 999_966_663_333 ): '''simple docstring''' lowercase_ = math.floor(math.sqrt(snake_case__ ) ) + 100 lowercase_ = prime_sieve(snake_case__ ) lowercase_ = 0 lowercase_ = 0 lowercase_ = primes[prime_index] while (last_prime**2) <= limit: lowercase_ = primes[prime_index + 1] lowercase_ = last_prime**2 lowercase_ = next_prime**2 # Get numbers divisible by lps(current) lowercase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowercase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowercase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowercase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
30
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
0
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } __SCREAMING_SNAKE_CASE : Union[str, Any] = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def UpperCamelCase_ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): _UpperCAmelCase : List[Any] = getattr(_UpperCAmelCase , _UpperCAmelCase ) if weight_type is not None: _UpperCAmelCase : Optional[Any] = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape else: _UpperCAmelCase : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _UpperCAmelCase : Optional[int] = value elif weight_type == "weight_g": _UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_v": _UpperCAmelCase : List[str] = value elif weight_type == "bias": _UpperCAmelCase : str = value else: _UpperCAmelCase : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase_ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = [] _UpperCAmelCase : Optional[Any] = fairseq_model.state_dict() _UpperCAmelCase : Dict = hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) _UpperCAmelCase : Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCAmelCase : Dict = True if "*" in mapped_key: _UpperCAmelCase : Union[str, Any] = name.split(_UpperCAmelCase )[0].split("." )[-2] _UpperCAmelCase : Dict = mapped_key.replace("*" , _UpperCAmelCase ) if "weight_g" in name: _UpperCAmelCase : Any = "weight_g" elif "weight_v" in name: _UpperCAmelCase : str = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: _UpperCAmelCase : Optional[int] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase : Optional[Any] = "weight" else: _UpperCAmelCase : Tuple = None set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) continue if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def UpperCamelCase_ ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = full_name.split("conv_layers." )[-1] _UpperCAmelCase : str = name.split("." ) _UpperCAmelCase : Any = int(items[0] ) _UpperCAmelCase : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _UpperCAmelCase : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _UpperCAmelCase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _UpperCAmelCase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _UpperCAmelCase : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCAmelCase ) @torch.no_grad() def UpperCamelCase_ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=None ) -> Any: """simple docstring""" _UpperCAmelCase : int = torch.load(_UpperCAmelCase ) _UpperCAmelCase : Tuple = WavLMConfigOrig(checkpoint["cfg"] ) _UpperCAmelCase : Tuple = WavLMOrig(_UpperCAmelCase ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: _UpperCAmelCase : List[str] = WavLMConfig.from_pretrained(_UpperCAmelCase ) else: _UpperCAmelCase : List[Any] = WavLMConfig() _UpperCAmelCase : Optional[Any] = WavLMModel(_UpperCAmelCase ) recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase ) hf_wavlm.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
31
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
0
from manim import * class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: a_ : Optional[int] = Rectangle(height=0.5 , width=0.5 ) a_ : List[Any] = Rectangle(height=0.25 , width=0.25 ) a_ : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) a_ : str = [mem.copy() for i in range(6 )] a_ : Tuple = [mem.copy() for i in range(6 )] a_ : Any = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : int = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Optional[Any] = VGroup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Optional[Any] = Text('CPU' , font_size=2_4 ) a_ : Any = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = [mem.copy() for i in range(4 )] a_ : List[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Any = Text('GPU' , font_size=2_4 ) a_ : Optional[Any] = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) gpu.move_to([-1, -1, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = [mem.copy() for i in range(6 )] a_ : List[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : List[str] = Text('Model' , font_size=2_4 ) a_ : int = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) model.move_to([3, -1.0, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : Dict = [] a_ : str = [] a_ : int = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): rect.set_stroke(SCREAMING_SNAKE_CASE__ ) a_ : int = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=SCREAMING_SNAKE_CASE__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=SCREAMING_SNAKE_CASE__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=SCREAMING_SNAKE_CASE__ , buff=0.0 ) self.add(SCREAMING_SNAKE_CASE__ ) model_cpu_arr.append(SCREAMING_SNAKE_CASE__ ) self.add(*SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) a_ : Tuple = [mem.copy() for i in range(6 )] a_ : Union[str, Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Dict = Text('Loaded Checkpoint' , font_size=2_4 ) a_ : str = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : Dict = [] a_ : Optional[int] = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): a_ : Union[str, Any] = fill.copy().set_fill(SCREAMING_SNAKE_CASE__ , opacity=0.7 ) target.move_to(SCREAMING_SNAKE_CASE__ ) ckpt_arr.append(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(SCREAMING_SNAKE_CASE__ ) self.add(*SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) a_ : List[str] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a_ : Optional[Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(SCREAMING_SNAKE_CASE__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : str = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) a_ : List[Any] = [meta_mem.copy() for i in range(6 )] a_ : Optional[Any] = [meta_mem.copy() for i in range(6 )] a_ : int = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Optional[int] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Tuple = VGroup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Dict = Text('Disk' , font_size=2_4 ) a_ : Optional[Any] = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(SCREAMING_SNAKE_CASE__ , run_time=3 ) , Write(SCREAMING_SNAKE_CASE__ , run_time=1 ) , Create(SCREAMING_SNAKE_CASE__ , run_time=1 ) ) a_ : List[Any] = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): a_ : List[str] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(SCREAMING_SNAKE_CASE__ , run_time=1.5 ) ) self.play(*SCREAMING_SNAKE_CASE__ ) self.play(FadeOut(SCREAMING_SNAKE_CASE__ ) ) a_ : Optional[Any] = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE__ , run_time=3 ) ) self.play( FadeOut(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) , ) self.wait()
32
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
0
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Optional[int] = {'''vocab_file''': '''vocab.txt'''} __A : int = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } __A : int = { '''facebook/esm2_t6_8M_UR50D''': 1_024, '''facebook/esm2_t12_35M_UR50D''': 1_024, } def lowercase ( __snake_case : str ): with open(__snake_case , '''r''' ) as f: lowercase_ : int = f.read().splitlines() return [l.strip() for l in lines] class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : str = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , A : Dict , A : Tuple="<unk>" , A : List[Any]="<cls>" , A : int="<pad>" , A : Optional[Any]="<mask>" , A : List[Any]="<eos>" , **A : Tuple , ) -> Union[str, Any]: super().__init__(**A ) lowercase_ : Optional[Any] = load_vocab_file(A ) lowercase_ : str = dict(enumerate(self.all_tokens ) ) lowercase_ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ : Union[str, Any] = unk_token lowercase_ : Union[str, Any] = cls_token lowercase_ : Optional[int] = pad_token lowercase_ : List[Any] = mask_token lowercase_ : str = eos_token lowercase_ : Optional[Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A ( self : Optional[int] , A : int ) -> str: return self._id_to_token.get(A , self.unk_token ) def A ( self : Optional[Any] , A : str ) -> int: return self._token_to_id.get(A , self._token_to_id.get(self.unk_token ) ) def A ( self : str , A : List[str] , **A : Tuple ) -> Any: return text.split() def A ( self : Union[str, Any] , A : int=False ) -> List[Any]: return len(self._id_to_token ) def A ( self : List[Any] ) -> Any: return {token: i for i, token in enumerate(self.all_tokens )} def A ( self : int , A : str ) -> int: return self._token_to_id.get(A , self._token_to_id.get(self.unk_token ) ) def A ( self : List[Any] , A : int ) -> str: return self._id_to_token.get(A , self.unk_token ) def A ( self : Dict , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: lowercase_ : str = [self.cls_token_id] lowercase_ : Any = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A ( self : Union[str, Any] , A : List , A : Optional[List] = None , A : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ : Any = [1] + ([0] * len(A )) + [1] if token_ids_a is not None: mask += [0] * len(A ) + [1] return mask def A ( self : Union[str, Any] , A : Union[str, Any] , A : int ) -> List[str]: lowercase_ : Union[str, Any] = os.path.join(A , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(A , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def A ( self : Optional[Any] ) -> int: return self.get_vocab_size(with_added_tokens=A ) def A ( self : Dict , A : Union[List[str], List[AddedToken]] , A : bool = False ) -> int: return super()._add_tokens(A , special_tokens=A )
33
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
0
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter A =True except ImportError: A =False A =logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case_ (_a : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _a ( __a ): @staticmethod def A ( lowercase : ArgumentParser ): '''simple docstring''' UpperCAmelCase = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=lowercase , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=lowercase , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=lowercase ) def __init__( self : List[Any] , lowercase : bool , lowercase : str , lowercase : Dict=None , *lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = testing UpperCAmelCase = testing_file UpperCAmelCase = path def A ( self : Optional[Any] ): '''simple docstring''' warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCAmelCase = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(lowercase ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCAmelCase = ( Path(lowercase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCAmelCase = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(lowercase ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCAmelCase = json.load(lowercase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase , extra_context=lowercase , ) UpperCAmelCase = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCAmelCase = json.load(lowercase ) UpperCAmelCase = configuration['''lowercase_modelname'''] UpperCAmelCase = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"{directory}/configuration.json" ) UpperCAmelCase = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCAmelCase = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCAmelCase = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCAmelCase = f"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}" os.makedirs(lowercase , exist_ok=lowercase ) os.makedirs(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}" , exist_ok=lowercase ) # Tests require submodules as they have parent imports with open(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py" , '''w''' ): pass shutil.move( f"{directory}/__init__.py" , f"{model_dir}/__init__.py" , ) shutil.move( f"{directory}/configuration_{lowercase_model_name}.py" , f"{model_dir}/configuration_{lowercase_model_name}.py" , ) def remove_copy_lines(lowercase : Union[str, Any] ): with open(lowercase , '''r''' ) as f: UpperCAmelCase = f.readlines() with open(lowercase , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowercase ) if output_pytorch: if not self._testing: remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_{lowercase_model_name}.py" , f"{model_dir}/modeling_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_tf_{lowercase_model_name}.py" , f"{model_dir}/modeling_tf_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_tf_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py" ) if output_flax: if not self._testing: remove_copy_lines(f"{directory}/modeling_flax_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_flax_{lowercase_model_name}.py" , f"{model_dir}/modeling_flax_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_flax_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_flax_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_flax_{lowercase_model_name}.py" ) shutil.move( f"{directory}/{lowercase_model_name}.md" , f"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md" , ) shutil.move( f"{directory}/tokenization_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/tokenization_fast_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}_fast.py" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowercase : str , lowercase : str , lowercase : List[str] ): # Create temp file UpperCAmelCase , UpperCAmelCase = mkstemp() UpperCAmelCase = False with fdopen(lowercase , '''w''' ) as new_file: with open(lowercase ) as old_file: for line in old_file: new_file.write(lowercase ) if line_to_copy_below in line: UpperCAmelCase = True for line_to_copy in lines_to_copy: new_file.write(lowercase ) if not line_found: raise ValueError(f"Line {line_to_copy_below} was not found in file." ) # Copy the file permissions from the old file to the new file copymode(lowercase , lowercase ) # Remove original file remove(lowercase ) # Move new file move(lowercase , lowercase ) def skip_units(lowercase : List[Any] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowercase : Tuple ): with open(lowercase ) as datafile: UpperCAmelCase = [] UpperCAmelCase = False UpperCAmelCase = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCAmelCase = line.split('''"''' )[1] UpperCAmelCase = skip_units(lowercase ) elif "# Below: " in line and "##" not in line: UpperCAmelCase = line.split('''"''' )[1] UpperCAmelCase = skip_units(lowercase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowercase , lowercase , lowercase ) UpperCAmelCase = [] elif "# Replace with" in line and "##" not in line: UpperCAmelCase = [] elif "##" not in line: lines_to_copy.append(lowercase ) remove(lowercase ) replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py" ) os.rmdir(lowercase )
34
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a = 16 __a = 32 def __snake_case( _lowerCAmelCase , _lowerCAmelCase = 16 ) -> List[Any]: snake_case__ : Any = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case__ : Optional[int] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : str = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : str = 16 elif accelerator.mixed_precision != "no": snake_case__ : Union[str, Any] = 8 else: snake_case__ : int = None return tokenizer.pad( _lowerCAmelCase , padding="""longest""" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. snake_case__ : List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase , drop_last=_lowerCAmelCase ) snake_case__ : Any = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: # Initialize accelerator snake_case__ : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : Optional[Any] = config["""lr"""] snake_case__ : Tuple = int(config["""num_epochs"""] ) snake_case__ : Optional[int] = int(config["""seed"""] ) snake_case__ : Tuple = int(config["""batch_size"""] ) snake_case__ : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation snake_case__ : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case__ : int = batch_size // MAX_GPU_BATCH_SIZE snake_case__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(_lowerCAmelCase ) snake_case__ , snake_case__ : Any = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : List[str] = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : Union[str, Any] = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler snake_case__ : str = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case__ : Union[str, Any] = model(**_lowerCAmelCase ) snake_case__ : Union[str, Any] = outputs.loss snake_case__ : Dict = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : str = model(**_lowerCAmelCase ) snake_case__ : Dict = outputs.logits.argmax(dim=-1 ) snake_case__ , snake_case__ : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) snake_case__ : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _lowerCAmelCase ) def __snake_case( ) -> Any: snake_case__ : Dict = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) snake_case__ : Dict = parser.parse_args() snake_case__ : List[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
35
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
0
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = set() # edges = list of graph's edges _lowerCAmelCase : Dict = get_edges(_lowerCamelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _lowerCAmelCase , _lowerCAmelCase : List[Any] = edges.pop() chosen_vertices.add(_lowerCamelCase ) chosen_vertices.add(_lowerCamelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_lowerCamelCase ) return chosen_vertices def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
36
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
0
