code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _lowerCamelCase( _a, _a, unittest.TestCase ):
lowercase_ : Dict = StableDiffusionSAGPipeline
lowercase_ : List[Any] = TEXT_TO_IMAGE_PARAMS
lowercase_ : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS
lowercase_ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS
lowercase_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
lowercase_ : List[str] = False
def UpperCamelCase ( self) -> Dict:
"""simple docstring"""
torch.manual_seed(0)
_lowercase : int = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, )
_lowercase : Tuple = DDIMScheduler(
beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, beta_schedule='scaled_linear', clip_sample=lowerCamelCase, set_alpha_to_one=lowerCamelCase, )
torch.manual_seed(0)
_lowercase : str = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, )
torch.manual_seed(0)
_lowercase : List[str] = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, )
_lowercase : Dict = CLIPTextModel(lowerCamelCase)
_lowercase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
_lowercase : Optional[Any] = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Dict:
"""simple docstring"""
if str(lowerCamelCase).startswith('mps'):
_lowercase : str = torch.manual_seed(lowerCamelCase)
else:
_lowercase : List[Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase)
_lowercase : List[Any] = {
'prompt': '.',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 1.0,
'sag_scale': 1.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase ( self) -> List[str]:
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3)
@slow
@require_torch_gpu
class _lowerCamelCase( unittest.TestCase ):
def UpperCamelCase ( self) -> Dict:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase ( self) -> Optional[int]:
"""simple docstring"""
_lowercase : Dict = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4')
_lowercase : Optional[Any] = sag_pipe.to(lowerCamelCase)
sag_pipe.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : Tuple = '.'
_lowercase : int = torch.manual_seed(0)
_lowercase : Optional[Any] = sag_pipe(
[prompt], generator=lowerCamelCase, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type='np')
_lowercase : Tuple = output.images
_lowercase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_lowercase : Tuple = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2
def UpperCamelCase ( self) -> Union[str, Any]:
"""simple docstring"""
_lowercase : List[Any] = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base')
_lowercase : Dict = sag_pipe.to(lowerCamelCase)
sag_pipe.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : Union[str, Any] = '.'
_lowercase : str = torch.manual_seed(0)
_lowercase : Any = sag_pipe(
[prompt], generator=lowerCamelCase, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type='np')
_lowercase : List[str] = output.images
_lowercase : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_lowercase : int = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2
def UpperCamelCase ( self) -> Dict:
"""simple docstring"""
_lowercase : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base')
_lowercase : List[str] = sag_pipe.to(lowerCamelCase)
sag_pipe.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : Union[str, Any] = '.'
_lowercase : Tuple = torch.manual_seed(0)
_lowercase : List[Any] = sag_pipe(
[prompt], width=7_68, height=5_12, generator=lowerCamelCase, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type='np', )
_lowercase : Tuple = output.images
assert image.shape == (1, 5_12, 7_68, 3)
| 21
|
'''simple docstring'''
import functools
def __UpperCAmelCase ( A : str , A : str ) -> int:
UpperCAmelCase_ : Optional[Any] = len(A )
UpperCAmelCase_ : List[str] = len(A )
@functools.cache
def min_distance(A : int , A : int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 304
| 0
|
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
__SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE :Dict = {
'''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''',
}
class A_ ( lowerCAmelCase_ ):
_lowerCamelCase : Optional[int] = """layoutlmv3"""
def __init__( self : int , snake_case_ : List[Any]=5_0_2_6_5 , snake_case_ : int=7_6_8 , snake_case_ : Optional[int]=1_2 , snake_case_ : Dict=1_2 , snake_case_ : Union[str, Any]=3_0_7_2 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Optional[Any]=0.1 , snake_case_ : List[Any]=5_1_2 , snake_case_ : Any=2 , snake_case_ : Any=0.0_2 , snake_case_ : Union[str, Any]=1e-5 , snake_case_ : Tuple=1 , snake_case_ : Any=0 , snake_case_ : Optional[int]=2 , snake_case_ : List[str]=1_0_2_4 , snake_case_ : int=1_2_8 , snake_case_ : List[Any]=1_2_8 , snake_case_ : List[str]=True , snake_case_ : int=3_2 , snake_case_ : Union[str, Any]=1_2_8 , snake_case_ : Dict=6_4 , snake_case_ : int=2_5_6 , snake_case_ : Tuple=True , snake_case_ : str=True , snake_case_ : Tuple=True , snake_case_ : Optional[Any]=2_2_4 , snake_case_ : List[str]=3 , snake_case_ : Tuple=1_6 , snake_case_ : Any=None , **snake_case_ : Union[str, Any] , ):
super().__init__(
vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , )
_UpperCAmelCase = max_ad_position_embeddings
_UpperCAmelCase = coordinate_size
_UpperCAmelCase = shape_size
_UpperCAmelCase = has_relative_attention_bias
_UpperCAmelCase = rel_pos_bins
_UpperCAmelCase = max_rel_pos
_UpperCAmelCase = has_spatial_attention_bias
_UpperCAmelCase = rel_ad_pos_bins
_UpperCAmelCase = max_rel_ad_pos
_UpperCAmelCase = text_embed
_UpperCAmelCase = visual_embed
_UpperCAmelCase = input_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = patch_size
_UpperCAmelCase = classifier_dropout
class A_ ( lowerCAmelCase_ ):
_lowerCamelCase : Tuple = version.parse("""1.12""" )
@property
def lowercase ( self : List[str] ):
# The order of inputs is different for question answering and sequence classification
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("attention_mask", {0: "batch", 1: "sequence"}),
("bbox", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
else:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("bbox", {0: "batch", 1: "sequence"}),
("attention_mask", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels"}),
] )
@property
def lowercase ( self : Union[str, Any] ):
return 1e-5
@property
def lowercase ( self : Dict ):
return 1_2
def lowercase ( self : Optional[Any] , snake_case_ : "ProcessorMixin" , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional["TensorType"] = None , snake_case_ : int = 3 , snake_case_ : int = 4_0 , snake_case_ : int = 4_0 , ):
setattr(processor.image_processor , "apply_ocr" , snake_case_ )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_UpperCAmelCase = compute_effective_axis_dimension(
snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(snake_case_ )
_UpperCAmelCase = compute_effective_axis_dimension(
snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ )
# Generate dummy inputs according to compute batch and sequence
_UpperCAmelCase = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
_UpperCAmelCase = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
_UpperCAmelCase = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
_UpperCAmelCase = dict(
processor(
snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) )
return inputs
| 22
|
'''simple docstring'''
def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int:
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1
UpperCAmelCase_ : Dict = []
for i in range(1 , n + 1 ):
UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator
UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator
if len(str(A ) ) > len(str(A ) ):
result.append(A )
UpperCAmelCase_ : Optional[Any] = numerator
UpperCAmelCase_ : Optional[int] = denominator
return len(A )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 304
| 0
|
'''simple docstring'''
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def A ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase : Dict = tempfile.mkdtemp()
UpperCAmelCase : List[Any] = 8
# DPR tok
UpperCAmelCase : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , '''dpr_tokenizer''' )
os.makedirs(__snake_case , exist_ok=__snake_case )
UpperCAmelCase : List[Any] = os.path.join(__snake_case , DPR_VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
# BART tok
UpperCAmelCase : Optional[Any] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
UpperCAmelCase : Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) )
UpperCAmelCase : List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
UpperCAmelCase : str = {'''unk_token''': '''<unk>'''}
UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' )
os.makedirs(__snake_case , exist_ok=__snake_case )
UpperCAmelCase : Tuple = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase : Optional[Any] = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__snake_case ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__snake_case ) )
def A ( self : str ) -> DPRQuestionEncoderTokenizer:
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def A ( self : List[Any] ) -> DPRContextEncoderTokenizer:
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def A ( self : Dict ) -> BartTokenizer:
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) )
def A ( self : List[str] ) -> Dict:
shutil.rmtree(self.tmpdirname )
def A ( self : List[str] ) -> List[str]:
UpperCAmelCase : Union[str, Any] = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''text''': ['''foo''', '''bar'''],
'''title''': ['''Foo''', '''Bar'''],
'''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def A ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase : str = self.get_dummy_dataset()
UpperCAmelCase : Optional[int] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset:
UpperCAmelCase : List[str] = dataset
UpperCAmelCase : str = RagRetriever(
__snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def A ( self : List[Any] , __snake_case : bool ) -> List[str]:
UpperCAmelCase : Optional[int] = self.get_dummy_dataset()
UpperCAmelCase : Dict = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , )
if from_disk:
UpperCAmelCase : int = os.path.join(self.tmpdirname , '''dataset''' )
UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , '''index.faiss''' )
dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) )
dataset.drop_index('''embeddings''' )
dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) )
del dataset
UpperCAmelCase : str = RagRetriever(
__snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
UpperCAmelCase : Union[str, Any] = RagRetriever(
__snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __snake_case ) , )
return retriever
def A ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''text''': ['''foo''', '''bar'''],
'''title''': ['''Foo''', '''Bar'''],
'''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT )
UpperCAmelCase : Dict = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' )
dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' )
pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) )
UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' )
UpperCAmelCase : int = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset}
pickle.dump(__snake_case , open(__snake_case , '''wb''' ) )
UpperCAmelCase : List[str] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , )
UpperCAmelCase : Dict = RagRetriever(
__snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def A ( self : Dict ) -> Optional[Any]:
UpperCAmelCase : List[Any] = 1
UpperCAmelCase : Optional[int] = self.get_dummy_canonical_hf_index_retriever()
UpperCAmelCase : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = retriever.retrieve(__snake_case , n_docs=__snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , __snake_case )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def A ( self : Any ) -> List[str]:
UpperCAmelCase : List[Any] = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset:
UpperCAmelCase : List[Any] = self.get_dummy_dataset()
retriever.save_pretrained(__snake_case )
UpperCAmelCase : Tuple = RagRetriever.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
UpperCAmelCase : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Optional[int] = retriever.retrieve(__snake_case , n_docs=1 )
self.assertTrue(out is not None )
def A ( self : Union[str, Any] ) -> Any:
UpperCAmelCase : Any = 1
UpperCAmelCase : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case )
UpperCAmelCase : str = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = retriever.retrieve(__snake_case , n_docs=__snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , __snake_case )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def A ( self : Tuple ) -> Any:
UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__snake_case )
UpperCAmelCase : Dict = RagRetriever.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
UpperCAmelCase : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : List[Any] = retriever.retrieve(__snake_case , n_docs=1 )
self.assertTrue(out is not None )
def A ( self : Any ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = 1
UpperCAmelCase : int = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case )
UpperCAmelCase : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = retriever.retrieve(__snake_case , n_docs=__snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , __snake_case )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def A ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__snake_case )
UpperCAmelCase : Optional[Any] = RagRetriever.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
UpperCAmelCase : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : List[Any] = retriever.retrieve(__snake_case , n_docs=1 )
self.assertTrue(out is not None )
def A ( self : Optional[Any] ) -> List[Any]:
UpperCAmelCase : List[str] = 1
UpperCAmelCase : Union[str, Any] = self.get_dummy_legacy_index_retriever()
UpperCAmelCase : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = retriever.retrieve(__snake_case , n_docs=__snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''text'''] ) , __snake_case )
self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def A ( self : List[str] ) -> List[str]:
UpperCAmelCase : int = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__snake_case )
UpperCAmelCase : int = RagRetriever.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
UpperCAmelCase : int = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : int = retriever.retrieve(__snake_case , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def A ( self : int ) -> Tuple:
import torch
UpperCAmelCase : List[str] = 1
UpperCAmelCase : List[str] = self.get_dummy_canonical_hf_index_retriever()
UpperCAmelCase : str = [[5, 7], [10, 11]]
UpperCAmelCase : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Optional[int] = retriever(__snake_case , __snake_case , prefix=retriever.config.generator.prefix , n_docs=__snake_case )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = (
out['''context_input_ids'''],
out['''context_attention_mask'''],
out['''retrieved_doc_embeds'''],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(__snake_case , __snake_case )
self.assertIsInstance(__snake_case , __snake_case )
self.assertIsInstance(__snake_case , np.ndarray )
UpperCAmelCase : Tuple = retriever(
__snake_case , __snake_case , prefix=retriever.config.generator.prefix , n_docs=__snake_case , return_tensors='''pt''' , )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = ( # noqa: F841
out['''context_input_ids'''],
out['''context_attention_mask'''],
out['''retrieved_doc_embeds'''],
out['''doc_ids'''],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(__snake_case , torch.Tensor )
self.assertIsInstance(__snake_case , torch.Tensor )
self.assertIsInstance(__snake_case , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def A ( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = self.get_dpr_ctx_encoder_tokenizer()
UpperCAmelCase : List[Any] = 1
UpperCAmelCase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case )
retriever.set_ctx_encoder_tokenizer(__snake_case )
UpperCAmelCase : Union[str, Any] = [[5, 7], [10, 11]]
UpperCAmelCase : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Optional[int] = retriever(__snake_case , __snake_case , prefix=retriever.config.generator.prefix , n_docs=__snake_case )
self.assertEqual(
len(__snake_case ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __snake_case ) # check for doc token related keys in dictionary.
| 23
|
'''simple docstring'''
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class snake_case__ ( unittest.TestCase):
def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]:
UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20}
UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : Any = num_channels
UpperCAmelCase_ : Optional[Any] = image_size
UpperCAmelCase_ : Tuple = min_resolution
UpperCAmelCase_ : Tuple = max_resolution
UpperCAmelCase_ : Optional[int] = do_resize
UpperCAmelCase_ : Tuple = size
UpperCAmelCase_ : Optional[Any] = do_center_crop
UpperCAmelCase_ : Optional[int] = crop_size
UpperCAmelCase_ : Tuple = do_normalize
UpperCAmelCase_ : Optional[Any] = image_mean
UpperCAmelCase_ : int = image_std
UpperCAmelCase_ : List[Any] = do_reduce_labels
def A ( self : Union[str, Any] ) -> str:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def __UpperCAmelCase ( ) -> Optional[Any]:
UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] )
UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] )
return image, map
def __UpperCAmelCase ( ) -> Any:
UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] )
UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] )
UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] )
UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = BeitImageProcessor if is_vision_available() else None
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self )
@property
def A ( self : List[Any] ) -> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def A ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , '''do_resize''' ) )
self.assertTrue(hasattr(_A , '''size''' ) )
self.assertTrue(hasattr(_A , '''do_center_crop''' ) )
self.assertTrue(hasattr(_A , '''center_crop''' ) )
self.assertTrue(hasattr(_A , '''do_normalize''' ) )
self.assertTrue(hasattr(_A , '''image_mean''' ) )
self.assertTrue(hasattr(_A , '''image_std''' ) )
def A ( self : List[str] ) -> Optional[int]:
UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
self.assertEqual(image_processor.do_reduce_labels , _A )
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
self.assertEqual(image_processor.do_reduce_labels , _A )
def A ( self : Optional[Any] ) -> Any:
pass
def A ( self : List[str] ) -> Optional[int]:
# Initialize image_processing
UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Union[str, Any] ) -> Union[str, Any]:
# Initialize image_processing
UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Optional[int] ) -> str:
# Initialize image_processing
UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Any ) -> Optional[Any]:
# Initialize image_processing
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
UpperCAmelCase_ : Union[str, Any] = []
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched
UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test not batched input (PIL images)
UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs()
UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched input (PIL images)
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs()
UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
2,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
def A ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs()
UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 1_50 )
UpperCAmelCase_ : int = True
UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
| 304
| 0
|
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class SCREAMING_SNAKE_CASE__ :
def __init__(self : Union[str, Any] , a__ : List[str] , a__ : Any=2 , a__ : Dict=3 , a__ : Dict=4 , a__ : Tuple=2 , a__ : str=7 , a__ : List[Any]=True , a__ : str=True , a__ : Optional[Any]=True , a__ : Optional[Any]=True , a__ : Optional[Any]=99 , a__ : List[Any]=36 , a__ : Optional[Any]=3 , a__ : List[str]=4 , a__ : Tuple=37 , a__ : Any="gelu" , a__ : str=0.1 , a__ : Any=0.1 , a__ : List[str]=512 , a__ : Any=16 , a__ : Tuple=2 , a__ : List[str]=0.0_2 , a__ : int=6 , a__ : Union[str, Any]=6 , a__ : str=3 , a__ : Union[str, Any]=4 , a__ : Tuple=None , a__ : List[Any]=1000 , ):
"""simple docstring"""
__snake_case = parent
__snake_case = batch_size
__snake_case = num_channels
__snake_case = image_size
__snake_case = patch_size
__snake_case = text_seq_length
__snake_case = is_training
__snake_case = use_input_mask
__snake_case = use_token_type_ids
__snake_case = use_labels
__snake_case = vocab_size
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = intermediate_size
__snake_case = hidden_act
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = type_vocab_size
__snake_case = type_sequence_label_size
__snake_case = initializer_range
__snake_case = coordinate_size
__snake_case = shape_size
__snake_case = num_labels
__snake_case = num_choices
__snake_case = scope
__snake_case = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case = text_seq_length
__snake_case = (image_size // patch_size) ** 2 + 1
__snake_case = self.text_seq_length + self.image_seq_length
def a (self : Dict ):
"""simple docstring"""
__snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case = bbox[i, j, 3]
__snake_case = bbox[i, j, 1]
__snake_case = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case = bbox[i, j, 2]
__snake_case = bbox[i, j, 0]
__snake_case = t
__snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case = None
if self.use_input_mask:
__snake_case = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case = None
if self.use_token_type_ids:
__snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case = None
__snake_case = None
if self.use_labels:
__snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def a (self : int , a__ : int , a__ : List[Any] , a__ : Any , a__ : Union[str, Any] , a__ : Dict , a__ : Any , a__ : Dict , a__ : Optional[Any] ):
"""simple docstring"""
__snake_case = LayoutLMvaModel(config=a__ )
model.to(a__ )
model.eval()
# text + image
__snake_case = model(a__ , pixel_values=a__ )
__snake_case = model(
a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ )
__snake_case = model(a__ , bbox=a__ , pixel_values=a__ , token_type_ids=a__ )
__snake_case = model(a__ , bbox=a__ , pixel_values=a__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case = model(a__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case = model(pixel_values=a__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def a (self : Dict , a__ : Dict , a__ : Tuple , a__ : Tuple , a__ : List[Any] , a__ : Union[str, Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : List[Any] ):
"""simple docstring"""
__snake_case = self.num_labels
__snake_case = LayoutLMvaForSequenceClassification(a__ )
model.to(a__ )
model.eval()
__snake_case = model(
a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a (self : Optional[Any] , a__ : Optional[Any] , a__ : List[Any] , a__ : Optional[int] , a__ : Tuple , a__ : Optional[Any] , a__ : int , a__ : Union[str, Any] , a__ : Dict ):
"""simple docstring"""
__snake_case = self.num_labels
__snake_case = LayoutLMvaForTokenClassification(config=a__ )
model.to(a__ )
model.eval()
__snake_case = model(
a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def a (self : List[str] , a__ : Dict , a__ : Tuple , a__ : Dict , a__ : int , a__ : str , a__ : List[str] , a__ : List[Any] , a__ : List[Any] ):
"""simple docstring"""
__snake_case = LayoutLMvaForQuestionAnswering(config=a__ )
model.to(a__ )
model.eval()
__snake_case = model(
a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a (self : Any ):
"""simple docstring"""
__snake_case = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) = config_and_inputs
__snake_case = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''pixel_values''': pixel_values,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
A_ : List[Any] = False
A_ : Any = False
A_ : Optional[int] = False
A_ : List[str] = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
A_ : Union[str, Any] = (
{'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel}
if is_torch_available()
else {}
)
def a (self : Any , a__ : Optional[Any] , a__ : Dict , a__ : Optional[Any] , a__ : Tuple , a__ : List[str] ):
"""simple docstring"""
return True
def a (self : List[str] ):
"""simple docstring"""
__snake_case = LayoutLMvaModelTester(self )
__snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 )
def a (self : Optional[int] , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Tuple=False ):
"""simple docstring"""
__snake_case = copy.deepcopy(a__ )
if model_class in get_values(a__ ):
__snake_case = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(a__ , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(a__ ):
__snake_case = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=a__ )
elif model_class in get_values(a__ ):
__snake_case = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a__ )
__snake_case = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a__ )
elif model_class in [
*get_values(a__ ),
]:
__snake_case = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a__ )
elif model_class in [
*get_values(a__ ),
]:
__snake_case = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=a__ , )
return inputs_dict
def a (self : str ):
"""simple docstring"""
self.config_tester.run_common_tests()
def a (self : Any ):
"""simple docstring"""
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a__ )
def a (self : Dict ):
"""simple docstring"""
__snake_case = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case = type
self.model_tester.create_and_check_model(*a__ )
def a (self : Optional[Any] ):
"""simple docstring"""
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*a__ )
def a (self : List[str] ):
"""simple docstring"""
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*a__ )
def a (self : Dict ):
"""simple docstring"""
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*a__ )
@slow
def a (self : List[Any] ):
"""simple docstring"""
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case = LayoutLMvaModel.from_pretrained(a__ )
self.assertIsNotNone(a__ )
def lowerCamelCase__ ( ) -> Optional[int]:
__snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@cached_property
def a (self : int ):
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=a__ ) if is_vision_available() else None
@slow
def a (self : Any ):
"""simple docstring"""
__snake_case = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(a__ )
__snake_case = self.default_image_processor
__snake_case = prepare_img()
__snake_case = image_processor(images=a__ , return_tensors='''pt''' ).pixel_values.to(a__ )
__snake_case = torch.tensor([[1, 2]] )
__snake_case = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
__snake_case = model(
input_ids=input_ids.to(a__ ) , bbox=bbox.to(a__ ) , pixel_values=pixel_values.to(a__ ) , )
# verify the logits
__snake_case = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , a__ )
__snake_case = torch.tensor(
[[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(a__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1E-4 ) )
| 24
|
'''simple docstring'''
import enum
import warnings
from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING
from ..utils import add_end_docstrings, is_tf_available
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
class snake_case__ ( enum.Enum):
a_ = 0
a_ = 1
a_ = 2
@add_end_docstrings(UpperCamelCase)
class snake_case__ ( UpperCamelCase):
a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n "
def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]:
super().__init__(*_A , **_A )
self.check_model_type(
TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING )
if "prefix" not in self._preprocess_params:
# This is very specific. The logic is quite complex and needs to be done
# as a "default".
# It also defines both some preprocess_kwargs and generate_kwargs
# which is why we cannot put them in their respective methods.
UpperCAmelCase_ : Dict = None
if self.model.config.prefix is not None:
UpperCAmelCase_ : Tuple = self.model.config.prefix
if prefix is None and self.model.__class__.__name__ in [
"XLNetLMHeadModel",
"TransfoXLLMHeadModel",
"TFXLNetLMHeadModel",
"TFTransfoXLLMHeadModel",
]:
# For XLNet and TransformerXL we add an article to the prompt to give more state to the model.
UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX
if prefix is not None:
# Recalculate some generate_kwargs linked to prefix.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params )
UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params}
UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params}
def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict:
UpperCAmelCase_ : Union[str, Any] = {}
if prefix is not None:
UpperCAmelCase_ : List[Any] = prefix
if prefix:
UpperCAmelCase_ : Tuple = self.tokenizer(
_A , padding=_A , add_special_tokens=_A , return_tensors=self.framework )
UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1]
if handle_long_generation is not None:
if handle_long_generation not in {"hole"}:
raise ValueError(
F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected"
''' [None, \'hole\']''' )
UpperCAmelCase_ : Union[str, Any] = handle_long_generation
preprocess_params.update(_A )
UpperCAmelCase_ : Optional[int] = generate_kwargs
UpperCAmelCase_ : Tuple = {}
if return_full_text is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' )
if return_tensors is not None:
raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' )
UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
if return_tensors is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' )
UpperCAmelCase_ : List[Any] = ReturnType.TENSORS
if return_type is not None:
UpperCAmelCase_ : List[Any] = return_type
if clean_up_tokenization_spaces is not None:
UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces
if stop_sequence is not None:
UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A )
if len(_A ) > 1:
warnings.warn(
'''Stopping on a multiple token sequence is not yet supported on transformers. The first token of'''
''' the stop sequence will be used as the stop sequence string in the interim.''' )
UpperCAmelCase_ : str = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any:
# Parse arguments
if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
kwargs.update({'''add_space_before_punct_symbol''': True} )
return super()._parse_and_tokenize(*_A , **_A )
def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict:
return super().__call__(_A , **_A )
def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]:
UpperCAmelCase_ : Tuple = self.tokenizer(
prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework )
UpperCAmelCase_ : str = prompt_text
if handle_long_generation == "hole":
UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1]
if "max_new_tokens" in generate_kwargs:
UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens''']
else:
UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len
if new_tokens < 0:
raise ValueError('''We cannot infer how many new tokens are expected''' )
if cur_len + new_tokens > self.tokenizer.model_max_length:
UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens
if keep_length <= 0:
raise ValueError(
'''We cannot use `hole` to handle this generation the number of desired tokens exceeds the'''
''' models max length''' )
UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:]
if "attention_mask" in inputs:
UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:]
return inputs
def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]:
UpperCAmelCase_ : Any = model_inputs['''input_ids''']
UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A )
# Allow empty prompts
if input_ids.shape[1] == 0:
UpperCAmelCase_ : Any = None
UpperCAmelCase_ : List[Any] = None
UpperCAmelCase_ : Union[str, Any] = 1
else:
UpperCAmelCase_ : Optional[int] = input_ids.shape[0]
UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' )
# If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
# generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 )
if prefix_length > 0:
UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].max_new_tokens is not None
)
if not has_max_new_tokens:
UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A )
UpperCAmelCase_ : Any = generated_sequence.shape[0]
if self.framework == "pt":
UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] )
elif self.framework == "tf":
UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) )
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0]
UpperCAmelCase_ : int = model_outputs['''input_ids''']
UpperCAmelCase_ : str = model_outputs['''prompt_text''']
UpperCAmelCase_ : Any = generated_sequence.numpy().tolist()
UpperCAmelCase_ : int = []
for sequence in generated_sequence:
if return_type == ReturnType.TENSORS:
UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence}
elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}:
# Decode text
UpperCAmelCase_ : Any = self.tokenizer.decode(
_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , )
# Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used
if input_ids is None:
UpperCAmelCase_ : List[str] = 0
else:
UpperCAmelCase_ : str = len(
self.tokenizer.decode(
input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) )
if return_type == ReturnType.FULL_TEXT:
UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:]
else:
UpperCAmelCase_ : Dict = text[prompt_length:]
UpperCAmelCase_ : List[str] = {'''generated_text''': all_text}
records.append(_A )
return records
| 304
| 0
|
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase__ : Optional[Any] = {
'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class lowerCAmelCase_ (a__ ):
"""simple docstring"""
__UpperCamelCase : str = '''dpt'''
def __init__(self , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=3_84 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=[2, 5, 8, 11] , SCREAMING_SNAKE_CASE__="project" , SCREAMING_SNAKE_CASE__=[4, 2, 1, 0.5] , SCREAMING_SNAKE_CASE__=[96, 1_92, 3_84, 7_68] , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=-1 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.4 , SCREAMING_SNAKE_CASE__=2_55 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=[1, 10_24, 24, 24] , SCREAMING_SNAKE_CASE__=[0, 1] , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Tuple = hidden_size
SCREAMING_SNAKE_CASE__ : Optional[int] = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info("""Initializing the config with a `BiT` backbone.""" )
SCREAMING_SNAKE_CASE__ : Any = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
}
SCREAMING_SNAKE_CASE__ : Optional[Any] = BitConfig(**SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
logger.info("""Initializing the config with a `BiT` backbone.""" )
SCREAMING_SNAKE_CASE__ : str = BitConfig(**SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
SCREAMING_SNAKE_CASE__ : List[Any] = backbone_config
else:
raise ValueError(
F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' )
SCREAMING_SNAKE_CASE__ : Dict = backbone_featmap_shape
SCREAMING_SNAKE_CASE__ : List[Any] = neck_ignore_stages
if readout_type != "project":
raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" )
else:
SCREAMING_SNAKE_CASE__ : str = None
SCREAMING_SNAKE_CASE__ : int = None
SCREAMING_SNAKE_CASE__ : List[Any] = []
SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers
SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads
SCREAMING_SNAKE_CASE__ : int = intermediate_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_act
SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Tuple = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range
SCREAMING_SNAKE_CASE__ : List[Any] = layer_norm_eps
SCREAMING_SNAKE_CASE__ : Tuple = image_size
SCREAMING_SNAKE_CASE__ : Tuple = patch_size
SCREAMING_SNAKE_CASE__ : Tuple = num_channels
SCREAMING_SNAKE_CASE__ : Any = qkv_bias
SCREAMING_SNAKE_CASE__ : List[Any] = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" )
SCREAMING_SNAKE_CASE__ : Dict = readout_type
SCREAMING_SNAKE_CASE__ : Optional[int] = reassemble_factors
SCREAMING_SNAKE_CASE__ : List[str] = neck_hidden_sizes
SCREAMING_SNAKE_CASE__ : Dict = fusion_hidden_size
SCREAMING_SNAKE_CASE__ : int = head_in_index
SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
SCREAMING_SNAKE_CASE__ : Tuple = use_auxiliary_head
SCREAMING_SNAKE_CASE__ : List[Any] = auxiliary_loss_weight
SCREAMING_SNAKE_CASE__ : Tuple = semantic_loss_ignore_index
SCREAMING_SNAKE_CASE__ : List[str] = semantic_classifier_dropout
def __magic_name__ (self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.backbone_config.to_dict()
SCREAMING_SNAKE_CASE__ : str = self.__class__.model_type
return output
| 25
|
'''simple docstring'''
from __future__ import annotations
import math
def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int:
if depth < 0:
raise ValueError('''Depth cannot be less than 0''' )
if not scores:
raise ValueError('''Scores cannot be empty''' )
if depth == height:
return scores[node_index]
return (
max(
minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , )
if is_max
else min(
minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , )
)
def __UpperCAmelCase ( ) -> None:
UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 )
print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 304
| 0
|
import random
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[Any] = num - 1
_A : Optional[int] = 0
while s % 2 == 0:
_A : str = s // 2
t += 1
for _ in range(5 ):
_A : Tuple = random.randrange(2,num - 1 )
_A : Dict = pow(snake_case_,snake_case_,snake_case_ )
if v != 1:
_A : int = 0
while v != (num - 1):
if i == t - 1:
return False
else:
_A : int = i + 1
_A : Dict = (v**2) % num
return True
def lowerCAmelCase_ ( snake_case_ ):
if num < 2:
return False
_A : int = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(snake_case_ )
def lowerCAmelCase_ ( snake_case_ = 1024 ):
while True:
_A : List[Any] = random.randrange(2 ** (keysize - 1),2 ** (keysize) )
if is_prime_low_num(snake_case_ ):
return num
if __name__ == "__main__":
_snake_case = generate_large_prime()
print(("Prime number:", num))
print(("is_prime_low_num:", is_prime_low_num(num)))
| 26
|
'''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list:
UpperCAmelCase_ : Any = []
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
UpperCAmelCase_ : List[Any] = result + left + right
return input_list
def __UpperCAmelCase ( A : list ) -> list:
if len(A ) <= 1:
return input_list
UpperCAmelCase_ : List[str] = list(A )
# iteration for two-way merging
UpperCAmelCase_ : Tuple = 2
while p <= len(A ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(A ) , A ):
UpperCAmelCase_ : Union[str, Any] = i
UpperCAmelCase_ : int = i + p - 1
UpperCAmelCase_ : Any = (low + high + 1) // 2
UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A )
# final merge of last two parts
if p * 2 >= len(A ):
UpperCAmelCase_ : str = i
UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
_UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip()
if user_input == "":
_UpperCamelCase : List[str] = []
else:
_UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')]
print(iter_merge_sort(unsorted))
| 304
| 0
|
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__lowercase : List[Any] = logging.get_logger(__name__)
class __UpperCamelCase ( lowerCAmelCase_ ):
A_ = ["pixel_values"]
def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = 1 / 255 , __a = True , __a = None , __a = None , __a = True , **__a , ):
'''simple docstring'''
super().__init__(**__a )
__a : int = size if size is not None else {'height': 384, 'width': 384}
__a : Any = get_size_dict(__a , default_to_square=__a )
__a : Union[str, Any] = do_resize
__a : Tuple = size
__a : Optional[int] = resample
__a : str = do_rescale
__a : List[Any] = rescale_factor
__a : Tuple = do_normalize
__a : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__a : List[str] = image_std if image_std is not None else OPENAI_CLIP_STD
__a : str = do_convert_rgb
def __UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BICUBIC , __a = None , **__a , ):
'''simple docstring'''
__a : str = get_size_dict(__a , default_to_square=__a )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
__a : Optional[Any] = (size['height'], size['width'])
return resize(__a , size=__a , resample=__a , data_format=__a , **__a )
def __UpperCAmelCase ( self , __a , __a , __a = None , **__a , ):
'''simple docstring'''
return rescale(__a , scale=__a , data_format=__a , **__a )
def __UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ):
'''simple docstring'''
return normalize(__a , mean=__a , std=__a , data_format=__a , **__a )
def __UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ):
'''simple docstring'''
__a : str = do_resize if do_resize is not None else self.do_resize
__a : Tuple = resample if resample is not None else self.resample
__a : Dict = do_rescale if do_rescale is not None else self.do_rescale
__a : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor
__a : str = do_normalize if do_normalize is not None else self.do_normalize
__a : Optional[int] = image_mean if image_mean is not None else self.image_mean
__a : Any = image_std if image_std is not None else self.image_std
__a : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__a : Any = size if size is not None else self.size
__a : Union[str, Any] = get_size_dict(__a , default_to_square=__a )
__a : Union[str, Any] = make_list_of_images(__a )
if not valid_images(__a ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__a : List[Any] = [convert_to_rgb(__a ) for image in images]