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=0.2 ,__UpperCAmelCase=0.2 ) -> str: lowerCAmelCase__ : Dict = bp_numa lowerCAmelCase__ : Optional[int] = bp_numa lowerCAmelCase__ : Dict = bp_numa lowerCAmelCase__ : List[Any] = conva_get[:2] lowerCAmelCase__ : Tuple = conva_get[2] lowerCAmelCase__ : int = size_pa lowerCAmelCase__ : str = rate_w lowerCAmelCase__ : Optional[int] = rate_t lowerCAmelCase__ : int = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowerCAmelCase__ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowerCAmelCase__ : Dict = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowerCAmelCase__ : Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowerCAmelCase__ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 lowerCAmelCase__ : str = -2 * np.random.rand(self.num_bpa ) + 1 def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: # save model dict with pickle lowerCAmelCase__ : Optional[Any] = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(__UpperCAmelCase ,"""wb""" ) as f: pickle.dump(__UpperCAmelCase ,__UpperCAmelCase ) print(F"""Model saved: {save_path}""" ) @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ) -> List[Any]: # read saved model with open(__UpperCAmelCase ,"""rb""" ) as f: lowerCAmelCase__ : List[str] = pickle.load(__UpperCAmelCase ) # noqa: S301 lowerCAmelCase__ : Any = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) lowerCAmelCase__ : Optional[int] = model_dic.get("""size_pooling1""" ) lowerCAmelCase__ : Union[str, Any] = model_dic.get("""num_bp1""" ) lowerCAmelCase__ : Dict = model_dic.get("""num_bp2""" ) lowerCAmelCase__ : Optional[int] = model_dic.get("""num_bp3""" ) lowerCAmelCase__ : List[Any] = model_dic.get("""rate_weight""" ) lowerCAmelCase__ : Any = model_dic.get("""rate_thre""" ) # create model instance lowerCAmelCase__ : Optional[int] = CNN(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) # modify model parameter lowerCAmelCase__ : List[str] = model_dic.get("""w_conv1""" ) lowerCAmelCase__ : Dict = model_dic.get("""wkj""" ) lowerCAmelCase__ : str = model_dic.get("""vji""" ) lowerCAmelCase__ : Dict = model_dic.get("""thre_conv1""" ) lowerCAmelCase__ : Dict = model_dic.get("""thre_bp2""" ) lowerCAmelCase__ : Any = model_dic.get("""thre_bp3""" ) return conv_ins def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Dict: return 1 / (1 + np.exp(-1 * x )) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[Any]: return round(__UpperCAmelCase ,3 ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[str]: # convolution process lowerCAmelCase__ : int = convs[0] lowerCAmelCase__ : Union[str, Any] = convs[1] lowerCAmelCase__ : Optional[Any] = np.shape(__UpperCAmelCase )[0] # get the data slice of original image data, data_focus lowerCAmelCase__ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCAmelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCAmelCase ): lowerCAmelCase__ : str = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : str = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCAmelCase ): lowerCAmelCase__ : List[str] = [] for i_focus in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCAmelCase ) ) lowerCAmelCase__ : List[str] = np.asmatrix(__UpperCAmelCase ).reshape( __UpperCAmelCase ,__UpperCAmelCase ) data_featuremap.append(__UpperCAmelCase ) # expanding the data slice to One dimenssion lowerCAmelCase__ : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCAmelCase ) ) lowerCAmelCase__ : int = np.asarray(__UpperCAmelCase ) return focus_list, data_featuremap def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase="average_pool" ) -> List[Any]: # pooling process lowerCAmelCase__ : str = len(featuremaps[0] ) lowerCAmelCase__ : List[Any] = int(size_map / size_pooling ) lowerCAmelCase__ : Any = [] for i_map in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ : Tuple = featuremaps[i_map] lowerCAmelCase__ : Union[str, Any] = [] for i_focus in range(0 ,__UpperCAmelCase ,__UpperCAmelCase ): for j_focus in range(0 ,__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCAmelCase ) ) lowerCAmelCase__ : Tuple = np.asmatrix(__UpperCAmelCase ).reshape(__UpperCAmelCase ,__UpperCAmelCase ) featuremap_pooled.append(__UpperCAmelCase ) return featuremap_pooled def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Tuple: # expanding three dimension data to one dimension list lowerCAmelCase__ : List[str] = [] for i in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ : List[Any] = np.shape(data[i] ) lowerCAmelCase__ : Optional[Any] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowerCAmelCase__ : List[Any] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = np.asarray(__UpperCAmelCase ) return data_expanded def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: # expanding matrix to one dimension list lowerCAmelCase__ : Optional[Any] = np.asarray(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = np.shape(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: lowerCAmelCase__ : int = [] lowerCAmelCase__ : Optional[Any] = 0 for i_map in range(__UpperCAmelCase ): lowerCAmelCase__ : Tuple = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCAmelCase ,__UpperCAmelCase ): for j in range(0 ,__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = pd_pool[ i_pool ] lowerCAmelCase__ : Optional[Any] = i_pool + 1 lowerCAmelCase__ : Dict = np.multiply( __UpperCAmelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCAmelCase ) return pd_all def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=bool ) -> Tuple: # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(__UpperCAmelCase )) ) print((""" - - Shape: Teach_Data """, np.shape(__UpperCAmelCase )) ) lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : Optional[int] = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowerCAmelCase__ : int = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(__UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) lowerCAmelCase__ : Any = np.asmatrix(datas_train[p] ) lowerCAmelCase__ : List[str] = np.asarray(datas_teach[p] ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.convolute( __UpperCAmelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowerCAmelCase__ : Union[str, Any] = self.pooling(__UpperCAmelCase ,self.size_poolinga ) lowerCAmelCase__ : List[Any] = np.shape(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = self._expand(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = data_bp_input lowerCAmelCase__ : int = np.dot(__UpperCAmelCase ,self.vji.T ) - self.thre_bpa lowerCAmelCase__ : Tuple = self.sig(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = np.dot(__UpperCAmelCase ,self.wkj.T ) - self.thre_bpa lowerCAmelCase__ : str = self.sig(__UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowerCAmelCase__ : Optional[Any] = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCAmelCase ,(1 - bp_outa) ) ) lowerCAmelCase__ : List[str] = np.multiply( np.dot(__UpperCAmelCase ,self.wkj ) ,np.multiply(__UpperCAmelCase ,(1 - bp_outa) ) ) lowerCAmelCase__ : Dict = np.dot(__UpperCAmelCase ,self.vji ) lowerCAmelCase__ : List[Any] = pd_i_all / (self.size_poolinga * self.size_poolinga) lowerCAmelCase__ : Dict = pd_conva_pooled.T.getA().tolist() lowerCAmelCase__ : Any = self._calculate_gradient_from_pool( __UpperCAmelCase ,__UpperCAmelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowerCAmelCase__ : Dict = self._expand_mat(pd_conva_all[k_conv] ) lowerCAmelCase__ : Optional[Any] = self.rate_weight * np.dot(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : Any = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowerCAmelCase__ : int = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowerCAmelCase__ : str = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowerCAmelCase__ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowerCAmelCase__ : List[Any] = self.thre_bpa - pd_k_all * self.rate_thre lowerCAmelCase__ : str = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowerCAmelCase__ : Union[str, Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowerCAmelCase__ : List[Any] = rp + 1 lowerCAmelCase__ : List[Any] = error_count / patterns all_mse.append(__UpperCAmelCase ) def draw_error(): lowerCAmelCase__ : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCAmelCase ,"""+-""" ) plt.plot(__UpperCAmelCase ,"""r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(__UpperCAmelCase ,alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Dict: # model predict lowerCAmelCase__ : str = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(__UpperCAmelCase )) ) for p in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ : List[str] = np.asmatrix(datas_test[p] ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.convolute( __UpperCAmelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowerCAmelCase__ : str = self.pooling(__UpperCAmelCase ,self.size_poolinga ) lowerCAmelCase__ : Tuple = self._expand(__UpperCAmelCase ) lowerCAmelCase__ : Dict = data_bp_input lowerCAmelCase__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa lowerCAmelCase__ : Dict = self.sig(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = bp_outa * self.wkj.T - self.thre_bpa lowerCAmelCase__ : Any = self.sig(__UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowerCAmelCase__ : int = [list(map(self.do_round ,__UpperCAmelCase ) ) for each in produce_out] return np.asarray(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: # return the data of image after convoluting process so we can check it out lowerCAmelCase__ : str = np.asmatrix(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.convolute( __UpperCAmelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowerCAmelCase__ : List[Any] = self.pooling(__UpperCAmelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
37
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) snake_case__ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) snake_case__ : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case__ : bool = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( self : Dict ): UpperCamelCase :List[Any] = self.task_name.lower() class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[int] = """train""" snake_case__ : Union[str, Any] = """dev""" snake_case__ : Union[str, Any] = """test""" class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : GlueDataTrainingArguments snake_case__ : str snake_case__ : List[InputFeatures] def __init__( self : List[Any] , __lowerCamelCase : GlueDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizerBase , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[str] = None , ): warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , __lowerCamelCase , ) UpperCamelCase :Tuple = args UpperCamelCase :Dict = glue_processors[args.task_name]() UpperCamelCase :Any = glue_output_modes[args.task_name] if isinstance(__lowerCamelCase , __lowerCamelCase ): try: UpperCamelCase :Any = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file UpperCamelCase :Optional[int] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) UpperCamelCase :Union[str, Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase , UpperCamelCase :Dict = label_list[2], label_list[1] UpperCamelCase :Tuple = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase :str = cached_features_file + """.lock""" with FileLock(__lowerCamelCase ): if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache: UpperCamelCase :List[Any] = time.time() UpperCamelCase :Optional[Any] = torch.load(__lowerCamelCase ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(F"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: UpperCamelCase :int = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCamelCase :Optional[Any] = self.processor.get_test_examples(args.data_dir ) else: UpperCamelCase :str = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCamelCase :int = examples[:limit_length] UpperCamelCase :Optional[int] = glue_convert_examples_to_features( __lowerCamelCase , __lowerCamelCase , max_length=args.max_seq_length , label_list=__lowerCamelCase , output_mode=self.output_mode , ) UpperCamelCase :List[Any] = time.time() torch.save(self.features , __lowerCamelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : int ): return len(self.features ) def __getitem__( self : Optional[int] , __lowerCamelCase : Any ): return self.features[i] def _A ( self : int ): return self.label_list
38
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
0
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __A ( __lowerCAmelCase=None , __lowerCAmelCase=None )-> Dict: """simple docstring""" return field(default_factory=lambda: default , metadata=__lowerCAmelCase ) @dataclass class __lowerCamelCase : """simple docstring""" UpperCamelCase__ = field( metadata={"help": "The csv file to plot."} , ) UpperCamelCase__ = field( default=snake_case__ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) UpperCamelCase__ = field( default=snake_case__ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) UpperCamelCase__ = field( default=snake_case__ , metadata={"help": "Disable logarithmic scale when plotting"} , ) UpperCamelCase__ = field( default=snake_case__ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) UpperCamelCase__ = field( default=snake_case__ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) UpperCamelCase__ = list_field( default=snake_case__ , metadata={"help": "List of model names that are used instead of the ones in the csv file."}) def __A ( __lowerCAmelCase )-> List[str]: """simple docstring""" try: int(__lowerCAmelCase ) return True except ValueError: return False def __A ( __lowerCAmelCase )-> Optional[int]: """simple docstring""" try: float(__lowerCAmelCase ) return True except ValueError: return False class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = args _UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: _UpperCAmelCase = csv.DictReader(UpperCAmelCase ) for row in reader: _UpperCAmelCase = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None _UpperCAmelCase = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None _UpperCAmelCase = float(row['result'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = plt.subplots() _UpperCAmelCase = 'Time usage' if self.args.is_time else 'Memory usage' _UpperCAmelCase = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCAmelCase = sorted(set(self.result_dict[model_name]['bsz'] ) ) _UpperCAmelCase = sorted(set(self.result_dict[model_name]['seq_len'] ) ) _UpperCAmelCase = self.result_dict[model_name]['result'] ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=UpperCAmelCase , ) else: _UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) _UpperCAmelCase = np.asarray(UpperCAmelCase , UpperCAmelCase )[: len(UpperCAmelCase )] plt.scatter( UpperCAmelCase , UpperCAmelCase , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(UpperCAmelCase , UpperCAmelCase , '--' ) title_str += F""" {label_model_name} vs.""" _UpperCAmelCase = title_str[:-4] _UpperCAmelCase = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(UpperCAmelCase ) plt.xlabel(UpperCAmelCase ) plt.ylabel(UpperCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __A ( )-> List[Any]: """simple docstring""" _UpperCAmelCase = HfArgumentParser(__lowerCAmelCase ) _UpperCAmelCase = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase = Plot(args=__lowerCAmelCase ) plot.plot() if __name__ == "__main__": main()
39
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
0
"""simple docstring""" from __future__ import annotations def lowercase ( A_ , A_ , A_ , A_ )-> Optional[Any]: # noqa: E741 '''simple docstring''' while r - l > 1: a : Tuple = (l + r) // 2 if v[m] >= key: a : str = m else: a : Tuple = m # noqa: E741 return r def lowercase ( A_ )-> int: '''simple docstring''' if len(A_ ) == 0: return 0 a : str = [0] * len(A_ ) a : List[Any] = 1 a : List[Any] = v[0] for i in range(1 , len(A_ ) ): if v[i] < tail[0]: a : List[str] = v[i] elif v[i] > tail[length - 1]: a : Optional[Any] = v[i] length += 1 else: a : List[Any] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
40
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
0
'''simple docstring''' from datetime import datetime as dt import os from github import Github _A : List[str] =[ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def SCREAMING_SNAKE_CASE_ () -> Any: lowerCamelCase__ : Tuple = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCamelCase__ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCamelCase__ : Union[str, Any] = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCamelCase__ : List[str] = sorted([comment for comment in issue.get_comments()] , key=lambda UpperCamelCase : i.created_at , reverse=UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = comments[0] if len(UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
41
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : List[str] = logging.get_logger(__name__) lowercase : str = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """deformable_detr""" __lowercase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=3 , lowerCAmelCase_=3_00 , lowerCAmelCase_=10_24 , lowerCAmelCase_=6 , lowerCAmelCase_=10_24 , lowerCAmelCase_=8 , lowerCAmelCase_=6 , lowerCAmelCase_=10_24 , lowerCAmelCase_=8 , lowerCAmelCase_=0.0 , lowerCAmelCase_=True , lowerCAmelCase_="relu" , lowerCAmelCase_=2_56 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1.0 , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_="sine" , lowerCAmelCase_="resnet50" , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_=False , lowerCAmelCase_=3_00 , lowerCAmelCase_=False , lowerCAmelCase_=1 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=1 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.25 , lowerCAmelCase_=False , **lowerCAmelCase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = backbone_config.get('model_type' ) _snake_case = CONFIG_MAPPING[backbone_model_type] _snake_case = config_class.from_dict(lowerCAmelCase_ ) _snake_case = use_timm_backbone _snake_case = backbone_config _snake_case = num_channels _snake_case = num_queries _snake_case = max_position_embeddings _snake_case = d_model _snake_case = encoder_ffn_dim _snake_case = encoder_layers _snake_case = encoder_attention_heads _snake_case = decoder_ffn_dim _snake_case = decoder_layers _snake_case = decoder_attention_heads _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = activation_function _snake_case = init_std _snake_case = init_xavier_std _snake_case = encoder_layerdrop _snake_case = auxiliary_loss _snake_case = position_embedding_type _snake_case = backbone _snake_case = use_pretrained_backbone _snake_case = dilation # deformable attributes _snake_case = num_feature_levels _snake_case = encoder_n_points _snake_case = decoder_n_points _snake_case = two_stage _snake_case = two_stage_num_proposals _snake_case = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = mask_loss_coefficient _snake_case = dice_loss_coefficient _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient _snake_case = focal_alpha _snake_case = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowerCamelCase ( self ): """simple docstring""" return self.encoder_attention_heads @property def lowerCamelCase ( self ): """simple docstring""" return self.d_model def lowerCamelCase ( self ): """simple docstring""" _snake_case = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _snake_case = self.backbone_config.to_dict() _snake_case = self.__class__.model_type return output
42
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) a__ : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) a__ : ClassVar[Features] = Features({} ) a__ : str = "text" @property def UpperCamelCase__ ( self) -> Dict[str, str]: return {self.text_column: "text"}
43
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ) -> Optional[Any]: _lowerCAmelCase : List[Any] = botoa.client("""iam""" ) _lowerCAmelCase : Dict = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_lowerCamelCase ,AssumeRolePolicyDocument=json.dumps(_lowerCamelCase ,indent=2 ) ) _lowerCAmelCase : Union[str, Any] = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=_lowerCamelCase ,PolicyName=f"{role_name}_policy_permission" ,PolicyDocument=json.dumps(_lowerCamelCase ,indent=2 ) ,) except iam_client.exceptions.EntityAlreadyExistsException: print(f"role {role_name} already exists. Using existing one" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> Optional[int]: _lowerCAmelCase : List[str] = botoa.client("""iam""" ) return iam_client.get_role(RoleName=_lowerCamelCase )["Role"]["Arn"] def SCREAMING_SNAKE_CASE ( ) -> int: _lowerCAmelCase : List[Any] = _ask_options( """How do you want to authorize?""" ,["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] ,_lowerCamelCase ,) _lowerCAmelCase : Optional[Any] = None if credentials_configuration == 0: _lowerCAmelCase : Union[str, Any] = _ask_field("""Enter your AWS Profile name: [default] """ ,default="""default""" ) _lowerCAmelCase : List[Any] = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) _lowerCAmelCase : str = _ask_field("""AWS Access Key ID: """ ) _lowerCAmelCase : List[str] = aws_access_key_id _lowerCAmelCase : List[Any] = _ask_field("""AWS Secret Access Key: """ ) _lowerCAmelCase : int = aws_secret_access_key _lowerCAmelCase : Any = _ask_field("""Enter your AWS Region: [us-east-1]""" ,default="""us-east-1""" ) _lowerCAmelCase : int = aws_region _lowerCAmelCase : Union[str, Any] = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" ,["""Provide IAM Role name""", """Create new IAM role using credentials"""] ,_lowerCamelCase ,) if role_management == 0: _lowerCAmelCase : Any = _ask_field("""Enter your IAM role name: """ ) else: _lowerCAmelCase : Optional[int] = """accelerate_sagemaker_execution_role""" print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(_lowerCamelCase ) _lowerCAmelCase : int = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=_lowerCamelCase ,error_message="""Please enter yes or no.""" ,) _lowerCAmelCase : Tuple = None if is_custom_docker_image: _lowerCAmelCase : Optional[int] = _ask_field("""Enter your Docker image: """ ,lambda _lowerCamelCase : str(_lowerCamelCase ).lower() ) _lowerCAmelCase : Dict = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=_lowerCamelCase ,error_message="""Please enter yes or no.""" ,) _lowerCAmelCase : Tuple = None if is_sagemaker_inputs_enabled: _lowerCAmelCase : str = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ ,lambda _lowerCamelCase : str(_lowerCamelCase ).lower() ,) _lowerCAmelCase : Dict = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=_lowerCamelCase ,error_message="""Please enter yes or no.""" ,) _lowerCAmelCase : Union[str, Any] = None if is_sagemaker_metrics_enabled: _lowerCAmelCase : Dict = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ ,lambda _lowerCamelCase : str(_lowerCamelCase ).lower() ,) _lowerCAmelCase : List[Any] = _ask_options( """What is the distributed mode?""" ,["""No distributed training""", """Data parallelism"""] ,_convert_sagemaker_distributed_mode ,) _lowerCAmelCase : List[Any] = {} _lowerCAmelCase : Union[str, Any] = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" ,_convert_yes_no_to_bool ,default=_lowerCamelCase ,error_message="""Please enter yes or no.""" ,) if use_dynamo: _lowerCAmelCase : Tuple = """dynamo_""" _lowerCAmelCase : List[Any] = _ask_options( """Which dynamo backend would you like to use?""" ,[x.lower() for x in DYNAMO_BACKENDS] ,_convert_dynamo_backend ,default=2 ,) _lowerCAmelCase : int = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=_lowerCamelCase ,error_message="""Please enter yes or no.""" ,) if use_custom_options: _lowerCAmelCase : Dict = _ask_options( """Which mode do you want to use?""" ,_lowerCamelCase ,lambda _lowerCamelCase : TORCH_DYNAMO_MODES[int(_lowerCamelCase )] ,default="""default""" ,) _lowerCAmelCase : List[Any] = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=_lowerCamelCase ,error_message="""Please enter yes or no.""" ,) _lowerCAmelCase : Dict = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=_lowerCamelCase ,error_message="""Please enter yes or no.""" ,) _lowerCAmelCase : Any = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: _lowerCAmelCase : List[Any] = _ask_options( _lowerCamelCase ,_lowerCamelCase ,lambda _lowerCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_lowerCamelCase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" _lowerCAmelCase : int = _ask_field(_lowerCamelCase ,lambda _lowerCamelCase : str(_lowerCamelCase ).lower() ,default="""ml.p3.2xlarge""" ) _lowerCAmelCase : int = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): _lowerCAmelCase : List[Any] = _ask_field( """How many machines do you want use? [1]: """ ,_lowerCamelCase ,default=1 ,) _lowerCAmelCase : Optional[Any] = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" ,["""no""", """fp16""", """bf16""", """fp8"""] ,_convert_mixed_precision ,) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=_lowerCamelCase ,compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER ,distributed_type=_lowerCamelCase ,use_cpu=_lowerCamelCase ,dynamo_config=_lowerCamelCase ,eca_instance_type=_lowerCamelCase ,profile=_lowerCamelCase ,region=_lowerCamelCase ,iam_role_name=_lowerCamelCase ,mixed_precision=_lowerCamelCase ,num_machines=_lowerCamelCase ,sagemaker_inputs_file=_lowerCamelCase ,sagemaker_metrics_file=_lowerCamelCase ,)
44
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1 UpperCAmelCase_ : Dict = [] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator if len(str(A ) ) > len(str(A ) ): result.append(A ) UpperCAmelCase_ : Optional[Any] = numerator UpperCAmelCase_ : Optional[int] = denominator return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
304
0
"""simple docstring""" import math import os import sys def lowercase ( lowerCAmelCase__ : str ) -> str: __a = '''''' try: with open(lowerCAmelCase__ , '''rb''' ) as binary_file: __a = binary_file.read() for dat in data: __a = f'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def lowercase ( lowerCAmelCase__ : dict[str, str] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> None: lexicon.pop(lowerCAmelCase__ ) __a = last_match_id if math.loga(lowerCAmelCase__ ).is_integer(): for curr_key in lexicon: __a = '''0''' + lexicon[curr_key] __a = bin(lowerCAmelCase__ )[2:] def lowercase ( lowerCAmelCase__ : str ) -> str: __a = {'''0''': '''0''', '''1''': '''1'''} __a , __a = '''''', '''''' __a = len(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __a = lexicon[curr_string] result += last_match_id add_key_to_lexicon(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) index += 1 __a = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __a = lexicon[curr_string] result += last_match_id return result def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> str: __a = os.path.getsize(lowerCAmelCase__ ) __a = bin(lowerCAmelCase__ )[2:] __a = len(lowerCAmelCase__ ) return "0" * (length_length - 1) + file_length_binary + compressed def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> None: __a = 8 try: with open(lowerCAmelCase__ , '''wb''' ) as opened_file: __a = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(lowerCAmelCase__ , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> None: __a = read_file_binary(lowerCAmelCase__ ) __a = compress_data(lowerCAmelCase__ ) __a = add_file_length(lowerCAmelCase__ , lowerCAmelCase__ ) write_file_binary(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
45
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
0
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) lowerCAmelCase = """""" while len(SCREAMING_SNAKE_CASE ) % 3 != 0: lowerCAmelCase = """0""" + bin_string lowerCAmelCase = [ bin_string[index : index + 3] for index in range(len(SCREAMING_SNAKE_CASE ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowerCAmelCase = 0 for index, val in enumerate(SCREAMING_SNAKE_CASE ): oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE ) ) oct_string += str(SCREAMING_SNAKE_CASE ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
46
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
0
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCamelCase : Optional[Any] = "src/diffusers" lowerCamelCase : str = "." # This is to make sure the diffusers module imported is the one in the repo. lowerCamelCase : Optional[Any] = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCamelCase : List[Any] = spec.loader.load_module() def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> str: """simple docstring""" return line.startswith(_UpperCamelCase ) or len(_UpperCamelCase ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$' , _UpperCamelCase ) is not None def _lowerCAmelCase ( _UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =object_name.split('.' ) _SCREAMING_SNAKE_CASE =0 # First let's find the module where our object lives. _SCREAMING_SNAKE_CASE =parts[i] while i < len(_UpperCamelCase ) and not os.path.isfile(os.path.join(_UpperCamelCase , f"{module}.py" ) ): i += 1 if i < len(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =os.path.join(_UpperCamelCase , parts[i] ) if i >= len(_UpperCamelCase ): raise ValueError(f"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(_UpperCamelCase , f"{module}.py" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _SCREAMING_SNAKE_CASE =f.readlines() # Now let's find the class / func in the code! _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE =0 for name in parts[i + 1 :]: while ( line_index < len(_UpperCamelCase ) and re.search(rf"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_UpperCamelCase ): raise ValueError(f" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _SCREAMING_SNAKE_CASE =line_index while line_index < len(_UpperCamelCase ) and _should_continue(lines[line_index] , _UpperCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE =lines[start_index:line_index] return "".join(_UpperCamelCase ) lowerCamelCase : Optional[int] = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") lowerCamelCase : Any = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") lowerCamelCase : Any = re.compile(r"<FILL\s+[^>]*>") def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =code.split('\n' ) _SCREAMING_SNAKE_CASE =0 while idx < len(_UpperCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_UpperCamelCase ): return re.search(r'^(\s*)\S' , lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =len(get_indent(_UpperCamelCase ) ) > 0 if has_indent: _SCREAMING_SNAKE_CASE =f"class Bla:\n{code}" _SCREAMING_SNAKE_CASE =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =style_docstrings_in_code(_UpperCamelCase ) return result[len('class Bla:\n' ) :] if has_indent else result def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : List[Any]=False ) -> Optional[Any]: """simple docstring""" with open(_UpperCamelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _SCREAMING_SNAKE_CASE =f.readlines() _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =_re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =search.groups() _SCREAMING_SNAKE_CASE =find_code_in_diffusers(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =get_indent(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =line_index + 1 if indent == theoretical_indent else line_index + 2 _SCREAMING_SNAKE_CASE =theoretical_indent _SCREAMING_SNAKE_CASE =start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _SCREAMING_SNAKE_CASE =True while line_index < len(_UpperCamelCase ) and should_continue: line_index += 1 if line_index >= len(_UpperCamelCase ): break _SCREAMING_SNAKE_CASE =lines[line_index] _SCREAMING_SNAKE_CASE =_should_continue(_UpperCamelCase , _UpperCamelCase ) and re.search(f"^{indent}# End copy" , _UpperCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE =lines[start_index:line_index] _SCREAMING_SNAKE_CASE =''.join(_UpperCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _SCREAMING_SNAKE_CASE =[line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(_UpperCamelCase ) is None] _SCREAMING_SNAKE_CASE ='\n'.join(_UpperCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(_UpperCamelCase ) > 0: _SCREAMING_SNAKE_CASE =replace_pattern.replace('with' , '' ).split(',' ) _SCREAMING_SNAKE_CASE =[_re_replace_pattern.search(_UpperCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =pattern.groups() _SCREAMING_SNAKE_CASE =re.sub(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if option.strip() == "all-casing": _SCREAMING_SNAKE_CASE =re.sub(obja.lower() , obja.lower() , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =re.sub(obja.upper() , obja.upper() , _UpperCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _SCREAMING_SNAKE_CASE =blackify(lines[start_index - 1] + theoretical_code ) _SCREAMING_SNAKE_CASE =theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _SCREAMING_SNAKE_CASE =lines[:start_index] + [theoretical_code] + lines[line_index:] _SCREAMING_SNAKE_CASE =start_index + 1 if overwrite and len(_UpperCamelCase ) > 0: # Warn the user a file has been modified. print(f"Detected changes, rewriting {filename}." ) with open(_UpperCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCamelCase ) return diffs def _lowerCAmelCase ( _UpperCamelCase : bool = False ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =glob.glob(os.path.join(_UpperCamelCase , '**/*.py' ) , recursive=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[] for filename in all_files: _SCREAMING_SNAKE_CASE =is_copy_consistent(_UpperCamelCase , _UpperCamelCase ) diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(_UpperCamelCase ) > 0: _SCREAMING_SNAKE_CASE ='\n'.join(_UpperCamelCase ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase : Optional[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
47
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE__ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a = jnp.ones((batch_size, length)) / length return scores def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = None __a = 20 __a = self._get_uniform_logits(batch_size=2 , length=__SCREAMING_SNAKE_CASE) # tweak scores to not be uniform anymore __a = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch __a = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax __a = jax.nn.softmax(__SCREAMING_SNAKE_CASE , axis=-1) __a = FlaxTemperatureLogitsWarper(temperature=0.5) __a = FlaxTemperatureLogitsWarper(temperature=1.3) __a = jax.nn.softmax(temp_dist_warper_sharper(__SCREAMING_SNAKE_CASE , scores.copy() , cur_len=__SCREAMING_SNAKE_CASE) , axis=-1) __a = jax.nn.softmax(temp_dist_warper_smoother(__SCREAMING_SNAKE_CASE , scores.copy() , cur_len=__SCREAMING_SNAKE_CASE) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = None __a = 10 __a = 2 # create ramp distribution __a = np.broadcast_to(np.arange(__SCREAMING_SNAKE_CASE)[None, :] , (batch_size, vocab_size)).copy() __a = ramp_logits[1:, : vocab_size // 2] + vocab_size __a = FlaxTopKLogitsWarper(3) __a = top_k_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case __a = 5 __a = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) __a = np.broadcast_to(np.arange(__SCREAMING_SNAKE_CASE)[None, :] , (batch_size, length)).copy() __a = top_k_warp_safety_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = None __a = 10 __a = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __a = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) __a = FlaxTopPLogitsWarper(0.8) __a = np.exp(top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __a = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3)) # check edge cases with negative and extreme logits __a = np.broadcast_to(np.arange(__SCREAMING_SNAKE_CASE)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __a = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept __a = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) __a = top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = 20 __a = 4 __a = 0 __a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__SCREAMING_SNAKE_CASE) # check that min length is applied at length 5 __a = ids_tensor((batch_size, 20) , vocab_size=20) __a = 5 __a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = min_dist_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''')]) # check that min length is not applied anymore at length 15 __a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = 15 __a = min_dist_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) self.assertFalse(jnp.isinf(__SCREAMING_SNAKE_CASE).any()) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = 20 __a = 4 __a = 0 __a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__SCREAMING_SNAKE_CASE) # check that all scores are -inf except the bos_token_id score __a = ids_tensor((batch_size, 1) , vocab_size=20) __a = 1 __a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __a = 3 __a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) self.assertFalse(jnp.isinf(__SCREAMING_SNAKE_CASE).any()) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = 20 __a = 4 __a = 0 __a = 5 __a = FlaxForcedEOSTokenLogitsProcessor(max_length=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE) # check that all scores are -inf except the eos_token_id when max_length is reached __a = ids_tensor((batch_size, 4) , vocab_size=20) __a = 4 __a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __a = 3 __a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) self.assertFalse(jnp.isinf(__SCREAMING_SNAKE_CASE).any()) def _lowerCamelCase ( self : str): '''simple docstring''' __a = 4 __a = 10 __a = 15 __a = 2 __a = 1 __a = 15 # dummy input_ids and scores __a = ids_tensor((batch_size, sequence_length) , __SCREAMING_SNAKE_CASE) __a = input_ids.copy() __a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = scores.copy() # instantiate all dist processors __a = FlaxTemperatureLogitsWarper(temperature=0.5) __a = FlaxTopKLogitsWarper(3) __a = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors __a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__SCREAMING_SNAKE_CASE) __a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__SCREAMING_SNAKE_CASE) __a = FlaxForcedEOSTokenLogitsProcessor(max_length=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE) __a = 10 # no processor list __a = temp_dist_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) __a = top_k_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) __a = top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) __a = min_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) __a = bos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) __a = eos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) # with processor list __a = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) __a = processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) # scores should be equal self.assertTrue(jnp.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = 4 __a = 10 __a = 15 __a = 2 __a = 1 __a = 15 # dummy input_ids and scores __a = ids_tensor((batch_size, sequence_length) , __SCREAMING_SNAKE_CASE) __a = input_ids.copy() __a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = scores.copy() # instantiate all dist processors __a = FlaxTemperatureLogitsWarper(temperature=0.5) __a = FlaxTopKLogitsWarper(3) __a = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors __a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__SCREAMING_SNAKE_CASE) __a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__SCREAMING_SNAKE_CASE) __a = FlaxForcedEOSTokenLogitsProcessor(max_length=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE) __a = 10 # no processor list def run_no_processor_list(__SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): __a = temp_dist_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) __a = top_k_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) __a = top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) __a = min_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) __a = bos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) __a = eos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) return scores # with processor list def run_processor_list(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any]): __a = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) __a = processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE) return scores __a = jax.jit(__SCREAMING_SNAKE_CASE) __a = jax.jit(__SCREAMING_SNAKE_CASE) __a = jitted_run_no_processor_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = jitted_run_processor_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # scores should be equal self.assertTrue(jnp.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
49
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 class lowerCAmelCase : def __init__( self : List[str] , UpperCAmelCase : int ) -> Dict: lowerCamelCase__ : list[list[Edge]] = [[] for _ in range(UpperCAmelCase )] lowerCamelCase__ : str = size def __getitem__( self : List[str] , UpperCAmelCase : int ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def A_ ( self : Dict ) -> List[Any]: return self._size def A_ ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> List[Any]: if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(UpperCAmelCase , UpperCAmelCase ) ) def A_ ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int ) -> int | None: lowerCamelCase__ : Dict = deque([start_vertex] ) lowerCamelCase__ : list[int | None] = [None] * self.size lowerCamelCase__ : int = 0 while queue: lowerCamelCase__ : str = queue.popleft() lowerCamelCase__ : List[Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCamelCase__ : Any = current_distance + edge.weight lowerCamelCase__ : List[Any] = distances[edge.destination_vertex] if ( isinstance(UpperCAmelCase , UpperCAmelCase ) and new_distance >= dest_vertex_distance ): continue lowerCamelCase__ : List[Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
0
from __future__ import annotations from math import pi def A (__A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if inductance < 0: raise ValueError('''Inductance cannot be negative''' ) if frequency < 0: raise ValueError('''Frequency cannot be negative''' ) if reactance < 0: raise ValueError('''Inductive reactance cannot be negative''' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
51
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ReformerTokenizer a_ = ReformerTokenizerFast a_ = True a_ = False a_ = True def A ( self : Optional[Any] ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = '''<s>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 10_00 ) def A ( self : Optional[int] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(_A ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def A ( self : Tuple , _A : Dict=15 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Dict = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def A ( self : Union[str, Any] ) -> int: pass def A ( self : int ) -> Any: UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A ) UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : List[str] ) -> Optional[int]: return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : Tuple = '''Hello World!''' UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def A ( self : List[Any] ) -> str: UpperCAmelCase_ : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase_ : int = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def A ( self : List[str] ) -> Optional[int]: import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ : List[Any] = ''' '''.join(_A ) UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' ) UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape UpperCAmelCase_ : Optional[int] = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def A ( self : int ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ : Optional[Any] = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
304
0
import warnings warnings.warn( """memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """ """`from accelerate import find_executable_batch_size` to avoid this warning.""", FutureWarning, )
52
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
0