# All transformations expect numpy arrays.
__a : int = [to_numpy_array(__a ) for image in images]
if do_resize:
__a : Any = [self.resize(image=__a , size=__a , resample=__a ) for image in images]
if do_rescale:
__a : Union[str, Any] = [self.rescale(image=__a , scale=__a ) for image in images]
if do_normalize:
__a : List[str] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images]
__a : Tuple = [to_channel_dimension_format(__a , __a ) for image in images]
__a : int = BatchFeature(data={'pixel_values': images} , tensor_type=__a )
return encoded_outputs
| 27
|
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class snake_case__ :
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42
a_ = 42
a_ = 42
a_ = 42
a_ = 42
def A ( self : Tuple ) -> Optional[int]:
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def A ( self : List[Any] ) -> Union[str, Any]:
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def A ( self : Any ) -> Optional[Any]:
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def A ( self : Optional[int] ) -> torch.Tensor:
UpperCAmelCase_ : Dict = torch.arange(self.height * self.width )
UpperCAmelCase_ : int = torch.stack(
[
pixel_indices % self.width,
torch.div(_A , self.width , rounding_mode='''trunc''' ),
] , axis=1 , )
return coords
@property
def A ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape
UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) )
UpperCAmelCase_ : Any = self.get_image_coords()
UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A )
UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor:
UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 )
UpperCAmelCase_ : Union[str, Any] = self.resolution()
UpperCAmelCase_ : int = self.fov()
UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1
UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 )
UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 )
UpperCAmelCase_ : List[Any] = (
self.z.view(_A , 1 , 3 )
+ self.x.view(_A , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:]
)
UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A )
UpperCAmelCase_ : Union[str, Any] = torch.stack(
[
torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(_A , *_A , 2 , 3 )
def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera":
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , )
def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera:
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : Optional[int] = []
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : str = []
for theta in np.linspace(0 , 2 * np.pi , num=2_0 ):
UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
UpperCAmelCase_ : Optional[int] = -z * 4
UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] )
UpperCAmelCase_ : List[Any] = np.cross(A , A )
origins.append(A )
xs.append(A )
ys.append(A )
zs.append(A )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
| 304
| 0
|
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_lowerCamelCase : int = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE ( _a ):
"""simple docstring"""
def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , **UpperCamelCase__ : List[Any] ):
"""simple docstring"""
UpperCamelCase = feature_size
UpperCamelCase = sampling_rate
UpperCamelCase = padding_value
UpperCamelCase = kwargs.pop('padding_side' , 'right' )
UpperCamelCase = kwargs.pop('return_attention_mask' , UpperCamelCase__ )
super().__init__(**UpperCamelCase__ )
def A ( self : int , UpperCamelCase__ : Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = True , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , ):
"""simple docstring"""
if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
UpperCamelCase = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'
f""" to this method that includes {self.model_input_names[0]}, but you provided"""
f""" {list(processed_features.keys() )}""" )
UpperCamelCase = processed_features[self.model_input_names[0]]
UpperCamelCase = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(UpperCamelCase__ ) == 0:
if return_attention_mask:
UpperCamelCase = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
UpperCamelCase = required_input[0]
if isinstance(UpperCamelCase__ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
UpperCamelCase = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(UpperCamelCase__ ):
UpperCamelCase = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(UpperCamelCase__ ):
UpperCamelCase = 'tf'
elif is_torch_tensor(UpperCamelCase__ ):
UpperCamelCase = 'pt'
elif isinstance(UpperCamelCase__ , (int, float, list, tuple, np.ndarray) ):
UpperCamelCase = 'np'
else:
raise ValueError(
f"""type of {first_element} unknown: {type(UpperCamelCase__ )}. """
'Should be one of a python, numpy, pytorch or tensorflow object.' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
UpperCamelCase = to_numpy(UpperCamelCase__ )
else:
UpperCamelCase = [to_numpy(UpperCamelCase__ ) for v in value]
# Convert padding_strategy in PaddingStrategy
UpperCamelCase = self._get_padding_strategies(padding=UpperCamelCase__ , max_length=UpperCamelCase__ )
UpperCamelCase = processed_features[self.model_input_names[0]]
UpperCamelCase = len(UpperCamelCase__ )
if not all(len(UpperCamelCase__ ) == batch_size for v in processed_features.values() ):
raise ValueError('Some items in the output dictionary have a different batch size than others.' )
UpperCamelCase = []
for i in range(UpperCamelCase__ ):
UpperCamelCase = {k: v[i] for k, v in processed_features.items()}
# truncation
UpperCamelCase = self._truncate(
UpperCamelCase__ , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , truncation=UpperCamelCase__ , )
truncated_inputs.append(UpperCamelCase__ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
UpperCamelCase = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
UpperCamelCase = PaddingStrategy.MAX_LENGTH
UpperCamelCase = {}
for i in range(UpperCamelCase__ ):
# padding
UpperCamelCase = self._pad(
truncated_inputs[i] , max_length=UpperCamelCase__ , padding_strategy=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , )
for key, value in outputs.items():
if key not in batch_outputs:
UpperCamelCase = []
if value.dtype is np.dtype(np.floataa ):
UpperCamelCase = value.astype(np.floataa )
batch_outputs[key].append(UpperCamelCase__ )
return BatchFeature(UpperCamelCase__ , tensor_type=UpperCamelCase__ )
def A ( self : Union[str, Any] , UpperCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , ):
"""simple docstring"""
UpperCamelCase = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
UpperCamelCase = len(UpperCamelCase__ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCamelCase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCamelCase = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(UpperCamelCase__ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
UpperCamelCase = np.ones(len(UpperCamelCase__ ) , dtype=np.intaa )
if needs_to_be_padded:
UpperCamelCase = max_length - len(UpperCamelCase__ )
if self.padding_side == "right":
if return_attention_mask:
UpperCamelCase = np.pad(
processed_features['attention_mask'] , (0, difference) )
UpperCamelCase = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
UpperCamelCase = np.pad(
UpperCamelCase__ , UpperCamelCase__ , 'constant' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
UpperCamelCase = np.pad(
processed_features['attention_mask'] , (difference, 0) )
UpperCamelCase = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
UpperCamelCase = np.pad(
UpperCamelCase__ , UpperCamelCase__ , 'constant' , constant_values=self.padding_value )
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return processed_features
def A ( self : Any , UpperCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , ):
"""simple docstring"""
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' )
UpperCamelCase = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCamelCase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCamelCase = len(UpperCamelCase__ ) > max_length
if needs_to_be_truncated:
UpperCamelCase = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
UpperCamelCase = processed_features['attention_mask'][:max_length]
return processed_features
def A ( self : List[Any] , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Optional[Any]=None ):
"""simple docstring"""
if padding is not False:
if padding is True:
UpperCamelCase = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
UpperCamelCase = PaddingStrategy(UpperCamelCase__ )
elif isinstance(UpperCamelCase__ , UpperCamelCase__ ):
UpperCamelCase = padding
else:
UpperCamelCase = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'
' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' )
return padding_strategy
| 28
|
'''simple docstring'''
import random
class snake_case__ :
@staticmethod
def A ( _A : str ) -> tuple[list[int], list[int]]:
UpperCAmelCase_ : Dict = [ord(_A ) for i in text]
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : Any = []
for i in plain:
UpperCAmelCase_ : int = random.randint(1 , 3_00 )
UpperCAmelCase_ : str = (i + k) * k
cipher.append(_A )
key.append(_A )
return cipher, key
@staticmethod
def A ( _A : list[int] , _A : list[int] ) -> str:
UpperCAmelCase_ : Dict = []
for i in range(len(_A ) ):
UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(_A ) )
return "".join(_A )
if __name__ == "__main__":
_UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello')
print(c, k)
print(Onepad().decrypt(c, k))
| 304
| 0
|
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCAmelCase = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'VAN_PRETRAINED_MODEL_ARCHIVE_LIST',
'VanForImageClassification',
'VanModel',
'VanPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_van import (
VAN_PRETRAINED_MODEL_ARCHIVE_LIST,
VanForImageClassification,
VanModel,
VanPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 29
|
'''simple docstring'''
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = ReformerTokenizer
a_ = ReformerTokenizerFast
a_ = True
a_ = False
a_ = True
def A ( self : Optional[Any] ) -> List[Any]:
super().setUp()
UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A )
tokenizer.save_pretrained(self.tmpdirname )
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase_ : List[Any] = '''<s>'''
UpperCAmelCase_ : int = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def A ( self : Any ) -> str:
UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(_A ) , 10_00 )
def A ( self : Optional[int] ) -> int:
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def A ( self : Optional[Any] ) -> List[Any]:
if not self.test_rust_tokenizer:
return
UpperCAmelCase_ : int = self.get_tokenizer()
UpperCAmelCase_ : Tuple = self.get_rust_tokenizer()
UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A )
UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A )
UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
UpperCAmelCase_ : Tuple = self.get_rust_tokenizer()
UpperCAmelCase_ : Dict = tokenizer.encode(_A )
UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A )
self.assertListEqual(_A , _A )
def A ( self : Tuple , _A : Dict=15 ) -> str:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A )
# Simple input
UpperCAmelCase_ : Optional[int] = '''This is a simple input'''
UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2''']
UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''')
UpperCAmelCase_ : Dict = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' )
# Simple input
self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' )
# Simple input
self.assertRaises(
_A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , )
# Pair input
self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' )
# Pair input
self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' )
# Pair input
self.assertRaises(
_A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , )
def A ( self : Union[str, Any] ) -> int:
pass
def A ( self : int ) -> Any:
UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A )
UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , )
UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A )
self.assertListEqual(
_A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def A ( self : List[str] ) -> Optional[int]:
return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' )
@slow
def A ( self : str ) -> str:
UpperCAmelCase_ : Tuple = '''Hello World!'''
UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@slow
def A ( self : List[Any] ) -> str:
UpperCAmelCase_ : Tuple = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
UpperCAmelCase_ : int = [
1_08,
2_65,
24,
1_11,
4,
2_58,
1_56,
35,
28,
2_75,
3,
2_59,
2_97,
2_60,
84,
4,
35,
1_10,
44,
8,
2_59,
91,
2_68,
21,
11,
2_09,
2_74,
1_09,
2_66,
2_77,
1_17,
86,
93,
3_15,
2_58,
2_78,
2_58,
2_77,
2_58,
0,
2_58,
2_88,
2_58,
3_19,
2_58,
0,
2_58,
0,
2_58,
0,
2_58,
0,
2_58,
2_87,
2_58,
3_15,
2_58,
2_89,
2_58,
2_78,
99,
2_69,
2_66,
2_62,
8,
2_59,
2_41,
4,
2_17,
2_30,
2_68,
2_66,
55,
1_68,
1_06,
75,
1_93,
2_66,
2_23,
27,
49,
26,
2_82,
25,
2_64,
2_99,
19,
26,
0,
2_58,
2_77,
1_17,
86,
93,
1_76,
1_83,
2_70,
11,
2_62,
42,
61,
2_65,
]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@require_torch
@slow
def A ( self : List[str] ) -> Optional[int]:
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10]
UpperCAmelCase_ : List[Any] = ''' '''.join(_A )
UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' )
UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' )
UpperCAmelCase_ : List[Any] = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape
UpperCAmelCase_ : Optional[int] = ReformerModel(_A )
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**_A )
model(**_A )
@slow
def A ( self : int ) -> Optional[Any]:
# fmt: off
UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
UpperCAmelCase_ : Optional[Any] = [
'''This is a very simple sentence.''',
'''The quick brown fox jumps over the lazy dog.''',
]
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
| 304
| 0
|
import math
def a ( snake_case__: int ):
'''simple docstring'''
lowercase_ = [True] * n
lowercase_ = False
lowercase_ = False
lowercase_ = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
lowercase_ = i * 2
while index < n:
lowercase_ = False
lowercase_ = index + i
lowercase_ = [2]
for i in range(3 , snake_case__ , 2 ):
if is_prime[i]:
primes.append(snake_case__ )
return primes
def a ( snake_case__: int = 999_966_663_333 ):
'''simple docstring'''
lowercase_ = math.floor(math.sqrt(snake_case__ ) ) + 100
lowercase_ = prime_sieve(snake_case__ )
lowercase_ = 0
lowercase_ = 0
lowercase_ = primes[prime_index]
while (last_prime**2) <= limit:
lowercase_ = primes[prime_index + 1]
lowercase_ = last_prime**2
lowercase_ = next_prime**2
# Get numbers divisible by lps(current)
lowercase_ = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
lowercase_ = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
lowercase_ = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
lowercase_ = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 30
|
'''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( A : str ) -> list[int]:
return [ord(A ) - 9_6 for elem in plain]
def __UpperCAmelCase ( A : list[int] ) -> str:
return "".join(chr(elem + 9_6 ) for elem in encoded )
def __UpperCAmelCase ( ) -> None:
UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() )
print('''Encoded: ''' , A )
print('''Decoded:''' , decode(A ) )
if __name__ == "__main__":
main()
| 304
| 0
|
'''simple docstring'''
import argparse
import torch
# Step 1. clone https://github.com/microsoft/unilm
# Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd
# Step 3. cd unilm
# Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink
# import classes
from unilm.wavlm.WavLM import WavLM as WavLMOrig
from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig
from transformers import WavLMConfig, WavLMModel, logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : List[Any] = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""",
"""self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""",
"""self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """ctc_proj""",
"""mask_emb""": """masked_spec_embed""",
}
__SCREAMING_SNAKE_CASE : Union[str, Any] = [
"""ctc_proj""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def UpperCamelCase_ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] ) -> Optional[Any]:
"""simple docstring"""
for attribute in key.split("." ):
_UpperCAmelCase : List[Any] = getattr(_UpperCAmelCase , _UpperCAmelCase )
if weight_type is not None:
_UpperCAmelCase : Optional[Any] = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape
else:
_UpperCAmelCase : Optional[int] = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
_UpperCAmelCase : Optional[int] = value
elif weight_type == "weight_g":
_UpperCAmelCase : Union[str, Any] = value
elif weight_type == "weight_v":
_UpperCAmelCase : List[str] = value
elif weight_type == "bias":
_UpperCAmelCase : str = value
else:
_UpperCAmelCase : Optional[Any] = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def UpperCamelCase_ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : int = []
_UpperCAmelCase : Optional[Any] = fairseq_model.state_dict()
_UpperCAmelCase : Dict = hf_model.feature_extractor
for name, value in fairseq_dict.items():
_UpperCAmelCase : Optional[int] = False
if "conv_layers" in name:
load_conv_layer(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , )
_UpperCAmelCase : Dict = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
_UpperCAmelCase : Dict = True
if "*" in mapped_key:
_UpperCAmelCase : Union[str, Any] = name.split(_UpperCAmelCase )[0].split("." )[-2]
_UpperCAmelCase : Dict = mapped_key.replace("*" , _UpperCAmelCase )
if "weight_g" in name:
_UpperCAmelCase : Any = "weight_g"
elif "weight_v" in name:
_UpperCAmelCase : str = "weight_v"
elif "bias" in name and "relative_attention_bias" not in name:
_UpperCAmelCase : Optional[int] = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_UpperCAmelCase : Optional[Any] = "weight"
else:
_UpperCAmelCase : Tuple = None
set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
continue
if not is_used:
unused_weights.append(_UpperCAmelCase )
logger.warning(F"""Unused weights: {unused_weights}""" )
def UpperCamelCase_ ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = full_name.split("conv_layers." )[-1]
_UpperCAmelCase : str = name.split("." )
_UpperCAmelCase : Any = int(items[0] )
_UpperCAmelCase : Optional[int] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
_UpperCAmelCase : Optional[int] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
_UpperCAmelCase : Optional[Any] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
_UpperCAmelCase : List[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
_UpperCAmelCase : List[str] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_UpperCAmelCase )
@torch.no_grad()
def UpperCamelCase_ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=None ) -> Any:
"""simple docstring"""
_UpperCAmelCase : int = torch.load(_UpperCAmelCase )
_UpperCAmelCase : Tuple = WavLMConfigOrig(checkpoint["cfg"] )
_UpperCAmelCase : Tuple = WavLMOrig(_UpperCAmelCase )
model.load_state_dict(checkpoint["model"] )
model.eval()
if config_path is not None:
_UpperCAmelCase : List[str] = WavLMConfig.from_pretrained(_UpperCAmelCase )
else:
_UpperCAmelCase : List[Any] = WavLMConfig()
_UpperCAmelCase : Optional[Any] = WavLMModel(_UpperCAmelCase )
recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase )
hf_wavlm.save_pretrained(_UpperCAmelCase )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
__SCREAMING_SNAKE_CASE : Tuple = parser.parse_args()
convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 31
|
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 304
| 0
|
from manim import *
class SCREAMING_SNAKE_CASE__ ( lowercase__ ):
def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]:
a_ : Optional[int] = Rectangle(height=0.5 , width=0.5 )
a_ : List[Any] = Rectangle(height=0.25 , width=0.25 )
a_ : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
a_ : str = [mem.copy() for i in range(6 )]
a_ : Tuple = [mem.copy() for i in range(6 )]
a_ : Any = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 )
a_ : int = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 )
a_ : Optional[Any] = VGroup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 )
a_ : Optional[Any] = Text('CPU' , font_size=2_4 )
a_ : Any = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(SCREAMING_SNAKE_CASE__ )
a_ : Union[str, Any] = [mem.copy() for i in range(4 )]
a_ : List[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 )
a_ : Any = Text('GPU' , font_size=2_4 )
a_ : Optional[Any] = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ )
gpu.move_to([-1, -1, 0] )
self.add(SCREAMING_SNAKE_CASE__ )
a_ : Optional[Any] = [mem.copy() for i in range(6 )]
a_ : List[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 )
a_ : List[str] = Text('Model' , font_size=2_4 )
a_ : int = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ )
model.move_to([3, -1.0, 0] )
self.add(SCREAMING_SNAKE_CASE__ )
a_ : Dict = []
a_ : str = []
a_ : int = []
for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ):
rect.set_stroke(SCREAMING_SNAKE_CASE__ )
a_ : int = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE__ , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=SCREAMING_SNAKE_CASE__ )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(model_cpu_arr[0] , direction=SCREAMING_SNAKE_CASE__ , buff=0.0 )
else:
cpu_target.next_to(model_cpu_arr[i - 1] , direction=SCREAMING_SNAKE_CASE__ , buff=0.0 )
self.add(SCREAMING_SNAKE_CASE__ )
model_cpu_arr.append(SCREAMING_SNAKE_CASE__ )
self.add(*SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
a_ : Tuple = [mem.copy() for i in range(6 )]
a_ : Union[str, Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 )
a_ : Dict = Text('Loaded Checkpoint' , font_size=2_4 )
a_ : str = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ )
checkpoint.move_to([3, 0.5, 0] )
self.add(SCREAMING_SNAKE_CASE__ )
a_ : Dict = []
a_ : Optional[int] = []
for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ):
a_ : Union[str, Any] = fill.copy().set_fill(SCREAMING_SNAKE_CASE__ , opacity=0.7 )
target.move_to(SCREAMING_SNAKE_CASE__ )
ckpt_arr.append(SCREAMING_SNAKE_CASE__ )
a_ : List[str] = target.copy()
if i < 5:
cpu_target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.move_to(cpu_right_col_base[i - 5] )
ckpt_cpu_arr.append(SCREAMING_SNAKE_CASE__ )
self.add(*SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
a_ : List[str] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
a_ : Optional[Any] = MarkupText(
F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , )
key_text.move_to([-5, 2.4, 0] )
self.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
a_ : Optional[int] = MarkupText(
F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , )
blue_text.next_to(SCREAMING_SNAKE_CASE__ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(SCREAMING_SNAKE_CASE__ )
a_ : str = MarkupText(
F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=2_4 , )
step_a.move_to([2, 2, 0] )
a_ : List[Any] = [meta_mem.copy() for i in range(6 )]
a_ : Optional[Any] = [meta_mem.copy() for i in range(6 )]
a_ : int = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 )
a_ : Optional[int] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 )
a_ : Tuple = VGroup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 )
a_ : Dict = Text('Disk' , font_size=2_4 )
a_ : Optional[Any] = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ )
disk.move_to([-4.0, -1.25, 0] )
self.play(Write(SCREAMING_SNAKE_CASE__ , run_time=3 ) , Write(SCREAMING_SNAKE_CASE__ , run_time=1 ) , Create(SCREAMING_SNAKE_CASE__ , run_time=1 ) )
a_ : List[Any] = []
for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ):
a_ : List[str] = rect.copy()
target.generate_target()
target.target.move_to(disk_left_col_base[i] ).scale(0.5 )
animations.append(MoveToTarget(SCREAMING_SNAKE_CASE__ , run_time=1.5 ) )
self.play(*SCREAMING_SNAKE_CASE__ )
self.play(FadeOut(SCREAMING_SNAKE_CASE__ ) )
a_ : Optional[Any] = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=2_4 )
step_a.move_to([2, 2, 0] )
self.play(Write(SCREAMING_SNAKE_CASE__ , run_time=3 ) )
self.play(
FadeOut(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) , )
self.wait()
| 32
|
'''simple docstring'''
def __UpperCAmelCase ( A : int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
UpperCAmelCase_ : int = gray_code_sequence_string(A )
#
# convert them to integers
for i in range(len(A ) ):
UpperCAmelCase_ : List[str] = int(sequence[i] , 2 )
return sequence
def __UpperCAmelCase ( A : int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 )
UpperCAmelCase_ : int = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i]
sequence.append(A )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i]
sequence.append(A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 304
| 0
|
"""simple docstring"""
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
__A : Any = logging.get_logger(__name__)
__A : Optional[int] = {'''vocab_file''': '''vocab.txt'''}
__A : int = {
'''vocab_file''': {
'''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''',
'''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''',
},
}
__A : int = {
'''facebook/esm2_t6_8M_UR50D''': 1_024,
'''facebook/esm2_t12_35M_UR50D''': 1_024,
}
def lowercase ( __snake_case : str ):
with open(__snake_case , '''r''' ) as f:
lowercase_ : int = f.read().splitlines()
return [l.strip() for l in lines]
class _UpperCAmelCase ( _A ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE_ : str = ["input_ids", "attention_mask"]
def __init__( self : Union[str, Any] , A : Dict , A : Tuple="<unk>" , A : List[Any]="<cls>" , A : int="<pad>" , A : Optional[Any]="<mask>" , A : List[Any]="<eos>" , **A : Tuple , ) -> Union[str, Any]:
super().__init__(**A )
lowercase_ : Optional[Any] = load_vocab_file(A )
lowercase_ : str = dict(enumerate(self.all_tokens ) )
lowercase_ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )}
lowercase_ : Union[str, Any] = unk_token
lowercase_ : Union[str, Any] = cls_token
lowercase_ : Optional[int] = pad_token
lowercase_ : List[Any] = mask_token
lowercase_ : str = eos_token
lowercase_ : Optional[Any] = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def A ( self : Optional[int] , A : int ) -> str:
return self._id_to_token.get(A , self.unk_token )
def A ( self : Optional[Any] , A : str ) -> int:
return self._token_to_id.get(A , self._token_to_id.get(self.unk_token ) )
def A ( self : str , A : List[str] , **A : Tuple ) -> Any:
return text.split()
def A ( self : Union[str, Any] , A : int=False ) -> List[Any]:
return len(self._id_to_token )
def A ( self : List[Any] ) -> Any:
return {token: i for i, token in enumerate(self.all_tokens )}
def A ( self : int , A : str ) -> int:
return self._token_to_id.get(A , self._token_to_id.get(self.unk_token ) )
def A ( self : List[Any] , A : int ) -> str:
return self._id_to_token.get(A , self.unk_token )
def A ( self : Dict , A : List[int] , A : Optional[List[int]] = None ) -> List[int]:
lowercase_ : str = [self.cls_token_id]
lowercase_ : Any = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def A ( self : Union[str, Any] , A : List , A : Optional[List] = None , A : bool = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
lowercase_ : Any = [1] + ([0] * len(A )) + [1]
if token_ids_a is not None:
mask += [0] * len(A ) + [1]
return mask
def A ( self : Union[str, Any] , A : Union[str, Any] , A : int ) -> List[str]:
lowercase_ : Union[str, Any] = os.path.join(A , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(A , '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def A ( self : Optional[Any] ) -> int:
return self.get_vocab_size(with_added_tokens=A )
def A ( self : Dict , A : Union[List[str], List[AddedToken]] , A : bool = False ) -> int:
return super()._add_tokens(A , special_tokens=A )
| 33
|
'''simple docstring'''
import logging
from transformers.configuration_utils import PretrainedConfig
_UpperCamelCase : Any = logging.getLogger(__name__)
class snake_case__ ( UpperCamelCase):
a_ = "masked_bert"
def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]:
super().__init__(pad_token_id=_A , **_A )
UpperCAmelCase_ : Union[str, Any] = vocab_size
UpperCAmelCase_ : str = hidden_size
UpperCAmelCase_ : Union[str, Any] = num_hidden_layers
UpperCAmelCase_ : Optional[int] = num_attention_heads
UpperCAmelCase_ : Optional[Any] = hidden_act
UpperCAmelCase_ : str = intermediate_size
UpperCAmelCase_ : int = hidden_dropout_prob
UpperCAmelCase_ : Tuple = attention_probs_dropout_prob
UpperCAmelCase_ : Optional[Any] = max_position_embeddings
UpperCAmelCase_ : List[str] = type_vocab_size
UpperCAmelCase_ : str = initializer_range
UpperCAmelCase_ : Union[str, Any] = layer_norm_eps
UpperCAmelCase_ : Optional[int] = pruning_method
UpperCAmelCase_ : Optional[int] = mask_init
UpperCAmelCase_ : List[Any] = mask_scale
| 304
| 0
|
'''simple docstring'''
import json
import os
import shutil
import warnings
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import List
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from cookiecutter.main import cookiecutter
A =True
except ImportError:
A =False
A =logging.get_logger(__name__) # pylint: disable=invalid-name
def snake_case_ (_a : Namespace ):
return AddNewModelCommand(args.testing , args.testing_file , path=args.path )
class _a ( __a ):
@staticmethod
def A ( lowercase : ArgumentParser ):
'''simple docstring'''
UpperCAmelCase = parser.add_parser('''add-new-model''' )
add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' )
add_new_model_parser.add_argument('''--testing_file''' , type=lowercase , help='''Configuration file on which to run.''' )
add_new_model_parser.add_argument(
'''--path''' , type=lowercase , help='''Path to cookiecutter. Should only be used for testing purposes.''' )
add_new_model_parser.set_defaults(func=lowercase )
def __init__( self : List[Any] , lowercase : bool , lowercase : str , lowercase : Dict=None , *lowercase : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = testing
UpperCAmelCase = testing_file
UpperCAmelCase = path
def A ( self : Optional[Any] ):
'''simple docstring'''
warnings.warn(
'''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. '''
'''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality '''
'''checks, you should use `transformers-cli add-new-model-like` instead.''' )
if not _has_cookiecutter:
raise ImportError(
'''Model creation dependencies are required to use the `add_new_model` command. Install them by running '''
'''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' )
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
UpperCAmelCase = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]]
if len(lowercase ) > 0:
raise ValueError(
'''Several directories starting with `cookiecutter-template-` in current working directory. '''
'''Please clean your directory by removing all folders starting with `cookiecutter-template-` or '''
'''change your working directory.''' )
UpperCAmelCase = (
Path(lowercase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent
)
UpperCAmelCase = path_to_transformer_root / '''templates''' / '''adding_a_new_model'''
# Execute cookiecutter
if not self._testing:
cookiecutter(str(lowercase ) )
else:
with open(self._testing_file , '''r''' ) as configuration_file:
UpperCAmelCase = json.load(lowercase )
cookiecutter(
str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase , extra_context=lowercase , )
UpperCAmelCase = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0]
# Retrieve configuration
with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file:
UpperCAmelCase = json.load(lowercase )
UpperCAmelCase = configuration['''lowercase_modelname''']
UpperCAmelCase = configuration['''generate_tensorflow_pytorch_and_flax''']
os.remove(f"{directory}/configuration.json" )
UpperCAmelCase = '''PyTorch''' in generate_tensorflow_pytorch_and_flax
UpperCAmelCase = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax
UpperCAmelCase = '''Flax''' in generate_tensorflow_pytorch_and_flax
UpperCAmelCase = f"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}"
os.makedirs(lowercase , exist_ok=lowercase )
os.makedirs(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}" , exist_ok=lowercase )
# Tests require submodules as they have parent imports
with open(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py" , '''w''' ):
pass
shutil.move(
f"{directory}/__init__.py" , f"{model_dir}/__init__.py" , )
shutil.move(
f"{directory}/configuration_{lowercase_model_name}.py" , f"{model_dir}/configuration_{lowercase_model_name}.py" , )
def remove_copy_lines(lowercase : Union[str, Any] ):
with open(lowercase , '''r''' ) as f:
UpperCAmelCase = f.readlines()
with open(lowercase , '''w''' ) as f:
for line in lines:
if "# Copied from transformers." not in line:
f.write(lowercase )
if output_pytorch:
if not self._testing:
remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py" )
shutil.move(
f"{directory}/modeling_{lowercase_model_name}.py" , f"{model_dir}/modeling_{lowercase_model_name}.py" , )
shutil.move(
f"{directory}/test_modeling_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py" , )
else:
os.remove(f"{directory}/modeling_{lowercase_model_name}.py" )
os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py" )
if output_tensorflow:
if not self._testing:
remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py" )
shutil.move(
f"{directory}/modeling_tf_{lowercase_model_name}.py" , f"{model_dir}/modeling_tf_{lowercase_model_name}.py" , )
shutil.move(
f"{directory}/test_modeling_tf_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py" , )
else:
os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py" )
os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py" )
if output_flax:
if not self._testing:
remove_copy_lines(f"{directory}/modeling_flax_{lowercase_model_name}.py" )
shutil.move(
f"{directory}/modeling_flax_{lowercase_model_name}.py" , f"{model_dir}/modeling_flax_{lowercase_model_name}.py" , )
shutil.move(
f"{directory}/test_modeling_flax_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py" , )
else:
os.remove(f"{directory}/modeling_flax_{lowercase_model_name}.py" )
os.remove(f"{directory}/test_modeling_flax_{lowercase_model_name}.py" )
shutil.move(
f"{directory}/{lowercase_model_name}.md" , f"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md" , )
shutil.move(
f"{directory}/tokenization_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}.py" , )
shutil.move(
f"{directory}/tokenization_fast_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}_fast.py" , )
from os import fdopen, remove
from shutil import copymode, move
from tempfile import mkstemp
def replace(lowercase : str , lowercase : str , lowercase : List[str] ):
# Create temp file
UpperCAmelCase , UpperCAmelCase = mkstemp()
UpperCAmelCase = False
with fdopen(lowercase , '''w''' ) as new_file:
with open(lowercase ) as old_file:
for line in old_file:
new_file.write(lowercase )
if line_to_copy_below in line:
UpperCAmelCase = True
for line_to_copy in lines_to_copy:
new_file.write(lowercase )
if not line_found:
raise ValueError(f"Line {line_to_copy_below} was not found in file." )
# Copy the file permissions from the old file to the new file
copymode(lowercase , lowercase )
# Remove original file
remove(lowercase )
# Move new file
move(lowercase , lowercase )
def skip_units(lowercase : List[Any] ):
return (
("generating PyTorch" in line and not output_pytorch)
or ("generating TensorFlow" in line and not output_tensorflow)
or ("generating Flax" in line and not output_flax)
)
def replace_in_files(lowercase : Tuple ):
with open(lowercase ) as datafile:
UpperCAmelCase = []
UpperCAmelCase = False
UpperCAmelCase = False
for line in datafile:
if "# To replace in: " in line and "##" not in line:
UpperCAmelCase = line.split('''"''' )[1]
UpperCAmelCase = skip_units(lowercase )
elif "# Below: " in line and "##" not in line:
UpperCAmelCase = line.split('''"''' )[1]
UpperCAmelCase = skip_units(lowercase )
elif "# End." in line and "##" not in line:
if not skip_file and not skip_snippet:
replace(lowercase , lowercase , lowercase )
UpperCAmelCase = []
elif "# Replace with" in line and "##" not in line:
UpperCAmelCase = []
elif "##" not in line:
lines_to_copy.append(lowercase )
remove(lowercase )
replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py" )
os.rmdir(lowercase )
| 34
|
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
a_ = StableDiffusionDiffEditPipeline
a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"}
a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"}
a_ = frozenset(
[]) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
a_ = frozenset([])
def A ( self : Tuple ) -> Optional[Any]:
torch.manual_seed(0 )
UpperCAmelCase_ : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , )
UpperCAmelCase_ : Optional[Any] = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , )
UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , )
torch.manual_seed(0 )
UpperCAmelCase_ : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
UpperCAmelCase_ : List[str] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , )
UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A )
UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
UpperCAmelCase_ : Optional[int] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''inverse_scheduler''': inverse_scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def A ( self : str , _A : List[str] , _A : Any=0 ) -> str:
UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A )
UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A )
if str(_A ).startswith('''mps''' ):
UpperCAmelCase_ : Any = torch.manual_seed(_A )
else:
UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A )
UpperCAmelCase_ : str = {
'''prompt''': '''a dog and a newt''',
'''mask_image''': mask,
'''image_latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]:
UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' )
if str(_A ).startswith('''mps''' ):
UpperCAmelCase_ : Dict = torch.manual_seed(_A )
else:
UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A )
UpperCAmelCase_ : Optional[Any] = {
'''image''': image,
'''source_prompt''': '''a cat and a frog''',
'''target_prompt''': '''a dog and a newt''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''num_maps_per_mask''': 2,
'''mask_encode_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any:
UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' )
if str(_A ).startswith('''mps''' ):
UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A )
else:
UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A )
UpperCAmelCase_ : Optional[int] = {
'''image''': image,
'''prompt''': '''a cat and a frog''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''decode_latents''': True,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : List[str] ) -> Optional[Any]:
if not hasattr(self.pipeline_class , '''_optional_components''' ):
return
UpperCAmelCase_ : str = self.get_dummy_components()
UpperCAmelCase_ : Any = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(_A , _A , _A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A )
UpperCAmelCase_ : str = pipe(**_A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(_A )
UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A )
pipe_loaded.to(_A )
pipe_loaded.set_progress_bar_config(disable=_A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , )
UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A )
UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0]
UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max()
self.assertLess(_A , 1e-4 )
def A ( self : Tuple ) -> int:
UpperCAmelCase_ : Optional[Any] = '''cpu'''
UpperCAmelCase_ : Any = self.get_dummy_components()
UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A )
UpperCAmelCase_ : int = pipe.generate_mask(**_A )
UpperCAmelCase_ : Tuple = mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
UpperCAmelCase_ : List[Any] = np.array([0] * 9 )
UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_A , 1e-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def A ( self : str ) -> Optional[int]:
UpperCAmelCase_ : Union[str, Any] = '''cpu'''
UpperCAmelCase_ : str = self.get_dummy_components()
UpperCAmelCase_ : str = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A )
UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images
UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
UpperCAmelCase_ : int = np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_A , 1e-3 )
def A ( self : Tuple ) -> Optional[Any]:
super().test_inference_batch_single_identical(expected_max_diff=5e-3 )
def A ( self : str ) -> Tuple:
UpperCAmelCase_ : Any = '''cpu'''
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components()
UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''}
UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A )
UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A )
UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A )
UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images
UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
UpperCAmelCase_ : List[Any] = np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_A , 1e-3 )
@require_torch_gpu
@slow
class snake_case__ ( unittest.TestCase):
def A ( self : Optional[Any] ) -> Optional[int]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def A ( cls : Dict ) -> List[Any]:
UpperCAmelCase_ : Optional[int] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' )
UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) )
UpperCAmelCase_ : Any = raw_image
def A ( self : List[Any] ) -> List[str]:
UpperCAmelCase_ : int = torch.manual_seed(0 )
UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa )
UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config )
UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit'''
UpperCAmelCase_ : Tuple = '''a bowl of pears'''
UpperCAmelCase_ : Optional[int] = pipe.generate_mask(
image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , )
UpperCAmelCase_ : List[str] = pipe.invert(
prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents
UpperCAmelCase_ : Any = pipe(
prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0]
UpperCAmelCase_ : str = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5e-1
def A ( self : Tuple ) -> List[str]:
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa )
UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit'''
UpperCAmelCase_ : Dict = '''a bowl of pears'''
UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask(
image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , )
UpperCAmelCase_ : List[Any] = pipe.invert(
prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents
UpperCAmelCase_ : Dict = pipe(
prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0]
UpperCAmelCase_ : Tuple = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5e-1
| 304
| 0
|
'''simple docstring'''
import argparse
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__a = 16
__a = 32
def __snake_case( _lowerCAmelCase , _lowerCAmelCase = 16 ) -> List[Any]:
snake_case__ : Any = AutoTokenizer.from_pretrained("""bert-base-cased""" )
snake_case__ : Optional[int] = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(_lowerCAmelCase ):
# max_length=None => use the model max length (it's actually the default)
snake_case__ : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
snake_case__ : str = datasets.map(
_lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
snake_case__ : Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(_lowerCAmelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
snake_case__ : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
snake_case__ : str = 16
elif accelerator.mixed_precision != "no":
snake_case__ : Union[str, Any] = 8
else:
snake_case__ : int = None
return tokenizer.pad(
_lowerCAmelCase , padding="""longest""" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="""pt""" , )