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class snake_case : """simple docstring""" def __init__( self : Tuple , __A : Optional[int] , __A : List[Any]=1_3 , __A : Union[str, Any]=7 , __A : Any=True , __A : List[Any]=True , __A : Any=True , __A : Dict=True , __A : Tuple=9_9 , __A : Any=3_2 , __A : Optional[int]=5 , __A : Optional[int]=4 , __A : List[Any]=4 , __A : int="gelu" , __A : Optional[int]=0.0 , __A : Dict=0.1 , __A : Optional[int]=True , __A : int=5_1_2 , __A : int=1_6 , __A : Optional[Any]=2 , __A : Optional[int]=0.02 , __A : str=3 , __A : List[str]=4 , __A : Tuple=None , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_multiple_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = weight_tying __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self : List[str] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase = True return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self : Any , __A : int , __A : Union[str, Any] , __A : Union[str, Any] ): __UpperCamelCase = GPTNeoXJapaneseModel(config=__A ) model.to(__A ) model.eval() __UpperCamelCase = model(__A , attention_mask=__A ) __UpperCamelCase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : List[Any] , __A : Any , __A : Any , __A : Optional[Any] ): __UpperCamelCase = True __UpperCamelCase = GPTNeoXJapaneseModel(__A ) model.to(__A ) model.eval() __UpperCamelCase = model(__A , attention_mask=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Optional[int] , __A : List[Any] , __A : Union[str, Any] , __A : Tuple , __A : Optional[Any] ): __UpperCamelCase = GPTNeoXJapaneseForCausalLM(config=__A ) model.to(__A ) model.eval() __UpperCamelCase = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[Any] , __A : List[Any] , __A : Union[str, Any] , __A : str ): __UpperCamelCase = True __UpperCamelCase = GPTNeoXJapaneseForCausalLM(config=__A ) model.to(__A ) model.eval() # first forward pass __UpperCamelCase = model(__A , attention_mask=__A , use_cache=__A ) __UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCamelCase = model(__A , attention_mask=__A , output_hidden_states=__A ) __UpperCamelCase = output_from_no_past['hidden_states'][0] __UpperCamelCase = model( __A , attention_mask=__A , past_key_values=__A , output_hidden_states=__A , )['hidden_states'][0] # select random slice __UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-3 ) ) def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =(GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[Any] =(GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Optional[int] =( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] =False SCREAMING_SNAKE_CASE_ : Any =False SCREAMING_SNAKE_CASE_ : Optional[int] =False SCREAMING_SNAKE_CASE_ : int =False def _lowerCamelCase ( self : Dict ): __UpperCamelCase = GPTNeoXJapaneseModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def _lowerCamelCase ( self : str ): self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__A , __A , __A ) def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__A , __A , __A ) def _lowerCamelCase ( self : int ): # This regression test was failing with PyTorch < 1.3 __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() __UpperCamelCase = None self.model_tester.create_and_check_model_as_decoder(__A , __A , __A ) def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__A , __A , __A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__A ) @slow def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = 'abeja/gpt-neox-japanese-2.7b' __UpperCamelCase = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] __UpperCamelCase = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] __UpperCamelCase = GPTNeoXJapaneseTokenizer.from_pretrained(__A ) __UpperCamelCase = GPTNeoXJapaneseForCausalLM.from_pretrained(__A ) __UpperCamelCase = [] for prompt in prompts: __UpperCamelCase = tokenizer(__A , return_tensors='pt' ).input_ids __UpperCamelCase = model.generate(__A , max_length=5_0 ) __UpperCamelCase = tokenizer.batch_decode(__A , skip_special_tokens=__A ) predicted_outputs += generated_string self.assertListEqual(__A , __A )
53
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase_ ( UpperCAmelCase__ : ArgumentParser ) -> int: raise NotImplementedError() @abstractmethod def UpperCAmelCase_ ( self : int ) -> Optional[int]: raise NotImplementedError()
54
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
0
'''simple docstring''' def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): return 1 if input_a == input_a else 0 def __snake_case ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
55
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class a ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self : Dict , lowercase_ : List[str]=None , **lowercase_ : Union[str, Any] ): super().__init__(features=lowercase_ ) snake_case_ = torch_tensor_kwargs import torch # noqa import torch at initialization def A_ ( self : str , lowercase_ : str ): import torch if isinstance(lowercase_ , lowercase_ ) and column: if all( isinstance(lowercase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(lowercase_ ) return column def A_ ( self : Any , lowercase_ : Tuple ): import torch if isinstance(lowercase_ , (str, bytes, type(lowercase_ )) ): return value elif isinstance(lowercase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case_ = {} if isinstance(lowercase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): snake_case_ = {'''dtype''': torch.intaa} elif isinstance(lowercase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case_ = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowercase_ , PIL.Image.Image ): snake_case_ = np.asarray(lowercase_ ) return torch.tensor(lowercase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def A_ ( self : List[Any] , lowercase_ : Optional[int] ): import torch # support for torch, tf, jax etc. if hasattr(lowercase_ , '''__array__''' ) and not isinstance(lowercase_ , torch.Tensor ): snake_case_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowercase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowercase_ ) for substruct in data_struct] ) elif isinstance(lowercase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowercase_ ) for substruct in data_struct] ) return self._tensorize(lowercase_ ) def A_ ( self : Optional[Any] , lowercase_ : dict ): return map_nested(self._recursive_tensorize , lowercase_ , map_list=lowercase_ ) def A_ ( self : Dict , lowercase_ : pa.Table ): snake_case_ = self.numpy_arrow_extractor().extract_row(lowercase_ ) snake_case_ = self.python_features_decoder.decode_row(lowercase_ ) return self.recursive_tensorize(lowercase_ ) def A_ ( self : List[Any] , lowercase_ : pa.Table ): snake_case_ = self.numpy_arrow_extractor().extract_column(lowercase_ ) snake_case_ = self.python_features_decoder.decode_column(lowercase_ , pa_table.column_names[0] ) snake_case_ = self.recursive_tensorize(lowercase_ ) snake_case_ = self._consolidate(lowercase_ ) return column def A_ ( self : str , lowercase_ : pa.Table ): snake_case_ = self.numpy_arrow_extractor().extract_batch(lowercase_ ) snake_case_ = self.python_features_decoder.decode_batch(lowercase_ ) snake_case_ = self.recursive_tensorize(lowercase_ ) for column_name in batch: snake_case_ = self._consolidate(batch[column_name] ) return batch
56
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
0
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets A : Optional[Any] = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" A : Optional[int] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" A : Any = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def snake_case ( self ): if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def snake_case ( self , __a , __a , __a = False , __a = False , __a = False , __a = False , ): __lowerCAmelCase = len(references[0] ) if any(len(__a ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) __lowerCAmelCase = [[refs[i] for refs in references] for i in range(__a )] __lowerCAmelCase = TER( normalized=__a , no_punct=__a , asian_support=__a , case_sensitive=__a , ) __lowerCAmelCase = sb_ter.corpus_score(__a , __a ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
57
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
0
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__( self , A , A=13 , A=30 , A=2 , A=3 , A=True , A=True , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=10 , A=0.02 , A=3 , A=None , A=2 , ) -> Optional[int]: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = scope _SCREAMING_SNAKE_CASE = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 _SCREAMING_SNAKE_CASE = num_patches + 2 def snake_case_( self ) -> Tuple: _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def snake_case_( self ) -> str: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case_( self , A , A , A ) -> Dict: _SCREAMING_SNAKE_CASE = DeiTModel(config=A ) model.to(A ) model.eval() _SCREAMING_SNAKE_CASE = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_( self , A , A , A ) -> Tuple: _SCREAMING_SNAKE_CASE = DeiTForMaskedImageModeling(config=A ) model.to(A ) model.eval() _SCREAMING_SNAKE_CASE = model(A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = DeiTForMaskedImageModeling(A ) model.to(A ) model.eval() _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = model(A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case_( self , A , A , A ) -> Any: _SCREAMING_SNAKE_CASE = self.type_sequence_label_size _SCREAMING_SNAKE_CASE = DeiTForImageClassification(A ) model.to(A ) model.eval() _SCREAMING_SNAKE_CASE = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = DeiTForImageClassification(A ) model.to(A ) model.eval() _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def snake_case_( self ) -> int: _SCREAMING_SNAKE_CASE = DeiTModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def snake_case_( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def snake_case_( self ) -> List[Any]: pass def snake_case_( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def snake_case_( self ) -> List[str]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(A ) _SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def snake_case_( self ) -> int: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def snake_case_( self ) -> int: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def snake_case_( self , A , A , A=False ) -> Dict: _SCREAMING_SNAKE_CASE = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case_( self ) -> Any: if not self.model_tester.is_training: return _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(A ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _SCREAMING_SNAKE_CASE = model_class(A ) model.to(A ) model.train() _SCREAMING_SNAKE_CASE = self._prepare_for_class(A , A , return_labels=A ) _SCREAMING_SNAKE_CASE = model(**A ).loss loss.backward() def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _SCREAMING_SNAKE_CASE = model_class(A ) model.gradient_checkpointing_enable() model.to(A ) model.train() _SCREAMING_SNAKE_CASE = self._prepare_for_class(A , A , return_labels=A ) _SCREAMING_SNAKE_CASE = model(**A ).loss loss.backward() def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(A ), *get_values(A ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'Testing {model_class} with {problem_type["title"]}' ): _SCREAMING_SNAKE_CASE = problem_type["""title"""] _SCREAMING_SNAKE_CASE = problem_type["""num_labels"""] _SCREAMING_SNAKE_CASE = model_class(A ) model.to(A ) model.train() _SCREAMING_SNAKE_CASE = self._prepare_for_class(A , A , return_labels=A ) if problem_type["num_labels"] > 1: _SCREAMING_SNAKE_CASE = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) _SCREAMING_SNAKE_CASE = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=A ) as warning_list: _SCREAMING_SNAKE_CASE = model(**A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def snake_case_( self ) -> Optional[int]: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = DeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowerCamelCase ( ) ->int: _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case_( self ) -> List[str]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def snake_case_( self ) -> Any: _SCREAMING_SNAKE_CASE = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( A ) _SCREAMING_SNAKE_CASE = self.default_image_processor _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**A ) # verify the logits _SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) _SCREAMING_SNAKE_CASE = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def snake_case_( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) _SCREAMING_SNAKE_CASE = self.default_image_processor _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=A , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = inputs.pixel_values.to(A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(A )
58
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
0
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency __lowerCamelCase = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } __lowerCamelCase = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" __lowerCamelCase = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase ( __lowerCamelCase : tuple ): return x[0] def UpperCamelCase ( __lowerCamelCase : str ): snake_case : List[Any] = get_letter_count(__lowerCamelCase ) snake_case : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) snake_case : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__lowerCamelCase ) snake_case : Optional[Any] = "".join(freq_to_letter[freq] ) snake_case : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase , reverse=__lowerCamelCase ) snake_case : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = get_frequency_order(__lowerCamelCase ) snake_case : List[Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
59
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
0
"""simple docstring""" import math def _snake_case ( ): lowerCAmelCase : Union[str, Any] = input('''Enter message: ''' ) lowerCAmelCase : Optional[int] = int(input(f'''Enter key [2-{len(_snake_case ) - 1}]: ''' ) ) lowerCAmelCase : str = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowerCAmelCase : Any = encrypt_message(_snake_case , _snake_case ) elif mode.lower().startswith('''d''' ): lowerCAmelCase : Union[str, Any] = decrypt_message(_snake_case , _snake_case ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f'''Output:\n{text + "|"}''' ) def _snake_case ( _snake_case : int , _snake_case : str ): lowerCAmelCase : Optional[Any] = [''''''] * key for col in range(_snake_case ): lowerCAmelCase : Optional[Any] = col while pointer < len(_snake_case ): cipher_text[col] += message[pointer] pointer += key return "".join(_snake_case ) def _snake_case ( _snake_case : int , _snake_case : str ): lowerCAmelCase : Union[str, Any] = math.ceil(len(_snake_case ) / key ) lowerCAmelCase : str = key lowerCAmelCase : Any = (num_cols * num_rows) - len(_snake_case ) lowerCAmelCase : Dict = [''''''] * num_cols lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): lowerCAmelCase : int = 0 row += 1 return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
0
"""simple docstring""" _a = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def __a ( __lowerCamelCase ): assert type(__lowerCamelCase ) in (int, float) and decimal == int(__lowerCamelCase ) UpperCAmelCase_ : Any = int(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = "" UpperCAmelCase_ : Union[str, Any] = False if decimal < 0: UpperCAmelCase_ : Optional[int] = True decimal *= -1 while decimal > 0: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = divmod(__lowerCamelCase, 16 ) UpperCAmelCase_ : Optional[int] = values[remainder] + hexadecimal UpperCAmelCase_ : List[Any] = "0x" + hexadecimal if negative: UpperCAmelCase_ : Any = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
61
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
0
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = VQModel UpperCAmelCase__ : str = "sample" @property def _a ( self , A_=(32, 32) ) -> str: __UpperCamelCase =4 __UpperCamelCase =3 __UpperCamelCase =floats_tensor((batch_size, num_channels) + sizes ).to(A_ ) return {"sample": image} @property def _a ( self ) -> str: return (3, 32, 32) @property def _a ( self ) -> Optional[int]: return (3, 32, 32) def _a ( self ) -> Optional[Any]: __UpperCamelCase ={ 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } __UpperCamelCase =self.dummy_input return init_dict, inputs_dict def _a ( self ) -> str: pass def _a ( self ) -> List[str]: pass def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(A_ ) __UpperCamelCase =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _a ( self ) -> Tuple: __UpperCamelCase =VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(A_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) __UpperCamelCase =torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) __UpperCamelCase =image.to(A_ ) with torch.no_grad(): __UpperCamelCase =model(A_ ).sample __UpperCamelCase =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __UpperCamelCase =torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=1E-3 ) )
62
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ : Union[str, Any] = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Any = ['OwlViTFeatureExtractor'] lowerCAmelCase_ : List[Any] = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCAmelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
63
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = inspect.getfile(accelerate.test_utils ) _snake_case : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) _snake_case : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) _snake_case : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) _snake_case : Optional[int] = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a_, env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase_ ( self: Dict ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) _snake_case : Optional[int] = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a_, env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : int = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a_, env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) _snake_case : Tuple = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1, cuda_visible_devices="""0,1""" ): execute_subprocess_async(a_, env=os.environ.copy() ) if __name__ == "__main__": A_ = Accelerator() A_ = (accelerator.state.process_index + 2, 10) A_ = torch.randint(0, 10, shape).to(accelerator.device) A_ = '''''' A_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." A_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." A_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
64
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
65
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
0
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
66
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1 UpperCAmelCase_ : Dict = [] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator if len(str(A ) ) > len(str(A ) ): result.append(A ) UpperCAmelCase_ : Optional[Any] = numerator UpperCAmelCase_ : Optional[int] = denominator return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
304
0
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : Optional[int] =XLMTokenizer lowerCamelCase : List[Any] =False def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __lowerCamelCase = dict(zip(a , range(len(a ) ) ) ) __lowerCamelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(a ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(a ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Any ): """simple docstring""" __lowerCamelCase = '''lower newer''' __lowerCamelCase = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = XLMTokenizer(self.vocab_file , self.merges_file ) __lowerCamelCase = '''lower''' __lowerCamelCase = ['''low''', '''er</w>'''] __lowerCamelCase = tokenizer.tokenize(a ) self.assertListEqual(a , a ) __lowerCamelCase = tokens + ['''<unk>'''] __lowerCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) __lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=a ) __lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
67
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class a__ : """simple docstring""" def __init__( self , lowercase , ) -> List[Any]: '''simple docstring''' A__ = parent A__ = 13 A__ = 7 A__ = True A__ = True A__ = False A__ = True A__ = 99 A__ = 32 A__ = 2 A__ = 4 A__ = 37 A__ = "gelu" A__ = 0.1 A__ = 0.1 A__ = 512 A__ = 16 A__ = 2 A__ = 0.02 A__ = 3 A__ = 4 A__ = None def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' A__ = TFDistilBertModel(config=lowercase ) A__ = {"input_ids": input_ids, "attention_mask": input_mask} A__ = model(lowercase ) A__ = [input_ids, input_mask] A__ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' A__ = TFDistilBertForMaskedLM(config=lowercase ) A__ = {"input_ids": input_ids, "attention_mask": input_mask} A__ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: '''simple docstring''' A__ = TFDistilBertForQuestionAnswering(config=lowercase ) A__ = { "input_ids": input_ids, "attention_mask": input_mask, } A__ = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]: '''simple docstring''' A__ = self.num_labels A__ = TFDistilBertForSequenceClassification(lowercase ) A__ = {"input_ids": input_ids, "attention_mask": input_mask} A__ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' A__ = self.num_choices A__ = TFDistilBertForMultipleChoice(lowercase ) A__ = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) A__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } A__ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' A__ = self.num_labels A__ = TFDistilBertForTokenClassification(lowercase ) A__ = {"input_ids": input_ids, "attention_mask": input_mask} A__ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__) , (A__) , (A__)) = config_and_inputs A__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __lowerCamelCase = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = TFDistilBertModelTester(self ) A__ = ConfigTester(self , config_class=lowercase , dim=37 ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def UpperCamelCase ( self ) -> str: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): A__ = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class a__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) A__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A__ = model(lowercase )[0] A__ = [1, 6, 768] self.assertEqual(output.shape , lowercase ) A__ = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1e-4 )
68
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
0
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = BertJapaneseTokenizer SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> str: super().setUp() snake_case_ = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file, 'w', encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = 'こんにちは、世界。 \nこんばんは、世界。' snake_case_ = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def a_ ( self, lowerCAmelCase__) -> Optional[Any]: snake_case_ , snake_case_ = self.get_input_output_texts(lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) snake_case_ = tokenizer.decode(lowerCAmelCase__, clean_up_tokenization_spaces=lowerCAmelCase__) return text, ids def a_ ( self) -> Dict: pass # TODO add if relevant def a_ ( self) -> Optional[Any]: pass # TODO add if relevant def a_ ( self) -> Dict: pass # TODO add if relevant def a_ ( self) -> Union[str, Any]: snake_case_ = self.tokenizer_class(self.vocab_file) snake_case_ = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。') self.assertListEqual(lowerCAmelCase__, ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__), [3, 12, 10, 14, 4, 9, 12, 10, 14]) def a_ ( self) -> str: snake_case_ = self.tokenizer_class(self.vocab_file, word_tokenizer_type='mecab') self.assertIsNotNone(lowerCAmelCase__) snake_case_ = 'こんにちは、世界。\nこんばんは、世界。' snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__), [3, 12, 10, 14, 4, 9, 12, 10, 14]) snake_case_ = os.path.join(self.tmpdirname, 'tokenizer.bin') with open(lowerCAmelCase__, 'wb') as handle: pickle.dump(lowerCAmelCase__, lowerCAmelCase__) with open(lowerCAmelCase__, 'rb') as handle: snake_case_ = pickle.load(lowerCAmelCase__) snake_case_ = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = MecabTokenizer(mecab_dic='ipadic') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'], ) def a_ ( self) -> Any: try: snake_case_ = MecabTokenizer(mecab_dic='unidic_lite') except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'], ) def a_ ( self) -> List[str]: try: snake_case_ = MecabTokenizer(mecab_dic='unidic') except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'], ) def a_ ( self) -> Any: snake_case_ = MecabTokenizer(do_lower_case=lowerCAmelCase__, mecab_dic='ipadic') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'], ) def a_ ( self) -> List[str]: try: snake_case_ = MecabTokenizer( do_lower_case=lowerCAmelCase__, normalize_text=lowerCAmelCase__, mecab_option='-d /usr/local/lib/mecab/dic/jumandic') except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'], ) def a_ ( self) -> Optional[Any]: snake_case_ = MecabTokenizer(normalize_text=lowerCAmelCase__, mecab_dic='ipadic') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'], ) @require_sudachi def a_ ( self) -> Optional[Any]: snake_case_ = self.tokenizer_class(self.vocab_file, word_tokenizer_type='sudachi') self.assertIsNotNone(lowerCAmelCase__) snake_case_ = 'こんにちは、世界。\nこんばんは、世界。' snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__), [3, 12, 10, 14, 4, 9, 12, 10, 14]) snake_case_ = os.path.join(self.tmpdirname, 'tokenizer.bin') with open(lowerCAmelCase__, 'wb') as handle: pickle.dump(lowerCAmelCase__, lowerCAmelCase__) with open(lowerCAmelCase__, 'rb') as handle: snake_case_ = pickle.load(lowerCAmelCase__) snake_case_ = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) @require_sudachi def a_ ( self) -> Optional[int]: snake_case_ = SudachiTokenizer(sudachi_dict_type='core') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '], ) @require_sudachi def a_ ( self) -> List[Any]: snake_case_ = SudachiTokenizer(sudachi_dict_type='core', sudachi_split_mode='A') self.assertListEqual(tokenizer.tokenize('外国人参政権'), ['外国', '人', '参政', '権']) @require_sudachi def a_ ( self) -> int: snake_case_ = SudachiTokenizer(sudachi_dict_type='core', sudachi_split_mode='B') self.assertListEqual(tokenizer.tokenize('外国人参政権'), ['外国人', '参政権']) @require_sudachi def a_ ( self) -> Dict: snake_case_ = SudachiTokenizer(sudachi_dict_type='core', sudachi_split_mode='C') self.assertListEqual(tokenizer.tokenize('外国人参政権'), ['外国人参政権']) @require_sudachi def a_ ( self) -> Any: snake_case_ = SudachiTokenizer(do_lower_case=lowerCAmelCase__, sudachi_dict_type='core') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '], ) @require_sudachi def a_ ( self) -> Dict: snake_case_ = SudachiTokenizer(normalize_text=lowerCAmelCase__, sudachi_dict_type='core') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '], ) @require_sudachi def a_ ( self) -> Optional[int]: snake_case_ = SudachiTokenizer(trim_whitespace=lowerCAmelCase__, sudachi_dict_type='core') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'], ) @require_jumanpp def a_ ( self) -> Optional[int]: snake_case_ = self.tokenizer_class(self.vocab_file, word_tokenizer_type='jumanpp') self.assertIsNotNone(lowerCAmelCase__) snake_case_ = 'こんにちは、世界。\nこんばんは、世界。' snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__), [3, 12, 10, 14, 4, 9, 12, 10, 14]) snake_case_ = os.path.join(self.tmpdirname, 'tokenizer.bin') with open(lowerCAmelCase__, 'wb') as handle: pickle.dump(lowerCAmelCase__, lowerCAmelCase__) with open(lowerCAmelCase__, 'rb') as handle: snake_case_ = pickle.load(lowerCAmelCase__) snake_case_ = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) @require_jumanpp def a_ ( self) -> List[Any]: snake_case_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'], ) @require_jumanpp def a_ ( self) -> List[Any]: snake_case_ = JumanppTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'], ) @require_jumanpp def a_ ( self) -> List[str]: snake_case_ = JumanppTokenizer(normalize_text=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'], ) @require_jumanpp def a_ ( self) -> Optional[int]: snake_case_ = JumanppTokenizer(trim_whitespace=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'], ) @require_jumanpp def a_ ( self) -> Tuple: snake_case_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。'), ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'], ) def a_ ( self) -> Optional[int]: snake_case_ = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] snake_case_ = {} for i, token in enumerate(lowerCAmelCase__): snake_case_ = i snake_case_ = WordpieceTokenizer(vocab=lowerCAmelCase__, unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize(''), []) self.assertListEqual(tokenizer.tokenize('こんにちは'), ['こんにちは']) self.assertListEqual(tokenizer.tokenize('こんばんは'), ['こん', '##ばんは']) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは'), ['こん', '##ばんは', '[UNK]', 'こんにちは']) def a_ ( self) -> List[str]: snake_case_ = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp') snake_case_ = tokenizer.subword_tokenizer snake_case_ = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。') self.assertListEqual(lowerCAmelCase__, ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。']) snake_case_ = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは') self.assertListEqual(lowerCAmelCase__, ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは']) def a_ ( self) -> Optional[Any]: snake_case_ = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese') snake_case_ = tokenizer.encode('ありがとう。', add_special_tokens=lowerCAmelCase__) snake_case_ = tokenizer.encode('どういたしまして。', add_special_tokens=lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = BertJapaneseTokenizer SCREAMING_SNAKE_CASE_ = False def a_ ( self) -> Union[str, Any]: super().setUp() snake_case_ = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file, 'w', encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) def a_ ( self, **lowerCAmelCase__) -> Dict: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname, subword_tokenizer_type='character', **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> List[Any]: snake_case_ = 'こんにちは、世界。 \nこんばんは、世界。' snake_case_ = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def a_ ( self) -> Union[str, Any]: pass # TODO add if relevant def a_ ( self) -> List[str]: pass # TODO add if relevant def a_ ( self) -> Dict: pass # TODO add if relevant def a_ ( self) -> Dict: snake_case_ = self.tokenizer_class(self.vocab_file, subword_tokenizer_type='character') snake_case_ = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。') self.assertListEqual( lowerCAmelCase__, ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__), [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12]) def a_ ( self) -> Any: snake_case_ = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] snake_case_ = {} for i, token in enumerate(lowerCAmelCase__): snake_case_ = i snake_case_ = CharacterTokenizer(vocab=lowerCAmelCase__, unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize(''), []) self.assertListEqual(tokenizer.tokenize('こんにちは'), ['こ', 'ん', 'に', 'ち', 'は']) self.assertListEqual(tokenizer.tokenize('こんにちほ'), ['こ', 'ん', 'に', 'ち', '[UNK]']) def a_ ( self) -> str: snake_case_ = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char') snake_case_ = tokenizer.encode('ありがとう。', add_special_tokens=lowerCAmelCase__) snake_case_ = tokenizer.encode('どういたしまして。', add_special_tokens=lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> str: snake_case_ = 'cl-tohoku/bert-base-japanese' snake_case_ = AutoTokenizer.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__, lowerCAmelCase__) class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> List[Any]: snake_case_ = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers', level='WARNING') as cm: BertTokenizer.from_pretrained(lowerCAmelCase__) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.')) snake_case_ = 'bert-base-cased' with self.assertLogs('transformers', level='WARNING') as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase__) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.'))
69
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
0
'''simple docstring''' import os import sys import unittest A__ : Any =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) A__ : str =os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') A__ : int =os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Tuple ) -> Tuple: _lowerCAmelCase = get_test_to_tester_mapping(__snake_case ) _lowerCAmelCase = get_test_to_tester_mapping(__snake_case ) _lowerCAmelCase = {"""BertModelTest""": """BertModelTester"""} _lowerCAmelCase = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) def lowercase__ ( self : Any ) -> List[Any]: _lowerCAmelCase = get_model_to_test_mapping(__snake_case ) _lowerCAmelCase = get_model_to_test_mapping(__snake_case ) _lowerCAmelCase = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } _lowerCAmelCase = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: _lowerCAmelCase = get_model_to_tester_mapping(__snake_case ) _lowerCAmelCase = get_model_to_tester_mapping(__snake_case ) _lowerCAmelCase = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } _lowerCAmelCase = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
70
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Tuple = logging.get_logger(__name__) A_ :Union[str, Any] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __A ( a ): """simple docstring""" UpperCamelCase__ : Optional[Any] ="""vivit""" def __init__( self , lowerCamelCase__=224 , lowerCamelCase__=32 , lowerCamelCase__=[2, 16, 16] , lowerCamelCase__=3 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3072 , lowerCamelCase__="gelu_fast" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-06 , lowerCamelCase__=True , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Dict =hidden_size __UpperCamelCase : str =num_hidden_layers __UpperCamelCase : Dict =num_attention_heads __UpperCamelCase : Tuple =intermediate_size __UpperCamelCase : Dict =hidden_act __UpperCamelCase : Any =hidden_dropout_prob __UpperCamelCase : List[Any] =attention_probs_dropout_prob __UpperCamelCase : List[str] =initializer_range __UpperCamelCase : List[str] =layer_norm_eps __UpperCamelCase : Tuple =image_size __UpperCamelCase : Dict =num_frames __UpperCamelCase : Any =tubelet_size __UpperCamelCase : Dict =num_channels __UpperCamelCase : Union[str, Any] =qkv_bias super().__init__(**lowerCamelCase__ )
71
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
0
import string from math import logaa def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: __lowerCamelCase : Tuple = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowerCamelCase : int = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> tuple[int, int]: __lowerCamelCase : List[Any] = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowerCamelCase : Union[str, Any] = corpus_without_punctuation.split('\n' ) __lowerCamelCase : Optional[int] = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowerCamelCase__ )) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> float: return round(tf * idf , 3 )
73
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ReformerTokenizer a_ = ReformerTokenizerFast a_ = True a_ = False a_ = True def A ( self : Optional[Any] ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = '''<s>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 10_00 ) def A ( self : Optional[int] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(_A ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def A ( self : Tuple , _A : Dict=15 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Dict = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def A ( self : Union[str, Any] ) -> int: pass def A ( self : int ) -> Any: UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A ) UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : List[str] ) -> Optional[int]: return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : Tuple = '''Hello World!''' UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def A ( self : List[Any] ) -> str: UpperCAmelCase_ : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase_ : int = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def A ( self : List[str] ) -> Optional[int]: import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ : List[Any] = ''' '''.join(_A ) UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' ) UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape UpperCAmelCase_ : Optional[int] = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def A ( self : int ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ : Optional[Any] = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
304
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
0
'''simple docstring''' import random def a_ ( __snake_case : int ) -> bool: """simple docstring""" lowerCamelCase_ =num - 1 lowerCamelCase_ =0 while s % 2 == 0: lowerCamelCase_ =s // 2 t += 1 for _ in range(5 ): lowerCamelCase_ =random.randrange(2 , num - 1 ) lowerCamelCase_ =pow(__snake_case , __snake_case , __snake_case ) if v != 1: lowerCamelCase_ =0 while v != (num - 1): if i == t - 1: return False else: lowerCamelCase_ =i + 1 lowerCamelCase_ =(v**2) % num return True def a_ ( __snake_case : int ) -> bool: """simple docstring""" if num < 2: return False lowerCamelCase_ =[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__snake_case ) def a_ ( __snake_case : int = 1024 ) -> int: """simple docstring""" while True: lowerCamelCase_ =random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__snake_case ): return num if __name__ == "__main__": a_ : Dict = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
75
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
0
from __future__ import annotations class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , a : int = 0 ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = key def __UpperCamelCase ( self : Optional[int] , a : str , a : int ) -> list[str]: """simple docstring""" assert isinstance(a , a ) and isinstance(a , a ) SCREAMING_SNAKE_CASE : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(a ) ^ key ) for ch in content] def __UpperCamelCase ( self : List[Any] , a : str , a : int ) -> list[str]: """simple docstring""" assert isinstance(a , a ) and isinstance(a , a ) SCREAMING_SNAKE_CASE : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(a ) ^ key ) for ch in content] def __UpperCamelCase ( self : Optional[Any] , a : str , a : int = 0 ) -> str: """simple docstring""" assert isinstance(a , a ) and isinstance(a , a ) SCREAMING_SNAKE_CASE : Dict = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE : Optional[Any] = "" for ch in content: ans += chr(ord(a ) ^ key ) return ans def __UpperCamelCase ( self : int , a : str , a : int = 0 ) -> str: """simple docstring""" assert isinstance(a , a ) and isinstance(a , a ) SCREAMING_SNAKE_CASE : str = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE : int = "" for ch in content: ans += chr(ord(a ) ^ key ) return ans def __UpperCamelCase ( self : str , a : str , a : int = 0 ) -> bool: """simple docstring""" assert isinstance(a , a ) and isinstance(a , a ) try: with open(a ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(a , a ) ) except OSError: return False return True def __UpperCamelCase ( self : Optional[int] , a : str , a : int ) -> bool: """simple docstring""" assert isinstance(a , a ) and isinstance(a , a ) try: with open(a ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(a , a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
76
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig class UpperCAmelCase_ ( _a): lowerCamelCase__ : int = "bert-generation" def __init__( self , a=5_0_3_5_8 , a=1_0_2_4 , a=2_4 , a=1_6 , a=4_0_9_6 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=0.02 , a=1e-12 , a=0 , a=2 , a=1 , a="absolute" , a=True , **a , ) -> Optional[int]: super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) lowercase__ : List[Any] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : List[str] = hidden_act lowercase__ : str = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = max_position_embeddings lowercase__ : Optional[Any] = initializer_range lowercase__ : str = layer_norm_eps lowercase__ : Tuple = position_embedding_type lowercase__ : Tuple = use_cache
77
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
0
"""simple docstring""" class A_ : """simple docstring""" def __init__( self :List[Any] , lowercase_ :int ) -> None: UpperCAmelCase = size UpperCAmelCase = [0] * size UpperCAmelCase = [0] * size @staticmethod def UpperCAmelCase__ ( lowercase_ :int ) -> int: return index | (index + 1) @staticmethod def UpperCAmelCase__ ( lowercase_ :int ) -> int: return (index & (index + 1)) - 1 def UpperCAmelCase__ ( self :Any , lowercase_ :int , lowercase_ :int ) -> None: UpperCAmelCase = value while index < self.size: UpperCAmelCase = self.get_prev(lowercase_ ) + 1 if current_left_border == index: UpperCAmelCase = value else: UpperCAmelCase = max(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = self.get_next(lowercase_ ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :int , lowercase_ :int ) -> int: right -= 1 # Because of right is exclusive UpperCAmelCase = 0 while left <= right: UpperCAmelCase = self.get_prev(lowercase_ ) if left <= current_left: UpperCAmelCase = max(lowercase_ , self.tree[right] ) UpperCAmelCase = current_left else: UpperCAmelCase = max(lowercase_ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
78
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
0
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') lowerCamelCase_ , lowerCamelCase_ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') lowerCamelCase_ = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: lowerCamelCase_ = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCamelCase_ = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
79
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class lowercase_ : def __init__( self , a ): UpperCamelCase__ = data UpperCamelCase__ = None class lowercase_ : def __init__( self ): UpperCamelCase__ = None UpperCamelCase__ = None def __iter__( self ): UpperCamelCase__ = self.head while self.head: yield node.data UpperCamelCase__ = node.next if node == self.head: break def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join(str(a ) for item in iter(self ) ) def __a ( self , a ): self.insert_nth(len(self ) , a ) def __a ( self , a ): self.insert_nth(0 , a ) def __a ( self , a , a ): if index < 0 or index > len(self ): raise IndexError("list index out of range." ) UpperCamelCase__ = Node(a ) if self.head is None: UpperCamelCase__ = new_node # first node points itself UpperCamelCase__ = UpperCamelCase__ = new_node elif index == 0: # insert at head UpperCamelCase__ = self.head UpperCamelCase__ = UpperCamelCase__ = new_node else: UpperCamelCase__ = self.head for _ in range(index - 1 ): UpperCamelCase__ = temp.next UpperCamelCase__ = temp.next UpperCamelCase__ = new_node if index == len(self ) - 1: # insert at tail UpperCamelCase__ = new_node def __a ( self ): return self.delete_nth(0 ) def __a ( self ): return self.delete_nth(len(self ) - 1 ) def __a ( self , a = 0 ): if not 0 <= index < len(self ): raise IndexError("list index out of range." ) UpperCamelCase__ = self.head if self.head == self.tail: # just one node UpperCamelCase__ = UpperCamelCase__ = None elif index == 0: # delete head node UpperCamelCase__ = self.tail.next.next UpperCamelCase__ = self.head.next else: UpperCamelCase__ = self.head for _ in range(index - 1 ): UpperCamelCase__ = temp.next UpperCamelCase__ = temp.next UpperCamelCase__ = temp.next.next if index == len(self ) - 1: # delete at tail UpperCamelCase__ = temp return delete_node.data def __a ( self ): return len(self ) == 0 def _UpperCamelCase ( ) -> None: '''simple docstring''' UpperCamelCase__ = CircularLinkedList() assert len(__A ) == 0 assert circular_linked_list.is_empty() is True assert str(__A ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(__A ) == i circular_linked_list.insert_nth(__A , i + 1 ) assert str(__A ) == "->".join(str(__A ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(__A ) == "->".join(str(__A ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(__A ) == "->".join(str(__A ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(__A ) == "->".join(str(__A ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(__A ) == "->".join(str(__A ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