# Instantiate dataloaders.
snake_case__ : List[str] = DataLoader(
tokenized_datasets["""train"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase , drop_last=_lowerCAmelCase )
snake_case__ : Any = DataLoader(
tokenized_datasets["""validation"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase , drop_last=(accelerator.mixed_precision == """fp8""") , )
return train_dataloader, eval_dataloader
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> List[str]:
# Initialize accelerator
snake_case__ : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
snake_case__ : Optional[Any] = config["""lr"""]
snake_case__ : Tuple = int(config["""num_epochs"""] )
snake_case__ : Optional[int] = int(config["""seed"""] )
snake_case__ : Tuple = int(config["""batch_size"""] )
snake_case__ : int = evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
snake_case__ : Optional[Any] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
snake_case__ : int = batch_size // MAX_GPU_BATCH_SIZE
snake_case__ : List[Any] = MAX_GPU_BATCH_SIZE
set_seed(_lowerCAmelCase )
snake_case__ , snake_case__ : Any = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
snake_case__ : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowerCAmelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
snake_case__ : List[str] = model.to(accelerator.device )
# Instantiate optimizer
snake_case__ : Union[str, Any] = AdamW(params=model.parameters() , lr=_lowerCAmelCase )
# Instantiate scheduler
snake_case__ : str = get_linear_schedule_with_warmup(
optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = accelerator.prepare(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Now we train the model
for epoch in range(_lowerCAmelCase ):
model.train()
for step, batch in enumerate(_lowerCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
snake_case__ : Union[str, Any] = model(**_lowerCAmelCase )
snake_case__ : Union[str, Any] = outputs.loss
snake_case__ : Dict = loss / gradient_accumulation_steps
accelerator.backward(_lowerCAmelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(_lowerCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
snake_case__ : str = model(**_lowerCAmelCase )
snake_case__ : Dict = outputs.logits.argmax(dim=-1 )
snake_case__ , snake_case__ : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=_lowerCAmelCase , references=_lowerCAmelCase , )
snake_case__ : Optional[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}:" , _lowerCAmelCase )
def __snake_case( ) -> Any:
snake_case__ : Dict = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
snake_case__ : Dict = parser.parse_args()
snake_case__ : List[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(_lowerCAmelCase , _lowerCAmelCase )
if __name__ == "__main__":
main()
| 35
|
'''simple docstring'''
import inspect
import unittest
from math import floor
from transformers import CvtConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import CvtForImageClassification, CvtModel
from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ ( UpperCamelCase):
def A ( self : List[str] ) -> List[Any]:
UpperCAmelCase_ : int = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) )
self.parent.assertTrue(hasattr(_A , '''num_heads''' ) )
class snake_case__ :
def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]:
UpperCAmelCase_ : int = parent
UpperCAmelCase_ : List[Any] = batch_size
UpperCAmelCase_ : Any = image_size
UpperCAmelCase_ : Tuple = patch_sizes
UpperCAmelCase_ : int = patch_stride
UpperCAmelCase_ : Any = patch_padding
UpperCAmelCase_ : List[Any] = is_training
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Union[str, Any] = num_labels
UpperCAmelCase_ : List[str] = num_channels
UpperCAmelCase_ : int = embed_dim
UpperCAmelCase_ : Optional[int] = num_heads
UpperCAmelCase_ : Tuple = stride_kv
UpperCAmelCase_ : Optional[Any] = depth
UpperCAmelCase_ : Dict = cls_token
UpperCAmelCase_ : Dict = attention_drop_rate
UpperCAmelCase_ : Any = initializer_range
UpperCAmelCase_ : List[str] = layer_norm_eps
def A ( self : int ) -> List[str]:
UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ : List[str] = self.get_config()
return config, pixel_values, labels
def A ( self : List[str] ) -> int:
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]:
UpperCAmelCase_ : List[Any] = CvtModel(config=_A )
model.to(_A )
model.eval()
UpperCAmelCase_ : Tuple = model(_A )
UpperCAmelCase_ : List[str] = (self.image_size, self.image_size)
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]:
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : str = CvtForImageClassification(_A )
model.to(_A )
model.eval()
UpperCAmelCase_ : int = model(_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : Dict ) -> Any:
UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs
UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else ()
a_ = (
{"feature-extraction": CvtModel, "image-classification": CvtForImageClassification}
if is_torch_available()
else {}
)
a_ = False
a_ = False
a_ = False
a_ = False
a_ = False
def A ( self : int ) -> List[str]:
UpperCAmelCase_ : Optional[int] = CvtModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def A ( self : Any ) -> Dict:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A ( self : int ) -> List[str]:
return
@unittest.skip(reason='''Cvt does not output attentions''' )
def A ( self : Optional[int] ) -> Optional[int]:
pass
@unittest.skip(reason='''Cvt does not use inputs_embeds''' )
def A ( self : Any ) -> Optional[Any]:
pass
@unittest.skip(reason='''Cvt does not support input and output embeddings''' )
def A ( self : List[Any] ) -> Any:
pass
def A ( self : int ) -> str:
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Tuple = model_class(_A )
UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : Tuple = [*signature.parameters.keys()]
UpperCAmelCase_ : str = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _A )
def A ( self : Tuple ) -> int:
UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def A ( self : Dict ) -> List[str]:
def check_hidden_states_output(_A : Dict , _A : str , _A : int ):
UpperCAmelCase_ : str = model_class(_A )
model.to(_A )
model.eval()
with torch.no_grad():
UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) )
UpperCAmelCase_ : Optional[Any] = outputs.hidden_states
UpperCAmelCase_ : Any = len(self.model_tester.depth )
self.assertEqual(len(_A ) , _A )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Optional[Any] = True
check_hidden_states_output(_A , _A , _A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : Dict = True
check_hidden_states_output(_A , _A , _A )
def A ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_A )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def A ( self : List[Any] ) -> Optional[Any]:
pass
@slow
def A ( self : Optional[int] ) -> int:
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def __UpperCAmelCase ( ) -> str:
UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class snake_case__ ( unittest.TestCase):
@cached_property
def A ( self : Union[str, Any] ) -> Union[str, Any]:
return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def A ( self : str ) -> str:
UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A )
UpperCAmelCase_ : Optional[int] = self.default_image_processor
UpperCAmelCase_ : List[str] = prepare_img()
UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Any = model(**_A )
# verify the logits
UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _A )
UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
| 304
| 0
|
def A ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = set()
# edges = list of graph's edges
_lowerCAmelCase : Dict = get_edges(_lowerCamelCase )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
_lowerCAmelCase , _lowerCAmelCase : List[Any] = edges.pop()
chosen_vertices.add(_lowerCamelCase )
chosen_vertices.add(_lowerCamelCase )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(_lowerCamelCase )
return chosen_vertices
def A ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 36
|
'''simple docstring'''
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase)
class snake_case__ ( UpperCamelCase):
a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True})
a_ = Features({"text": Value("string")})
a_ = Features({})
a_ = "text"
@property
def A ( self : List[str] ) -> Dict[str, str]:
return {self.text_column: "text"}
| 304
| 0
|
'''simple docstring'''
import pickle
import numpy as np
from matplotlib import pyplot as plt
class lowerCAmelCase_:
'''simple docstring'''
def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=0.2 ,__UpperCAmelCase=0.2 ) -> str:
lowerCAmelCase__ : Dict = bp_numa
lowerCAmelCase__ : Optional[int] = bp_numa
lowerCAmelCase__ : Dict = bp_numa
lowerCAmelCase__ : List[Any] = conva_get[:2]
lowerCAmelCase__ : Tuple = conva_get[2]
lowerCAmelCase__ : int = size_pa
lowerCAmelCase__ : str = rate_w
lowerCAmelCase__ : Optional[int] = rate_t
lowerCAmelCase__ : int = [
np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
lowerCAmelCase__ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowerCAmelCase__ : Dict = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
lowerCAmelCase__ : Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1
lowerCAmelCase__ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1
lowerCAmelCase__ : str = -2 * np.random.rand(self.num_bpa ) + 1
def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]:
# save model dict with pickle
lowerCAmelCase__ : Optional[Any] = {
"""num_bp1""": self.num_bpa,
"""num_bp2""": self.num_bpa,
"""num_bp3""": self.num_bpa,
"""conv1""": self.conva,
"""step_conv1""": self.step_conva,
"""size_pooling1""": self.size_poolinga,
"""rate_weight""": self.rate_weight,
"""rate_thre""": self.rate_thre,
"""w_conv1""": self.w_conva,
"""wkj""": self.wkj,
"""vji""": self.vji,
"""thre_conv1""": self.thre_conva,
"""thre_bp2""": self.thre_bpa,
"""thre_bp3""": self.thre_bpa,
}
with open(__UpperCAmelCase ,"""wb""" ) as f:
pickle.dump(__UpperCAmelCase ,__UpperCAmelCase )
print(F"""Model saved: {save_path}""" )
@classmethod
def UpperCAmelCase_ ( cls ,__UpperCAmelCase ) -> List[Any]:
# read saved model
with open(__UpperCAmelCase ,"""rb""" ) as f:
lowerCAmelCase__ : List[str] = pickle.load(__UpperCAmelCase ) # noqa: S301
lowerCAmelCase__ : Any = model_dic.get("""conv1""" )
conv_get.append(model_dic.get("""step_conv1""" ) )
lowerCAmelCase__ : Optional[int] = model_dic.get("""size_pooling1""" )
lowerCAmelCase__ : Union[str, Any] = model_dic.get("""num_bp1""" )
lowerCAmelCase__ : Dict = model_dic.get("""num_bp2""" )
lowerCAmelCase__ : Optional[int] = model_dic.get("""num_bp3""" )
lowerCAmelCase__ : List[Any] = model_dic.get("""rate_weight""" )
lowerCAmelCase__ : Any = model_dic.get("""rate_thre""" )
# create model instance
lowerCAmelCase__ : Optional[int] = CNN(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase )
# modify model parameter
lowerCAmelCase__ : List[str] = model_dic.get("""w_conv1""" )
lowerCAmelCase__ : Dict = model_dic.get("""wkj""" )
lowerCAmelCase__ : str = model_dic.get("""vji""" )
lowerCAmelCase__ : Dict = model_dic.get("""thre_conv1""" )
lowerCAmelCase__ : Dict = model_dic.get("""thre_bp2""" )
lowerCAmelCase__ : Any = model_dic.get("""thre_bp3""" )
return conv_ins
def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Dict:
return 1 / (1 + np.exp(-1 * x ))
def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[Any]:
return round(__UpperCAmelCase ,3 )
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[str]:
# convolution process
lowerCAmelCase__ : int = convs[0]
lowerCAmelCase__ : Union[str, Any] = convs[1]
lowerCAmelCase__ : Optional[Any] = np.shape(__UpperCAmelCase )[0]
# get the data slice of original image data, data_focus
lowerCAmelCase__ : Tuple = []
for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCAmelCase ):
for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCAmelCase ):
lowerCAmelCase__ : str = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(__UpperCAmelCase )
# calculate the feature map of every single kernel, and saved as list of matrix
lowerCAmelCase__ : Optional[int] = []
lowerCAmelCase__ : str = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(__UpperCAmelCase ):
lowerCAmelCase__ : List[str] = []
for i_focus in range(len(__UpperCAmelCase ) ):
lowerCAmelCase__ : Tuple = (
np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(__UpperCAmelCase ) )
lowerCAmelCase__ : List[str] = np.asmatrix(__UpperCAmelCase ).reshape(
__UpperCAmelCase ,__UpperCAmelCase )
data_featuremap.append(__UpperCAmelCase )
# expanding the data slice to One dimenssion
lowerCAmelCase__ : int = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(__UpperCAmelCase ) )
lowerCAmelCase__ : int = np.asarray(__UpperCAmelCase )
return focus_list, data_featuremap
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase="average_pool" ) -> List[Any]:
# pooling process
lowerCAmelCase__ : str = len(featuremaps[0] )
lowerCAmelCase__ : List[Any] = int(size_map / size_pooling )
lowerCAmelCase__ : Any = []
for i_map in range(len(__UpperCAmelCase ) ):
lowerCAmelCase__ : Tuple = featuremaps[i_map]
lowerCAmelCase__ : Union[str, Any] = []
for i_focus in range(0 ,__UpperCAmelCase ,__UpperCAmelCase ):
for j_focus in range(0 ,__UpperCAmelCase ,__UpperCAmelCase ):
lowerCAmelCase__ : str = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(__UpperCAmelCase ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(__UpperCAmelCase ) )
lowerCAmelCase__ : Tuple = np.asmatrix(__UpperCAmelCase ).reshape(__UpperCAmelCase ,__UpperCAmelCase )
featuremap_pooled.append(__UpperCAmelCase )
return featuremap_pooled
def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Tuple:
# expanding three dimension data to one dimension list
lowerCAmelCase__ : List[str] = []
for i in range(len(__UpperCAmelCase ) ):
lowerCAmelCase__ : List[Any] = np.shape(data[i] )
lowerCAmelCase__ : Optional[Any] = data[i].reshape(1 ,shapes[0] * shapes[1] )
lowerCAmelCase__ : List[Any] = data_listed.getA().tolist()[0]
data_expanded.extend(__UpperCAmelCase )
lowerCAmelCase__ : List[Any] = np.asarray(__UpperCAmelCase )
return data_expanded
def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int:
# expanding matrix to one dimension list
lowerCAmelCase__ : Optional[Any] = np.asarray(__UpperCAmelCase )
lowerCAmelCase__ : List[Any] = np.shape(__UpperCAmelCase )
lowerCAmelCase__ : Tuple = data_mat.reshape(1 ,shapes[0] * shapes[1] )
return data_expanded
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]:
lowerCAmelCase__ : int = []
lowerCAmelCase__ : Optional[Any] = 0
for i_map in range(__UpperCAmelCase ):
lowerCAmelCase__ : Tuple = np.ones((size_map, size_map) )
for i in range(0 ,__UpperCAmelCase ,__UpperCAmelCase ):
for j in range(0 ,__UpperCAmelCase ,__UpperCAmelCase ):
lowerCAmelCase__ : Optional[Any] = pd_pool[
i_pool
]
lowerCAmelCase__ : Optional[Any] = i_pool + 1
lowerCAmelCase__ : Dict = np.multiply(
__UpperCAmelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) )
pd_all.append(__UpperCAmelCase )
return pd_all
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=bool ) -> Tuple:
# model traning
print("""----------------------Start Training-------------------------""" )
print((""" - - Shape: Train_Data """, np.shape(__UpperCAmelCase )) )
print((""" - - Shape: Teach_Data """, np.shape(__UpperCAmelCase )) )
lowerCAmelCase__ : Optional[Any] = 0
lowerCAmelCase__ : Union[str, Any] = []
lowerCAmelCase__ : Optional[int] = 1_0000
while rp < n_repeat and mse >= error_accuracy:
lowerCAmelCase__ : int = 0
print(F"""-------------Learning Time {rp}--------------""" )
for p in range(len(__UpperCAmelCase ) ):
# print('------------Learning Image: %d--------------'%p)
lowerCAmelCase__ : Any = np.asmatrix(datas_train[p] )
lowerCAmelCase__ : List[str] = np.asarray(datas_teach[p] )
lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.convolute(
__UpperCAmelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowerCAmelCase__ : Union[str, Any] = self.pooling(__UpperCAmelCase ,self.size_poolinga )
lowerCAmelCase__ : List[Any] = np.shape(__UpperCAmelCase )
lowerCAmelCase__ : List[Any] = self._expand(__UpperCAmelCase )
lowerCAmelCase__ : List[str] = data_bp_input
lowerCAmelCase__ : int = np.dot(__UpperCAmelCase ,self.vji.T ) - self.thre_bpa
lowerCAmelCase__ : Tuple = self.sig(__UpperCAmelCase )
lowerCAmelCase__ : Tuple = np.dot(__UpperCAmelCase ,self.wkj.T ) - self.thre_bpa
lowerCAmelCase__ : str = self.sig(__UpperCAmelCase )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
lowerCAmelCase__ : Optional[Any] = np.multiply(
(data_teach - bp_outa) ,np.multiply(__UpperCAmelCase ,(1 - bp_outa) ) )
lowerCAmelCase__ : List[str] = np.multiply(
np.dot(__UpperCAmelCase ,self.wkj ) ,np.multiply(__UpperCAmelCase ,(1 - bp_outa) ) )
lowerCAmelCase__ : Dict = np.dot(__UpperCAmelCase ,self.vji )
lowerCAmelCase__ : List[Any] = pd_i_all / (self.size_poolinga * self.size_poolinga)
lowerCAmelCase__ : Dict = pd_conva_pooled.T.getA().tolist()
lowerCAmelCase__ : Any = self._calculate_gradient_from_pool(
__UpperCAmelCase ,__UpperCAmelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,)
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
lowerCAmelCase__ : Dict = self._expand_mat(pd_conva_all[k_conv] )
lowerCAmelCase__ : Optional[Any] = self.rate_weight * np.dot(__UpperCAmelCase ,__UpperCAmelCase )
lowerCAmelCase__ : Any = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
lowerCAmelCase__ : int = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
lowerCAmelCase__ : str = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
lowerCAmelCase__ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight
lowerCAmelCase__ : List[Any] = self.thre_bpa - pd_k_all * self.rate_thre
lowerCAmelCase__ : str = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
lowerCAmelCase__ : Union[str, Any] = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
lowerCAmelCase__ : List[Any] = rp + 1
lowerCAmelCase__ : List[Any] = error_count / patterns
all_mse.append(__UpperCAmelCase )
def draw_error():
lowerCAmelCase__ : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(__UpperCAmelCase ,"""+-""" )
plt.plot(__UpperCAmelCase ,"""r--""" )
plt.xlabel("""Learning Times""" )
plt.ylabel("""All_mse""" )
plt.grid(__UpperCAmelCase ,alpha=0.5 )
plt.show()
print("""------------------Training Complished---------------------""" )
print((""" - - Training epoch: """, rp, F""" - - Mse: {mse:.6f}""") )
if draw_e:
draw_error()
return mse
def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Dict:
# model predict
lowerCAmelCase__ : str = []
print("""-------------------Start Testing-------------------------""" )
print((""" - - Shape: Test_Data """, np.shape(__UpperCAmelCase )) )
for p in range(len(__UpperCAmelCase ) ):
lowerCAmelCase__ : List[str] = np.asmatrix(datas_test[p] )
lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.convolute(
__UpperCAmelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowerCAmelCase__ : str = self.pooling(__UpperCAmelCase ,self.size_poolinga )
lowerCAmelCase__ : Tuple = self._expand(__UpperCAmelCase )
lowerCAmelCase__ : Dict = data_bp_input
lowerCAmelCase__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa
lowerCAmelCase__ : Dict = self.sig(__UpperCAmelCase )
lowerCAmelCase__ : Optional[int] = bp_outa * self.wkj.T - self.thre_bpa
lowerCAmelCase__ : Any = self.sig(__UpperCAmelCase )
produce_out.extend(bp_outa.getA().tolist() )
lowerCAmelCase__ : int = [list(map(self.do_round ,__UpperCAmelCase ) ) for each in produce_out]
return np.asarray(__UpperCAmelCase )
def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]:
# return the data of image after convoluting process so we can check it out
lowerCAmelCase__ : str = np.asmatrix(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.convolute(
__UpperCAmelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
lowerCAmelCase__ : List[Any] = self.pooling(__UpperCAmelCase ,self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 37
|
'''simple docstring'''
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict:
with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f:
UpperCAmelCase_ : Union[str, Any] = json.load(A )
UpperCAmelCase_ : Optional[int] = {}
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : str = []
for key, info in class_info.items():
UpperCAmelCase_ : Tuple = info['''name''']
class_names.append(info['''name'''] )
if info["isthing"]:
thing_ids.append(int(A ) )
UpperCAmelCase_ : Any = thing_ids
UpperCAmelCase_ : Union[str, Any] = class_names
return metadata
class snake_case__ ( unittest.TestCase):
def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any:
UpperCAmelCase_ : List[str] = parent
UpperCAmelCase_ : Optional[Any] = batch_size
UpperCAmelCase_ : Optional[Any] = num_channels
UpperCAmelCase_ : Tuple = min_resolution
UpperCAmelCase_ : Optional[int] = max_resolution
UpperCAmelCase_ : Dict = do_resize
UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size
UpperCAmelCase_ : int = do_normalize
UpperCAmelCase_ : List[Any] = image_mean
UpperCAmelCase_ : Dict = image_std
UpperCAmelCase_ : str = class_info_file
UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A )
UpperCAmelCase_ : Tuple = num_text
UpperCAmelCase_ : Union[str, Any] = repo_path
# for the post_process_functions
UpperCAmelCase_ : Any = 2
UpperCAmelCase_ : Dict = 10
UpperCAmelCase_ : int = 10
UpperCAmelCase_ : Optional[Any] = 3
UpperCAmelCase_ : str = 4
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Union[str, Any] = do_reduce_labels
UpperCAmelCase_ : str = ignore_index
def A ( self : Dict ) -> List[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]:
if not batched:
UpperCAmelCase_ : Any = image_inputs[0]
if isinstance(_A , Image.Image ):
UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size
else:
UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2]
if w < h:
UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w )
UpperCAmelCase_ : int = self.size['''shortest_edge''']
elif w > h:
UpperCAmelCase_ : List[Any] = self.size['''shortest_edge''']
UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h )
else:
UpperCAmelCase_ : Dict = self.size['''shortest_edge''']
UpperCAmelCase_ : str = self.size['''shortest_edge''']
else:
UpperCAmelCase_ : Dict = []
for image in image_inputs:
UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0]
UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1]
return expected_height, expected_width
def A ( self : Tuple ) -> str:
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
a_ = image_processing_class
def A ( self : Optional[int] ) -> Any:
UpperCAmelCase_ : int = OneFormerImageProcessorTester(self )
@property
def A ( self : Any ) -> int:
return self.image_processing_tester.prepare_image_processor_dict()
def A ( self : Optional[Any] ) -> List[Any]:
UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , '''image_mean''' ) )
self.assertTrue(hasattr(_A , '''image_std''' ) )
self.assertTrue(hasattr(_A , '''do_normalize''' ) )
self.assertTrue(hasattr(_A , '''do_resize''' ) )
self.assertTrue(hasattr(_A , '''size''' ) )
self.assertTrue(hasattr(_A , '''ignore_index''' ) )
self.assertTrue(hasattr(_A , '''class_info_file''' ) )
self.assertTrue(hasattr(_A , '''num_text''' ) )
self.assertTrue(hasattr(_A , '''repo_path''' ) )
self.assertTrue(hasattr(_A , '''metadata''' ) )
self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) )
def A ( self : Dict ) -> Dict:
pass
def A ( self : Tuple ) -> Dict:
# Initialize image_processor
UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A )
UpperCAmelCase_ : int = image_processor(
_A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : Tuple ) -> Tuple:
# Initialize image_processor
UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A )
UpperCAmelCase_ : Tuple = image_processor(
_A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : Dict ) -> Union[str, Any]:
# Initialize image_processor
UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A )
UpperCAmelCase_ : Optional[int] = image_processor(
_A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str:
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels
UpperCAmelCase_ : int = None
UpperCAmelCase_ : Union[str, Any] = None
UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A )
if with_segmentation_maps:
UpperCAmelCase_ : Any = num_labels
if is_instance_map:
UpperCAmelCase_ : Any = list(range(_A ) ) * 2
UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) )
UpperCAmelCase_ : Dict = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations]
UpperCAmelCase_ : Tuple = image_processor(
_A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , )
return inputs
def A ( self : int ) -> str:
pass
def A ( self : Tuple ) -> Union[str, Any]:
def common(_A : Optional[int]=False , _A : str=None ):
UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs(
with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A )
UpperCAmelCase_ : List[Any] = inputs['''mask_labels''']
UpperCAmelCase_ : Optional[Any] = inputs['''class_labels''']
UpperCAmelCase_ : int = inputs['''pixel_values''']
UpperCAmelCase_ : Tuple = inputs['''text_inputs''']
# check the batch_size
for mask_label, class_label, text_input in zip(_A , _A , _A ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(_A ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=_A )
common(is_instance_map=_A , segmentation_type='''pil''' )
common(is_instance_map=_A , segmentation_type='''pil''' )
def A ( self : List[Any] ) -> List[Any]:
UpperCAmelCase_ : int = np.zeros((20, 50) )
UpperCAmelCase_ : List[str] = 1
UpperCAmelCase_ : Dict = 1
UpperCAmelCase_ : List[Any] = 1
UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A )
self.assertEqual(len(_A ) , 4 )
self.assertEqual(rle[0] , 21 )
self.assertEqual(rle[1] , 45 )
def A ( self : Any ) -> List[Any]:
UpperCAmelCase_ : int = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , )
UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A )
self.assertEqual(len(_A ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def A ( self : Optional[Any] ) -> Tuple:
UpperCAmelCase_ : Any = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , )
UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 )
self.assertTrue(len(_A ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('''segmentation''' in el )
self.assertTrue('''segments_info''' in el )
self.assertEqual(type(el['''segments_info'''] ) , _A )
self.assertEqual(
el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def A ( self : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[Any] = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , )
UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 )
self.assertTrue(len(_A ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('''segmentation''' in el )
self.assertTrue('''segments_info''' in el )
self.assertEqual(type(el['''segments_info'''] ) , _A )
self.assertEqual(
el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
| 304
| 0
|
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__)
@dataclass
class _SCREAMING_SNAKE_CASE :
snake_case__ : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} )
snake_case__ : str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
snake_case__ : int = field(
default=1_2_8 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
snake_case__ : bool = field(
default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _A ( self : Dict ):
UpperCamelCase :List[Any] = self.task_name.lower()
class _SCREAMING_SNAKE_CASE ( _a ):
snake_case__ : Optional[int] = """train"""
snake_case__ : Union[str, Any] = """dev"""
snake_case__ : Union[str, Any] = """test"""
class _SCREAMING_SNAKE_CASE ( _a ):
snake_case__ : GlueDataTrainingArguments
snake_case__ : str
snake_case__ : List[InputFeatures]
def __init__( self : List[Any] , __lowerCamelCase : GlueDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizerBase , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[str] = None , ):
warnings.warn(
"""This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """
"""library. You can have a look at this example script for pointers: """
"""https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , __lowerCamelCase , )
UpperCamelCase :Tuple = args
UpperCamelCase :Dict = glue_processors[args.task_name]()
UpperCamelCase :Any = glue_output_modes[args.task_name]
if isinstance(__lowerCamelCase , __lowerCamelCase ):
try:
UpperCamelCase :Any = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
# Load data features from cache or dataset file
UpperCamelCase :Optional[int] = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , )
UpperCamelCase :Union[str, Any] = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
UpperCamelCase , UpperCamelCase :Dict = label_list[2], label_list[1]
UpperCamelCase :Tuple = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
UpperCamelCase :str = cached_features_file + """.lock"""
with FileLock(__lowerCamelCase ):
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
UpperCamelCase :List[Any] = time.time()
UpperCamelCase :Optional[Any] = torch.load(__lowerCamelCase )
logger.info(
F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start )
else:
logger.info(F"""Creating features from dataset file at {args.data_dir}""" )
if mode == Split.dev:
UpperCamelCase :int = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
UpperCamelCase :Optional[Any] = self.processor.get_test_examples(args.data_dir )
else:
UpperCamelCase :str = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
UpperCamelCase :int = examples[:limit_length]
UpperCamelCase :Optional[int] = glue_convert_examples_to_features(
__lowerCamelCase , __lowerCamelCase , max_length=args.max_seq_length , label_list=__lowerCamelCase , output_mode=self.output_mode , )
UpperCamelCase :List[Any] = time.time()
torch.save(self.features , __lowerCamelCase )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" )
def __len__( self : int ):
return len(self.features )
def __getitem__( self : Optional[int] , __lowerCamelCase : Any ):
return self.features[i]
def _A ( self : int ):
return self.label_list
| 38
|
'''simple docstring'''
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
_UpperCamelCase : Optional[int] = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
_UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
_UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
_UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
_UpperCamelCase : List[str] = [
('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'),
('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'),
('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'),
('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'),
('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'),
('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'),
('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'),
('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'),
('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'),
(
'zero-shot-object-detection',
'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES',
'AutoModelForZeroShotObjectDetection',
),
('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'),
('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'),
('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'),
('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'),
(
'table-question-answering',
'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForTableQuestionAnswering',
),
('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'),
('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'),
(
'next-sentence-prediction',
'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES',
'AutoModelForNextSentencePrediction',
),
(
'audio-frame-classification',
'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForAudioFrameClassification',
),
('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'),
(
'document-question-answering',
'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForDocumentQuestionAnswering',
),
(
'visual-question-answering',
'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForVisualQuestionAnswering',
),
('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'),
(
'zero-shot-image-classification',
'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForZeroShotImageClassification',
),
('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'),
('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'),
('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'),
]
def __UpperCAmelCase ( A : Optional[int] ) -> int:
UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A )
return [m.group(0 ) for m in matches]
def __UpperCAmelCase ( ) -> str:
UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
UpperCAmelCase_ : Optional[Any] = {
config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
UpperCAmelCase_ : Dict = collections.defaultdict(A )
UpperCAmelCase_ : str = collections.defaultdict(A )
UpperCAmelCase_ : int = collections.defaultdict(A )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(A ):
UpperCAmelCase_ : int = None
if _re_tf_models.match(A ) is not None:
UpperCAmelCase_ : Optional[Any] = tf_models
UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0]
elif _re_flax_models.match(A ) is not None:
UpperCAmelCase_ : int = flax_models
UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0]
elif _re_pt_models.match(A ) is not None:
UpperCAmelCase_ : Union[str, Any] = pt_models
UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0]
if lookup_dict is not None:
while len(A ) > 0:
if attr_name in model_prefix_to_model_type:
UpperCAmelCase_ : Optional[int] = True
break
# Try again after removing the last word in the name
UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] )
UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
UpperCAmelCase_ : List[Any] = list(A )
all_models.sort()
UpperCAmelCase_ : Dict = {'''model_type''': all_models}
UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models]
UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models]
UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
UpperCAmelCase_ : int = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
UpperCAmelCase_ : Any = '''AutoProcessor'''
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer'''
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
UpperCAmelCase_ : int = '''AutoFeatureExtractor'''
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
UpperCAmelCase_ : Dict = '''AutoTokenizer'''
UpperCAmelCase_ : str = [processors[t] for t in all_models]
return pd.DataFrame(A )
def __UpperCAmelCase ( A : Optional[int] ) -> str:
UpperCAmelCase_ : int = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"]
UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"]
# Loop through all three frameworks
for module, cls, mapping in zip(A , A , A ):
# The type of pipeline may not exist in this framework
if not hasattr(A , A ):
continue
# First extract all model_names
UpperCAmelCase_ : List[str] = []
for name in getattr(A , A ).values():
if isinstance(A , A ):
model_names.append(A )
else:
model_names.extend(list(A ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def __UpperCAmelCase ( A : int , A : Any ) -> Tuple:
UpperCAmelCase_ : Tuple = get_frameworks_table()
UpperCAmelCase_ : Any = Dataset.from_pandas(A )
UpperCAmelCase_ : str = hf_hub_download(
'''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A )
UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A )
UpperCAmelCase_ : Optional[int] = {
tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class'''])
for i in range(len(A ) )
}
UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() )
UpperCAmelCase_ : Optional[Any] = pd.DataFrame(
{
'''model_class''': model_classes,
'''pipeline_tag''': [table[m][0] for m in model_classes],
'''auto_class''': [table[m][1] for m in model_classes],
} )
UpperCAmelCase_ : Dict = Dataset.from_pandas(A )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) )
tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) )
if commit_sha is not None:
UpperCAmelCase_ : List[str] = (
F"Update with commit {commit_sha}\n\nSee: "
F"https://github.com/huggingface/transformers/commit/{commit_sha}"
)
else:
UpperCAmelCase_ : int = '''Update'''
upload_folder(
repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , )
def __UpperCAmelCase ( ) -> int:
UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS
UpperCAmelCase_ : List[str] = []
for key in pipeline_tasks:
if key not in in_table:
UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt''']
if isinstance(A , (list, tuple) ):
UpperCAmelCase_ : Dict = model[0]
UpperCAmelCase_ : Any = model.__name__
if model not in in_table.values():
missing.append(A )
if len(A ) > 0:
UpperCAmelCase_ : List[Any] = ''', '''.join(A )
raise ValueError(
'''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside '''
F"`utils/update_metadata.py`: {msg}. Please add them!" )
if __name__ == "__main__":
_UpperCamelCase : int = argparse.ArgumentParser()
parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.')
parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.')
parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.')