80
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
0
"""simple docstring""" from __future__ import annotations import numpy as np def _A ( lowercase ): """simple docstring""" a , a =np.shape(lowercase ) if rows != columns: a =( '''\'table\' has to be of square shaped array but got a ''' f'''{rows}x{columns} array:\n{table}''' ) raise ValueError(lowercase ) a =np.zeros((rows, columns) ) a =np.zeros((rows, columns) ) for i in range(lowercase ): for j in range(lowercase ): a =sum(lower[i][k] * upper[k][j] for k in range(lowercase ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) a =(table[i][j] - total) / upper[j][j] a =1 for j in range(lowercase , lowercase ): a =sum(lower[i][k] * upper[k][j] for k in range(lowercase ) ) a =table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
81
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
0
from __future__ import annotations import pandas as pd def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = [0] * no_of_processes _lowerCAmelCase = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(snake_case ): _lowerCAmelCase = burst_time[i] _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 9_99_99_99_99 _lowerCAmelCase = 0 _lowerCAmelCase = False # Process until all processes are completed while complete != no_of_processes: for j in range(snake_case ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _lowerCAmelCase = remaining_time[j] _lowerCAmelCase = j _lowerCAmelCase = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _lowerCAmelCase = remaining_time[short] if minm == 0: _lowerCAmelCase = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 _lowerCAmelCase = False # Find finish time of current process _lowerCAmelCase = increment_time + 1 # Calculate waiting time _lowerCAmelCase = finish_time - arrival_time[short] _lowerCAmelCase = finar - burst_time[short] if waiting_time[short] < 0: _lowerCAmelCase = 0 # Increment time increment_time += 1 return waiting_time def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = [0] * no_of_processes for i in range(snake_case ): _lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = 0 for i in range(snake_case ): _lowerCAmelCase = total_waiting_time + waiting_time[i] _lowerCAmelCase = total_turn_around_time + turn_around_time[i] print(F'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") A__ = int(input()) A__ = [0] * no_of_processes A__ = [0] * no_of_processes A__ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) A__ , A__ = map(int, input().split()) A__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) A__ = burst_time A__ = no_of_processes A__ = waiting_time A__ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) A__ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
82
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
0
'''simple docstring''' print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
83
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
0
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __UpperCAmelCase = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): UpperCAmelCase_ :Optional[datasets.Features] = None def _snake_case ( lowercase__ : "pyspark.sql.DataFrame" , lowercase__ : List[int] , ) -> Any: '''simple docstring''' import pyspark def generate_fn(): lowerCAmelCase_ :List[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: lowerCAmelCase_ :Optional[int] = df_with_partition_id.select("""*""" ).where(f"""part_id = {partition_id}""" ).drop("""part_id""" ) lowerCAmelCase_ :Optional[Any] = partition_df.collect() lowerCAmelCase_ :Dict = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class _SCREAMING_SNAKE_CASE ( _BaseExamplesIterable ): def __init__( self , __A , __A=None , ) -> Optional[Any]: lowerCAmelCase_ :List[str] = df lowerCAmelCase_ :str = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCAmelCase_ :int = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> Tuple: yield from self.generate_examples_fn() def __lowerCAmelCase ( self , __A ) -> "SparkExamplesIterable": lowerCAmelCase_ :List[Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__A ) return SparkExamplesIterable(self.df , partition_order=__A ) def __lowerCAmelCase ( self , __A , __A ) -> "SparkExamplesIterable": lowerCAmelCase_ :Optional[Any] = self.split_shard_indices_by_worker(__A , __A ) return SparkExamplesIterable(self.df , partition_order=__A ) @property def __lowerCAmelCase ( self ) -> int: return len(self.partition_order ) class _SCREAMING_SNAKE_CASE ( datasets.DatasetBuilder ): UpperCAmelCase_ :Optional[Any] = SparkConfig def __init__( self , __A , __A = None , __A = None , **__A , ) -> int: import pyspark lowerCAmelCase_ :Tuple = pyspark.sql.SparkSession.builder.getOrCreate() lowerCAmelCase_ :Union[str, Any] = df lowerCAmelCase_ :Optional[Any] = working_dir super().__init__( cache_dir=__A , config_name=str(self.df.semanticHash() ) , **__A , ) def __lowerCAmelCase ( self ) -> int: # Returns the path of the created file. def create_cache_and_write_probe(__A ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__A ) lowerCAmelCase_ :Union[str, Any] = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__A , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCAmelCase_ :int = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__A ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def __lowerCAmelCase ( self ) -> Optional[Any]: return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , __A ) -> Any: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __lowerCAmelCase ( self , __A ) -> Union[str, Any]: import pyspark def get_arrow_batch_size(__A ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) lowerCAmelCase_ :Tuple = self.df.count() lowerCAmelCase_ :Union[str, Any] = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCAmelCase_ :Tuple = ( self.df.limit(__A ) .repartition(1 ) .mapInArrow(__A , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCAmelCase_ :List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCAmelCase_ :str = min(__A , int(approx_total_size / max_shard_size ) ) lowerCAmelCase_ :Optional[int] = self.df.repartition(__A ) def __lowerCAmelCase ( self , __A , __A , __A , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark lowerCAmelCase_ :Optional[int] = ParquetWriter if file_format == """parquet""" else ArrowWriter lowerCAmelCase_ :Dict = os.path.join(self._working_dir , os.path.basename(__A ) ) if self._working_dir else fpath lowerCAmelCase_ :Optional[Any] = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCAmelCase_ :List[str] = self.config.features lowerCAmelCase_ :List[Any] = self._writer_batch_size lowerCAmelCase_ :str = self._fs.storage_options def write_arrow(__A ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCAmelCase_ :Dict = pyspark.TaskContext().taskAttemptId() lowerCAmelCase_ :int = next(__A , __A ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) lowerCAmelCase_ :Tuple = 0 lowerCAmelCase_ :List[str] = writer_class( features=__A , path=working_fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , ) lowerCAmelCase_ :int = pa.Table.from_batches([first_batch] ) writer.write_table(__A ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCAmelCase_ , lowerCAmelCase_ :int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 lowerCAmelCase_ :int = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , ) lowerCAmelCase_ :Any = pa.Table.from_batches([batch] ) writer.write_table(__A ) if writer._num_bytes > 0: lowerCAmelCase_ , lowerCAmelCase_ :Any = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__A ) ): lowerCAmelCase_ :Optional[int] = os.path.join(os.path.dirname(__A ) , os.path.basename(__A ) ) shutil.move(__A , __A ) lowerCAmelCase_ :Optional[int] = ( self.df.mapInArrow(__A , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __lowerCAmelCase ( self , __A , __A = "arrow" , __A = None , __A = None , **__A , ) -> Any: self._validate_cache_dir() lowerCAmelCase_ :Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__A ) lowerCAmelCase_ :Optional[Any] = not is_remote_filesystem(self._fs ) lowerCAmelCase_ :Tuple = os.path.join if is_local else posixpath.join lowerCAmelCase_ :List[Any] = """-TTTTT-SSSSS-of-NNNNN""" lowerCAmelCase_ :int = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" lowerCAmelCase_ :Optional[Any] = path_join(self._output_dir , __A ) lowerCAmelCase_ :Dict = 0 lowerCAmelCase_ :Any = 0 lowerCAmelCase_ :str = 0 lowerCAmelCase_ :Union[str, Any] = [] lowerCAmelCase_ :List[str] = [] for task_id, content in self._prepare_split_single(__A , __A , __A ): ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) :List[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__A ) lowerCAmelCase_ :Optional[int] = total_num_examples lowerCAmelCase_ :Tuple = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: lowerCAmelCase_ :Any = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCAmelCase_ :List[str] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __A , __A , __A , ): rename( __A , fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , fpath.replace("""TTTTT-SSSSS""" , f"""{global_shard_id:05d}""" ).replace("""NNNNN""" , f"""{total_shards:05d}""" ) , ) lowerCAmelCase_ :Tuple = [] lowerCAmelCase_ :Tuple = 0 for i in range(len(__A ) ): lowerCAmelCase_ , lowerCAmelCase_ :Dict = task_id_and_num_shards[i] for shard_id in range(__A ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__A , len(__A ) ).map(lambda __A : _rename_shard(*__A ) ).collect() else: # don't use any pattern lowerCAmelCase_ :Optional[int] = 0 lowerCAmelCase_ :Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , fpath.replace(__A , """""" ) , ) def __lowerCAmelCase ( self , __A , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
84
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
0
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class _snake_case ( lowercase_ ): def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' with self.assertRaises(a__ ): snake_case_ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' with self.assertRaises(a__ ): snake_case_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case_ = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case_ = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' import PIL.Image snake_case_ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=a__ ) as mock_cast_to_python_objects: snake_case_ = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image() ) ) snake_case_ , snake_case_ = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , a__ ) self.assertFalse(kwargs["optimize_list_casting"] ) def UpperCamelCase_( snake_case : Any , snake_case : int ): '''simple docstring''' snake_case_ = pa.BufferReader(snake_case ) if isinstance(snake_case , pa.Buffer ) else pa.memory_map(snake_case ) snake_case_ = pa.ipc.open_stream(snake_case ) snake_case_ = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase_( snake_case : Dict , snake_case : Dict ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(snake_case ) if fields else None with ArrowWriter(stream=snake_case , schema=snake_case , writer_batch_size=snake_case ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() snake_case_ = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=snake_case , features=snake_case ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata snake_case_ = pa.BufferReader(output.getvalue() ) snake_case_ = pa.ipc.open_stream(snake_case ) snake_case_ = f.read_all() snake_case_ = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(snake_case ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) def UpperCamelCase_( snake_case : Optional[Any] ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() with ArrowWriter( stream=snake_case , writer_batch_size=snake_case , hash_salt="split_name" , check_duplicates=snake_case , ) as writer: with pytest.raises(snake_case ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) snake_case_ , snake_case_ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 1_0] ) def UpperCamelCase_( snake_case : Dict ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() with ArrowWriter( stream=snake_case , writer_batch_size=snake_case , hash_salt="split_name" , check_duplicates=snake_case , ) as writer: with pytest.raises(snake_case ): writer.write({"col_1": "foo", "col_2": 1} , key=1_0 ) writer.write({"col_1": "bar", "col_2": 2} , key=1_0 ) snake_case_ , snake_case_ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 1_0] ) def UpperCamelCase_( snake_case : Any ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() with ArrowWriter( stream=snake_case , writer_batch_size=snake_case , hash_salt="split_name" , check_duplicates=snake_case , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[str] ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(snake_case ) if fields else None with ArrowWriter(stream=snake_case , schema=snake_case , writer_batch_size=snake_case ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase_( snake_case : str , snake_case : Dict ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(snake_case ) if fields else None with ArrowWriter(stream=snake_case , schema=snake_case , writer_batch_size=snake_case ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase_( snake_case : Optional[Any] , snake_case : Optional[int] ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(snake_case ) if fields else None with ArrowWriter(stream=snake_case , schema=snake_case , writer_batch_size=snake_case ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def UpperCamelCase_( ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} snake_case_ = os.path.join(snake_case , "test.arrow" ) with ArrowWriter(path=snake_case , schema=pa.schema(snake_case ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata ) _check_output(snake_case , 1 ) def UpperCamelCase_( snake_case : Tuple ): '''simple docstring''' if pa.types.is_list(snake_case ): return get_base_dtype(arr_type.value_type ) else: return arr_type def UpperCamelCase_( snake_case : Tuple , snake_case : Dict ): '''simple docstring''' if isinstance(lst[0] , snake_case ): change_first_primitive_element_in_list(lst[0] , snake_case ) else: snake_case_ = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def UpperCamelCase_( snake_case : List[Any] , snake_case : Dict , snake_case : int ): '''simple docstring''' snake_case_ = pa.array(TypedSequence(snake_case , optimized_int_type=snake_case ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def UpperCamelCase_( snake_case : Optional[int] , snake_case : Any , snake_case : Dict ): '''simple docstring''' snake_case_ = pa.array(OptimizedTypedSequence(snake_case , col=snake_case ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications snake_case_ = copy.deepcopy(snake_case ) snake_case_ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(snake_case , snake_case ) snake_case_ = pa.array(OptimizedTypedSequence(snake_case , col=snake_case ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def UpperCamelCase_( snake_case : List[str] , snake_case : Union[str, Any] ): '''simple docstring''' snake_case_ = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=snake_case ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def UpperCamelCase_( snake_case : Union[str, Any] ): '''simple docstring''' snake_case_ = "mock://dataset-train.arrow" with ArrowWriter(path=snake_case , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(snake_case ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(snake_case ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() with ParquetWriter(stream=snake_case ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 snake_case_ = pa.BufferReader(output.getvalue() ) snake_case_ = pq.read_table(snake_case ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def UpperCamelCase_( snake_case : Optional[int] , snake_case : List[str] ): '''simple docstring''' import PIL.Image snake_case_ = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(snake_case , format="png" ) snake_case_ = pa.BufferOutputStream() with ParquetWriter( stream=snake_case , features=Features({"image": Image()} ) , embed_local_files=snake_case ) as writer: writer.write({"image": image_path} ) writer.finalize() snake_case_ = pa.BufferReader(output.getvalue() ) snake_case_ = pq.read_table(snake_case ) snake_case_ = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , snake_case ) with open(snake_case , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def UpperCamelCase_( ): '''simple docstring''' snake_case_ = pa.schema([pa.field("col_1" , pa.string() , nullable=snake_case )] ) snake_case_ = pa.BufferOutputStream() with ArrowWriter(stream=snake_case ) as writer: writer._build_writer(inferred_schema=snake_case ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
85
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
0
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __lowerCAmelCase (_UpperCamelCase="" ): __lowerCAmelCase : Optional[int] = tempfile.mkdtemp() return os.path.join(_UpperCamelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = torch.rand(12 , dtype=torch.floataa ) - 0.5 __lowerCAmelCase : Optional[Any] = AgentAudio(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) ) # Ensure that the file contains the same value as the original tensor __lowerCAmelCase , __lowerCAmelCase : int = sf.read(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , torch.tensor(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 __lowerCAmelCase : int = get_new_path(suffix='.wav' ) sf.write(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1_60_00 ) __lowerCAmelCase : int = AgentAudio(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , _SCREAMING_SNAKE_CASE ) @require_vision @require_torch class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = torch.randint(0 , 2_56 , (64, 64, 3) ) __lowerCAmelCase : int = AgentImage(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Any = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' __lowerCAmelCase : Tuple = Image.open(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = AgentImage(_SCREAMING_SNAKE_CASE ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Any = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' __lowerCAmelCase : Any = Image.open(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = AgentImage(_SCREAMING_SNAKE_CASE ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) ) class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = 'Hey!' __lowerCAmelCase : Optional[Any] = AgentText(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , agent_type.to_string() ) self.assertEqual(_SCREAMING_SNAKE_CASE , agent_type.to_raw() ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
86
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
0
from datetime import datetime as dt import os from github import Github UpperCamelCase = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def lowercase_ ( ): lowercase__ : Dict = Github(os.environ["GITHUB_TOKEN"]) lowercase__ : Optional[int] = g.get_repo("huggingface/transformers") lowercase__ : Optional[Any] = repo.get_issues(state="open") for issue in open_issues: lowercase__ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCamelCase: i.created_at , reverse=_lowerCamelCase) lowercase__ : Dict = comments[0] if len(_lowerCamelCase) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") if __name__ == "__main__": main()
87
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
0
import random def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = a[left_index] __magic_name__ = left_index + 1 for j in range(left_index + 1, A_ ): if a[j] < pivot: __magic_name__ , __magic_name__ = a[i], a[j] i += 1 __magic_name__ , __magic_name__ = a[i - 1], a[left_index] return i - 1 def a__ ( A_, A_, A_ ): '''simple docstring''' if left < right: __magic_name__ = random.randint(A_, right - 1 ) __magic_name__ , __magic_name__ = ( a[left], a[pivot], ) # switches the pivot with the left most bound __magic_name__ = partition(A_, A_, A_ ) quick_sort_random( A_, A_, A_ ) # recursive quicksort to the left of the pivot point quick_sort_random( A_, pivot_index + 1, A_ ) # recursive quicksort to the right of the pivot point def a__ ( ): '''simple docstring''' __magic_name__ = input("""Enter numbers separated by a comma:\n""" ).strip() __magic_name__ = [int(A_ ) for item in user_input.split(""",""" )] quick_sort_random(A_, 0, len(A_ ) ) print(A_ ) if __name__ == "__main__": main()
88
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1 UpperCAmelCase_ : Dict = [] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator if len(str(A ) ) > len(str(A ) ): result.append(A ) UpperCAmelCase_ : Optional[Any] = numerator UpperCAmelCase_ : Optional[int] = denominator return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
304
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Tuple = 'Salesforce/blip-image-captioning-base' lowerCAmelCase : Tuple = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) lowerCAmelCase : Optional[int] = 'image_captioner' lowerCAmelCase : List[str] = AutoModelForVisionaSeq lowerCAmelCase : Tuple = ['image'] lowerCAmelCase : Optional[Any] = ['text'] def __init__( self : Dict ,*_UpperCAmelCase : List[Any] ,**_UpperCAmelCase : str ): requires_backends(self ,['vision'] ) super().__init__(*_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : "Image" ): return self.pre_processor(images=_UpperCAmelCase ,return_tensors='pt' ) def __lowercase ( self : List[str] ,_UpperCAmelCase : int ): return self.model.generate(**_UpperCAmelCase ) def __lowercase ( self : int ,_UpperCAmelCase : Dict ): return self.pre_processor.batch_decode(_UpperCAmelCase ,skip_special_tokens=_UpperCAmelCase )[0].strip()
89
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __A = 16 __A = 32 def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> List[str]: """simple docstring""" return int(x / 2**20 ) class __lowerCAmelCase : """simple docstring""" def __enter__( self ) -> int: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __lowerCamelCase = torch.cuda.memory_allocated() return self def __exit__( self , *lowerCamelCase__ ) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() __lowerCamelCase = torch.cuda.memory_allocated() __lowerCamelCase = torch.cuda.max_memory_allocated() __lowerCamelCase = bamb(self.end - self.begin ) __lowerCamelCase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCamelCase_ ( UpperCamelCase__ : Accelerator , UpperCamelCase__ : int = 16 , UpperCamelCase__ : str = "bert-base-cased" , UpperCamelCase__ : int = 320 , UpperCamelCase__ : int = 160 , ) -> List[Any]: """simple docstring""" __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCamelCase__ ) __lowerCamelCase = load_dataset( 'glue' , 'mrpc' , split={'train': F"""train[:{n_train}]""", 'validation': F"""validation[:{n_val}]"""} ) def tokenize_function(UpperCamelCase__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCamelCase = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCamelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCamelCase__ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) __lowerCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config['lr'] __lowerCamelCase = int(config['num_epochs'] ) __lowerCamelCase = int(config['seed'] ) __lowerCamelCase = int(config['batch_size'] ) __lowerCamelCase = args.model_name_or_path set_seed(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase__ , return_dict=UpperCamelCase__ ) # Instantiate optimizer __lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCamelCase = optimizer_cls(params=model.parameters() , lr=UpperCamelCase__ ) if accelerator.state.deepspeed_plugin is not None: __lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: __lowerCamelCase = 1 __lowerCamelCase = (len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=0 , num_training_steps=UpperCamelCase__ , ) else: __lowerCamelCase = DummyScheduler(UpperCamelCase__ , total_num_steps=UpperCamelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # We need to keep track of how many total steps we have iterated over __lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCamelCase = 0 # Now we train the model __lowerCamelCase = {} for epoch in range(UpperCamelCase__ , UpperCamelCase__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(UpperCamelCase__ ): __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.loss __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __lowerCamelCase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" __lowerCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=UpperCamelCase__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCamelCase__ , ) parser.add_argument( '--output_dir' , type=UpperCamelCase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=UpperCamelCase__ , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=UpperCamelCase__ , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=UpperCamelCase__ , default=1 , help='Number of train epochs.' , ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
90
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig UpperCAmelCase_ : Optional[int] = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "tapas" def __init__( self : List[str] , lowercase_ : Tuple=30522 , lowercase_ : str=768 , lowercase_ : List[str]=12 , lowercase_ : str=12 , lowercase_ : str=3072 , lowercase_ : str="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=1024 , lowercase_ : Union[str, Any]=[3, 256, 256, 2, 256, 256, 10] , lowercase_ : Union[str, Any]=0.02 , lowercase_ : List[Any]=1e-12 , lowercase_ : Dict=0 , lowercase_ : Tuple=10.0 , lowercase_ : Optional[int]=0 , lowercase_ : Optional[int]=1.0 , lowercase_ : List[str]=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : int=False , lowercase_ : Any=None , lowercase_ : List[Any]=1.0 , lowercase_ : List[Any]=1.0 , lowercase_ : Any=False , lowercase_ : Optional[int]=False , lowercase_ : Dict="ratio" , lowercase_ : Tuple=None , lowercase_ : Optional[int]=None , lowercase_ : List[str]=64 , lowercase_ : Tuple=32 , lowercase_ : Optional[int]=False , lowercase_ : int=True , lowercase_ : Any=False , lowercase_ : Optional[int]=False , lowercase_ : str=True , lowercase_ : Optional[Any]=False , lowercase_ : str=None , lowercase_ : str=None , **lowercase_ : List[str] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , **lowercase_) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE_ : Dict = vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE_ : int = num_hidden_layers SCREAMING_SNAKE_CASE_ : str = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : Dict = type_vocab_sizes SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE_ : Dict = positive_label_weight SCREAMING_SNAKE_CASE_ : Dict = num_aggregation_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = aggregation_loss_weight SCREAMING_SNAKE_CASE_ : List[str] = use_answer_as_supervision SCREAMING_SNAKE_CASE_ : Tuple = answer_loss_importance SCREAMING_SNAKE_CASE_ : str = use_normalized_answer_loss SCREAMING_SNAKE_CASE_ : str = huber_loss_delta SCREAMING_SNAKE_CASE_ : List[str] = temperature SCREAMING_SNAKE_CASE_ : Optional[Any] = aggregation_temperature SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_gumbel_for_cells SCREAMING_SNAKE_CASE_ : List[str] = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE_ : Tuple = average_approximation_function SCREAMING_SNAKE_CASE_ : Any = cell_selection_preference SCREAMING_SNAKE_CASE_ : Tuple = answer_loss_cutoff SCREAMING_SNAKE_CASE_ : str = max_num_rows SCREAMING_SNAKE_CASE_ : Any = max_num_columns SCREAMING_SNAKE_CASE_ : int = average_logits_per_cell SCREAMING_SNAKE_CASE_ : Dict = select_one_column SCREAMING_SNAKE_CASE_ : Union[str, Any] = allow_empty_column_selection SCREAMING_SNAKE_CASE_ : int = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE_ : Union[str, Any] = reset_position_index_per_cell SCREAMING_SNAKE_CASE_ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE_ : List[str] = aggregation_labels SCREAMING_SNAKE_CASE_ : Any = no_aggregation_label_index if isinstance(self.aggregation_labels , lowercase_): SCREAMING_SNAKE_CASE_ : Dict = {int(lowercase_): v for k, v in aggregation_labels.items()}
91
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
0
from __future__ import annotations from statistics import mean def _a ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(SCREAMING_SNAKE_CASE_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def _a ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] ): __lowerCAmelCase = [0] * no_of_processes for i in range(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") UpperCamelCase__ = 4 UpperCamelCase__ = [2, 5, 3, 7] UpperCamelCase__ = [0, 0, 0, 0] UpperCamelCase__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) UpperCamelCase__ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
92
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
0
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : dict ): """simple docstring""" lowercase_ : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase_ : set[int] = set() return any( node not in visited and depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for node in graph ) def snake_case_ ( __SCREAMING_SNAKE_CASE : dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : set , __SCREAMING_SNAKE_CASE : set ): """simple docstring""" visited.add(__SCREAMING_SNAKE_CASE ) rec_stk.add(__SCREAMING_SNAKE_CASE ) for node in graph[vertex]: if node not in visited: if depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__SCREAMING_SNAKE_CASE ) return False if __name__ == "__main__": from doctest import testmod testmod()
93
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration snake_case : str = HfArgumentParser(InitializationArguments) snake_case : Tuple = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization snake_case : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks snake_case : str = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) snake_case : Tuple = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config snake_case : Any = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
94
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
0
UpperCAmelCase : str = 0 # The first color of the flag. UpperCAmelCase : Any = 1 # The second color of the flag. UpperCAmelCase : int = 2 # The third color of the flag. UpperCAmelCase : List[Any] = (red, white, blue) def _A ( SCREAMING_SNAKE_CASE : list ): """simple docstring""" if not sequence: return [] if len(SCREAMING_SNAKE_CASE ) == 1: return list(SCREAMING_SNAKE_CASE ) a__ : Tuple =0 a__ : Tuple =len(SCREAMING_SNAKE_CASE ) - 1 a__ : Optional[int] =0 while mid <= high: if sequence[mid] == colors[0]: a__ , a__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: a__ , a__ : Dict =sequence[high], sequence[mid] high -= 1 else: a__ : Tuple =f'''The elements inside the sequence must contains only {colors} values''' raise ValueError(SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : Optional[Any] = input("""Enter numbers separated by commas:\n""").strip() UpperCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")] print(F"""{dutch_national_flag_sort(unsorted)}""")
95
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ReformerTokenizer a_ = ReformerTokenizerFast a_ = True a_ = False a_ = True def A ( self : Optional[Any] ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = '''<s>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 10_00 ) def A ( self : Optional[int] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(_A ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def A ( self : Tuple , _A : Dict=15 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Dict = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def A ( self : Union[str, Any] ) -> int: pass def A ( self : int ) -> Any: UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A ) UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : List[str] ) -> Optional[int]: return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : Tuple = '''Hello World!''' UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def A ( self : List[Any] ) -> str: UpperCAmelCase_ : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase_ : int = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def A ( self : List[str] ) -> Optional[int]: import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ : List[Any] = ''' '''.join(_A ) UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' ) UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape UpperCAmelCase_ : Optional[int] = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def A ( self : int ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ : Optional[Any] = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
304
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
96
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
0
'''simple docstring''' from __future__ import annotations from typing import Any class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Dict = num_of_nodes UpperCamelCase__ :list[list[int]] = [] UpperCamelCase__ :dict[int, int] = {} def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: UpperCamelCase__ :Dict = self.find_component(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: UpperCamelCase__ :str = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCamelCase_ ) elif component_size[u_node] >= component_size[v_node]: UpperCamelCase__ :Union[str, Any] = self.find_component(UpperCamelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = [] UpperCamelCase__ :List[Any] = 0 UpperCamelCase__ :list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCamelCase__ :Optional[int] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Tuple = edge UpperCamelCase__ :List[Any] = self.m_component[u] UpperCamelCase__ :str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCamelCase__ :Dict = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = edge UpperCamelCase__ :Any = self.m_component[u] UpperCamelCase__ :List[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 UpperCamelCase__ :List[Any] = [-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
97
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
0
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def a_ ( lowerCamelCase = 2_0_0_0_0_0_0 ): UpperCAmelCase__ = [0] UpperCAmelCase__ = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target UpperCAmelCase__ = 0 # the area corresponding to the grid that gives the product closest to target UpperCAmelCase__ = 0 # an estimate of b, using the quadratic formula UpperCAmelCase__ = 42 # the largest integer less than b_estimate UpperCAmelCase__ = 42 # the largest integer less than b_estimate UpperCAmelCase__ = 42 # the triangle number corresponding to b_floor UpperCAmelCase__ = 42 # the triangle number corresponding to b_ceil UpperCAmelCase__ = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): UpperCAmelCase__ = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 UpperCAmelCase__ = floor(lowerCamelCase ) UpperCAmelCase__ = ceil(lowerCamelCase ) UpperCAmelCase__ = triangle_numbers[b_floor] UpperCAmelCase__ = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): UpperCAmelCase__ = triangle_b_first_guess * triangle_a UpperCAmelCase__ = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): UpperCAmelCase__ = triangle_b_second_guess * triangle_a UpperCAmelCase__ = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
98
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
0
def A_ ( A__ ) -> int: a__ : Any = len(A__ ) a__ : Union[str, Any] = len(matrix[0] ) a__ : Union[str, Any] = min(A__ , A__ ) for row in range(A__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , A__ ): a__ : int = matrix[col][row] / matrix[row][row] for i in range(A__ , A__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows a__ : Optional[Any] = True for i in range(row + 1 , A__ ): if matrix[i][row] != 0: a__ , a__ : Tuple = matrix[i], matrix[row] a__ : Optional[Any] = False break if reduce: rank -= 1 for i in range(A__ ): a__ : int = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
99
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
0
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[int] = '''gptj''' __lowercase : Optional[Any] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowerCAmelCase__=5_0_4_0_0 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=4_0_9_6 , lowerCAmelCase__=2_8 , lowerCAmelCase__=1_6 , lowerCAmelCase__=6_4 , lowerCAmelCase__=None , lowerCAmelCase__="gelu_new" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=5_0_2_5_6 , lowerCAmelCase__=5_0_2_5_6 , lowerCAmelCase__=False , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = n_positions __SCREAMING_SNAKE_CASE = n_embd __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head __SCREAMING_SNAKE_CASE = n_inner __SCREAMING_SNAKE_CASE = rotary_dim __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = resid_pdrop __SCREAMING_SNAKE_CASE = embd_pdrop __SCREAMING_SNAKE_CASE = attn_pdrop __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id super().__init__( bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , tie_word_embeddings=lowerCAmelCase__ , **lowerCAmelCase__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = "default" , lowerCAmelCase__ = None , lowerCAmelCase__ = False , ): super().__init__(lowerCAmelCase__ , task=lowerCAmelCase__ , patching_specs=lowerCAmelCase__ , use_past=lowerCAmelCase__) if not getattr(self._config , """pad_token_id""" , lowerCAmelCase__): # TODO: how to do that better? __SCREAMING_SNAKE_CASE = 0 @property def snake_case_ ( self): __SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}}) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="""inputs""") __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """past_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return common_inputs @property def snake_case_ ( self): return self._config.n_layer @property def snake_case_ ( self): return self._config.n_head def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ): __SCREAMING_SNAKE_CASE = super(lowerCAmelCase__ , self).generate_dummy_inputs( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__) # We need to order the input in the way they appears in the forward() __SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""") else: import torch __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE = seqlen + 2 __SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __SCREAMING_SNAKE_CASE = [ (torch.zeros(lowerCAmelCase__), torch.zeros(lowerCAmelCase__)) for _ in range(self.num_layers) ] __SCREAMING_SNAKE_CASE = common_inputs["""attention_mask"""] if self.use_past: __SCREAMING_SNAKE_CASE = ordered_inputs["""attention_mask"""].dtype __SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__)] , dim=1) return ordered_inputs @property def snake_case_ ( self): return 1_3
100
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ :List[Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ :List[Any] = parser.parse_args() lowercase__ :List[str] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ :Dict = CLIPImageProcessor() lowercase__ :Dict = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ :Any = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
101
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
0
"""simple docstring""" import baseaa def lowercase ( _snake_case : str ) ->bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def lowercase ( _snake_case : bytes ) ->str: """simple docstring""" return baseaa.baadecode(_snake_case ).decode('''utf-8''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = """Hello World!""" SCREAMING_SNAKE_CASE : Optional[Any] = baseaa_encode(test) print(encoded) SCREAMING_SNAKE_CASE : str = baseaa_decode(encoded) print(decoded)
102
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split A__ : List[str] = datasets.load_iris() A__ : List[Any] = np.array(data['''data''']) A__ : Tuple = np.array(data['''target''']) A__ : Tuple = data['''target_names'''] A__ , A__ , A__ , A__ : List[str] = train_test_split(X, y) def UpperCamelCase( __UpperCamelCase : Dict ,__UpperCamelCase : Optional[int] ): return np.linalg.norm(np.array(__UpperCamelCase ) - np.array(__UpperCamelCase ) ) def UpperCamelCase( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[str]=5 ): lowerCAmelCase_ : Union[str, Any] = zip(__UpperCamelCase ,__UpperCamelCase ) # List of distances of all points from the point to be classified lowerCAmelCase_ : Tuple = [] for data_point in data: lowerCAmelCase_ : str = euclidean_distance(data_point[0] ,__UpperCamelCase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowerCAmelCase_ : str = [i[1] for i in sorted(__UpperCamelCase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowerCAmelCase_ : List[str] = Counter(__UpperCamelCase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
103