_UpperCamelCase : Tuple = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 304
| 0
|
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def __A ( __lowerCAmelCase=None , __lowerCAmelCase=None )-> Dict:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=__lowerCAmelCase )
@dataclass
class __lowerCamelCase :
"""simple docstring"""
UpperCamelCase__ = field(
metadata={"help": "The csv file to plot."} , )
UpperCamelCase__ = field(
default=snake_case__ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , )
UpperCamelCase__ = field(
default=snake_case__ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , )
UpperCamelCase__ = field(
default=snake_case__ , metadata={"help": "Disable logarithmic scale when plotting"} , )
UpperCamelCase__ = field(
default=snake_case__ , metadata={
"help": "Whether the csv file has training results or inference results. Defaults to inference results."
} , )
UpperCamelCase__ = field(
default=snake_case__ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , )
UpperCamelCase__ = list_field(
default=snake_case__ , metadata={"help": "List of model names that are used instead of the ones in the csv file."})
def __A ( __lowerCAmelCase )-> List[str]:
"""simple docstring"""
try:
int(__lowerCAmelCase )
return True
except ValueError:
return False
def __A ( __lowerCAmelCase )-> Optional[int]:
"""simple docstring"""
try:
float(__lowerCAmelCase )
return True
except ValueError:
return False
class __lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase = args
_UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline='' ) as csv_file:
_UpperCAmelCase = csv.DictReader(UpperCAmelCase )
for row in reader:
_UpperCAmelCase = row['model']
self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) )
self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) )
if can_convert_to_int(row['result'] ):
# value is not None
_UpperCAmelCase = int(row['result'] )
elif can_convert_to_float(row['result'] ):
# value is not None
_UpperCAmelCase = float(row['result'] )
def UpperCamelCase ( self ):
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = plt.subplots()
_UpperCAmelCase = 'Time usage' if self.args.is_time else 'Memory usage'
_UpperCAmelCase = title_str + ' for training' if self.args.is_train else title_str + ' for inference'
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale('log' )
ax.set_yscale('log' )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
_UpperCAmelCase = sorted(set(self.result_dict[model_name]['bsz'] ) )
_UpperCAmelCase = sorted(set(self.result_dict[model_name]['seq_len'] ) )
_UpperCAmelCase = self.result_dict[model_name]['result']
((_UpperCAmelCase) , (_UpperCAmelCase)) = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
_UpperCAmelCase = (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
_UpperCAmelCase = np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=UpperCAmelCase , )
else:
_UpperCAmelCase = np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
((_UpperCAmelCase) , (_UpperCAmelCase)) = (
('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz')
)
_UpperCAmelCase = np.asarray(UpperCAmelCase , UpperCAmelCase )[: len(UpperCAmelCase )]
plt.scatter(
UpperCAmelCase , UpperCAmelCase , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" )
plt.plot(UpperCAmelCase , UpperCAmelCase , '--' )
title_str += F""" {label_model_name} vs."""
_UpperCAmelCase = title_str[:-4]
_UpperCAmelCase = 'Time in s' if self.args.is_time else 'Memory in MB'
# plot
plt.title(UpperCAmelCase )
plt.xlabel(UpperCAmelCase )
plt.ylabel(UpperCAmelCase )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def __A ( )-> List[Any]:
"""simple docstring"""
_UpperCAmelCase = HfArgumentParser(__lowerCAmelCase )
_UpperCAmelCase = parser.parse_args_into_dataclasses()[0]
_UpperCAmelCase = Plot(args=__lowerCAmelCase )
plot.plot()
if __name__ == "__main__":
main()
| 39
|
'''simple docstring'''
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_UpperCamelCase : Union[str, Any] = logging.getLogger(__name__)
_UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
_UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class snake_case__ :
a_ = field(
default=UpperCamelCase , metadata={
"help": (
"The model checkpoint for weights initialization. Leave None if you want to train a model from"
" scratch."
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"})
a_ = field(
default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
a_ = field(
default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class snake_case__ :
a_ = field(
default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."})
a_ = field(
default=UpperCamelCase , metadata={
"help": (
"The input training data files (multiple files in glob format). "
"Very often splitting large files to smaller files can prevent tokenizer going out of memory"
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."})
a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."})
a_ = field(
default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"})
a_ = field(
default=1 / 6 , metadata={
"help": (
"Ratio of length of a span of masked tokens to surrounding context length for permutation language"
" modeling."
)
} , )
a_ = field(
default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."})
a_ = field(
default=-1 , metadata={
"help": (
"Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"})
def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]:
def _dataset(A : Dict , A : str=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' )
return LineByLineWithRefDataset(
tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , )
return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size )
else:
return TextDataset(
tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def __UpperCAmelCase ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
'''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file '''
'''or remove the --do_eval argument.''' )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , A )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.tokenizer_name:
UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another'''
''' script, save it,and load it from here, using --tokenizer_name''' )
if model_args.model_name_or_path:
UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , )
else:
logger.info('''Training new model from scratch''' )
UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A )
model.resize_token_embeddings(len(A ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
'''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the'''
'''--mlm flag (masked language modeling).''' )
if data_args.block_size <= 0:
UpperCAmelCase_ : List[str] = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len )
# Get datasets
UpperCAmelCase_ : str = (
get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
UpperCAmelCase_ : Any = (
get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling(
tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask(
tokenizer=A , mlm_probability=data_args.mlm_probability )
else:
UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling(
tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
UpperCAmelCase_ : Any = Trainer(
model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , )
# Training
if training_args.do_train:
UpperCAmelCase_ : List[str] = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=A )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase_ : Tuple = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase_ : Dict = trainer.evaluate()
UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] )
UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity}
UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' )
if trainer.is_world_master():
with open(A , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key in sorted(result.keys() ):
logger.info(''' %s = %s''' , A , str(result[key] ) )
writer.write('''%s = %s\n''' % (key, str(result[key] )) )
results.update(A )
return results
def __UpperCAmelCase ( A : Tuple ) -> Tuple:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 304
| 0
|
"""simple docstring"""
from __future__ import annotations
def lowercase ( A_ , A_ , A_ , A_ )-> Optional[Any]: # noqa: E741
'''simple docstring'''
while r - l > 1:
a : Tuple = (l + r) // 2
if v[m] >= key:
a : str = m
else:
a : Tuple = m # noqa: E741
return r
def lowercase ( A_ )-> int:
'''simple docstring'''
if len(A_ ) == 0:
return 0
a : str = [0] * len(A_ )
a : List[Any] = 1
a : List[Any] = v[0]
for i in range(1 , len(A_ ) ):
if v[i] < tail[0]:
a : List[str] = v[i]
elif v[i] > tail[length - 1]:
a : Optional[Any] = v[i]
length += 1
else:
a : List[Any] = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40
|
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
_UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8
@require_flax
@is_staging_test
class snake_case__ ( unittest.TestCase):
@classmethod
def A ( cls : Optional[int] ) -> Tuple:
UpperCAmelCase_ : List[str] = TOKEN
HfFolder.save_token(_A )
@classmethod
def A ( cls : int ) -> Tuple:
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def A ( self : Dict ) -> Optional[int]:
UpperCAmelCase_ : List[Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase_ : List[str] = FlaxBertModel(_A )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" )
UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token )
UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" )
UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
def A ( self : str ) -> Tuple:
UpperCAmelCase_ : List[str] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
_A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token )
UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]:
UpperCAmelCase_ : Optional[int] = True
UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params )
UpperCAmelCase_ : str = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
UpperCAmelCase_ : int = False
return models_are_equal
@require_flax
class snake_case__ ( unittest.TestCase):
def A ( self : Any ) -> Any:
UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase_ : Any = FlaxBertModel(_A )
UpperCAmelCase_ : Tuple = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_A , _A ) )
with self.assertRaises(_A ):
UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertTrue(check_models_equal(_A , _A ) )
def A ( self : int ) -> Tuple:
UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase_ : Tuple = FlaxBertModel(_A )
UpperCAmelCase_ : str = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' )
with self.assertRaises(_A ):
UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertTrue(check_models_equal(_A , _A ) )
def A ( self : int ) -> Optional[int]:
UpperCAmelCase_ : int = '''bert'''
UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(_A ):
UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertIsNotNone(_A )
def A ( self : Any ) -> str:
UpperCAmelCase_ : Optional[Any] = '''bert'''
UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(_A ):
UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertIsNotNone(_A )
| 304
| 0
|
'''simple docstring'''
from datetime import datetime as dt
import os
from github import Github
_A : List[str] =[
'''good first issue''',
'''good second issue''',
'''good difficult issue''',
'''feature request''',
'''new model''',
'''wip''',
]
def SCREAMING_SNAKE_CASE_ () -> Any:
lowerCamelCase__ : Tuple = Github(os.environ["""GITHUB_TOKEN"""] )
lowerCamelCase__ : Tuple = g.get_repo("""huggingface/transformers""" )
lowerCamelCase__ : Union[str, Any] = repo.get_issues(state="""open""" )
for issue in open_issues:
lowerCamelCase__ : List[str] = sorted([comment for comment in issue.get_comments()] , key=lambda UpperCamelCase : i.created_at , reverse=UpperCamelCase )
lowerCamelCase__ : Union[str, Any] = comments[0] if len(UpperCamelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 41
|
'''simple docstring'''
_UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}]
_UpperCamelCase : Dict = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 304
| 0
|
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase : List[str] = logging.get_logger(__name__)
lowercase : str = {
"SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json",
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __UpperCAmelCase ( _lowerCamelCase ):
__lowercase = """deformable_detr"""
__lowercase = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=3 , lowerCAmelCase_=3_00 , lowerCAmelCase_=10_24 , lowerCAmelCase_=6 , lowerCAmelCase_=10_24 , lowerCAmelCase_=8 , lowerCAmelCase_=6 , lowerCAmelCase_=10_24 , lowerCAmelCase_=8 , lowerCAmelCase_=0.0 , lowerCAmelCase_=True , lowerCAmelCase_="relu" , lowerCAmelCase_=2_56 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1.0 , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_="sine" , lowerCAmelCase_="resnet50" , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_=False , lowerCAmelCase_=3_00 , lowerCAmelCase_=False , lowerCAmelCase_=1 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=1 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.25 , lowerCAmelCase_=False , **lowerCAmelCase_ , ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
_snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4'] )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case = backbone_config.get('model_type' )
_snake_case = CONFIG_MAPPING[backbone_model_type]
_snake_case = config_class.from_dict(lowerCAmelCase_ )
_snake_case = use_timm_backbone
_snake_case = backbone_config
_snake_case = num_channels
_snake_case = num_queries
_snake_case = max_position_embeddings
_snake_case = d_model
_snake_case = encoder_ffn_dim
_snake_case = encoder_layers
_snake_case = encoder_attention_heads
_snake_case = decoder_ffn_dim
_snake_case = decoder_layers
_snake_case = decoder_attention_heads
_snake_case = dropout
_snake_case = attention_dropout
_snake_case = activation_dropout
_snake_case = activation_function
_snake_case = init_std
_snake_case = init_xavier_std
_snake_case = encoder_layerdrop
_snake_case = auxiliary_loss
_snake_case = position_embedding_type
_snake_case = backbone
_snake_case = use_pretrained_backbone
_snake_case = dilation
# deformable attributes
_snake_case = num_feature_levels
_snake_case = encoder_n_points
_snake_case = decoder_n_points
_snake_case = two_stage
_snake_case = two_stage_num_proposals
_snake_case = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('If two_stage is True, with_box_refine must be True.' )
# Hungarian matcher
_snake_case = class_cost
_snake_case = bbox_cost
_snake_case = giou_cost
# Loss coefficients
_snake_case = mask_loss_coefficient
_snake_case = dice_loss_coefficient
_snake_case = bbox_loss_coefficient
_snake_case = giou_loss_coefficient
_snake_case = eos_coefficient
_snake_case = focal_alpha
_snake_case = disable_custom_kernels
super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ )
@property
def lowerCamelCase ( self ):
"""simple docstring"""
return self.encoder_attention_heads
@property
def lowerCamelCase ( self ):
"""simple docstring"""
return self.d_model
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_snake_case = self.backbone_config.to_dict()
_snake_case = self.__class__.model_type
return output
| 42
|
'''simple docstring'''
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]:
if isinstance(A , A ):
UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A )
else:
UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A )
for i, tensor in enumerate(A ):
if padding_side == "right":
if isinstance(A , A ):
UpperCAmelCase_ : Tuple = tensor[:sequence_length]
else:
UpperCAmelCase_ : Dict = tensor[:sequence_length]
else:
if isinstance(A , A ):
UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length]
else:
UpperCAmelCase_ : int = tensor[:sequence_length]
return out_tensor.tolist()
def __UpperCAmelCase ( A : List[Any] ) -> str:
UpperCAmelCase_ : Dict = ord(A )
if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6):
return True
UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A )
if cat.startswith('''P''' ):
return True
return False
@dataclass
class snake_case__ ( UpperCamelCase):
a_ = 42
a_ = True
a_ = None
a_ = None
a_ = -100
a_ = "pt"
def A ( self : List[Any] , _A : Dict ) -> Tuple:
import torch
UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels'''
UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
UpperCAmelCase_ : Tuple = self.tokenizer.pad(
_A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , )
if labels is None:
return batch
UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1]
UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side
if padding_side == "right":
UpperCAmelCase_ : Optional[Any] = [
list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels
]
else:
UpperCAmelCase_ : Any = [
[self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels
]
UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features]
UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A )
UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features]
UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A )
UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 304
| 0
|
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCAmelCase_ )
class lowerCamelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
a__ : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
a__ : ClassVar[Features] = Features({"""text""": Value("""string""" )} )
a__ : ClassVar[Features] = Features({} )
a__ : str = "text"
@property
def UpperCamelCase__ ( self) -> Dict[str, str]:
return {self.text_column: "text"}
| 43
|
'''simple docstring'''
import functools
def __UpperCAmelCase ( A : str , A : str ) -> int:
UpperCAmelCase_ : Optional[Any] = len(A )
UpperCAmelCase_ : List[str] = len(A )
@functools.cache
def min_distance(A : int , A : int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 304
| 0
|
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_botoa_available
from .config_args import SageMakerConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_sagemaker_distributed_mode,
_convert_yes_no_to_bool,
)
if is_botoa_available():
import botoa # noqa: F401
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ) -> Optional[Any]:
_lowerCAmelCase : List[Any] = botoa.client("""iam""" )
_lowerCAmelCase : Dict = {
"""Version""": """2012-10-17""",
"""Statement""": [
{"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""}
],
}
try:
# create the role, associated with the chosen trust policy
iam_client.create_role(
RoleName=_lowerCamelCase ,AssumeRolePolicyDocument=json.dumps(_lowerCamelCase ,indent=2 ) )
_lowerCAmelCase : Union[str, Any] = {
"""Version""": """2012-10-17""",
"""Statement""": [
{
"""Effect""": """Allow""",
"""Action""": [
"""sagemaker:*""",
"""ecr:GetDownloadUrlForLayer""",
"""ecr:BatchGetImage""",
"""ecr:BatchCheckLayerAvailability""",
"""ecr:GetAuthorizationToken""",
"""cloudwatch:PutMetricData""",
"""cloudwatch:GetMetricData""",
"""cloudwatch:GetMetricStatistics""",
"""cloudwatch:ListMetrics""",
"""logs:CreateLogGroup""",
"""logs:CreateLogStream""",
"""logs:DescribeLogStreams""",
"""logs:PutLogEvents""",
"""logs:GetLogEvents""",
"""s3:CreateBucket""",
"""s3:ListBucket""",
"""s3:GetBucketLocation""",
"""s3:GetObject""",
"""s3:PutObject""",
],
"""Resource""": """*""",
}
],
}
# attach policy to role
iam_client.put_role_policy(
RoleName=_lowerCamelCase ,PolicyName=f"{role_name}_policy_permission" ,PolicyDocument=json.dumps(_lowerCamelCase ,indent=2 ) ,)
except iam_client.exceptions.EntityAlreadyExistsException:
print(f"role {role_name} already exists. Using existing one" )
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> Optional[int]:
_lowerCAmelCase : List[str] = botoa.client("""iam""" )
return iam_client.get_role(RoleName=_lowerCamelCase )["Role"]["Arn"]
def SCREAMING_SNAKE_CASE ( ) -> int:
_lowerCAmelCase : List[Any] = _ask_options(
"""How do you want to authorize?""" ,["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] ,_lowerCamelCase ,)
_lowerCAmelCase : Optional[Any] = None
if credentials_configuration == 0:
_lowerCAmelCase : Union[str, Any] = _ask_field("""Enter your AWS Profile name: [default] """ ,default="""default""" )
_lowerCAmelCase : List[Any] = aws_profile
else:
print(
"""Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"""
"""`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" )
_lowerCAmelCase : str = _ask_field("""AWS Access Key ID: """ )
_lowerCAmelCase : List[str] = aws_access_key_id
_lowerCAmelCase : List[Any] = _ask_field("""AWS Secret Access Key: """ )
_lowerCAmelCase : int = aws_secret_access_key
_lowerCAmelCase : Any = _ask_field("""Enter your AWS Region: [us-east-1]""" ,default="""us-east-1""" )
_lowerCAmelCase : int = aws_region
_lowerCAmelCase : Union[str, Any] = _ask_options(
"""Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" ,["""Provide IAM Role name""", """Create new IAM role using credentials"""] ,_lowerCamelCase ,)
if role_management == 0:
_lowerCAmelCase : Any = _ask_field("""Enter your IAM role name: """ )
else:
_lowerCAmelCase : Optional[int] = """accelerate_sagemaker_execution_role"""
print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" )
_create_iam_role_for_sagemaker(_lowerCamelCase )
_lowerCAmelCase : int = _ask_field(
"""Do you want to use custom Docker image? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=_lowerCamelCase ,error_message="""Please enter yes or no.""" ,)
_lowerCAmelCase : Tuple = None
if is_custom_docker_image:
_lowerCAmelCase : Optional[int] = _ask_field("""Enter your Docker image: """ ,lambda _lowerCamelCase : str(_lowerCamelCase ).lower() )
_lowerCAmelCase : Dict = _ask_field(
"""Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=_lowerCamelCase ,error_message="""Please enter yes or no.""" ,)
_lowerCAmelCase : Tuple = None
if is_sagemaker_inputs_enabled:
_lowerCAmelCase : str = _ask_field(
"""Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ ,lambda _lowerCamelCase : str(_lowerCamelCase ).lower() ,)
_lowerCAmelCase : Dict = _ask_field(
"""Do you want to enable SageMaker metrics? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=_lowerCamelCase ,error_message="""Please enter yes or no.""" ,)
_lowerCAmelCase : Union[str, Any] = None
if is_sagemaker_metrics_enabled:
_lowerCAmelCase : Dict = _ask_field(
"""Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ ,lambda _lowerCamelCase : str(_lowerCamelCase ).lower() ,)
_lowerCAmelCase : List[Any] = _ask_options(
"""What is the distributed mode?""" ,["""No distributed training""", """Data parallelism"""] ,_convert_sagemaker_distributed_mode ,)
_lowerCAmelCase : List[Any] = {}
_lowerCAmelCase : Union[str, Any] = _ask_field(
"""Do you wish to optimize your script with torch dynamo?[yes/NO]:""" ,_convert_yes_no_to_bool ,default=_lowerCamelCase ,error_message="""Please enter yes or no.""" ,)
if use_dynamo:
_lowerCAmelCase : Tuple = """dynamo_"""
_lowerCAmelCase : List[Any] = _ask_options(
"""Which dynamo backend would you like to use?""" ,[x.lower() for x in DYNAMO_BACKENDS] ,_convert_dynamo_backend ,default=2 ,)
_lowerCAmelCase : int = _ask_field(
"""Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=_lowerCamelCase ,error_message="""Please enter yes or no.""" ,)
if use_custom_options:
_lowerCAmelCase : Dict = _ask_options(
"""Which mode do you want to use?""" ,_lowerCamelCase ,lambda _lowerCamelCase : TORCH_DYNAMO_MODES[int(_lowerCamelCase )] ,default="""default""" ,)
_lowerCAmelCase : List[Any] = _ask_field(
"""Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=_lowerCamelCase ,error_message="""Please enter yes or no.""" ,)
_lowerCAmelCase : Dict = _ask_field(
"""Do you want to enable dynamic shape tracing? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=_lowerCamelCase ,error_message="""Please enter yes or no.""" ,)
_lowerCAmelCase : Any = """Which EC2 instance type you want to use for your training?"""
if distributed_type != SageMakerDistributedType.NO:
_lowerCAmelCase : List[Any] = _ask_options(
_lowerCamelCase ,_lowerCamelCase ,lambda _lowerCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_lowerCamelCase )] )
else:
eca_instance_query += "? [ml.p3.2xlarge]:"
_lowerCAmelCase : int = _ask_field(_lowerCamelCase ,lambda _lowerCamelCase : str(_lowerCamelCase ).lower() ,default="""ml.p3.2xlarge""" )
_lowerCAmelCase : int = 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
_lowerCAmelCase : List[Any] = _ask_field(
"""How many machines do you want use? [1]: """ ,_lowerCamelCase ,default=1 ,)
_lowerCAmelCase : Optional[Any] = _ask_options(
"""Do you wish to use FP16 or BF16 (mixed precision)?""" ,["""no""", """fp16""", """bf16""", """fp8"""] ,_convert_mixed_precision ,)
if use_dynamo and mixed_precision == "no":
print(
"""Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" )
return SageMakerConfig(
image_uri=_lowerCamelCase ,compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER ,distributed_type=_lowerCamelCase ,use_cpu=_lowerCamelCase ,dynamo_config=_lowerCamelCase ,eca_instance_type=_lowerCamelCase ,profile=_lowerCamelCase ,region=_lowerCamelCase ,iam_role_name=_lowerCamelCase ,mixed_precision=_lowerCamelCase ,num_machines=_lowerCamelCase ,sagemaker_inputs_file=_lowerCamelCase ,sagemaker_metrics_file=_lowerCamelCase ,)
| 44
|
'''simple docstring'''
def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int:
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1
UpperCAmelCase_ : Dict = []
for i in range(1 , n + 1 ):
UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator
UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator
if len(str(A ) ) > len(str(A ) ):
result.append(A )
UpperCAmelCase_ : Optional[Any] = numerator
UpperCAmelCase_ : Optional[int] = denominator
return len(A )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 304
| 0
|
"""simple docstring"""
import math
import os
import sys
def lowercase ( lowerCAmelCase__ : str ) -> str:
__a = ''''''
try:
with open(lowerCAmelCase__ , '''rb''' ) as binary_file:
__a = binary_file.read()
for dat in data:
__a = f'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print('''File not accessible''' )
sys.exit()
def lowercase ( lowerCAmelCase__ : dict[str, str] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> None:
lexicon.pop(lowerCAmelCase__ )
__a = last_match_id
if math.loga(lowerCAmelCase__ ).is_integer():
for curr_key in lexicon:
__a = '''0''' + lexicon[curr_key]
__a = bin(lowerCAmelCase__ )[2:]
def lowercase ( lowerCAmelCase__ : str ) -> str:
__a = {'''0''': '''0''', '''1''': '''1'''}
__a , __a = '''''', ''''''
__a = len(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
__a = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
index += 1
__a = ''''''
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
__a = lexicon[curr_string]
result += last_match_id
return result
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> str:
__a = os.path.getsize(lowerCAmelCase__ )
__a = bin(lowerCAmelCase__ )[2:]
__a = len(lowerCAmelCase__ )
return "0" * (length_length - 1) + file_length_binary + compressed
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> None:
__a = 8
try:
with open(lowerCAmelCase__ , '''wb''' ) as opened_file:
__a = [
to_write[i : i + byte_length]
for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('''10000000''' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(lowerCAmelCase__ , 2 ).to_bytes(1 , byteorder='''big''' ) )
except OSError:
print('''File not accessible''' )
sys.exit()
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> None:
__a = read_file_binary(lowerCAmelCase__ )
__a = compress_data(lowerCAmelCase__ )
__a = add_file_length(lowerCAmelCase__ , lowerCAmelCase__ )
write_file_binary(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 45
|
'''simple docstring'''
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class snake_case__ ( unittest.TestCase):
def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]:
UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20}
UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : Any = num_channels
UpperCAmelCase_ : Optional[Any] = image_size
UpperCAmelCase_ : Tuple = min_resolution
UpperCAmelCase_ : Tuple = max_resolution
UpperCAmelCase_ : Optional[int] = do_resize
UpperCAmelCase_ : Tuple = size
UpperCAmelCase_ : Optional[Any] = do_center_crop
UpperCAmelCase_ : Optional[int] = crop_size
UpperCAmelCase_ : Tuple = do_normalize
UpperCAmelCase_ : Optional[Any] = image_mean
UpperCAmelCase_ : int = image_std
UpperCAmelCase_ : List[Any] = do_reduce_labels
def A ( self : Union[str, Any] ) -> str:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def __UpperCAmelCase ( ) -> Optional[Any]:
UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] )
UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] )
return image, map
def __UpperCAmelCase ( ) -> Any:
UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] )
UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] )
UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] )
UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = BeitImageProcessor if is_vision_available() else None
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self )
@property
def A ( self : List[Any] ) -> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def A ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , '''do_resize''' ) )
self.assertTrue(hasattr(_A , '''size''' ) )
self.assertTrue(hasattr(_A , '''do_center_crop''' ) )
self.assertTrue(hasattr(_A , '''center_crop''' ) )
self.assertTrue(hasattr(_A , '''do_normalize''' ) )
self.assertTrue(hasattr(_A , '''image_mean''' ) )
self.assertTrue(hasattr(_A , '''image_std''' ) )
def A ( self : List[str] ) -> Optional[int]:
UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
self.assertEqual(image_processor.do_reduce_labels , _A )
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
self.assertEqual(image_processor.do_reduce_labels , _A )
def A ( self : Optional[Any] ) -> Any:
pass
def A ( self : List[str] ) -> Optional[int]:
# Initialize image_processing
UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Union[str, Any] ) -> Union[str, Any]:
# Initialize image_processing
UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Optional[int] ) -> str:
# Initialize image_processing
UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Any ) -> Optional[Any]:
# Initialize image_processing
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
UpperCAmelCase_ : Union[str, Any] = []
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched
UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test not batched input (PIL images)
UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs()
UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched input (PIL images)
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs()
UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
2,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
def A ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs()
UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 1_50 )
UpperCAmelCase_ : int = True
UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
| 304
| 0
|
"""simple docstring"""
def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
if not all(char in """01""" for char in bin_string ):
raise ValueError("""Non-binary value was passed to the function""" )
if not bin_string:
raise ValueError("""Empty string was passed to the function""" )
lowerCAmelCase = """"""
while len(SCREAMING_SNAKE_CASE ) % 3 != 0:
lowerCAmelCase = """0""" + bin_string
lowerCAmelCase = [
bin_string[index : index + 3]
for index in range(len(SCREAMING_SNAKE_CASE ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
lowerCAmelCase = 0
for index, val in enumerate(SCREAMING_SNAKE_CASE ):
oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE ) )
oct_string += str(SCREAMING_SNAKE_CASE )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 46
|
'''simple docstring'''
import enum
import warnings
from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING
from ..utils import add_end_docstrings, is_tf_available
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
class snake_case__ ( enum.Enum):
a_ = 0
a_ = 1
a_ = 2
@add_end_docstrings(UpperCamelCase)
class snake_case__ ( UpperCamelCase):
a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n "
def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]:
super().__init__(*_A , **_A )
self.check_model_type(
TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING )
if "prefix" not in self._preprocess_params:
# This is very specific. The logic is quite complex and needs to be done
# as a "default".
# It also defines both some preprocess_kwargs and generate_kwargs
# which is why we cannot put them in their respective methods.
UpperCAmelCase_ : Dict = None
if self.model.config.prefix is not None:
UpperCAmelCase_ : Tuple = self.model.config.prefix
if prefix is None and self.model.__class__.__name__ in [
"XLNetLMHeadModel",
"TransfoXLLMHeadModel",
"TFXLNetLMHeadModel",
"TFTransfoXLLMHeadModel",
]:
# For XLNet and TransformerXL we add an article to the prompt to give more state to the model.
UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX
if prefix is not None:
# Recalculate some generate_kwargs linked to prefix.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params )
UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params}
UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params}
def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict:
UpperCAmelCase_ : Union[str, Any] = {}
if prefix is not None:
UpperCAmelCase_ : List[Any] = prefix
if prefix:
UpperCAmelCase_ : Tuple = self.tokenizer(
_A , padding=_A , add_special_tokens=_A , return_tensors=self.framework )
UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1]
if handle_long_generation is not None:
if handle_long_generation not in {"hole"}:
raise ValueError(
F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected"
''' [None, \'hole\']''' )
UpperCAmelCase_ : Union[str, Any] = handle_long_generation
preprocess_params.update(_A )
UpperCAmelCase_ : Optional[int] = generate_kwargs
UpperCAmelCase_ : Tuple = {}
if return_full_text is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' )
if return_tensors is not None:
raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' )
UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
if return_tensors is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' )
UpperCAmelCase_ : List[Any] = ReturnType.TENSORS
if return_type is not None:
UpperCAmelCase_ : List[Any] = return_type
if clean_up_tokenization_spaces is not None:
UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces
if stop_sequence is not None:
UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A )
if len(_A ) > 1:
warnings.warn(
'''Stopping on a multiple token sequence is not yet supported on transformers. The first token of'''
''' the stop sequence will be used as the stop sequence string in the interim.''' )
UpperCAmelCase_ : str = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any:
# Parse arguments
if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
kwargs.update({'''add_space_before_punct_symbol''': True} )
return super()._parse_and_tokenize(*_A , **_A )
def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict:
return super().__call__(_A , **_A )
def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]:
UpperCAmelCase_ : Tuple = self.tokenizer(
prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework )
UpperCAmelCase_ : str = prompt_text
if handle_long_generation == "hole":
UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1]
if "max_new_tokens" in generate_kwargs:
UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens''']
else:
UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len
if new_tokens < 0:
raise ValueError('''We cannot infer how many new tokens are expected''' )
if cur_len + new_tokens > self.tokenizer.model_max_length:
UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens
if keep_length <= 0:
raise ValueError(
'''We cannot use `hole` to handle this generation the number of desired tokens exceeds the'''
''' models max length''' )
UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:]
if "attention_mask" in inputs:
UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:]
return inputs
def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]:
UpperCAmelCase_ : Any = model_inputs['''input_ids''']
UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A )
# Allow empty prompts
if input_ids.shape[1] == 0:
UpperCAmelCase_ : Any = None
UpperCAmelCase_ : List[Any] = None
UpperCAmelCase_ : Union[str, Any] = 1
else:
UpperCAmelCase_ : Optional[int] = input_ids.shape[0]
UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' )
# If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
# generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 )
if prefix_length > 0:
UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].max_new_tokens is not None
)
if not has_max_new_tokens:
UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A )
UpperCAmelCase_ : Any = generated_sequence.shape[0]
if self.framework == "pt":
UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] )
elif self.framework == "tf":
UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) )
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0]
UpperCAmelCase_ : int = model_outputs['''input_ids''']
UpperCAmelCase_ : str = model_outputs['''prompt_text''']
UpperCAmelCase_ : Any = generated_sequence.numpy().tolist()
UpperCAmelCase_ : int = []
for sequence in generated_sequence:
if return_type == ReturnType.TENSORS:
UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence}
elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}:
# Decode text
UpperCAmelCase_ : Any = self.tokenizer.decode(
_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , )
# Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used
if input_ids is None:
UpperCAmelCase_ : List[str] = 0
else:
UpperCAmelCase_ : str = len(
self.tokenizer.decode(
input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) )
if return_type == ReturnType.FULL_TEXT:
UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:]
else:
UpperCAmelCase_ : Dict = text[prompt_length:]
UpperCAmelCase_ : List[str] = {'''generated_text''': all_text}
records.append(_A )
return records
| 304
| 0
|
'''simple docstring'''
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
lowerCamelCase : Optional[Any] = "src/diffusers"
lowerCamelCase : str = "."