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowerCAmelCase__ = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE : Dict = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = 'translator' SCREAMING_SNAKE_CASE : str = AutoTokenizer SCREAMING_SNAKE_CASE : List[str] = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE : Union[str, Any] = LANGUAGE_CODES SCREAMING_SNAKE_CASE : Union[str, Any] = ['text', 'text', 'text'] SCREAMING_SNAKE_CASE : Tuple = ['text'] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): if src_lang not in self.lang_to_code: raise ValueError(F"{src_lang} is not a supported language." ) if tgt_lang not in self.lang_to_code: raise ValueError(F"{tgt_lang} is not a supported language." ) __lowercase = self.lang_to_code[src_lang] __lowercase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase__ ,return_tensors='''pt''' ,src_lang=lowercase__ ,tgt_lang=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[str] ): return self.model.generate(**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ): return self.post_processor.decode(outputs[0].tolist() ,skip_special_tokens=lowercase__ )
104
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
0
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a : List[str] = logging.get_logger(__name__) a : List[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a : str = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } a : Tuple = {'''allegro/herbert-base-cased''': 514} a : Optional[int] = {} class __UpperCamelCase ( a__ ): lowerCamelCase : str =VOCAB_FILES_NAMES lowerCamelCase : Dict =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Dict =PRETRAINED_INIT_CONFIGURATION lowerCamelCase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] =HerbertTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__="</s>" , **lowerCAmelCase__ , ) -> Optional[int]: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: a : Optional[Any] = [self.cls_token_id] a : Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: a : Dict = [self.sep_token_id] a : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: a : List[str] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
105
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
0
"""simple docstring""" __UpperCamelCase : Any = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): # Return True if there is node that has not iterated. lowerCAmelCase__ : Union[str, Any] = [False] * len(A_ ) lowerCAmelCase__ : Union[str, Any] = [s] lowerCAmelCase__ : Union[str, Any] = True while queue: lowerCAmelCase__ : List[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A_ ) lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : str = u return visited[t] def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : List[Any] = [-1] * (len(A_ )) lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Any = [] lowerCAmelCase__ : Dict = [i[:] for i in graph] # Record original cut, copy. while bfs(A_ , A_ , A_ , A_ ): lowerCAmelCase__ : Optional[Any] = float('''Inf''' ) lowerCAmelCase__ : List[Any] = sink while s != source: # Find the minimum value in select path lowerCAmelCase__ : Optional[Any] = min(A_ , graph[parent[s]][s] ) lowerCAmelCase__ : Dict = parent[s] max_flow += path_flow lowerCAmelCase__ : str = sink while v != source: lowerCAmelCase__ : List[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCAmelCase__ : List[Any] = parent[v] for i in range(len(A_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
106
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
0
import math def __magic_name__ ( A : int = 100 ): '''simple docstring''' a = sum(i * i for i in range(1, n + 1 ) ) a = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
107
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] ="data2vec-vision" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=[3, 5, 7, 11] , snake_case__=[1, 2, 3, 6] , snake_case__=True , snake_case__=0.4 , snake_case__=256 , snake_case__=1 , snake_case__=False , snake_case__=255 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : int = initializer_range lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : Union[str, Any] = use_mask_token lowerCAmelCase : str = use_absolute_position_embeddings lowerCAmelCase : Any = use_relative_position_bias lowerCAmelCase : List[str] = use_shared_relative_position_bias lowerCAmelCase : str = layer_scale_init_value lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase : Optional[int] = out_indices lowerCAmelCase : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase : str = use_auxiliary_head lowerCAmelCase : int = auxiliary_loss_weight lowerCAmelCase : Tuple = auxiliary_channels lowerCAmelCase : List[str] = auxiliary_num_convs lowerCAmelCase : Tuple = auxiliary_concat_input lowerCAmelCase : List[str] = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
108
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
0
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ ): __lowerCAmelCase : Tuple = 1 @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 1000 , _SCREAMING_SNAKE_CASE = None ) -> Dict: '''simple docstring''' self.set_timesteps(_SCREAMING_SNAKE_CASE ) # standard deviation of the initial noise distribution UpperCAmelCase : Optional[int] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCAmelCase : List[str] = 4 # running values UpperCAmelCase : str = [] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Dict: '''simple docstring''' UpperCAmelCase : Union[str, Any] = num_inference_steps UpperCAmelCase : Tuple = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] UpperCAmelCase : str = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCAmelCase : Optional[Any] = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: UpperCAmelCase : Optional[Any] = torch.sin(steps * math.pi / 2 ) ** 2 UpperCAmelCase : Dict = (1.0 - self.betas**2) ** 0.5 UpperCAmelCase : List[Any] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] UpperCAmelCase : List[Any] = timesteps.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = [] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) UpperCAmelCase : Optional[int] = (self.timesteps == timestep).nonzero().item() UpperCAmelCase : Optional[Any] = timestep_index + 1 UpperCAmelCase : Union[str, Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_SCREAMING_SNAKE_CASE ) if len(self.ets ) == 1: UpperCAmelCase : Union[str, Any] = self.ets[-1] elif len(self.ets ) == 2: UpperCAmelCase : Union[str, Any] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCAmelCase : str = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: UpperCAmelCase : List[str] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) UpperCAmelCase : Union[str, Any] = self._get_prev_sample(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> torch.FloatTensor: '''simple docstring''' return sample def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.alphas[timestep_index] UpperCAmelCase : List[str] = self.betas[timestep_index] UpperCAmelCase : Tuple = self.alphas[prev_timestep_index] UpperCAmelCase : int = self.betas[prev_timestep_index] UpperCAmelCase : List[Any] = (sample - sigma * ets) / max(_SCREAMING_SNAKE_CASE , 1E-8 ) UpperCAmelCase : Union[str, Any] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> int: '''simple docstring''' return self.config.num_train_timesteps
109
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
0
from typing import TYPE_CHECKING from ...utils import _LazyModule __snake_case = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
176
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1 UpperCAmelCase_ : Dict = [] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator if len(str(A ) ) > len(str(A ) ): result.append(A ) UpperCAmelCase_ : Optional[Any] = numerator UpperCAmelCase_ : Optional[int] = denominator return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
304
0
import argparse UpperCAmelCase_ = 'docs/source/_static/js/custom.js' def lowerCAmelCase_ ( __UpperCAmelCase: Any ) -> Optional[int]: with open(__UpperCAmelCase , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCamelCase__ : int = f.readlines() UpperCamelCase__ : List[Any] = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 UpperCamelCase__ : int = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') UpperCAmelCase_ = parser.parse_args() update_custom_js(args.version)
201
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
0
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def A__ ( ): import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase : Optional[int] = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , 'os.path.join' , UpperCAmelCase_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def A__ ( ): assert _test_patching.open is open _UpperCamelCase : str = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , UpperCAmelCase_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def A__ ( ): # pandas.read_csv is not present in _test_patching _UpperCamelCase : Union[str, Any] = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , 'pandas.read_csv' , UpperCAmelCase_ ): pass def A__ ( ): # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point _UpperCamelCase : List[str] = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , UpperCAmelCase_ ) is None with patch_submodule(_test_patching , 'len' , UpperCAmelCase_ ): assert _test_patching.len is mock assert _test_patching.len is len def A__ ( ): _UpperCamelCase : List[str] = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase : Dict = patch_submodule(_test_patching , 'open' , UpperCAmelCase_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def A__ ( ): from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase : List[str] = '''__test_patch_submodule_successive_join__''' _UpperCamelCase : Dict = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase : int = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , UpperCAmelCase_ ): with patch_submodule(_test_patching , 'os.rename' , UpperCAmelCase_ ): with patch_submodule(_test_patching , 'os.path.dirname' , UpperCAmelCase_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , UpperCAmelCase_ ): with patch_submodule(_test_patching , 'os.path.join' , UpperCAmelCase_ ): with patch_submodule(_test_patching , 'os.path.dirname' , UpperCAmelCase_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def A__ ( ): _UpperCamelCase : Tuple = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , UpperCAmelCase_ ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , UpperCAmelCase_ ): pass
83
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device snake_case : Optional[Any] = False class _snake_case ( unittest.TestCase ): pass @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) __magic_name__ : Union[str, Any] = torch.manual_seed(0 ) __magic_name__ : Union[str, Any] = pipe.dual_guided( prompt="first prompt" , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_A ) __magic_name__ : Any = VersatileDiffusionPipeline.from_pretrained(_A , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Any = generator.manual_seed(0 ) __magic_name__ : str = pipe.dual_guided( prompt="first prompt" , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __magic_name__ : List[Any] = '''cyberpunk 2077''' __magic_name__ : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) __magic_name__ : Optional[Any] = torch.manual_seed(0 ) __magic_name__ : Optional[Any] = pipe.dual_guided( prompt=_A , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images __magic_name__ : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __magic_name__ : Any = np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __magic_name__ : Optional[Any] = '''A painting of a squirrel eating a burger ''' __magic_name__ : List[Any] = torch.manual_seed(0 ) __magic_name__ : Tuple = pipe.text_to_image( prompt=_A , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __magic_name__ : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __magic_name__ : str = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __magic_name__ : Tuple = pipe.image_variation(_A , generator=_A , output_type="numpy" ).images __magic_name__ : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __magic_name__ : Optional[Any] = np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
281
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase : Any = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
219
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
0
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: '''simple docstring''' if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) ) def lowercase_ ( ) -> None: '''simple docstring''' lowerCamelCase_ : List[str] = [90, 23, 6, 33, 21, 65, 123, 34_423] lowerCamelCase_ : List[Any] = math.log(len(_lowercase ) , 2 ) print(F"""Optimal value : {minimax(0 , 0 , _lowercase , _lowercase , _lowercase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
318
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__: Optional[Any] = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: Dict = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys a__: str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
193
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
0
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : Tuple ='pixel_values' lowercase : List[str] =False lowercase : str =TimmBackboneConfig def __init__( self, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, '''timm''' ) super().__init__(_A ) lowerCamelCase_ =config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(_A, '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) lowerCamelCase_ =getattr(_A, '''use_pretrained_backbone''', _A ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. lowerCamelCase_ =config.out_indices if getattr(_A, '''out_indices''', _A ) is not None else (-1,) lowerCamelCase_ =timm.create_model( config.backbone, pretrained=_A, features_only=config.features_only, in_chans=config.num_channels, out_indices=_A, **_A, ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCamelCase_ =self._backbone.return_layers lowerCamelCase_ ={layer['''module''']: str(_A ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(_A ) @classmethod def lowercase__ ( cls, lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig lowerCamelCase_ =kwargs.pop('''config''', TimmBackboneConfig() ) lowerCamelCase_ =kwargs.pop('''use_timm_backbone''', _A ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) lowerCamelCase_ =kwargs.pop('''num_channels''', config.num_channels ) lowerCamelCase_ =kwargs.pop('''features_only''', config.features_only ) lowerCamelCase_ =kwargs.pop('''use_pretrained_backbone''', config.use_pretrained_backbone ) lowerCamelCase_ =kwargs.pop('''out_indices''', config.out_indices ) lowerCamelCase_ =TimmBackboneConfig( backbone=_A, num_channels=_A, features_only=_A, use_pretrained_backbone=_A, out_indices=_A, ) return super()._from_config(_A, **_A ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" pass def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ =output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCamelCase_ =self._all_layers lowerCamelCase_ =self._backbone(_A, **_A ) lowerCamelCase_ =self._return_layers lowerCamelCase_ =tuple(hidden_states[i] for i in self.out_indices ) else: lowerCamelCase_ =self._backbone(_A, **_A ) lowerCamelCase_ =None lowerCamelCase_ =tuple(_A ) lowerCamelCase_ =tuple(_A ) if hidden_states is not None else None if not return_dict: lowerCamelCase_ =(feature_maps,) if output_hidden_states: lowerCamelCase_ =output + (hidden_states,) return output return BackboneOutput(feature_maps=_A, hidden_states=_A, attentions=_A )
75
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ReformerTokenizer a_ = ReformerTokenizerFast a_ = True a_ = False a_ = True def A ( self : Optional[Any] ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = '''<s>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 10_00 ) def A ( self : Optional[int] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(_A ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def A ( self : Tuple , _A : Dict=15 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Dict = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def A ( self : Union[str, Any] ) -> int: pass def A ( self : int ) -> Any: UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A ) UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : List[str] ) -> Optional[int]: return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : Tuple = '''Hello World!''' UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def A ( self : List[Any] ) -> str: UpperCAmelCase_ : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase_ : int = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def A ( self : List[str] ) -> Optional[int]: import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ : List[Any] = ''' '''.join(_A ) UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' ) UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape UpperCAmelCase_ : Optional[int] = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def A ( self : int ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ : Optional[Any] = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
304
0
"""simple docstring""" from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : Optional[int] ): __UpperCAmelCase = SMALL_MODEL_IDENTIFIER __UpperCAmelCase = '''pt''' __UpperCAmelCase = '''tf''' def a ( self : str , _lowercase : Any ): __UpperCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_A ) def a ( self : Tuple , _lowercase : Union[str, Any] ): __UpperCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_A ) model_tf.save_pretrained(_A ) def a ( self : Dict ): __UpperCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model , _A ) self.assertEqual(_A , _A ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_A ) __UpperCAmelCase = FeaturesManager.determine_framework(_A , _A ) self.assertEqual(_A , _A ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_A ) __UpperCAmelCase = FeaturesManager.determine_framework(_A , _A ) self.assertEqual(_A , _A ) def a ( self : str ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_A ) __UpperCAmelCase = FeaturesManager.determine_framework(_A ) self.assertEqual(_A , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_A ) __UpperCAmelCase = FeaturesManager.determine_framework(_A ) self.assertEqual(_A , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_A ): __UpperCAmelCase = FeaturesManager.determine_framework(_A ) def a ( self : int ): __UpperCAmelCase = MagicMock(return_value=_A ) with patch('''transformers.onnx.features.is_tf_available''' , _A ): __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_A , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __UpperCAmelCase = MagicMock(return_value=_A ) with patch('''transformers.onnx.features.is_torch_available''' , _A ): __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_A , self.framework_tf ) # Both in environment -> use PyTorch __UpperCAmelCase = MagicMock(return_value=_A ) __UpperCAmelCase = MagicMock(return_value=_A ) with patch('''transformers.onnx.features.is_tf_available''' , _A ), patch( '''transformers.onnx.features.is_torch_available''' , _A ): __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_A , self.framework_pt ) # Both not in environment -> raise error __UpperCAmelCase = MagicMock(return_value=_A ) __UpperCAmelCase = MagicMock(return_value=_A ) with patch('''transformers.onnx.features.is_tf_available''' , _A ), patch( '''transformers.onnx.features.is_torch_available''' , _A ): with self.assertRaises(_A ): __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model )
332
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
0
class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' pass class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' pass class lowerCamelCase__ : '''simple docstring''' def __init__(self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = [ [], [], [], ] def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(_A ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__(self ) -> str: """simple docstring""" return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class lowerCamelCase__ : '''simple docstring''' def __init__(self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [] def lowerCAmelCase__ (self ,__lowerCamelCase ) -> None: """simple docstring""" if len(self.queue ) == 1_00: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(_A ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: lowerCAmelCase__ : List[Any] = min(self.queue ) self.queue.remove(_A ) return data def __str__(self ) -> str: """simple docstring""" return str(self.queue ) def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : List[Any] = FixedPriorityQueue() fpq.enqueue(0 ,10) fpq.enqueue(1 ,70) fpq.enqueue(0 ,100) fpq.enqueue(2 ,1) fpq.enqueue(2 ,5) fpq.enqueue(1 ,7) fpq.enqueue(2 ,4) fpq.enqueue(1 ,64) fpq.enqueue(0 ,128) print(lowerCamelCase_) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(lowerCamelCase_) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Tuple = ElementPriorityQueue() epq.enqueue(10) epq.enqueue(70) epq.enqueue(100) epq.enqueue(1) epq.enqueue(5) epq.enqueue(7) epq.enqueue(4) epq.enqueue(64) epq.enqueue(128) print(lowerCamelCase_) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(lowerCamelCase_) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
129
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
0
def _A ( _lowercase , _lowercase ) -> bool: """simple docstring""" __UpperCamelCase = len(_lowercase ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
310
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
0