# This is to make sure the diffusers module imported is the one in the repo.
lowerCamelCase : Optional[Any] = importlib.util.spec_from_file_location(
"diffusers",
os.path.join(DIFFUSERS_PATH, "__init__.py"),
submodule_search_locations=[DIFFUSERS_PATH],
)
lowerCamelCase : List[Any] = spec.loader.load_module()
def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> str:
"""simple docstring"""
return line.startswith(_UpperCamelCase ) or len(_UpperCamelCase ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$' , _UpperCamelCase ) is not None
def _lowerCAmelCase ( _UpperCamelCase : int ) -> Optional[Any]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =object_name.split('.' )
_SCREAMING_SNAKE_CASE =0
# First let's find the module where our object lives.
_SCREAMING_SNAKE_CASE =parts[i]
while i < len(_UpperCamelCase ) and not os.path.isfile(os.path.join(_UpperCamelCase , f"{module}.py" ) ):
i += 1
if i < len(_UpperCamelCase ):
_SCREAMING_SNAKE_CASE =os.path.join(_UpperCamelCase , parts[i] )
if i >= len(_UpperCamelCase ):
raise ValueError(f"`object_name` should begin with the name of a module of diffusers but got {object_name}." )
with open(os.path.join(_UpperCamelCase , f"{module}.py" ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
_SCREAMING_SNAKE_CASE =f.readlines()
# Now let's find the class / func in the code!
_SCREAMING_SNAKE_CASE =''
_SCREAMING_SNAKE_CASE =0
for name in parts[i + 1 :]:
while (
line_index < len(_UpperCamelCase ) and re.search(rf"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(_UpperCamelCase ):
raise ValueError(f" {object_name} does not match any function or class in {module}." )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
_SCREAMING_SNAKE_CASE =line_index
while line_index < len(_UpperCamelCase ) and _should_continue(lines[line_index] , _UpperCamelCase ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
_SCREAMING_SNAKE_CASE =lines[start_index:line_index]
return "".join(_UpperCamelCase )
lowerCamelCase : Optional[int] = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)")
lowerCamelCase : Any = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)")
lowerCamelCase : Any = re.compile(r"<FILL\s+[^>]*>")
def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Tuple:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =code.split('\n' )
_SCREAMING_SNAKE_CASE =0
while idx < len(_UpperCamelCase ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(_UpperCamelCase ):
return re.search(r'^(\s*)\S' , lines[idx] ).groups()[0]
return ""
def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> str:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =len(get_indent(_UpperCamelCase ) ) > 0
if has_indent:
_SCREAMING_SNAKE_CASE =f"class Bla:\n{code}"
_SCREAMING_SNAKE_CASE =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=_UpperCamelCase )
_SCREAMING_SNAKE_CASE =black.format_str(_UpperCamelCase , mode=_UpperCamelCase )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =style_docstrings_in_code(_UpperCamelCase )
return result[len('class Bla:\n' ) :] if has_indent else result
def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : List[Any]=False ) -> Optional[Any]:
"""simple docstring"""
with open(_UpperCamelCase , 'r' , encoding='utf-8' , newline='\n' ) as f:
_SCREAMING_SNAKE_CASE =f.readlines()
_SCREAMING_SNAKE_CASE =[]
_SCREAMING_SNAKE_CASE =0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(_UpperCamelCase ):
_SCREAMING_SNAKE_CASE =_re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =search.groups()
_SCREAMING_SNAKE_CASE =find_code_in_diffusers(_UpperCamelCase )
_SCREAMING_SNAKE_CASE =get_indent(_UpperCamelCase )
_SCREAMING_SNAKE_CASE =line_index + 1 if indent == theoretical_indent else line_index + 2
_SCREAMING_SNAKE_CASE =theoretical_indent
_SCREAMING_SNAKE_CASE =start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
_SCREAMING_SNAKE_CASE =True
while line_index < len(_UpperCamelCase ) and should_continue:
line_index += 1
if line_index >= len(_UpperCamelCase ):
break
_SCREAMING_SNAKE_CASE =lines[line_index]
_SCREAMING_SNAKE_CASE =_should_continue(_UpperCamelCase , _UpperCamelCase ) and re.search(f"^{indent}# End copy" , _UpperCamelCase ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
_SCREAMING_SNAKE_CASE =lines[start_index:line_index]
_SCREAMING_SNAKE_CASE =''.join(_UpperCamelCase )
# Remove any nested `Copied from` comments to avoid circular copies
_SCREAMING_SNAKE_CASE =[line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(_UpperCamelCase ) is None]
_SCREAMING_SNAKE_CASE ='\n'.join(_UpperCamelCase )
# Before comparing, use the `replace_pattern` on the original code.
if len(_UpperCamelCase ) > 0:
_SCREAMING_SNAKE_CASE =replace_pattern.replace('with' , '' ).split(',' )
_SCREAMING_SNAKE_CASE =[_re_replace_pattern.search(_UpperCamelCase ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =pattern.groups()
_SCREAMING_SNAKE_CASE =re.sub(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
if option.strip() == "all-casing":
_SCREAMING_SNAKE_CASE =re.sub(obja.lower() , obja.lower() , _UpperCamelCase )
_SCREAMING_SNAKE_CASE =re.sub(obja.upper() , obja.upper() , _UpperCamelCase )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
_SCREAMING_SNAKE_CASE =blackify(lines[start_index - 1] + theoretical_code )
_SCREAMING_SNAKE_CASE =theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
_SCREAMING_SNAKE_CASE =lines[:start_index] + [theoretical_code] + lines[line_index:]
_SCREAMING_SNAKE_CASE =start_index + 1
if overwrite and len(_UpperCamelCase ) > 0:
# Warn the user a file has been modified.
print(f"Detected changes, rewriting {filename}." )
with open(_UpperCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_UpperCamelCase )
return diffs
def _lowerCAmelCase ( _UpperCamelCase : bool = False ) -> List[Any]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =glob.glob(os.path.join(_UpperCamelCase , '**/*.py' ) , recursive=_UpperCamelCase )
_SCREAMING_SNAKE_CASE =[]
for filename in all_files:
_SCREAMING_SNAKE_CASE =is_copy_consistent(_UpperCamelCase , _UpperCamelCase )
diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs]
if not overwrite and len(_UpperCamelCase ) > 0:
_SCREAMING_SNAKE_CASE ='\n'.join(_UpperCamelCase )
raise Exception(
'Found the following copy inconsistencies:\n'
+ diff
+ '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' )
if __name__ == "__main__":
lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCamelCase : Optional[Any] = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 47
|
'''simple docstring'''
from __future__ import annotations
import math
def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int:
if depth < 0:
raise ValueError('''Depth cannot be less than 0''' )
if not scores:
raise ValueError('''Scores cannot be empty''' )
if depth == height:
return scores[node_index]
return (
max(
minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , )
if is_max
else min(
minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , )
)
def __UpperCAmelCase ( ) -> None:
UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 )
print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 304
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE__ : Optional[Any] = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 48
|
'''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list:
UpperCAmelCase_ : Any = []
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
UpperCAmelCase_ : List[Any] = result + left + right
return input_list
def __UpperCAmelCase ( A : list ) -> list:
if len(A ) <= 1:
return input_list
UpperCAmelCase_ : List[str] = list(A )
# iteration for two-way merging
UpperCAmelCase_ : Tuple = 2
while p <= len(A ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(A ) , A ):
UpperCAmelCase_ : Union[str, Any] = i
UpperCAmelCase_ : int = i + p - 1
UpperCAmelCase_ : Any = (low + high + 1) // 2
UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A )
# final merge of last two parts
if p * 2 >= len(A ):
UpperCAmelCase_ : str = i
UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
_UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip()
if user_input == "":
_UpperCamelCase : List[str] = []
else:
_UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')]
print(iter_merge_sort(unsorted))
| 304
| 0
|
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class _A ( unittest.TestCase ):
def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int):
'''simple docstring'''
__a = jnp.ones((batch_size, length)) / length
return scores
def _lowerCamelCase ( self : Tuple):
'''simple docstring'''
__a = None
__a = 20
__a = self._get_uniform_logits(batch_size=2 , length=__SCREAMING_SNAKE_CASE)
# tweak scores to not be uniform anymore
__a = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch
__a = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch
# compute softmax
__a = jax.nn.softmax(__SCREAMING_SNAKE_CASE , axis=-1)
__a = FlaxTemperatureLogitsWarper(temperature=0.5)
__a = FlaxTemperatureLogitsWarper(temperature=1.3)
__a = jax.nn.softmax(temp_dist_warper_sharper(__SCREAMING_SNAKE_CASE , scores.copy() , cur_len=__SCREAMING_SNAKE_CASE) , axis=-1)
__a = jax.nn.softmax(temp_dist_warper_smoother(__SCREAMING_SNAKE_CASE , scores.copy() , cur_len=__SCREAMING_SNAKE_CASE) , axis=-1)
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3))
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3))
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max())
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min())
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max())
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min())
def _lowerCamelCase ( self : List[Any]):
'''simple docstring'''
__a = None
__a = 10
__a = 2
# create ramp distribution
__a = np.broadcast_to(np.arange(__SCREAMING_SNAKE_CASE)[None, :] , (batch_size, vocab_size)).copy()
__a = ramp_logits[1:, : vocab_size // 2] + vocab_size
__a = FlaxTopKLogitsWarper(3)
__a = top_k_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False])
self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True])
# check special case
__a = 5
__a = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3)
__a = np.broadcast_to(np.arange(__SCREAMING_SNAKE_CASE)[None, :] , (batch_size, length)).copy()
__a = top_k_warp_safety_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2])
def _lowerCamelCase ( self : Dict):
'''simple docstring'''
__a = None
__a = 10
__a = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
__a = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]]))
__a = FlaxTopPLogitsWarper(0.8)
__a = np.exp(top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE))
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
__a = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]])
self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3))
# check edge cases with negative and extreme logits
__a = np.broadcast_to(np.arange(__SCREAMING_SNAKE_CASE)[None, :] , (batch_size, vocab_size)).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
__a = ramp_logits[1] * 1_00.0
# make sure at least 2 tokens are kept
__a = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0)
__a = top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2])
def _lowerCamelCase ( self : Union[str, Any]):
'''simple docstring'''
__a = 20
__a = 4
__a = 0
__a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__SCREAMING_SNAKE_CASE)
# check that min length is applied at length 5
__a = ids_tensor((batch_size, 20) , vocab_size=20)
__a = 5
__a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
__a = min_dist_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''')])
# check that min length is not applied anymore at length 15
__a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
__a = 15
__a = min_dist_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
self.assertFalse(jnp.isinf(__SCREAMING_SNAKE_CASE).any())
def _lowerCamelCase ( self : Optional[Any]):
'''simple docstring'''
__a = 20
__a = 4
__a = 0
__a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__SCREAMING_SNAKE_CASE)
# check that all scores are -inf except the bos_token_id score
__a = ids_tensor((batch_size, 1) , vocab_size=20)
__a = 1
__a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
__a = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all())
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
__a = 3
__a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
__a = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
self.assertFalse(jnp.isinf(__SCREAMING_SNAKE_CASE).any())
def _lowerCamelCase ( self : Tuple):
'''simple docstring'''
__a = 20
__a = 4
__a = 0
__a = 5
__a = FlaxForcedEOSTokenLogitsProcessor(max_length=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE)
# check that all scores are -inf except the eos_token_id when max_length is reached
__a = ids_tensor((batch_size, 4) , vocab_size=20)
__a = 4
__a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
__a = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all())
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
__a = 3
__a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
__a = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
self.assertFalse(jnp.isinf(__SCREAMING_SNAKE_CASE).any())
def _lowerCamelCase ( self : str):
'''simple docstring'''
__a = 4
__a = 10
__a = 15
__a = 2
__a = 1
__a = 15
# dummy input_ids and scores
__a = ids_tensor((batch_size, sequence_length) , __SCREAMING_SNAKE_CASE)
__a = input_ids.copy()
__a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
__a = scores.copy()
# instantiate all dist processors
__a = FlaxTemperatureLogitsWarper(temperature=0.5)
__a = FlaxTopKLogitsWarper(3)
__a = FlaxTopPLogitsWarper(0.8)
# instantiate all logits processors
__a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__SCREAMING_SNAKE_CASE)
__a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__SCREAMING_SNAKE_CASE)
__a = FlaxForcedEOSTokenLogitsProcessor(max_length=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE)
__a = 10
# no processor list
__a = temp_dist_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
__a = top_k_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
__a = top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
__a = min_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
__a = bos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
__a = eos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
# with processor list
__a = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc])
__a = processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
# scores should be equal
self.assertTrue(jnp.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3))
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
def _lowerCamelCase ( self : Any):
'''simple docstring'''
__a = 4
__a = 10
__a = 15
__a = 2
__a = 1
__a = 15
# dummy input_ids and scores
__a = ids_tensor((batch_size, sequence_length) , __SCREAMING_SNAKE_CASE)
__a = input_ids.copy()
__a = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
__a = scores.copy()
# instantiate all dist processors
__a = FlaxTemperatureLogitsWarper(temperature=0.5)
__a = FlaxTopKLogitsWarper(3)
__a = FlaxTopPLogitsWarper(0.8)
# instantiate all logits processors
__a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__SCREAMING_SNAKE_CASE)
__a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__SCREAMING_SNAKE_CASE)
__a = FlaxForcedEOSTokenLogitsProcessor(max_length=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE)
__a = 10
# no processor list
def run_no_processor_list(__SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]):
__a = temp_dist_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
__a = top_k_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
__a = top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
__a = min_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
__a = bos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
__a = eos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
return scores
# with processor list
def run_processor_list(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any]):
__a = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc])
__a = processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE)
return scores
__a = jax.jit(__SCREAMING_SNAKE_CASE)
__a = jax.jit(__SCREAMING_SNAKE_CASE)
__a = jitted_run_no_processor_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
__a = jitted_run_processor_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
# scores should be equal
self.assertTrue(jnp.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3))
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
| 49
|
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class snake_case__ :
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42
a_ = 42
a_ = 42
a_ = 42
a_ = 42
def A ( self : Tuple ) -> Optional[int]:
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def A ( self : List[Any] ) -> Union[str, Any]:
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def A ( self : Any ) -> Optional[Any]:
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def A ( self : Optional[int] ) -> torch.Tensor:
UpperCAmelCase_ : Dict = torch.arange(self.height * self.width )
UpperCAmelCase_ : int = torch.stack(
[
pixel_indices % self.width,
torch.div(_A , self.width , rounding_mode='''trunc''' ),
] , axis=1 , )
return coords
@property
def A ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape
UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) )
UpperCAmelCase_ : Any = self.get_image_coords()
UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A )
UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor:
UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 )
UpperCAmelCase_ : Union[str, Any] = self.resolution()
UpperCAmelCase_ : int = self.fov()
UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1
UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 )
UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 )
UpperCAmelCase_ : List[Any] = (
self.z.view(_A , 1 , 3 )
+ self.x.view(_A , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:]
)
UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A )
UpperCAmelCase_ : Union[str, Any] = torch.stack(
[
torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(_A , *_A , 2 , 3 )
def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera":
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , )
def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera:
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : Optional[int] = []
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : str = []
for theta in np.linspace(0 , 2 * np.pi , num=2_0 ):
UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
UpperCAmelCase_ : Optional[int] = -z * 4
UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] )
UpperCAmelCase_ : List[Any] = np.cross(A , A )
origins.append(A )
xs.append(A )
ys.append(A )
zs.append(A )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
| 304
| 0
|
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class lowerCAmelCase :
UpperCAmelCase__ = 42
UpperCAmelCase__ = 42
class lowerCAmelCase :
def __init__( self : List[str] , UpperCAmelCase : int ) -> Dict:
lowerCamelCase__ : list[list[Edge]] = [[] for _ in range(UpperCAmelCase )]
lowerCamelCase__ : str = size
def __getitem__( self : List[str] , UpperCAmelCase : int ) -> Iterator[Edge]:
return iter(self._graph[vertex] )
@property
def A_ ( self : Dict ) -> List[Any]:
return self._size
def A_ ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> List[Any]:
if weight not in (0, 1):
raise ValueError('Edge weight must be either 0 or 1.' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('Vertex indexes must be in [0; size).' )
self._graph[from_vertex].append(Edge(UpperCAmelCase , UpperCAmelCase ) )
def A_ ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int ) -> int | None:
lowerCamelCase__ : Dict = deque([start_vertex] )
lowerCamelCase__ : list[int | None] = [None] * self.size
lowerCamelCase__ : int = 0
while queue:
lowerCamelCase__ : str = queue.popleft()
lowerCamelCase__ : List[Any] = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowerCamelCase__ : Any = current_distance + edge.weight
lowerCamelCase__ : List[Any] = distances[edge.destination_vertex]
if (
isinstance(UpperCAmelCase , UpperCAmelCase )
and new_distance >= dest_vertex_distance
):
continue
lowerCamelCase__ : List[Any] = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('No path from start_vertex to finish_vertex.' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50
|
'''simple docstring'''
import random
class snake_case__ :
@staticmethod
def A ( _A : str ) -> tuple[list[int], list[int]]:
UpperCAmelCase_ : Dict = [ord(_A ) for i in text]
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : Any = []
for i in plain:
UpperCAmelCase_ : int = random.randint(1 , 3_00 )
UpperCAmelCase_ : str = (i + k) * k
cipher.append(_A )
key.append(_A )
return cipher, key
@staticmethod
def A ( _A : list[int] , _A : list[int] ) -> str:
UpperCAmelCase_ : Dict = []
for i in range(len(_A ) ):
UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(_A ) )
return "".join(_A )
if __name__ == "__main__":
_UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello')
print(c, k)
print(Onepad().decrypt(c, k))
| 304
| 0
|
from __future__ import annotations
from math import pi
def A (__A : float , __A : float , __A : float ) -> dict[str, float]:
"""simple docstring"""
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if inductance < 0:
raise ValueError('''Inductance cannot be negative''' )
if frequency < 0:
raise ValueError('''Frequency cannot be negative''' )
if reactance < 0:
raise ValueError('''Inductive reactance cannot be negative''' )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51
|
'''simple docstring'''
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = ReformerTokenizer
a_ = ReformerTokenizerFast
a_ = True
a_ = False
a_ = True
def A ( self : Optional[Any] ) -> List[Any]:
super().setUp()
UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A )
tokenizer.save_pretrained(self.tmpdirname )
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase_ : List[Any] = '''<s>'''
UpperCAmelCase_ : int = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def A ( self : Any ) -> str:
UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(_A ) , 10_00 )
def A ( self : Optional[int] ) -> int:
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def A ( self : Optional[Any] ) -> List[Any]:
if not self.test_rust_tokenizer:
return
UpperCAmelCase_ : int = self.get_tokenizer()
UpperCAmelCase_ : Tuple = self.get_rust_tokenizer()
UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A )
UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A )
UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
UpperCAmelCase_ : Tuple = self.get_rust_tokenizer()
UpperCAmelCase_ : Dict = tokenizer.encode(_A )
UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A )
self.assertListEqual(_A , _A )
def A ( self : Tuple , _A : Dict=15 ) -> str:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A )
# Simple input
UpperCAmelCase_ : Optional[int] = '''This is a simple input'''
UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2''']
UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''')
UpperCAmelCase_ : Dict = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' )
# Simple input
self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' )
# Simple input
self.assertRaises(
_A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , )
# Pair input
self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' )
# Pair input
self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' )
# Pair input
self.assertRaises(
_A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , )
def A ( self : Union[str, Any] ) -> int:
pass
def A ( self : int ) -> Any:
UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A )
UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , )
UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A )
self.assertListEqual(
_A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def A ( self : List[str] ) -> Optional[int]:
return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' )
@slow
def A ( self : str ) -> str:
UpperCAmelCase_ : Tuple = '''Hello World!'''
UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@slow
def A ( self : List[Any] ) -> str:
UpperCAmelCase_ : Tuple = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
UpperCAmelCase_ : int = [
1_08,
2_65,
24,
1_11,
4,
2_58,
1_56,
35,
28,
2_75,
3,
2_59,
2_97,
2_60,
84,
4,
35,
1_10,
44,
8,
2_59,
91,
2_68,
21,
11,
2_09,
2_74,
1_09,
2_66,
2_77,
1_17,
86,
93,
3_15,
2_58,
2_78,
2_58,
2_77,
2_58,
0,
2_58,
2_88,
2_58,
3_19,
2_58,
0,
2_58,
0,
2_58,
0,
2_58,
0,
2_58,
2_87,
2_58,
3_15,
2_58,
2_89,
2_58,
2_78,
99,
2_69,
2_66,
2_62,
8,
2_59,
2_41,
4,
2_17,
2_30,
2_68,
2_66,
55,
1_68,
1_06,
75,
1_93,
2_66,
2_23,
27,
49,
26,
2_82,
25,
2_64,
2_99,
19,
26,
0,
2_58,
2_77,
1_17,
86,
93,
1_76,
1_83,
2_70,
11,
2_62,
42,
61,
2_65,
]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@require_torch
@slow
def A ( self : List[str] ) -> Optional[int]:
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10]
UpperCAmelCase_ : List[Any] = ''' '''.join(_A )
UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' )
UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' )
UpperCAmelCase_ : List[Any] = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape
UpperCAmelCase_ : Optional[int] = ReformerModel(_A )
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**_A )
model(**_A )
@slow
def A ( self : int ) -> Optional[Any]:
# fmt: off
UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
UpperCAmelCase_ : Optional[Any] = [
'''This is a very simple sentence.''',
'''The quick brown fox jumps over the lazy dog.''',
]
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
| 304
| 0
|
import warnings
warnings.warn(
"""memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """
"""`from accelerate import find_executable_batch_size` to avoid this warning.""",
FutureWarning,
)
| 52
|
'''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( A : str ) -> list[int]:
return [ord(A ) - 9_6 for elem in plain]
def __UpperCAmelCase ( A : list[int] ) -> str:
return "".join(chr(elem + 9_6 ) for elem in encoded )
def __UpperCAmelCase ( ) -> None:
UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() )
print('''Encoded: ''' , A )
print('''Decoded:''' , decode(A ) )
if __name__ == "__main__":
main()
| 304
| 0
|
'''simple docstring'''
import unittest
from transformers import GPTNeoXJapaneseConfig, is_torch_available
from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel
class snake_case :
"""simple docstring"""
def __init__( self : Tuple , __A : Optional[int] , __A : List[Any]=1_3 , __A : Union[str, Any]=7 , __A : Any=True , __A : List[Any]=True , __A : Any=True , __A : Dict=True , __A : Tuple=9_9 , __A : Any=3_2 , __A : Optional[int]=5 , __A : Optional[int]=4 , __A : List[Any]=4 , __A : int="gelu" , __A : Optional[int]=0.0 , __A : Dict=0.1 , __A : Optional[int]=True , __A : int=5_1_2 , __A : int=1_6 , __A : Optional[Any]=2 , __A : Optional[int]=0.02 , __A : str=3 , __A : List[str]=4 , __A : Tuple=None , ):
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_token_type_ids
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_multiple_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = weight_tying
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = type_sequence_label_size
__UpperCamelCase = initializer_range
__UpperCamelCase = num_labels
__UpperCamelCase = num_choices
__UpperCamelCase = scope
def _lowerCamelCase ( self : Tuple ):
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = self.get_config()
return config, input_ids, input_mask, token_labels
def _lowerCamelCase ( self : List[str] ):
return GPTNeoXJapaneseConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , )
def _lowerCamelCase ( self : Optional[int] ):
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.prepare_config_and_inputs()
__UpperCamelCase = True
return config, input_ids, input_mask, token_labels
def _lowerCamelCase ( self : Any , __A : int , __A : Union[str, Any] , __A : Union[str, Any] ):
__UpperCamelCase = GPTNeoXJapaneseModel(config=__A )
model.to(__A )
model.eval()
__UpperCamelCase = model(__A , attention_mask=__A )
__UpperCamelCase = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCamelCase ( self : List[Any] , __A : Any , __A : Any , __A : Optional[Any] ):
__UpperCamelCase = True
__UpperCamelCase = GPTNeoXJapaneseModel(__A )
model.to(__A )
model.eval()
__UpperCamelCase = model(__A , attention_mask=__A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCamelCase ( self : Optional[int] , __A : List[Any] , __A : Union[str, Any] , __A : Tuple , __A : Optional[Any] ):
__UpperCamelCase = GPTNeoXJapaneseForCausalLM(config=__A )
model.to(__A )
model.eval()
__UpperCamelCase = model(__A , attention_mask=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCamelCase ( self : Optional[Any] , __A : List[Any] , __A : Union[str, Any] , __A : str ):
__UpperCamelCase = True
__UpperCamelCase = GPTNeoXJapaneseForCausalLM(config=__A )
model.to(__A )
model.eval()
# first forward pass
__UpperCamelCase = model(__A , attention_mask=__A , use_cache=__A )
__UpperCamelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCamelCase = model(__A , attention_mask=__A , output_hidden_states=__A )
__UpperCamelCase = output_from_no_past['hidden_states'][0]
__UpperCamelCase = model(
__A , attention_mask=__A , past_key_values=__A , output_hidden_states=__A , )['hidden_states'][0]
# select random slice
__UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCamelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-3 ) )
def _lowerCamelCase ( self : Union[str, Any] ):
__UpperCamelCase = self.prepare_config_and_inputs()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs
__UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] =(GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ : List[Any] =(GPTNeoXJapaneseForCausalLM,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ : Optional[int] =(
{"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ : Optional[int] =False
SCREAMING_SNAKE_CASE_ : Any =False
SCREAMING_SNAKE_CASE_ : Optional[int] =False
SCREAMING_SNAKE_CASE_ : int =False
def _lowerCamelCase ( self : Dict ):
__UpperCamelCase = GPTNeoXJapaneseModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=__A , hidden_size=3_7 )
def _lowerCamelCase ( self : str ):
self.config_tester.run_common_tests()
def _lowerCamelCase ( self : Optional[Any] ):
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__A , __A , __A )
def _lowerCamelCase ( self : Union[str, Any] ):
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(__A , __A , __A )
def _lowerCamelCase ( self : int ):
# This regression test was failing with PyTorch < 1.3
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
__UpperCamelCase = None
self.model_tester.create_and_check_model_as_decoder(__A , __A , __A )
def _lowerCamelCase ( self : Optional[int] ):
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(__A , __A , __A )
def _lowerCamelCase ( self : Dict ):
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*__A )
@slow
def _lowerCamelCase ( self : Optional[int] ):
__UpperCamelCase = 'abeja/gpt-neox-japanese-2.7b'
__UpperCamelCase = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、']
__UpperCamelCase = [
'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。',
'100年後に必要とされる会社は、「人」が中心の会社です。',
'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。',
'国境の長いトンネルを抜けると、そこは雪国だった。',
'美味しい日本食といえば、やっぱりお寿司ですよね。',
]
__UpperCamelCase = GPTNeoXJapaneseTokenizer.from_pretrained(__A )
__UpperCamelCase = GPTNeoXJapaneseForCausalLM.from_pretrained(__A )
__UpperCamelCase = []
for prompt in prompts:
__UpperCamelCase = tokenizer(__A , return_tensors='pt' ).input_ids
__UpperCamelCase = model.generate(__A , max_length=5_0 )
__UpperCamelCase = tokenizer.batch_decode(__A , skip_special_tokens=__A )
predicted_outputs += generated_string
self.assertListEqual(__A , __A )
| 53
|
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 304
| 0
|
"""simple docstring"""
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class UpperCamelCase_ ( UpperCamelCase):
"""simple docstring"""
@staticmethod
@abstractmethod
def UpperCAmelCase_ ( UpperCAmelCase__ : ArgumentParser ) -> int:
raise NotImplementedError()
@abstractmethod
def UpperCAmelCase_ ( self : int ) -> Optional[int]:
raise NotImplementedError()
| 54
|
'''simple docstring'''
def __UpperCAmelCase ( A : int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
UpperCAmelCase_ : int = gray_code_sequence_string(A )
#
# convert them to integers
for i in range(len(A ) ):
UpperCAmelCase_ : List[str] = int(sequence[i] , 2 )
return sequence
def __UpperCAmelCase ( A : int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 )
UpperCAmelCase_ : int = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i]
sequence.append(A )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i]
sequence.append(A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 304
| 0
|
'''simple docstring'''
def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ):
return 1 if input_a == input_a else 0
def __snake_case ( ):
assert xnor_gate(0 , 0 ) == 1
assert xnor_gate(0 , 1 ) == 0
assert xnor_gate(1 , 0 ) == 0
assert xnor_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 55
|
'''simple docstring'''
import logging
from transformers.configuration_utils import PretrainedConfig
_UpperCamelCase : Any = logging.getLogger(__name__)
class snake_case__ ( UpperCamelCase):
a_ = "masked_bert"
def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]:
super().__init__(pad_token_id=_A , **_A )
UpperCAmelCase_ : Union[str, Any] = vocab_size
UpperCAmelCase_ : str = hidden_size
UpperCAmelCase_ : Union[str, Any] = num_hidden_layers
UpperCAmelCase_ : Optional[int] = num_attention_heads
UpperCAmelCase_ : Optional[Any] = hidden_act
UpperCAmelCase_ : str = intermediate_size
UpperCAmelCase_ : int = hidden_dropout_prob
UpperCAmelCase_ : Tuple = attention_probs_dropout_prob
UpperCAmelCase_ : Optional[Any] = max_position_embeddings
UpperCAmelCase_ : List[str] = type_vocab_size
UpperCAmelCase_ : str = initializer_range
UpperCAmelCase_ : Union[str, Any] = layer_norm_eps
UpperCAmelCase_ : Optional[int] = pruning_method
UpperCAmelCase_ : Optional[int] = mask_init
UpperCAmelCase_ : List[Any] = mask_scale
| 304
| 0
|
'''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class a ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ):
def __init__( self : Dict , lowercase_ : List[str]=None , **lowercase_ : Union[str, Any] ):
super().__init__(features=lowercase_ )
snake_case_ = torch_tensor_kwargs
import torch # noqa import torch at initialization
def A_ ( self : str , lowercase_ : str ):
import torch
if isinstance(lowercase_ , lowercase_ ) and column:
if all(
isinstance(lowercase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(lowercase_ )
return column
def A_ ( self : Any , lowercase_ : Tuple ):
import torch
if isinstance(lowercase_ , (str, bytes, type(lowercase_ )) ):
return value
elif isinstance(lowercase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
snake_case_ = {}
if isinstance(lowercase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
snake_case_ = {'''dtype''': torch.intaa}
elif isinstance(lowercase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
snake_case_ = {'''dtype''': torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(lowercase_ , PIL.Image.Image ):
snake_case_ = np.asarray(lowercase_ )
return torch.tensor(lowercase_ , **{**default_dtype, **self.torch_tensor_kwargs} )
def A_ ( self : List[Any] , lowercase_ : Optional[int] ):
import torch
# support for torch, tf, jax etc.
if hasattr(lowercase_ , '''__array__''' ) and not isinstance(lowercase_ , torch.Tensor ):
snake_case_ = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(lowercase_ , np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(lowercase_ ) for substruct in data_struct] )
elif isinstance(lowercase_ , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(lowercase_ ) for substruct in data_struct] )
return self._tensorize(lowercase_ )
def A_ ( self : Optional[Any] , lowercase_ : dict ):
return map_nested(self._recursive_tensorize , lowercase_ , map_list=lowercase_ )
def A_ ( self : Dict , lowercase_ : pa.Table ):
snake_case_ = self.numpy_arrow_extractor().extract_row(lowercase_ )
snake_case_ = self.python_features_decoder.decode_row(lowercase_ )
return self.recursive_tensorize(lowercase_ )
def A_ ( self : List[Any] , lowercase_ : pa.Table ):
snake_case_ = self.numpy_arrow_extractor().extract_column(lowercase_ )
snake_case_ = self.python_features_decoder.decode_column(lowercase_ , pa_table.column_names[0] )
snake_case_ = self.recursive_tensorize(lowercase_ )
snake_case_ = self._consolidate(lowercase_ )
return column
def A_ ( self : str , lowercase_ : pa.Table ):
snake_case_ = self.numpy_arrow_extractor().extract_batch(lowercase_ )
snake_case_ = self.python_features_decoder.decode_batch(lowercase_ )
snake_case_ = self.recursive_tensorize(lowercase_ )
for column_name in batch:
snake_case_ = self._consolidate(batch[column_name] )
return batch
| 56
|
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
a_ = StableDiffusionDiffEditPipeline
a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"}
a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"}
a_ = frozenset(
[]) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
a_ = frozenset([])
def A ( self : Tuple ) -> Optional[Any]:
torch.manual_seed(0 )
UpperCAmelCase_ : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , )
UpperCAmelCase_ : Optional[Any] = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , )
UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , )
torch.manual_seed(0 )
UpperCAmelCase_ : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
UpperCAmelCase_ : List[str] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , )
UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A )
UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
UpperCAmelCase_ : Optional[int] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''inverse_scheduler''': inverse_scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def A ( self : str , _A : List[str] , _A : Any=0 ) -> str:
UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A )
UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A )
if str(_A ).startswith('''mps''' ):
UpperCAmelCase_ : Any = torch.manual_seed(_A )
else:
UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A )
UpperCAmelCase_ : str = {
'''prompt''': '''a dog and a newt''',
'''mask_image''': mask,
'''image_latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]:
UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' )
if str(_A ).startswith('''mps''' ):
UpperCAmelCase_ : Dict = torch.manual_seed(_A )
else:
UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A )
UpperCAmelCase_ : Optional[Any] = {
'''image''': image,
'''source_prompt''': '''a cat and a frog''',
'''target_prompt''': '''a dog and a newt''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''num_maps_per_mask''': 2,
'''mask_encode_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any:
UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' )
if str(_A ).startswith('''mps''' ):
UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A )
else:
UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A )
UpperCAmelCase_ : Optional[int] = {
'''image''': image,
'''prompt''': '''a cat and a frog''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''decode_latents''': True,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : List[str] ) -> Optional[Any]:
if not hasattr(self.pipeline_class , '''_optional_components''' ):
return
UpperCAmelCase_ : str = self.get_dummy_components()
UpperCAmelCase_ : Any = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(_A , _A , _A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A )
UpperCAmelCase_ : str = pipe(**_A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(_A )
UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A )
pipe_loaded.to(_A )
pipe_loaded.set_progress_bar_config(disable=_A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , )
UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A )
UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0]
UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max()
self.assertLess(_A , 1e-4 )
def A ( self : Tuple ) -> int:
UpperCAmelCase_ : Optional[Any] = '''cpu'''
UpperCAmelCase_ : Any = self.get_dummy_components()
UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A )
UpperCAmelCase_ : int = pipe.generate_mask(**_A )
UpperCAmelCase_ : Tuple = mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
UpperCAmelCase_ : List[Any] = np.array([0] * 9 )
UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_A , 1e-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def A ( self : str ) -> Optional[int]:
UpperCAmelCase_ : Union[str, Any] = '''cpu'''
UpperCAmelCase_ : str = self.get_dummy_components()
UpperCAmelCase_ : str = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A )
UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images
UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
UpperCAmelCase_ : int = np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_A , 1e-3 )
def A ( self : Tuple ) -> Optional[Any]:
super().test_inference_batch_single_identical(expected_max_diff=5e-3 )
def A ( self : str ) -> Tuple:
UpperCAmelCase_ : Any = '''cpu'''
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components()
UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''}
UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A )
UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A )
UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A )
UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images
UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
UpperCAmelCase_ : List[Any] = np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_A , 1e-3 )
@require_torch_gpu
@slow
class snake_case__ ( unittest.TestCase):
def A ( self : Optional[Any] ) -> Optional[int]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def A ( cls : Dict ) -> List[Any]:
UpperCAmelCase_ : Optional[int] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' )
UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) )
UpperCAmelCase_ : Any = raw_image
def A ( self : List[Any] ) -> List[str]:
UpperCAmelCase_ : int = torch.manual_seed(0 )
UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa )
UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config )
UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit'''
UpperCAmelCase_ : Tuple = '''a bowl of pears'''
UpperCAmelCase_ : Optional[int] = pipe.generate_mask(
image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , )
UpperCAmelCase_ : List[str] = pipe.invert(
prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents
UpperCAmelCase_ : Any = pipe(
prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0]
UpperCAmelCase_ : str = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5e-1
def A ( self : Tuple ) -> List[str]:
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa )
UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit'''
UpperCAmelCase_ : Dict = '''a bowl of pears'''
UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask(
image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , )
UpperCAmelCase_ : List[Any] = pipe.invert(
prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents
UpperCAmelCase_ : Dict = pipe(
prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0]
UpperCAmelCase_ : Tuple = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5e-1
| 304
| 0
|
"""simple docstring"""
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
A : Optional[Any] = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
A : Optional[int] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n"
A : Any = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _UpperCamelCase ( datasets.Metric ):
'''simple docstring'''
def snake_case ( self ):
if version.parse(scb.__version__ ) < version.parse("1.4.12" ):
raise ImportWarning(
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
"You can install it with `pip install \"sacrebleu>=1.4.12\"`." )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[
"https://github.com/jhclark/tercom",
] , )
def snake_case ( self , __a , __a , __a = False , __a = False , __a = False , __a = False , ):
__lowerCAmelCase = len(references[0] )
if any(len(__a ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
__lowerCAmelCase = [[refs[i] for refs in references] for i in range(__a )]
__lowerCAmelCase = TER(
normalized=__a , no_punct=__a , asian_support=__a , case_sensitive=__a , )
__lowerCAmelCase = sb_ter.corpus_score(__a , __a )
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 57
|
'''simple docstring'''
import inspect
import unittest
from math import floor
from transformers import CvtConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import CvtForImageClassification, CvtModel
from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ ( UpperCamelCase):
def A ( self : List[str] ) -> List[Any]:
UpperCAmelCase_ : int = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) )
self.parent.assertTrue(hasattr(_A , '''num_heads''' ) )
class snake_case__ :
def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]:
UpperCAmelCase_ : int = parent
UpperCAmelCase_ : List[Any] = batch_size
UpperCAmelCase_ : Any = image_size
UpperCAmelCase_ : Tuple = patch_sizes
UpperCAmelCase_ : int = patch_stride
UpperCAmelCase_ : Any = patch_padding
UpperCAmelCase_ : List[Any] = is_training
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Union[str, Any] = num_labels
UpperCAmelCase_ : List[str] = num_channels
UpperCAmelCase_ : int = embed_dim
UpperCAmelCase_ : Optional[int] = num_heads
UpperCAmelCase_ : Tuple = stride_kv
UpperCAmelCase_ : Optional[Any] = depth
UpperCAmelCase_ : Dict = cls_token
UpperCAmelCase_ : Dict = attention_drop_rate
UpperCAmelCase_ : Any = initializer_range
UpperCAmelCase_ : List[str] = layer_norm_eps
def A ( self : int ) -> List[str]:
UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ : List[str] = self.get_config()
return config, pixel_values, labels
def A ( self : List[str] ) -> int:
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]:
UpperCAmelCase_ : List[Any] = CvtModel(config=_A )
model.to(_A )
model.eval()
UpperCAmelCase_ : Tuple = model(_A )
UpperCAmelCase_ : List[str] = (self.image_size, self.image_size)
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]:
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : str = CvtForImageClassification(_A )
model.to(_A )
model.eval()
UpperCAmelCase_ : int = model(_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : Dict ) -> Any:
UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs
UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else ()
a_ = (
{"feature-extraction": CvtModel, "image-classification": CvtForImageClassification}
if is_torch_available()
else {}
)
a_ = False
a_ = False
a_ = False
a_ = False
a_ = False
def A ( self : int ) -> List[str]:
UpperCAmelCase_ : Optional[int] = CvtModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def A ( self : Any ) -> Dict:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A ( self : int ) -> List[str]:
return
@unittest.skip(reason='''Cvt does not output attentions''' )
def A ( self : Optional[int] ) -> Optional[int]:
pass
@unittest.skip(reason='''Cvt does not use inputs_embeds''' )
def A ( self : Any ) -> Optional[Any]:
pass
@unittest.skip(reason='''Cvt does not support input and output embeddings''' )
def A ( self : List[Any] ) -> Any:
pass
def A ( self : int ) -> str:
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Tuple = model_class(_A )
UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : Tuple = [*signature.parameters.keys()]
UpperCAmelCase_ : str = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _A )
def A ( self : Tuple ) -> int:
UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def A ( self : Dict ) -> List[str]:
def check_hidden_states_output(_A : Dict , _A : str , _A : int ):
UpperCAmelCase_ : str = model_class(_A )
model.to(_A )
model.eval()
with torch.no_grad():
UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) )
UpperCAmelCase_ : Optional[Any] = outputs.hidden_states
UpperCAmelCase_ : Any = len(self.model_tester.depth )
self.assertEqual(len(_A ) , _A )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Optional[Any] = True
check_hidden_states_output(_A , _A , _A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : Dict = True
check_hidden_states_output(_A , _A , _A )
def A ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_A )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def A ( self : List[Any] ) -> Optional[Any]:
pass
@slow
def A ( self : Optional[int] ) -> int:
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def __UpperCAmelCase ( ) -> str:
UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class snake_case__ ( unittest.TestCase):
@cached_property
def A ( self : Union[str, Any] ) -> Union[str, Any]:
return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def A ( self : str ) -> str:
UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A )
UpperCAmelCase_ : Optional[int] = self.default_image_processor
UpperCAmelCase_ : List[str] = prepare_img()
UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Any = model(**_A )
# verify the logits
UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _A )
UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
| 304
| 0
|
'''simple docstring'''
import inspect
import unittest
import warnings
from transformers import DeiTConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
)
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class a_ :
'''simple docstring'''
def __init__( self , A , A=13 , A=30 , A=2 , A=3 , A=True , A=True , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=10 , A=0.02 , A=3 , A=None , A=2 , ) -> Optional[int]:
_SCREAMING_SNAKE_CASE = parent
_SCREAMING_SNAKE_CASE = batch_size
_SCREAMING_SNAKE_CASE = image_size
_SCREAMING_SNAKE_CASE = patch_size
_SCREAMING_SNAKE_CASE = num_channels
_SCREAMING_SNAKE_CASE = is_training
_SCREAMING_SNAKE_CASE = use_labels
_SCREAMING_SNAKE_CASE = hidden_size
_SCREAMING_SNAKE_CASE = num_hidden_layers
_SCREAMING_SNAKE_CASE = num_attention_heads
_SCREAMING_SNAKE_CASE = intermediate_size
_SCREAMING_SNAKE_CASE = hidden_act
_SCREAMING_SNAKE_CASE = hidden_dropout_prob
_SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
_SCREAMING_SNAKE_CASE = type_sequence_label_size
_SCREAMING_SNAKE_CASE = initializer_range
_SCREAMING_SNAKE_CASE = scope
_SCREAMING_SNAKE_CASE = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
_SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2
_SCREAMING_SNAKE_CASE = num_patches + 2
def snake_case_( self ) -> Tuple:
_SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_SCREAMING_SNAKE_CASE = None
if self.use_labels:
_SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def snake_case_( self ) -> str:
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def snake_case_( self , A , A , A ) -> Dict:
_SCREAMING_SNAKE_CASE = DeiTModel(config=A )
model.to(A )
model.eval()
_SCREAMING_SNAKE_CASE = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case_( self , A , A , A ) -> Tuple:
_SCREAMING_SNAKE_CASE = DeiTForMaskedImageModeling(config=A )
model.to(A )
model.eval()
_SCREAMING_SNAKE_CASE = model(A )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_SCREAMING_SNAKE_CASE = 1
_SCREAMING_SNAKE_CASE = DeiTForMaskedImageModeling(A )
model.to(A )
model.eval()
_SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_SCREAMING_SNAKE_CASE = model(A )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def snake_case_( self , A , A , A ) -> Any:
_SCREAMING_SNAKE_CASE = self.type_sequence_label_size
_SCREAMING_SNAKE_CASE = DeiTForImageClassification(A )
model.to(A )
model.eval()
_SCREAMING_SNAKE_CASE = model(A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_SCREAMING_SNAKE_CASE = 1
_SCREAMING_SNAKE_CASE = DeiTForImageClassification(A )
model.to(A )
model.eval()
_SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_SCREAMING_SNAKE_CASE = model(A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def snake_case_( self ) -> Optional[int]:
_SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
(
(
_SCREAMING_SNAKE_CASE
) , (
_SCREAMING_SNAKE_CASE
) , (
_SCREAMING_SNAKE_CASE
) ,
) = config_and_inputs
_SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class a_ ( snake_case_ , snake_case_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (
(
DeiTModel,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
UpperCamelCase = (
{
'''feature-extraction''': DeiTModel,
'''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def snake_case_( self ) -> int:
_SCREAMING_SNAKE_CASE = DeiTModelTester(self )
_SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 )
def snake_case_( self ) -> str:
self.config_tester.run_common_tests()
@unittest.skip(reason="""DeiT does not use inputs_embeds""" )
def snake_case_( self ) -> List[Any]:
pass
def snake_case_( self ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE = model_class(A )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_SCREAMING_SNAKE_CASE = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A , nn.Linear ) )
def snake_case_( self ) -> List[str]:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE = model_class(A )
_SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
_SCREAMING_SNAKE_CASE = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , A )
def snake_case_( self ) -> int:
_SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def snake_case_( self ) -> int:
_SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A )
def snake_case_( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def snake_case_( self , A , A , A=False ) -> Dict:
_SCREAMING_SNAKE_CASE = super()._prepare_for_class(A , A , return_labels=A )
if return_labels:
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def snake_case_( self ) -> Any:
if not self.model_tester.is_training:
return
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
_SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
# DeiTForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(A )
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
_SCREAMING_SNAKE_CASE = model_class(A )
model.to(A )
model.train()
_SCREAMING_SNAKE_CASE = self._prepare_for_class(A , A , return_labels=A )
_SCREAMING_SNAKE_CASE = model(**A ).loss
loss.backward()
def snake_case_( self ) -> str:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
_SCREAMING_SNAKE_CASE = False
_SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing:
continue
# DeiTForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
continue
_SCREAMING_SNAKE_CASE = model_class(A )
model.gradient_checkpointing_enable()
model.to(A )
model.train()
_SCREAMING_SNAKE_CASE = self._prepare_for_class(A , A , return_labels=A )
_SCREAMING_SNAKE_CASE = model(**A ).loss
loss.backward()
def snake_case_( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
_SCREAMING_SNAKE_CASE = [
{"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float},
{"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long},
{"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(A ),
*get_values(A ),
]
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f'Testing {model_class} with {problem_type["title"]}' ):
_SCREAMING_SNAKE_CASE = problem_type["""title"""]
_SCREAMING_SNAKE_CASE = problem_type["""num_labels"""]
_SCREAMING_SNAKE_CASE = model_class(A )
model.to(A )
model.train()
_SCREAMING_SNAKE_CASE = self._prepare_for_class(A , A , return_labels=A )
if problem_type["num_labels"] > 1:
_SCREAMING_SNAKE_CASE = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] )
_SCREAMING_SNAKE_CASE = inputs["""labels"""].to(problem_type["""dtype"""] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=A ) as warning_list:
_SCREAMING_SNAKE_CASE = model(**A ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
f'Something is going wrong in the regression problem: intercepted {w.message}' )
loss.backward()
@slow
def snake_case_( self ) -> Optional[int]:
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_SCREAMING_SNAKE_CASE = DeiTModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowerCamelCase ( ) ->int:
_SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def snake_case_( self ) -> List[str]:
return (
DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
if is_vision_available()
else None
)
@slow
def snake_case_( self ) -> Any:
_SCREAMING_SNAKE_CASE = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to(
A )
_SCREAMING_SNAKE_CASE = self.default_image_processor
_SCREAMING_SNAKE_CASE = prepare_img()
_SCREAMING_SNAKE_CASE = image_processor(images=A , return_tensors="""pt""" ).to(A )
# forward pass
with torch.no_grad():
_SCREAMING_SNAKE_CASE = model(**A )
# verify the logits
_SCREAMING_SNAKE_CASE = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , A )
_SCREAMING_SNAKE_CASE = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def snake_case_( self ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE = DeiTModel.from_pretrained(
"""facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" )
_SCREAMING_SNAKE_CASE = self.default_image_processor
_SCREAMING_SNAKE_CASE = prepare_img()
_SCREAMING_SNAKE_CASE = image_processor(images=A , return_tensors="""pt""" )
_SCREAMING_SNAKE_CASE = inputs.pixel_values.to(A )
# forward pass to make sure inference works in fp16
with torch.no_grad():
_SCREAMING_SNAKE_CASE = model(A )
| 58
|
'''simple docstring'''
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase)
class snake_case__ ( UpperCamelCase):
a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True})
a_ = Features({"text": Value("string")})
a_ = Features({})
a_ = "text"
@property
def A ( self : List[str] ) -> Dict[str, str]:
return {self.text_column: "text"}
| 304
| 0
|
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
__lowerCamelCase = {
"""E""": 12.70,
"""T""": 9.06,
"""A""": 8.17,
"""O""": 7.51,
"""I""": 6.97,
"""N""": 6.75,
"""S""": 6.33,
"""H""": 6.09,
"""R""": 5.99,
"""D""": 4.25,
"""L""": 4.03,
"""C""": 2.78,
"""U""": 2.76,
"""M""": 2.41,
"""W""": 2.36,
"""F""": 2.23,
"""G""": 2.02,
"""Y""": 1.97,
"""P""": 1.93,
"""B""": 1.29,
"""V""": 0.98,
"""K""": 0.77,
"""J""": 0.15,
"""X""": 0.15,
"""Q""": 0.10,
"""Z""": 0.07,
}
__lowerCamelCase = """ETAOINSHRDLCUMWFGYPBVKJXQZ"""
__lowerCamelCase = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def UpperCamelCase ( __lowerCamelCase : str ):
snake_case : Any = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def UpperCamelCase ( __lowerCamelCase : tuple ):
return x[0]
def UpperCamelCase ( __lowerCamelCase : str ):
snake_case : List[Any] = get_letter_count(__lowerCamelCase )
snake_case : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase )
snake_case : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__lowerCamelCase )
snake_case : Optional[Any] = "".join(freq_to_letter[freq] )
snake_case : Any = list(freq_to_letter_str.items() )
freq_pairs.sort(key=__lowerCamelCase , reverse=__lowerCamelCase )
snake_case : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(__lowerCamelCase )
def UpperCamelCase ( __lowerCamelCase : str ):
snake_case : Dict = get_frequency_order(__lowerCamelCase )
snake_case : List[Any] = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 59
|
'''simple docstring'''
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict:
with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f:
UpperCAmelCase_ : Union[str, Any] = json.load(A )
UpperCAmelCase_ : Optional[int] = {}
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : str = []
for key, info in class_info.items():
UpperCAmelCase_ : Tuple = info['''name''']
class_names.append(info['''name'''] )
if info["isthing"]:
thing_ids.append(int(A ) )
UpperCAmelCase_ : Any = thing_ids
UpperCAmelCase_ : Union[str, Any] = class_names
return metadata
class snake_case__ ( unittest.TestCase):
def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any:
UpperCAmelCase_ : List[str] = parent
UpperCAmelCase_ : Optional[Any] = batch_size
UpperCAmelCase_ : Optional[Any] = num_channels
UpperCAmelCase_ : Tuple = min_resolution
UpperCAmelCase_ : Optional[int] = max_resolution
UpperCAmelCase_ : Dict = do_resize
UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size
UpperCAmelCase_ : int = do_normalize
UpperCAmelCase_ : List[Any] = image_mean
UpperCAmelCase_ : Dict = image_std
UpperCAmelCase_ : str = class_info_file
UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A )
UpperCAmelCase_ : Tuple = num_text
UpperCAmelCase_ : Union[str, Any] = repo_path
# for the post_process_functions
UpperCAmelCase_ : Any = 2
UpperCAmelCase_ : Dict = 10
UpperCAmelCase_ : int = 10
UpperCAmelCase_ : Optional[Any] = 3
UpperCAmelCase_ : str = 4
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Union[str, Any] = do_reduce_labels
UpperCAmelCase_ : str = ignore_index
def A ( self : Dict ) -> List[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]:
if not batched:
UpperCAmelCase_ : Any = image_inputs[0]
if isinstance(_A , Image.Image ):
UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size
else:
UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2]
if w < h:
UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w )
UpperCAmelCase_ : int = self.size['''shortest_edge''']
elif w > h:
UpperCAmelCase_ : List[Any] = self.size['''shortest_edge''']
UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h )
else:
UpperCAmelCase_ : Dict = self.size['''shortest_edge''']
UpperCAmelCase_ : str = self.size['''shortest_edge''']
else:
UpperCAmelCase_ : Dict = []
for image in image_inputs:
UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0]
UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1]
return expected_height, expected_width
def A ( self : Tuple ) -> str:
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
a_ = image_processing_class
def A ( self : Optional[int] ) -> Any:
UpperCAmelCase_ : int = OneFormerImageProcessorTester(self )
@property
def A ( self : Any ) -> int:
return self.image_processing_tester.prepare_image_processor_dict()
def A ( self : Optional[Any] ) -> List[Any]:
UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , '''image_mean''' ) )
self.assertTrue(hasattr(_A , '''image_std''' ) )
self.assertTrue(hasattr(_A , '''do_normalize''' ) )
self.assertTrue(hasattr(_A , '''do_resize''' ) )
self.assertTrue(hasattr(_A , '''size''' ) )
self.assertTrue(hasattr(_A , '''ignore_index''' ) )
self.assertTrue(hasattr(_A , '''class_info_file''' ) )
self.assertTrue(hasattr(_A , '''num_text''' ) )
self.assertTrue(hasattr(_A , '''repo_path''' ) )
self.assertTrue(hasattr(_A , '''metadata''' ) )
self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) )
def A ( self : Dict ) -> Dict:
pass
def A ( self : Tuple ) -> Dict:
# Initialize image_processor
UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A )
UpperCAmelCase_ : int = image_processor(
_A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : Tuple ) -> Tuple:
# Initialize image_processor
UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A )
UpperCAmelCase_ : Tuple = image_processor(
_A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : Dict ) -> Union[str, Any]:
# Initialize image_processor
UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A )
UpperCAmelCase_ : Optional[int] = image_processor(
_A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str:
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels
UpperCAmelCase_ : int = None
UpperCAmelCase_ : Union[str, Any] = None
UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A )
if with_segmentation_maps:
UpperCAmelCase_ : Any = num_labels
if is_instance_map:
UpperCAmelCase_ : Any = list(range(_A ) ) * 2
UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) )
UpperCAmelCase_ : Dict = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations]
UpperCAmelCase_ : Tuple = image_processor(
_A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , )
return inputs
def A ( self : int ) -> str:
pass
def A ( self : Tuple ) -> Union[str, Any]:
def common(_A : Optional[int]=False , _A : str=None ):
UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs(
with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A )
UpperCAmelCase_ : List[Any] = inputs['''mask_labels''']
UpperCAmelCase_ : Optional[Any] = inputs['''class_labels''']
UpperCAmelCase_ : int = inputs['''pixel_values''']
UpperCAmelCase_ : Tuple = inputs['''text_inputs''']
# check the batch_size
for mask_label, class_label, text_input in zip(_A , _A , _A ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(_A ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=_A )
common(is_instance_map=_A , segmentation_type='''pil''' )
common(is_instance_map=_A , segmentation_type='''pil''' )
def A ( self : List[Any] ) -> List[Any]:
UpperCAmelCase_ : int = np.zeros((20, 50) )
UpperCAmelCase_ : List[str] = 1
UpperCAmelCase_ : Dict = 1
UpperCAmelCase_ : List[Any] = 1
UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A )
self.assertEqual(len(_A ) , 4 )
self.assertEqual(rle[0] , 21 )
self.assertEqual(rle[1] , 45 )
def A ( self : Any ) -> List[Any]:
UpperCAmelCase_ : int = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , )
UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A )
self.assertEqual(len(_A ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def A ( self : Optional[Any] ) -> Tuple:
UpperCAmelCase_ : Any = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , )
UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 )
self.assertTrue(len(_A ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('''segmentation''' in el )
self.assertTrue('''segments_info''' in el )
self.assertEqual(type(el['''segments_info'''] ) , _A )
self.assertEqual(
el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def A ( self : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[Any] = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , )
UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 )
self.assertTrue(len(_A ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('''segmentation''' in el )
self.assertTrue('''segments_info''' in el )
self.assertEqual(type(el['''segments_info'''] ) , _A )
self.assertEqual(
el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
| 304
| 0
|
"""simple docstring"""
import math
def _snake_case ( ):
lowerCAmelCase : Union[str, Any] = input('''Enter message: ''' )
lowerCAmelCase : Optional[int] = int(input(f'''Enter key [2-{len(_snake_case ) - 1}]: ''' ) )
lowerCAmelCase : str = input('''Encryption/Decryption [e/d]: ''' )
if mode.lower().startswith('''e''' ):
lowerCAmelCase : Any = encrypt_message(_snake_case , _snake_case )
elif mode.lower().startswith('''d''' ):
lowerCAmelCase : Union[str, Any] = decrypt_message(_snake_case , _snake_case )
# Append pipe symbol (vertical bar) to identify spaces at the end.
print(f'''Output:\n{text + "|"}''' )
def _snake_case ( _snake_case : int , _snake_case : str ):
lowerCAmelCase : Optional[Any] = [''''''] * key
for col in range(_snake_case ):
lowerCAmelCase : Optional[Any] = col
while pointer < len(_snake_case ):
cipher_text[col] += message[pointer]
pointer += key
return "".join(_snake_case )
def _snake_case ( _snake_case : int , _snake_case : str ):
lowerCAmelCase : Union[str, Any] = math.ceil(len(_snake_case ) / key )
lowerCAmelCase : str = key
lowerCAmelCase : Any = (num_cols * num_rows) - len(_snake_case )
lowerCAmelCase : Dict = [''''''] * num_cols
lowerCAmelCase : int = 0
lowerCAmelCase : int = 0
for symbol in message:
plain_text[col] += symbol
col += 1
if (
(col == num_cols)
or (col == num_cols - 1)
and (row >= num_rows - num_shaded_boxes)
):
lowerCAmelCase : int = 0
row += 1
return "".join(_snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 60
|
'''simple docstring'''
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
_UpperCamelCase : Optional[int] = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
_UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
_UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
_UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
_UpperCamelCase : List[str] = [
('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'),
('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'),
('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'),
('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'),
('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'),
('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'),
('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'),
('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'),
('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'),
(
'zero-shot-object-detection',
'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES',
'AutoModelForZeroShotObjectDetection',
),
('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'),
('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'),
('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'),
('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'),
(
'table-question-answering',
'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForTableQuestionAnswering',
),
('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'),
('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'),
(
'next-sentence-prediction',
'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES',
'AutoModelForNextSentencePrediction',
),
(
'audio-frame-classification',
'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForAudioFrameClassification',
),
('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'),
(
'document-question-answering',
'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForDocumentQuestionAnswering',
),
(
'visual-question-answering',
'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForVisualQuestionAnswering',
),
('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'),
(
'zero-shot-image-classification',
'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForZeroShotImageClassification',
),
('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'),
('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'),
('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'),
]
def __UpperCAmelCase ( A : Optional[int] ) -> int:
UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A )
return [m.group(0 ) for m in matches]
def __UpperCAmelCase ( ) -> str:
UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
UpperCAmelCase_ : Optional[Any] = {
config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
UpperCAmelCase_ : Dict = collections.defaultdict(A )
UpperCAmelCase_ : str = collections.defaultdict(A )
UpperCAmelCase_ : int = collections.defaultdict(A )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(A ):
UpperCAmelCase_ : int = None
if _re_tf_models.match(A ) is not None:
UpperCAmelCase_ : Optional[Any] = tf_models
UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0]
elif _re_flax_models.match(A ) is not None:
UpperCAmelCase_ : int = flax_models
UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0]
elif _re_pt_models.match(A ) is not None:
UpperCAmelCase_ : Union[str, Any] = pt_models
UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0]
if lookup_dict is not None:
while len(A ) > 0:
if attr_name in model_prefix_to_model_type:
UpperCAmelCase_ : Optional[int] = True
break
# Try again after removing the last word in the name
UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] )
UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
UpperCAmelCase_ : List[Any] = list(A )
all_models.sort()
UpperCAmelCase_ : Dict = {'''model_type''': all_models}
UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models]
UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models]
UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
UpperCAmelCase_ : int = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
UpperCAmelCase_ : Any = '''AutoProcessor'''
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer'''
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
UpperCAmelCase_ : int = '''AutoFeatureExtractor'''
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
UpperCAmelCase_ : Dict = '''AutoTokenizer'''
UpperCAmelCase_ : str = [processors[t] for t in all_models]
return pd.DataFrame(A )
def __UpperCAmelCase ( A : Optional[int] ) -> str:
UpperCAmelCase_ : int = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"]
UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"]
# Loop through all three frameworks
for module, cls, mapping in zip(A , A , A ):
# The type of pipeline may not exist in this framework
if not hasattr(A , A ):
continue
# First extract all model_names
UpperCAmelCase_ : List[str] = []
for name in getattr(A , A ).values():
if isinstance(A , A ):
model_names.append(A )
else:
model_names.extend(list(A ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def __UpperCAmelCase ( A : int , A : Any ) -> Tuple:
UpperCAmelCase_ : Tuple = get_frameworks_table()
UpperCAmelCase_ : Any = Dataset.from_pandas(A )
UpperCAmelCase_ : str = hf_hub_download(
'''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A )
UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A )
UpperCAmelCase_ : Optional[int] = {
tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class'''])
for i in range(len(A ) )
}
UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() )
UpperCAmelCase_ : Optional[Any] = pd.DataFrame(
{
'''model_class''': model_classes,
'''pipeline_tag''': [table[m][0] for m in model_classes],
'''auto_class''': [table[m][1] for m in model_classes],
} )
UpperCAmelCase_ : Dict = Dataset.from_pandas(A )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) )
tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) )
if commit_sha is not None:
UpperCAmelCase_ : List[str] = (
F"Update with commit {commit_sha}\n\nSee: "
F"https://github.com/huggingface/transformers/commit/{commit_sha}"
)
else:
UpperCAmelCase_ : int = '''Update'''
upload_folder(
repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , )
def __UpperCAmelCase ( ) -> int:
UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS
UpperCAmelCase_ : List[str] = []
for key in pipeline_tasks:
if key not in in_table:
UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt''']
if isinstance(A , (list, tuple) ):
UpperCAmelCase_ : Dict = model[0]
UpperCAmelCase_ : Any = model.__name__
if model not in in_table.values():
missing.append(A )
if len(A ) > 0:
UpperCAmelCase_ : List[Any] = ''', '''.join(A )
raise ValueError(
'''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside '''
F"`utils/update_metadata.py`: {msg}. Please add them!" )
if __name__ == "__main__":
_UpperCamelCase : int = argparse.ArgumentParser()
parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.')
parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.')
parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.')
_UpperCamelCase : Tuple = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 304
| 0
|
"""simple docstring"""
_a = {
0: '0',
1: '1',
2: '2',
3: '3',
4: '4',
5: '5',
6: '6',
7: '7',
8: '8',
9: '9',
10: 'a',
11: 'b',
12: 'c',
13: 'd',
14: 'e',
15: 'f',
}
def __a ( __lowerCamelCase ):
assert type(__lowerCamelCase ) in (int, float) and decimal == int(__lowerCamelCase )
UpperCAmelCase_ : Any = int(__lowerCamelCase )
UpperCAmelCase_ : List[Any] = ""
UpperCAmelCase_ : Union[str, Any] = False
if decimal < 0:
UpperCAmelCase_ : Optional[int] = True
decimal *= -1
while decimal > 0:
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = divmod(__lowerCamelCase, 16 )
UpperCAmelCase_ : Optional[int] = values[remainder] + hexadecimal
UpperCAmelCase_ : List[Any] = "0x" + hexadecimal
if negative:
UpperCAmelCase_ : Any = "-" + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 61
|
'''simple docstring'''
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_UpperCamelCase : Union[str, Any] = logging.getLogger(__name__)
_UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
_UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class snake_case__ :
a_ = field(
default=UpperCamelCase , metadata={
"help": (
"The model checkpoint for weights initialization. Leave None if you want to train a model from"
" scratch."
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"})
a_ = field(
default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
a_ = field(
default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class snake_case__ :
a_ = field(
default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."})
a_ = field(
default=UpperCamelCase , metadata={
"help": (
"The input training data files (multiple files in glob format). "
"Very often splitting large files to smaller files can prevent tokenizer going out of memory"
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."})
a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."})
a_ = field(
default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"})
a_ = field(
default=1 / 6 , metadata={
"help": (
"Ratio of length of a span of masked tokens to surrounding context length for permutation language"
" modeling."
)
} , )
a_ = field(
default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."})
a_ = field(
default=-1 , metadata={
"help": (
"Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"})
def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]:
def _dataset(A : Dict , A : str=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' )
return LineByLineWithRefDataset(
tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , )
return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size )
else:
return TextDataset(
tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def __UpperCAmelCase ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
'''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file '''
'''or remove the --do_eval argument.''' )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , A )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.tokenizer_name:
UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another'''
''' script, save it,and load it from here, using --tokenizer_name''' )
if model_args.model_name_or_path:
UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , )
else:
logger.info('''Training new model from scratch''' )
UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A )
model.resize_token_embeddings(len(A ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
'''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the'''
'''--mlm flag (masked language modeling).''' )
if data_args.block_size <= 0:
UpperCAmelCase_ : List[str] = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len )
# Get datasets
UpperCAmelCase_ : str = (
get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
UpperCAmelCase_ : Any = (
get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling(
tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask(
tokenizer=A , mlm_probability=data_args.mlm_probability )
else:
UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling(
tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
UpperCAmelCase_ : Any = Trainer(
model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , )
# Training
if training_args.do_train:
UpperCAmelCase_ : List[str] = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=A )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase_ : Tuple = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase_ : Dict = trainer.evaluate()
UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] )
UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity}
UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' )
if trainer.is_world_master():
with open(A , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key in sorted(result.keys() ):
logger.info(''' %s = %s''' , A , str(result[key] ) )
writer.write('''%s = %s\n''' % (key, str(result[key] )) )
results.update(A )
return results
def __UpperCAmelCase ( A : Tuple ) -> Tuple:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 304
| 0
|
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : Dict = VQModel
UpperCAmelCase__ : str = "sample"
@property
def _a ( self , A_=(32, 32) ) -> str:
__UpperCamelCase =4
__UpperCamelCase =3
__UpperCamelCase =floats_tensor((batch_size, num_channels) + sizes ).to(A_ )
return {"sample": image}
@property
def _a ( self ) -> str:
return (3, 32, 32)
@property
def _a ( self ) -> Optional[int]:
return (3, 32, 32)
def _a ( self ) -> Optional[Any]:
__UpperCamelCase ={
'block_out_channels': [32, 64],
'in_channels': 3,
'out_channels': 3,
'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'],
'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'],
'latent_channels': 3,
}
__UpperCamelCase =self.dummy_input
return init_dict, inputs_dict
def _a ( self ) -> str:
pass
def _a ( self ) -> List[str]:
pass
def _a ( self ) -> int:
__UpperCamelCase , __UpperCamelCase =VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=A_ )
self.assertIsNotNone(A_ )
self.assertEqual(len(loading_info['missing_keys'] ) , 0 )
model.to(A_ )
__UpperCamelCase =model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def _a ( self ) -> Tuple:
__UpperCamelCase =VQModel.from_pretrained('fusing/vqgan-dummy' )
model.to(A_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
__UpperCamelCase =torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
__UpperCamelCase =image.to(A_ )
with torch.no_grad():
__UpperCamelCase =model(A_ ).sample
__UpperCamelCase =output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
__UpperCamelCase =torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] )
# fmt: on
self.assertTrue(torch.allclose(A_ , A_ , atol=1E-3 ) )
| 62
|
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
_UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8
@require_flax
@is_staging_test
class snake_case__ ( unittest.TestCase):
@classmethod
def A ( cls : Optional[int] ) -> Tuple:
UpperCAmelCase_ : List[str] = TOKEN
HfFolder.save_token(_A )
@classmethod
def A ( cls : int ) -> Tuple:
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def A ( self : Dict ) -> Optional[int]:
UpperCAmelCase_ : List[Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase_ : List[str] = FlaxBertModel(_A )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" )
UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token )
UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" )
UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
def A ( self : str ) -> Tuple:
UpperCAmelCase_ : List[str] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
_A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token )
UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]:
UpperCAmelCase_ : Optional[int] = True
UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params )
UpperCAmelCase_ : str = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
UpperCAmelCase_ : int = False
return models_are_equal
@require_flax
class snake_case__ ( unittest.TestCase):
def A ( self : Any ) -> Any:
UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase_ : Any = FlaxBertModel(_A )
UpperCAmelCase_ : Tuple = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_A , _A ) )
with self.assertRaises(_A ):
UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertTrue(check_models_equal(_A , _A ) )
def A ( self : int ) -> Tuple:
UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase_ : Tuple = FlaxBertModel(_A )
UpperCAmelCase_ : str = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' )
with self.assertRaises(_A ):
UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertTrue(check_models_equal(_A , _A ) )
def A ( self : int ) -> Optional[int]:
UpperCAmelCase_ : int = '''bert'''
UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(_A ):
UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertIsNotNone(_A )
def A ( self : Any ) -> str:
UpperCAmelCase_ : Optional[Any] = '''bert'''
UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(_A ):
UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertIsNotNone(_A )
| 304
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase_ : Union[str, Any] = {
'configuration_owlvit': [
'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'OwlViTConfig',
'OwlViTOnnxConfig',
'OwlViTTextConfig',
'OwlViTVisionConfig',
],
'processing_owlvit': ['OwlViTProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Any = ['OwlViTFeatureExtractor']
lowerCAmelCase_ : List[Any] = ['OwlViTImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Tuple = [
'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'OwlViTModel',
'OwlViTPreTrainedModel',
'OwlViTTextModel',
'OwlViTVisionModel',
'OwlViTForObjectDetection',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
lowerCAmelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 63
|
'''simple docstring'''
_UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}]
_UpperCamelCase : Dict = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 304
| 0
|
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class lowercase( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Tuple = inspect.getfile(accelerate.test_utils )
_snake_case : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] )
_snake_case : Optional[Any] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] )
_snake_case : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] )
@require_multi_gpu
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices." )
_snake_case : Optional[int] = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(a_, env=os.environ.copy() )
@require_multi_gpu
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices." )
_snake_case : Optional[int] = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path]
print(f"Command: {cmd}" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(a_, env=os.environ.copy() )
@require_multi_gpu
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case : int = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(a_, env=os.environ.copy() )
@require_multi_gpu
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" )
_snake_case : Tuple = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path]
with patch_environment(omp_num_threads=1, cuda_visible_devices="""0,1""" ):
execute_subprocess_async(a_, env=os.environ.copy() )
if __name__ == "__main__":
A_ = Accelerator()
A_ = (accelerator.state.process_index + 2, 10)
A_ = torch.randint(0, 10, shape).to(accelerator.device)
A_ = ''''''
A_ = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
A_ = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
A_ = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 64
|
'''simple docstring'''
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]:
if isinstance(A , A ):
UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A )
else:
UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A )
for i, tensor in enumerate(A ):
if padding_side == "right":
if isinstance(A , A ):
UpperCAmelCase_ : Tuple = tensor[:sequence_length]
else:
UpperCAmelCase_ : Dict = tensor[:sequence_length]
else:
if isinstance(A , A ):
UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length]
else:
UpperCAmelCase_ : int = tensor[:sequence_length]
return out_tensor.tolist()
def __UpperCAmelCase ( A : List[Any] ) -> str:
UpperCAmelCase_ : Dict = ord(A )
if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6):
return True
UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A )
if cat.startswith('''P''' ):
return True
return False
@dataclass
class snake_case__ ( UpperCamelCase):
a_ = 42
a_ = True
a_ = None
a_ = None
a_ = -100
a_ = "pt"
def A ( self : List[Any] , _A : Dict ) -> Tuple:
import torch
UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels'''
UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
UpperCAmelCase_ : Tuple = self.tokenizer.pad(
_A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , )
if labels is None:
return batch
UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1]
UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side
if padding_side == "right":
UpperCAmelCase_ : Optional[Any] = [
list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels
]
else:
UpperCAmelCase_ : Any = [
[self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels
]
UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features]
UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A )
UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features]
UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A )
UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 304
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase__ = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 65
|
'''simple docstring'''
import functools
def __UpperCAmelCase ( A : str , A : str ) -> int:
UpperCAmelCase_ : Optional[Any] = len(A )
UpperCAmelCase_ : List[str] = len(A )
@functools.cache
def min_distance(A : int , A : int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 304
| 0
|
"""simple docstring"""
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401
deprecate(
"stable diffusion controlnet",
"0.22.0",
"Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.",
standard_warn=False,
stacklevel=3,
)
| 66
|
'''simple docstring'''
def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int:
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1
UpperCAmelCase_ : Dict = []
for i in range(1 , n + 1 ):
UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator
UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator
if len(str(A ) ) > len(str(A ) ):
result.append(A )
UpperCAmelCase_ : Optional[Any] = numerator
UpperCAmelCase_ : Optional[int] = denominator
return len(A )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 304
| 0
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class a__ ( UpperCAmelCase__ , unittest.TestCase ):
lowerCamelCase : Optional[int] =XLMTokenizer
lowerCamelCase : List[Any] =False
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowerCamelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
__lowerCamelCase = dict(zip(a , range(len(a ) ) ) )
__lowerCamelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', '''''']
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' ) as fp:
fp.write(json.dumps(a ) )
with open(self.merges_file , '''w''' ) as fp:
fp.write('''\n'''.join(a ) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Any ):
"""simple docstring"""
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = '''lower newer'''
return input_text, output_text
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
__lowerCamelCase = XLMTokenizer(self.vocab_file , self.merges_file )
__lowerCamelCase = '''lower'''
__lowerCamelCase = ['''low''', '''er</w>''']
__lowerCamelCase = tokenizer.tokenize(a )
self.assertListEqual(a , a )
__lowerCamelCase = tokens + ['''<unk>''']
__lowerCamelCase = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a )
@slow
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
__lowerCamelCase = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' )
__lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=a )
__lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a , a )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1]
| 67
|
'''simple docstring'''
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class snake_case__ ( unittest.TestCase):
def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]:
UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20}
UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : Any = num_channels
UpperCAmelCase_ : Optional[Any] = image_size
UpperCAmelCase_ : Tuple = min_resolution
UpperCAmelCase_ : Tuple = max_resolution
UpperCAmelCase_ : Optional[int] = do_resize
UpperCAmelCase_ : Tuple = size
UpperCAmelCase_ : Optional[Any] = do_center_crop
UpperCAmelCase_ : Optional[int] = crop_size
UpperCAmelCase_ : Tuple = do_normalize
UpperCAmelCase_ : Optional[Any] = image_mean
UpperCAmelCase_ : int = image_std
UpperCAmelCase_ : List[Any] = do_reduce_labels
def A ( self : Union[str, Any] ) -> str:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def __UpperCAmelCase ( ) -> Optional[Any]:
UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] )
UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] )
return image, map
def __UpperCAmelCase ( ) -> Any:
UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] )
UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] )
UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] )
UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = BeitImageProcessor if is_vision_available() else None
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self )
@property
def A ( self : List[Any] ) -> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def A ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , '''do_resize''' ) )
self.assertTrue(hasattr(_A , '''size''' ) )
self.assertTrue(hasattr(_A , '''do_center_crop''' ) )
self.assertTrue(hasattr(_A , '''center_crop''' ) )
self.assertTrue(hasattr(_A , '''do_normalize''' ) )
self.assertTrue(hasattr(_A , '''image_mean''' ) )
self.assertTrue(hasattr(_A , '''image_std''' ) )
def A ( self : List[str] ) -> Optional[int]:
UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
self.assertEqual(image_processor.do_reduce_labels , _A )
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
self.assertEqual(image_processor.do_reduce_labels , _A )
def A ( self : Optional[Any] ) -> Any:
pass
def A ( self : List[str] ) -> Optional[int]:
# Initialize image_processing
UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Union[str, Any] ) -> Union[str, Any]:
# Initialize image_processing
UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Optional[int] ) -> str:
# Initialize image_processing
UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Any ) -> Optional[Any]:
# Initialize image_processing
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
UpperCAmelCase_ : Union[str, Any] = []
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched
UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test not batched input (PIL images)
UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs()
UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched input (PIL images)
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs()
UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
2,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
def A ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs()
UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 1_50 )
UpperCAmelCase_ : int = True
UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
| 304
| 0
|
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class a__ :
"""simple docstring"""
def __init__( self , lowercase , ) -> List[Any]:
'''simple docstring'''
A__ = parent
A__ = 13
A__ = 7
A__ = True
A__ = True
A__ = False
A__ = True
A__ = 99
A__ = 32
A__ = 2
A__ = 4
A__ = 37
A__ = "gelu"
A__ = 0.1
A__ = 0.1
A__ = 512
A__ = 16
A__ = 2
A__ = 0.02
A__ = 3
A__ = 4
A__ = None
def UpperCamelCase ( self ) -> str:
'''simple docstring'''
A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ = None
if self.use_input_mask:
A__ = random_attention_mask([self.batch_size, self.seq_length] )
A__ = None
A__ = None
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ = ids_tensor([self.batch_size] , self.num_choices )
A__ = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int:
'''simple docstring'''
A__ = TFDistilBertModel(config=lowercase )
A__ = {"input_ids": input_ids, "attention_mask": input_mask}
A__ = model(lowercase )
A__ = [input_ids, input_mask]
A__ = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
A__ = TFDistilBertForMaskedLM(config=lowercase )
A__ = {"input_ids": input_ids, "attention_mask": input_mask}
A__ = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> str:
'''simple docstring'''
A__ = TFDistilBertForQuestionAnswering(config=lowercase )
A__ = {
"input_ids": input_ids,
"attention_mask": input_mask,
}
A__ = model(lowercase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]:
'''simple docstring'''
A__ = self.num_labels
A__ = TFDistilBertForSequenceClassification(lowercase )
A__ = {"input_ids": input_ids, "attention_mask": input_mask}
A__ = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int:
'''simple docstring'''
A__ = self.num_choices
A__ = TFDistilBertForMultipleChoice(lowercase )
A__ = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
A__ = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
A__ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
}
A__ = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int:
'''simple docstring'''
A__ = self.num_labels
A__ = TFDistilBertForTokenClassification(lowercase )
A__ = {"input_ids": input_ids, "attention_mask": input_mask}
A__ = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase ( self ) -> List[Any]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
((A__) , (A__) , (A__) , (A__) , (A__) , (A__)) = config_and_inputs
A__ = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class a__ ( snake_case , snake_case , unittest.TestCase ):
"""simple docstring"""
__lowerCamelCase = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
__lowerCamelCase = (
{
'feature-extraction': TFDistilBertModel,
'fill-mask': TFDistilBertForMaskedLM,
'question-answering': TFDistilBertForQuestionAnswering,
'text-classification': TFDistilBertForSequenceClassification,
'token-classification': TFDistilBertForTokenClassification,
'zero-shot': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__lowerCamelCase = False
__lowerCamelCase = False
def UpperCamelCase ( self ) -> List[str]:
'''simple docstring'''
A__ = TFDistilBertModelTester(self )
A__ = ConfigTester(self , config_class=lowercase , dim=37 )
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCamelCase ( self ) -> Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*lowercase )
def UpperCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase )
def UpperCamelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase )
def UpperCamelCase ( self ) -> str:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase )
def UpperCamelCase ( self ) -> List[str]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase )
def UpperCamelCase ( self ) -> Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase )
@slow
def UpperCamelCase ( self ) -> str:
'''simple docstring'''
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
A__ = TFDistilBertModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
@require_tf
class a__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCamelCase ( self ) -> List[Any]:
'''simple docstring'''
A__ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" )
A__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
A__ = model(lowercase )[0]
A__ = [1, 6, 768]
self.assertEqual(output.shape , lowercase )
A__ = tf.constant(
[
[
[0.1926_1885, -0.1373_2955, 0.411_9799],
[0.2215_0156, -0.0742_2661, 0.3903_7204],
[0.2275_6018, -0.089_6414, 0.370_1467],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1e-4 )
| 68
|
'''simple docstring'''
import enum
import warnings
from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING
from ..utils import add_end_docstrings, is_tf_available
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
class snake_case__ ( enum.Enum):
a_ = 0
a_ = 1
a_ = 2
@add_end_docstrings(UpperCamelCase)
class snake_case__ ( UpperCamelCase):
a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n "
def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]:
super().__init__(*_A , **_A )
self.check_model_type(
TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING )
if "prefix" not in self._preprocess_params:
# This is very specific. The logic is quite complex and needs to be done
# as a "default".
# It also defines both some preprocess_kwargs and generate_kwargs
# which is why we cannot put them in their respective methods.
UpperCAmelCase_ : Dict = None
if self.model.config.prefix is not None:
UpperCAmelCase_ : Tuple = self.model.config.prefix
if prefix is None and self.model.__class__.__name__ in [
"XLNetLMHeadModel",
"TransfoXLLMHeadModel",
"TFXLNetLMHeadModel",
"TFTransfoXLLMHeadModel",
]:
# For XLNet and TransformerXL we add an article to the prompt to give more state to the model.
UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX
if prefix is not None:
# Recalculate some generate_kwargs linked to prefix.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params )
UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params}
UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params}
def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict:
UpperCAmelCase_ : Union[str, Any] = {}
if prefix is not None:
UpperCAmelCase_ : List[Any] = prefix
if prefix:
UpperCAmelCase_ : Tuple = self.tokenizer(
_A , padding=_A , add_special_tokens=_A , return_tensors=self.framework )
UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1]
if handle_long_generation is not None:
if handle_long_generation not in {"hole"}:
raise ValueError(
F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected"
''' [None, \'hole\']''' )
UpperCAmelCase_ : Union[str, Any] = handle_long_generation
preprocess_params.update(_A )
UpperCAmelCase_ : Optional[int] = generate_kwargs
UpperCAmelCase_ : Tuple = {}
if return_full_text is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' )
if return_tensors is not None:
raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' )
UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
if return_tensors is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' )
UpperCAmelCase_ : List[Any] = ReturnType.TENSORS
if return_type is not None:
UpperCAmelCase_ : List[Any] = return_type
if clean_up_tokenization_spaces is not None:
UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces
if stop_sequence is not None:
UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A )
if len(_A ) > 1:
warnings.warn(
'''Stopping on a multiple token sequence is not yet supported on transformers. The first token of'''
''' the stop sequence will be used as the stop sequence string in the interim.''' )
UpperCAmelCase_ : str = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any:
# Parse arguments
if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
kwargs.update({'''add_space_before_punct_symbol''': True} )
return super()._parse_and_tokenize(*_A , **_A )
def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict:
return super().__call__(_A , **_A )
def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]:
UpperCAmelCase_ : Tuple = self.tokenizer(
prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework )
UpperCAmelCase_ : str = prompt_text
if handle_long_generation == "hole":
UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1]
if "max_new_tokens" in generate_kwargs:
UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens''']
else:
UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len
if new_tokens < 0:
raise ValueError('''We cannot infer how many new tokens are expected''' )
if cur_len + new_tokens > self.tokenizer.model_max_length:
UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens
if keep_length <= 0:
raise ValueError(
'''We cannot use `hole` to handle this generation the number of desired tokens exceeds the'''
''' models max length''' )
UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:]
if "attention_mask" in inputs:
UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:]
return inputs
def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]:
UpperCAmelCase_ : Any = model_inputs['''input_ids''']
UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A )
# Allow empty prompts
if input_ids.shape[1] == 0:
UpperCAmelCase_ : Any = None
UpperCAmelCase_ : List[Any] = None
UpperCAmelCase_ : Union[str, Any] = 1
else:
UpperCAmelCase_ : Optional[int] = input_ids.shape[0]
UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' )
# If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
# generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 )
if prefix_length > 0:
UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].max_new_tokens is not None
)
if not has_max_new_tokens:
UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A )
UpperCAmelCase_ : Any = generated_sequence.shape[0]
if self.framework == "pt":
UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] )
elif self.framework == "tf":
UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) )
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0]
UpperCAmelCase_ : int = model_outputs['''input_ids''']
UpperCAmelCase_ : str = model_outputs['''prompt_text''']
UpperCAmelCase_ : Any = generated_sequence.numpy().tolist()
UpperCAmelCase_ : int = []
for sequence in generated_sequence:
if return_type == ReturnType.TENSORS:
UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence}
elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}:
# Decode text
UpperCAmelCase_ : Any = self.tokenizer.decode(
_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , )
# Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used
if input_ids is None:
UpperCAmelCase_ : List[str] = 0
else:
UpperCAmelCase_ : str = len(
self.tokenizer.decode(
input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) )
if return_type == ReturnType.FULL_TEXT:
UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:]
else:
UpperCAmelCase_ : Dict = text[prompt_length:]
UpperCAmelCase_ : List[str] = {'''generated_text''': all_text}
records.append(_A )
return records
| 304
| 0
|
"""simple docstring"""
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = BertJapaneseTokenizer
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = True
def a_ ( self) -> str:
super().setUp()
snake_case_ = [
'[UNK]',
'[CLS]',
'[SEP]',
'こんにちは',
'こん',
'にちは',
'ばんは',
'##こん',
'##にちは',
'##ばんは',
'世界',
'##世界',
'、',
'##、',
'。',
'##。',
]
snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'])
with open(self.vocab_file, 'w', encoding='utf-8') as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens]))
def a_ ( self, lowerCAmelCase__) -> Union[str, Any]:
snake_case_ = 'こんにちは、世界。 \nこんばんは、世界。'
snake_case_ = 'こんにちは 、 世界 。 こんばんは 、 世界 。'
return input_text, output_text
def a_ ( self, lowerCAmelCase__) -> Optional[Any]:
snake_case_ , snake_case_ = self.get_input_output_texts(lowerCAmelCase__)
snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)
snake_case_ = tokenizer.decode(lowerCAmelCase__, clean_up_tokenization_spaces=lowerCAmelCase__)
return text, ids
def a_ ( self) -> Dict:
pass # TODO add if relevant
def a_ ( self) -> Optional[Any]:
pass # TODO add if relevant
def a_ ( self) -> Dict:
pass # TODO add if relevant
def a_ ( self) -> Union[str, Any]:
snake_case_ = self.tokenizer_class(self.vocab_file)
snake_case_ = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。')
self.assertListEqual(lowerCAmelCase__, ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'])
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__), [3, 12, 10, 14, 4, 9, 12, 10, 14])
def a_ ( self) -> str:
snake_case_ = self.tokenizer_class(self.vocab_file, word_tokenizer_type='mecab')
self.assertIsNotNone(lowerCAmelCase__)
snake_case_ = 'こんにちは、世界。\nこんばんは、世界。'
snake_case_ = tokenizer.tokenize(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'])
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__), [3, 12, 10, 14, 4, 9, 12, 10, 14])
snake_case_ = os.path.join(self.tmpdirname, 'tokenizer.bin')
with open(lowerCAmelCase__, 'wb') as handle:
pickle.dump(lowerCAmelCase__, lowerCAmelCase__)
with open(lowerCAmelCase__, 'rb') as handle:
snake_case_ = pickle.load(lowerCAmelCase__)
snake_case_ = tokenizer_new.tokenize(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
def a_ ( self) -> Dict:
snake_case_ = MecabTokenizer(mecab_dic='ipadic')
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'], )
def a_ ( self) -> Any:
try:
snake_case_ = MecabTokenizer(mecab_dic='unidic_lite')
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'], )
def a_ ( self) -> List[str]:
try:
snake_case_ = MecabTokenizer(mecab_dic='unidic')
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'], )
def a_ ( self) -> Any:
snake_case_ = MecabTokenizer(do_lower_case=lowerCAmelCase__, mecab_dic='ipadic')
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'], )
def a_ ( self) -> List[str]:
try:
snake_case_ = MecabTokenizer(
do_lower_case=lowerCAmelCase__, normalize_text=lowerCAmelCase__, mecab_option='-d /usr/local/lib/mecab/dic/jumandic')
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'], )
def a_ ( self) -> Optional[Any]:
snake_case_ = MecabTokenizer(normalize_text=lowerCAmelCase__, mecab_dic='ipadic')
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'], )
@require_sudachi
def a_ ( self) -> Optional[Any]:
snake_case_ = self.tokenizer_class(self.vocab_file, word_tokenizer_type='sudachi')
self.assertIsNotNone(lowerCAmelCase__)
snake_case_ = 'こんにちは、世界。\nこんばんは、世界。'
snake_case_ = tokenizer.tokenize(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'])
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__), [3, 12, 10, 14, 4, 9, 12, 10, 14])
snake_case_ = os.path.join(self.tmpdirname, 'tokenizer.bin')
with open(lowerCAmelCase__, 'wb') as handle:
pickle.dump(lowerCAmelCase__, lowerCAmelCase__)
with open(lowerCAmelCase__, 'rb') as handle:
snake_case_ = pickle.load(lowerCAmelCase__)
snake_case_ = tokenizer_new.tokenize(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
@require_sudachi
def a_ ( self) -> Optional[int]:
snake_case_ = SudachiTokenizer(sudachi_dict_type='core')
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '], )
@require_sudachi
def a_ ( self) -> List[Any]:
snake_case_ = SudachiTokenizer(sudachi_dict_type='core', sudachi_split_mode='A')
self.assertListEqual(tokenizer.tokenize('外国人参政権'), ['外国', '人', '参政', '権'])
@require_sudachi
def a_ ( self) -> int:
snake_case_ = SudachiTokenizer(sudachi_dict_type='core', sudachi_split_mode='B')
self.assertListEqual(tokenizer.tokenize('外国人参政権'), ['外国人', '参政権'])
@require_sudachi
def a_ ( self) -> Dict:
snake_case_ = SudachiTokenizer(sudachi_dict_type='core', sudachi_split_mode='C')
self.assertListEqual(tokenizer.tokenize('外国人参政権'), ['外国人参政権'])
@require_sudachi
def a_ ( self) -> Any:
snake_case_ = SudachiTokenizer(do_lower_case=lowerCAmelCase__, sudachi_dict_type='core')
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '], )
@require_sudachi
def a_ ( self) -> Dict:
snake_case_ = SudachiTokenizer(normalize_text=lowerCAmelCase__, sudachi_dict_type='core')
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '], )
@require_sudachi
def a_ ( self) -> Optional[int]:
snake_case_ = SudachiTokenizer(trim_whitespace=lowerCAmelCase__, sudachi_dict_type='core')
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'], )
@require_jumanpp
def a_ ( self) -> Optional[int]:
snake_case_ = self.tokenizer_class(self.vocab_file, word_tokenizer_type='jumanpp')
self.assertIsNotNone(lowerCAmelCase__)
snake_case_ = 'こんにちは、世界。\nこんばんは、世界。'
snake_case_ = tokenizer.tokenize(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'])
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__), [3, 12, 10, 14, 4, 9, 12, 10, 14])
snake_case_ = os.path.join(self.tmpdirname, 'tokenizer.bin')
with open(lowerCAmelCase__, 'wb') as handle:
pickle.dump(lowerCAmelCase__, lowerCAmelCase__)
with open(lowerCAmelCase__, 'rb') as handle:
snake_case_ = pickle.load(lowerCAmelCase__)
snake_case_ = tokenizer_new.tokenize(lowerCAmelCase__)
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__)
@require_jumanpp
def a_ ( self) -> List[Any]:
snake_case_ = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'], )
@require_jumanpp
def a_ ( self) -> List[Any]:
snake_case_ = JumanppTokenizer(do_lower_case=lowerCAmelCase__)
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'], )
@require_jumanpp
def a_ ( self) -> List[str]:
snake_case_ = JumanppTokenizer(normalize_text=lowerCAmelCase__)
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'], )
@require_jumanpp
def a_ ( self) -> Optional[int]:
snake_case_ = JumanppTokenizer(trim_whitespace=lowerCAmelCase__)
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 '), ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'], )
@require_jumanpp
def a_ ( self) -> Tuple:
snake_case_ = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。'), ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'], )
def a_ ( self) -> Optional[int]:
snake_case_ = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは']
snake_case_ = {}
for i, token in enumerate(lowerCAmelCase__):
snake_case_ = i
snake_case_ = WordpieceTokenizer(vocab=lowerCAmelCase__, unk_token='[UNK]')
self.assertListEqual(tokenizer.tokenize(''), [])
self.assertListEqual(tokenizer.tokenize('こんにちは'), ['こんにちは'])
self.assertListEqual(tokenizer.tokenize('こんばんは'), ['こん', '##ばんは'])
self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは'), ['こん', '##ばんは', '[UNK]', 'こんにちは'])
def a_ ( self) -> List[str]:
snake_case_ = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp')
snake_case_ = tokenizer.subword_tokenizer
snake_case_ = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。')
self.assertListEqual(lowerCAmelCase__, ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'])
snake_case_ = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは')
self.assertListEqual(lowerCAmelCase__, ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'])
def a_ ( self) -> Optional[Any]:
snake_case_ = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese')
snake_case_ = tokenizer.encode('ありがとう。', add_special_tokens=lowerCAmelCase__)
snake_case_ = tokenizer.encode('どういたしまして。', add_special_tokens=lowerCAmelCase__)
snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__)
snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__)
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = BertJapaneseTokenizer
SCREAMING_SNAKE_CASE_ = False
def a_ ( self) -> Union[str, Any]:
super().setUp()
snake_case_ = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。']
snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'])
with open(self.vocab_file, 'w', encoding='utf-8') as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens]))
def a_ ( self, **lowerCAmelCase__) -> Dict:
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname, subword_tokenizer_type='character', **lowerCAmelCase__)
def a_ ( self, lowerCAmelCase__) -> List[Any]:
snake_case_ = 'こんにちは、世界。 \nこんばんは、世界。'
snake_case_ = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。'
return input_text, output_text
def a_ ( self) -> Union[str, Any]:
pass # TODO add if relevant
def a_ ( self) -> List[str]:
pass # TODO add if relevant
def a_ ( self) -> Dict:
pass # TODO add if relevant
def a_ ( self) -> Dict:
snake_case_ = self.tokenizer_class(self.vocab_file, subword_tokenizer_type='character')
snake_case_ = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。')
self.assertListEqual(
lowerCAmelCase__, ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__), [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12])
def a_ ( self) -> Any:
snake_case_ = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。']
snake_case_ = {}
for i, token in enumerate(lowerCAmelCase__):
snake_case_ = i
snake_case_ = CharacterTokenizer(vocab=lowerCAmelCase__, unk_token='[UNK]')
self.assertListEqual(tokenizer.tokenize(''), [])
self.assertListEqual(tokenizer.tokenize('こんにちは'), ['こ', 'ん', 'に', 'ち', 'は'])
self.assertListEqual(tokenizer.tokenize('こんにちほ'), ['こ', 'ん', 'に', 'ち', '[UNK]'])
def a_ ( self) -> str:
snake_case_ = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char')
snake_case_ = tokenizer.encode('ありがとう。', add_special_tokens=lowerCAmelCase__)
snake_case_ = tokenizer.encode('どういたしまして。', add_special_tokens=lowerCAmelCase__)
snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__)
snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__)
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class UpperCamelCase ( unittest.TestCase ):
def a_ ( self) -> str:
snake_case_ = 'cl-tohoku/bert-base-japanese'
snake_case_ = AutoTokenizer.from_pretrained(lowerCAmelCase__)
self.assertIsInstance(lowerCAmelCase__, lowerCAmelCase__)
class UpperCamelCase ( unittest.TestCase ):
def a_ ( self) -> List[Any]:
snake_case_ = 'cl-tohoku/bert-base-japanese'
with self.assertLogs('transformers', level='WARNING') as cm:
BertTokenizer.from_pretrained(lowerCAmelCase__)
self.assertTrue(
cm.records[0].message.startswith(
'The tokenizer class you load from this checkpoint is not the same type as the class this function'
' is called from.'))
snake_case_ = 'bert-base-cased'
with self.assertLogs('transformers', level='WARNING') as cm:
BertJapaneseTokenizer.from_pretrained(lowerCAmelCase__)
self.assertTrue(
cm.records[0].message.startswith(
'The tokenizer class you load from this checkpoint is not the same type as the class this function'
' is called from.'))
| 69
|
'''simple docstring'''
from __future__ import annotations
import math
def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int:
if depth < 0:
raise ValueError('''Depth cannot be less than 0''' )
if not scores:
raise ValueError('''Scores cannot be empty''' )
if depth == height:
return scores[node_index]
return (
max(
minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , )
if is_max
else min(
minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , )
)
def __UpperCAmelCase ( ) -> None:
UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 )
print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 304
| 0
|
'''simple docstring'''
import os
import sys
import unittest
A__ : Any =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
A__ : str =os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''')
A__ : int =os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''')
class UpperCAmelCase ( unittest.TestCase ):
def lowercase__ ( self : Tuple ) -> Tuple:
_lowerCAmelCase = get_test_to_tester_mapping(__snake_case )
_lowerCAmelCase = get_test_to_tester_mapping(__snake_case )
_lowerCAmelCase = {"""BertModelTest""": """BertModelTester"""}
_lowerCAmelCase = {
"""BlipModelTest""": """BlipModelTester""",
"""BlipTextImageModelTest""": """BlipTextImageModelsModelTester""",
"""BlipTextModelTest""": """BlipTextModelTester""",
"""BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""",
"""BlipVQAModelTest""": """BlipVQAModelTester""",
"""BlipVisionModelTest""": """BlipVisionModelTester""",
}
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
def lowercase__ ( self : Any ) -> List[Any]:
_lowerCAmelCase = get_model_to_test_mapping(__snake_case )
_lowerCAmelCase = get_model_to_test_mapping(__snake_case )
_lowerCAmelCase = {
"""BertForMaskedLM""": ["""BertModelTest"""],
"""BertForMultipleChoice""": ["""BertModelTest"""],
"""BertForNextSentencePrediction""": ["""BertModelTest"""],
"""BertForPreTraining""": ["""BertModelTest"""],
"""BertForQuestionAnswering""": ["""BertModelTest"""],
"""BertForSequenceClassification""": ["""BertModelTest"""],
"""BertForTokenClassification""": ["""BertModelTest"""],
"""BertLMHeadModel""": ["""BertModelTest"""],
"""BertModel""": ["""BertModelTest"""],
}
_lowerCAmelCase = {
"""BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""],
"""BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""],
"""BlipForQuestionAnswering""": ["""BlipVQAModelTest"""],
"""BlipModel""": ["""BlipModelTest"""],
"""BlipTextModel""": ["""BlipTextModelTest"""],
"""BlipVisionModel""": ["""BlipVisionModelTest"""],
}
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
def lowercase__ ( self : Optional[Any] ) -> Optional[Any]:
_lowerCAmelCase = get_model_to_tester_mapping(__snake_case )
_lowerCAmelCase = get_model_to_tester_mapping(__snake_case )
_lowerCAmelCase = {
"""BertForMaskedLM""": ["""BertModelTester"""],
"""BertForMultipleChoice""": ["""BertModelTester"""],
"""BertForNextSentencePrediction""": ["""BertModelTester"""],
"""BertForPreTraining""": ["""BertModelTester"""],
"""BertForQuestionAnswering""": ["""BertModelTester"""],
"""BertForSequenceClassification""": ["""BertModelTester"""],
"""BertForTokenClassification""": ["""BertModelTester"""],
"""BertLMHeadModel""": ["""BertModelTester"""],
"""BertModel""": ["""BertModelTester"""],
}
_lowerCAmelCase = {
"""BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""],
"""BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""],
"""BlipForQuestionAnswering""": ["""BlipVQAModelTester"""],
"""BlipModel""": ["""BlipModelTester"""],
"""BlipTextModel""": ["""BlipTextModelTester"""],
"""BlipVisionModel""": ["""BlipVisionModelTester"""],
}
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
| 70
|
'''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list:
UpperCAmelCase_ : Any = []
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
UpperCAmelCase_ : List[Any] = result + left + right
return input_list
def __UpperCAmelCase ( A : list ) -> list:
if len(A ) <= 1:
return input_list
UpperCAmelCase_ : List[str] = list(A )
# iteration for two-way merging
UpperCAmelCase_ : Tuple = 2
while p <= len(A ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(A ) , A ):
UpperCAmelCase_ : Union[str, Any] = i
UpperCAmelCase_ : int = i + p - 1
UpperCAmelCase_ : Any = (low + high + 1) // 2
UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A )
# final merge of last two parts
if p * 2 >= len(A ):
UpperCAmelCase_ : str = i
UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
_UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip()
if user_input == "":
_UpperCamelCase : List[str] = []
else:
_UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')]
print(iter_merge_sort(unsorted))
| 304
| 0
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ :Tuple = logging.get_logger(__name__)
A_ :Union[str, Any] = {
'''google/vivit-b-16x2-kinetics400''': (
'''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'''
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class __A ( a ):
"""simple docstring"""
UpperCamelCase__ : Optional[Any] ="""vivit"""
def __init__( self , lowerCamelCase__=224 , lowerCamelCase__=32 , lowerCamelCase__=[2, 16, 16] , lowerCamelCase__=3 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3072 , lowerCamelCase__="gelu_fast" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-06 , lowerCamelCase__=True , **lowerCamelCase__ , ):
"""simple docstring"""
__UpperCamelCase : Dict =hidden_size
__UpperCamelCase : str =num_hidden_layers
__UpperCamelCase : Dict =num_attention_heads
__UpperCamelCase : Tuple =intermediate_size
__UpperCamelCase : Dict =hidden_act
__UpperCamelCase : Any =hidden_dropout_prob
__UpperCamelCase : List[Any] =attention_probs_dropout_prob
__UpperCamelCase : List[str] =initializer_range
__UpperCamelCase : List[str] =layer_norm_eps
__UpperCamelCase : Tuple =image_size
__UpperCamelCase : Dict =num_frames
__UpperCamelCase : Any =tubelet_size
__UpperCamelCase : Dict =num_channels
__UpperCamelCase : Union[str, Any] =qkv_bias
super().__init__(**lowerCamelCase__ )
| 71
|
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class snake_case__ :
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42
a_ = 42
a_ = 42
a_ = 42
a_ = 42
def A ( self : Tuple ) -> Optional[int]:
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def A ( self : List[Any] ) -> Union[str, Any]:
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def A ( self : Any ) -> Optional[Any]:
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def A ( self : Optional[int] ) -> torch.Tensor:
UpperCAmelCase_ : Dict = torch.arange(self.height * self.width )
UpperCAmelCase_ : int = torch.stack(
[
pixel_indices % self.width,
torch.div(_A , self.width , rounding_mode='''trunc''' ),
] , axis=1 , )
return coords
@property
def A ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape
UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) )
UpperCAmelCase_ : Any = self.get_image_coords()
UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A )
UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor:
UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 )
UpperCAmelCase_ : Union[str, Any] = self.resolution()
UpperCAmelCase_ : int = self.fov()
UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1
UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 )
UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 )
UpperCAmelCase_ : List[Any] = (
self.z.view(_A , 1 , 3 )
+ self.x.view(_A , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:]
)
UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A )
UpperCAmelCase_ : Union[str, Any] = torch.stack(
[
torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(_A , *_A , 2 , 3 )
def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera":
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , )
def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera:
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : Optional[int] = []
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : str = []
for theta in np.linspace(0 , 2 * np.pi , num=2_0 ):
UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
UpperCAmelCase_ : Optional[int] = -z * 4
UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] )
UpperCAmelCase_ : List[Any] = np.cross(A , A )
origins.append(A )
xs.append(A )
ys.append(A )
zs.append(A )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
| 304
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ = {
'''configuration_autoformer''': [
'''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''AutoformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''AutoformerForPrediction''',
'''AutoformerModel''',
'''AutoformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 72
|
'''simple docstring'''
import random
class snake_case__ :
@staticmethod
def A ( _A : str ) -> tuple[list[int], list[int]]:
UpperCAmelCase_ : Dict = [ord(_A ) for i in text]
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : Any = []
for i in plain:
UpperCAmelCase_ : int = random.randint(1 , 3_00 )
UpperCAmelCase_ : str = (i + k) * k
cipher.append(_A )
key.append(_A )
return cipher, key
@staticmethod
def A ( _A : list[int] , _A : list[int] ) -> str:
UpperCAmelCase_ : Dict = []
for i in range(len(_A ) ):
UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(_A ) )
return "".join(_A )
if __name__ == "__main__":
_UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello')
print(c, k)
print(Onepad().decrypt(c, k))
| 304
| 0
|
import string
from math import logaa
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
__lowerCamelCase : Tuple = document.translate(
str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' )
__lowerCamelCase : int = document_without_punctuation.split(' ' ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> tuple[int, int]:
__lowerCamelCase : List[Any] = corpus.lower().translate(
str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with ''
__lowerCamelCase : Union[str, Any] = corpus_without_punctuation.split('\n' )
__lowerCamelCase : Optional[int] = term.lower()
return (len([doc for doc in docs if term in doc] ), len(lowerCamelCase__ ))
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> float:
if smoothing:
if n == 0:
raise ValueError('log10(0) is undefined.' )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError('df must be > 0' )
elif n == 0:
raise ValueError('log10(0) is undefined.' )
return round(logaa(n / df ) , 3 )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> float:
return round(tf * idf , 3 )
| 73
|
'''simple docstring'''
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = ReformerTokenizer
a_ = ReformerTokenizerFast
a_ = True
a_ = False
a_ = True
def A ( self : Optional[Any] ) -> List[Any]:
super().setUp()
UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A )
tokenizer.save_pretrained(self.tmpdirname )
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase_ : List[Any] = '''<s>'''
UpperCAmelCase_ : int = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def A ( self : Any ) -> str:
UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(_A ) , 10_00 )
def A ( self : Optional[int] ) -> int:
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def A ( self : Optional[Any] ) -> List[Any]:
if not self.test_rust_tokenizer:
return
UpperCAmelCase_ : int = self.get_tokenizer()
UpperCAmelCase_ : Tuple = self.get_rust_tokenizer()
UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A )
UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A )
UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
UpperCAmelCase_ : Tuple = self.get_rust_tokenizer()
UpperCAmelCase_ : Dict = tokenizer.encode(_A )
UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A )
self.assertListEqual(_A , _A )
def A ( self : Tuple , _A : Dict=15 ) -> str:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A )
# Simple input
UpperCAmelCase_ : Optional[int] = '''This is a simple input'''
UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2''']
UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''')
UpperCAmelCase_ : Dict = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' )
# Simple input
self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' )
# Simple input
self.assertRaises(
_A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , )
# Pair input
self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' )
# Pair input
self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' )
# Pair input
self.assertRaises(
_A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , )
def A ( self : Union[str, Any] ) -> int:
pass
def A ( self : int ) -> Any:
UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A )
UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , )
UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A )
self.assertListEqual(
_A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def A ( self : List[str] ) -> Optional[int]:
return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' )
@slow
def A ( self : str ) -> str:
UpperCAmelCase_ : Tuple = '''Hello World!'''
UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@slow
def A ( self : List[Any] ) -> str:
UpperCAmelCase_ : Tuple = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
UpperCAmelCase_ : int = [
1_08,
2_65,
24,
1_11,
4,
2_58,
1_56,
35,
28,
2_75,
3,
2_59,
2_97,
2_60,
84,
4,
35,
1_10,
44,
8,
2_59,
91,
2_68,
21,
11,
2_09,
2_74,
1_09,
2_66,
2_77,
1_17,
86,
93,
3_15,
2_58,
2_78,
2_58,
2_77,
2_58,
0,
2_58,
2_88,
2_58,
3_19,
2_58,
0,
2_58,
0,
2_58,
0,
2_58,
0,
2_58,
2_87,
2_58,
3_15,
2_58,
2_89,
2_58,
2_78,
99,
2_69,
2_66,
2_62,
8,
2_59,
2_41,
4,
2_17,
2_30,
2_68,
2_66,
55,
1_68,
1_06,
75,
1_93,
2_66,
2_23,
27,
49,
26,
2_82,
25,
2_64,
2_99,
19,
26,
0,
2_58,
2_77,
1_17,
86,
93,
1_76,
1_83,
2_70,
11,
2_62,
42,
61,
2_65,
]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@require_torch
@slow
def A ( self : List[str] ) -> Optional[int]:
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10]
UpperCAmelCase_ : List[Any] = ''' '''.join(_A )
UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' )
UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' )
UpperCAmelCase_ : List[Any] = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape
UpperCAmelCase_ : Optional[int] = ReformerModel(_A )
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**_A )
model(**_A )
@slow
def A ( self : int ) -> Optional[Any]:
# fmt: off
UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
UpperCAmelCase_ : Optional[Any] = [
'''This is a very simple sentence.''',
'''The quick brown fox jumps over the lazy dog.''',
]
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
| 304
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_lowercase = {
'''configuration_groupvit''': [
'''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''GroupViTConfig''',
'''GroupViTOnnxConfig''',
'''GroupViTTextConfig''',
'''GroupViTVisionConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
'''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GroupViTModel''',
'''GroupViTPreTrainedModel''',
'''GroupViTTextModel''',
'''GroupViTVisionModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
'''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFGroupViTModel''',
'''TFGroupViTPreTrainedModel''',
'''TFGroupViTTextModel''',
'''TFGroupViTVisionModel''',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
_lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 74
|
'''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( A : str ) -> list[int]:
return [ord(A ) - 9_6 for elem in plain]
def __UpperCAmelCase ( A : list[int] ) -> str:
return "".join(chr(elem + 9_6 ) for elem in encoded )
def __UpperCAmelCase ( ) -> None:
UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() )
print('''Encoded: ''' , A )
print('''Decoded:''' , decode(A ) )
if __name__ == "__main__":
main()
| 304
| 0
|
'''simple docstring'''
import random
def a_ ( __snake_case : int ) -> bool:
"""simple docstring"""
lowerCamelCase_ =num - 1
lowerCamelCase_ =0
while s % 2 == 0:
lowerCamelCase_ =s // 2
t += 1
for _ in range(5 ):
lowerCamelCase_ =random.randrange(2 , num - 1 )
lowerCamelCase_ =pow(__snake_case , __snake_case , __snake_case )
if v != 1:
lowerCamelCase_ =0
while v != (num - 1):
if i == t - 1:
return False
else:
lowerCamelCase_ =i + 1
lowerCamelCase_ =(v**2) % num
return True
def a_ ( __snake_case : int ) -> bool:
"""simple docstring"""
if num < 2:
return False
lowerCamelCase_ =[
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(__snake_case )
def a_ ( __snake_case : int = 1024 ) -> int:
"""simple docstring"""
while True:
lowerCamelCase_ =random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(__snake_case ):
return num
if __name__ == "__main__":
a_ : Dict = generate_large_prime()
print(("""Prime number:""", num))
print(("""is_prime_low_num:""", is_prime_low_num(num)))
| 75
|
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 304
| 0
|
from __future__ import annotations
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , a : int = 0 ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = key
def __UpperCamelCase ( self : Optional[int] , a : str , a : int ) -> list[str]:
"""simple docstring"""
assert isinstance(a , a ) and isinstance(a , a )
SCREAMING_SNAKE_CASE : Optional[int] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(a ) ^ key ) for ch in content]
def __UpperCamelCase ( self : List[Any] , a : str , a : int ) -> list[str]:
"""simple docstring"""
assert isinstance(a , a ) and isinstance(a , a )
SCREAMING_SNAKE_CASE : Optional[int] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(a ) ^ key ) for ch in content]
def __UpperCamelCase ( self : Optional[Any] , a : str , a : int = 0 ) -> str:
"""simple docstring"""
assert isinstance(a , a ) and isinstance(a , a )
SCREAMING_SNAKE_CASE : Dict = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
SCREAMING_SNAKE_CASE : Optional[Any] = ""
for ch in content:
ans += chr(ord(a ) ^ key )
return ans
def __UpperCamelCase ( self : int , a : str , a : int = 0 ) -> str:
"""simple docstring"""
assert isinstance(a , a ) and isinstance(a , a )
SCREAMING_SNAKE_CASE : str = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
SCREAMING_SNAKE_CASE : int = ""
for ch in content:
ans += chr(ord(a ) ^ key )
return ans
def __UpperCamelCase ( self : str , a : str , a : int = 0 ) -> bool:
"""simple docstring"""
assert isinstance(a , a ) and isinstance(a , a )
try:
with open(a ) as fin, open("encrypt.out" , "w+" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(a , a ) )
except OSError:
return False
return True
def __UpperCamelCase ( self : Optional[int] , a : str , a : int ) -> bool:
"""simple docstring"""
assert isinstance(a , a ) and isinstance(a , a )
try:
with open(a ) as fin, open("decrypt.out" , "w+" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(a , a ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 76
|
'''simple docstring'''
def __UpperCAmelCase ( A : int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
UpperCAmelCase_ : int = gray_code_sequence_string(A )
#
# convert them to integers
for i in range(len(A ) ):
UpperCAmelCase_ : List[str] = int(sequence[i] , 2 )
return sequence
def __UpperCAmelCase ( A : int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 )
UpperCAmelCase_ : int = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i]
sequence.append(A )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i]
sequence.append(A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 304
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
class UpperCAmelCase_ ( _a):
lowerCamelCase__ : int = "bert-generation"
def __init__( self , a=5_0_3_5_8 , a=1_0_2_4 , a=2_4 , a=1_6 , a=4_0_9_6 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=0.02 , a=1e-12 , a=0 , a=2 , a=1 , a="absolute" , a=True , **a , ) -> Optional[int]:
super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a )
lowercase__ : List[Any] = vocab_size
lowercase__ : List[str] = hidden_size
lowercase__ : Any = num_hidden_layers
lowercase__ : str = num_attention_heads
lowercase__ : List[str] = hidden_act
lowercase__ : str = intermediate_size
lowercase__ : List[Any] = hidden_dropout_prob
lowercase__ : str = attention_probs_dropout_prob
lowercase__ : Union[str, Any] = max_position_embeddings
lowercase__ : Optional[Any] = initializer_range
lowercase__ : str = layer_norm_eps
lowercase__ : Tuple = position_embedding_type
lowercase__ : Tuple = use_cache
| 77
|
'''simple docstring'''
import logging
from transformers.configuration_utils import PretrainedConfig
_UpperCamelCase : Any = logging.getLogger(__name__)
class snake_case__ ( UpperCamelCase):
a_ = "masked_bert"
def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]:
super().__init__(pad_token_id=_A , **_A )
UpperCAmelCase_ : Union[str, Any] = vocab_size
UpperCAmelCase_ : str = hidden_size
UpperCAmelCase_ : Union[str, Any] = num_hidden_layers
UpperCAmelCase_ : Optional[int] = num_attention_heads
UpperCAmelCase_ : Optional[Any] = hidden_act
UpperCAmelCase_ : str = intermediate_size
UpperCAmelCase_ : int = hidden_dropout_prob
UpperCAmelCase_ : Tuple = attention_probs_dropout_prob
UpperCAmelCase_ : Optional[Any] = max_position_embeddings
UpperCAmelCase_ : List[str] = type_vocab_size
UpperCAmelCase_ : str = initializer_range
UpperCAmelCase_ : Union[str, Any] = layer_norm_eps
UpperCAmelCase_ : Optional[int] = pruning_method
UpperCAmelCase_ : Optional[int] = mask_init
UpperCAmelCase_ : List[Any] = mask_scale
| 304
| 0
|
"""simple docstring"""
class A_ :
"""simple docstring"""
def __init__( self :List[Any] , lowercase_ :int ) -> None:
UpperCAmelCase = size
UpperCAmelCase = [0] * size
UpperCAmelCase = [0] * size
@staticmethod
def UpperCAmelCase__ ( lowercase_ :int ) -> int:
return index | (index + 1)
@staticmethod
def UpperCAmelCase__ ( lowercase_ :int ) -> int:
return (index & (index + 1)) - 1
def UpperCAmelCase__ ( self :Any , lowercase_ :int , lowercase_ :int ) -> None:
UpperCAmelCase = value
while index < self.size:
UpperCAmelCase = self.get_prev(lowercase_ ) + 1
if current_left_border == index:
UpperCAmelCase = value
else:
UpperCAmelCase = max(lowercase_ , lowercase_ , lowercase_ )
UpperCAmelCase = self.get_next(lowercase_ )
def UpperCAmelCase__ ( self :List[str] , lowercase_ :int , lowercase_ :int ) -> int:
right -= 1 # Because of right is exclusive
UpperCAmelCase = 0
while left <= right:
UpperCAmelCase = self.get_prev(lowercase_ )
if left <= current_left:
UpperCAmelCase = max(lowercase_ , self.tree[right] )
UpperCAmelCase = current_left
else:
UpperCAmelCase = max(lowercase_ , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 78
|
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
a_ = StableDiffusionDiffEditPipeline
a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"}
a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"}
a_ = frozenset(
[]) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
a_ = frozenset([])
def A ( self : Tuple ) -> Optional[Any]:
torch.manual_seed(0 )
UpperCAmelCase_ : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , )
UpperCAmelCase_ : Optional[Any] = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , )
UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , )
torch.manual_seed(0 )
UpperCAmelCase_ : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
UpperCAmelCase_ : List[str] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , )
UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A )
UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
UpperCAmelCase_ : Optional[int] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''inverse_scheduler''': inverse_scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def A ( self : str , _A : List[str] , _A : Any=0 ) -> str:
UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A )
UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A )
if str(_A ).startswith('''mps''' ):
UpperCAmelCase_ : Any = torch.manual_seed(_A )
else:
UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A )
UpperCAmelCase_ : str = {
'''prompt''': '''a dog and a newt''',
'''mask_image''': mask,
'''image_latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]:
UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' )
if str(_A ).startswith('''mps''' ):
UpperCAmelCase_ : Dict = torch.manual_seed(_A )
else:
UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A )
UpperCAmelCase_ : Optional[Any] = {
'''image''': image,
'''source_prompt''': '''a cat and a frog''',
'''target_prompt''': '''a dog and a newt''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''num_maps_per_mask''': 2,
'''mask_encode_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any:
UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' )
if str(_A ).startswith('''mps''' ):
UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A )
else:
UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A )
UpperCAmelCase_ : Optional[int] = {
'''image''': image,
'''prompt''': '''a cat and a frog''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''decode_latents''': True,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : List[str] ) -> Optional[Any]:
if not hasattr(self.pipeline_class , '''_optional_components''' ):
return
UpperCAmelCase_ : str = self.get_dummy_components()
UpperCAmelCase_ : Any = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(_A , _A , _A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A )
UpperCAmelCase_ : str = pipe(**_A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(_A )
UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A )
pipe_loaded.to(_A )
pipe_loaded.set_progress_bar_config(disable=_A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , )
UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A )
UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0]
UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max()
self.assertLess(_A , 1e-4 )
def A ( self : Tuple ) -> int:
UpperCAmelCase_ : Optional[Any] = '''cpu'''
UpperCAmelCase_ : Any = self.get_dummy_components()
UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A )
UpperCAmelCase_ : int = pipe.generate_mask(**_A )
UpperCAmelCase_ : Tuple = mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
UpperCAmelCase_ : List[Any] = np.array([0] * 9 )
UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_A , 1e-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def A ( self : str ) -> Optional[int]:
UpperCAmelCase_ : Union[str, Any] = '''cpu'''
UpperCAmelCase_ : str = self.get_dummy_components()
UpperCAmelCase_ : str = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A )
UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images
UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
UpperCAmelCase_ : int = np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_A , 1e-3 )
def A ( self : Tuple ) -> Optional[Any]:
super().test_inference_batch_single_identical(expected_max_diff=5e-3 )
def A ( self : str ) -> Tuple:
UpperCAmelCase_ : Any = '''cpu'''
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components()
UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''}
UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A )
UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A )
UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A )
UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images
UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
UpperCAmelCase_ : List[Any] = np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_A , 1e-3 )
@require_torch_gpu
@slow
class snake_case__ ( unittest.TestCase):
def A ( self : Optional[Any] ) -> Optional[int]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def A ( cls : Dict ) -> List[Any]:
UpperCAmelCase_ : Optional[int] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' )
UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) )
UpperCAmelCase_ : Any = raw_image
def A ( self : List[Any] ) -> List[str]:
UpperCAmelCase_ : int = torch.manual_seed(0 )
UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa )
UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config )
UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit'''
UpperCAmelCase_ : Tuple = '''a bowl of pears'''
UpperCAmelCase_ : Optional[int] = pipe.generate_mask(
image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , )
UpperCAmelCase_ : List[str] = pipe.invert(
prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents
UpperCAmelCase_ : Any = pipe(
prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0]
UpperCAmelCase_ : str = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5e-1
def A ( self : Tuple ) -> List[str]:
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa )
UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit'''
UpperCAmelCase_ : Dict = '''a bowl of pears'''
UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask(
image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , )
UpperCAmelCase_ : List[Any] = pipe.invert(
prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents
UpperCAmelCase_ : Dict = pipe(
prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0]
UpperCAmelCase_ : Tuple = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5e-1
| 304
| 0
|
'''simple docstring'''
import argparse
import shlex
import runhouse as rh
if __name__ == "__main__":
# Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access
# setup instructions, if using on-demand hardware
# If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster
# If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster
# Throw an error if user passes both BYO and on-demand cluster args
# Otherwise, use default values
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument('''--user''', type=str, default='''ubuntu''')
parser.add_argument('''--host''', type=str, default='''localhost''')
parser.add_argument('''--key_path''', type=str, default=None)
parser.add_argument('''--instance''', type=str, default='''V100:1''')
parser.add_argument('''--provider''', type=str, default='''cheapest''')
parser.add_argument('''--use_spot''', type=bool, default=False)
parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''')
lowerCamelCase_ , lowerCamelCase_ = parser.parse_known_args()
if args.host != "localhost":
if args.instance != "V100:1" or args.provider != "cheapest":
raise ValueError('''Cannot specify both BYO and on-demand cluster args''')
lowerCamelCase_ = rh.cluster(
name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path}
)
else:
lowerCamelCase_ = rh.cluster(
name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot
)
lowerCamelCase_ = args.example.rsplit('''/''', 1)[0]
# Set up remote environment
cluster.install_packages(['''pip:./''']) # Installs transformers from local source
# Note transformers is copied into the home directory on the remote machine, so we can install from there
cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""])
cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117'''])
# Run example. You can bypass the CLI wrapper and paste your own code here.
cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""])
# Alternatively, we can just import and run a training function (especially if there's no wrapper CLI):
# from my_script... import train
# reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard']
# launch_train_gpu = rh.function(fn=train,
# system=gpu,
# reqs=reqs,
# name='train_bert_glue')
#
# We can pass in arguments just like we would to a function:
# launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16
# stream_logs=True)
| 79
|
'''simple docstring'''
import inspect
import unittest
from math import floor
from transformers import CvtConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import CvtForImageClassification, CvtModel
from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ ( UpperCamelCase):
def A ( self : List[str] ) -> List[Any]:
UpperCAmelCase_ : int = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) )
self.parent.assertTrue(hasattr(_A , '''num_heads''' ) )
class snake_case__ :
def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]:
UpperCAmelCase_ : int = parent
UpperCAmelCase_ : List[Any] = batch_size
UpperCAmelCase_ : Any = image_size
UpperCAmelCase_ : Tuple = patch_sizes
UpperCAmelCase_ : int = patch_stride
UpperCAmelCase_ : Any = patch_padding
UpperCAmelCase_ : List[Any] = is_training
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Union[str, Any] = num_labels
UpperCAmelCase_ : List[str] = num_channels
UpperCAmelCase_ : int = embed_dim
UpperCAmelCase_ : Optional[int] = num_heads
UpperCAmelCase_ : Tuple = stride_kv
UpperCAmelCase_ : Optional[Any] = depth
UpperCAmelCase_ : Dict = cls_token
UpperCAmelCase_ : Dict = attention_drop_rate
UpperCAmelCase_ : Any = initializer_range
UpperCAmelCase_ : List[str] = layer_norm_eps
def A ( self : int ) -> List[str]:
UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ : List[str] = self.get_config()
return config, pixel_values, labels
def A ( self : List[str] ) -> int:
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]:
UpperCAmelCase_ : List[Any] = CvtModel(config=_A )
model.to(_A )
model.eval()
UpperCAmelCase_ : Tuple = model(_A )
UpperCAmelCase_ : List[str] = (self.image_size, self.image_size)
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]:
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : str = CvtForImageClassification(_A )
model.to(_A )
model.eval()
UpperCAmelCase_ : int = model(_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : Dict ) -> Any:
UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs
UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else ()
a_ = (
{"feature-extraction": CvtModel, "image-classification": CvtForImageClassification}
if is_torch_available()
else {}
)
a_ = False
a_ = False
a_ = False
a_ = False
a_ = False
def A ( self : int ) -> List[str]:
UpperCAmelCase_ : Optional[int] = CvtModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def A ( self : Any ) -> Dict:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A ( self : int ) -> List[str]:
return
@unittest.skip(reason='''Cvt does not output attentions''' )
def A ( self : Optional[int] ) -> Optional[int]:
pass
@unittest.skip(reason='''Cvt does not use inputs_embeds''' )
def A ( self : Any ) -> Optional[Any]:
pass
@unittest.skip(reason='''Cvt does not support input and output embeddings''' )
def A ( self : List[Any] ) -> Any:
pass
def A ( self : int ) -> str:
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Tuple = model_class(_A )
UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : Tuple = [*signature.parameters.keys()]
UpperCAmelCase_ : str = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _A )
def A ( self : Tuple ) -> int:
UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def A ( self : Dict ) -> List[str]:
def check_hidden_states_output(_A : Dict , _A : str , _A : int ):
UpperCAmelCase_ : str = model_class(_A )
model.to(_A )
model.eval()
with torch.no_grad():
UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) )
UpperCAmelCase_ : Optional[Any] = outputs.hidden_states
UpperCAmelCase_ : Any = len(self.model_tester.depth )
self.assertEqual(len(_A ) , _A )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Optional[Any] = True
check_hidden_states_output(_A , _A , _A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : Dict = True
check_hidden_states_output(_A , _A , _A )
def A ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_A )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def A ( self : List[Any] ) -> Optional[Any]:
pass
@slow
def A ( self : Optional[int] ) -> int:
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def __UpperCAmelCase ( ) -> str:
UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class snake_case__ ( unittest.TestCase):
@cached_property
def A ( self : Union[str, Any] ) -> Union[str, Any]:
return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def A ( self : str ) -> str:
UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A )
UpperCAmelCase_ : Optional[int] = self.default_image_processor
UpperCAmelCase_ : List[str] = prepare_img()
UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Any = model(**_A )
# verify the logits
UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _A )
UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
| 304
| 0
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterator
from typing import Any
class lowercase_ :
def __init__( self , a ):
UpperCamelCase__ = data
UpperCamelCase__ = None
class lowercase_ :
def __init__( self ):
UpperCamelCase__ = None
UpperCamelCase__ = None
def __iter__( self ):
UpperCamelCase__ = self.head
while self.head:
yield node.data
UpperCamelCase__ = node.next
if node == self.head:
break
def __len__( self ):
return sum(1 for _ in self )
def __repr__( self ):
return "->".join(str(a ) for item in iter(self ) )
def __a ( self , a ):
self.insert_nth(len(self ) , a )
def __a ( self , a ):
self.insert_nth(0 , a )
def __a ( self , a , a ):
if index < 0 or index > len(self ):
raise IndexError("list index out of range." )
UpperCamelCase__ = Node(a )
if self.head is None:
UpperCamelCase__ = new_node # first node points itself
UpperCamelCase__ = UpperCamelCase__ = new_node
elif index == 0: # insert at head
UpperCamelCase__ = self.head
UpperCamelCase__ = UpperCamelCase__ = new_node
else:
UpperCamelCase__ = self.head
for _ in range(index - 1 ):
UpperCamelCase__ = temp.next
UpperCamelCase__ = temp.next
UpperCamelCase__ = new_node
if index == len(self ) - 1: # insert at tail
UpperCamelCase__ = new_node
def __a ( self ):
return self.delete_nth(0 )
def __a ( self ):
return self.delete_nth(len(self ) - 1 )
def __a ( self , a = 0 ):
if not 0 <= index < len(self ):
raise IndexError("list index out of range." )
UpperCamelCase__ = self.head
if self.head == self.tail: # just one node
UpperCamelCase__ = UpperCamelCase__ = None
elif index == 0: # delete head node
UpperCamelCase__ = self.tail.next.next
UpperCamelCase__ = self.head.next
else:
UpperCamelCase__ = self.head
for _ in range(index - 1 ):
UpperCamelCase__ = temp.next
UpperCamelCase__ = temp.next
UpperCamelCase__ = temp.next.next
if index == len(self ) - 1: # delete at tail
UpperCamelCase__ = temp
return delete_node.data
def __a ( self ):
return len(self ) == 0
def _UpperCamelCase ( ) -> None:
'''simple docstring'''
UpperCamelCase__ = CircularLinkedList()
assert len(__A ) == 0
assert circular_linked_list.is_empty() is True
assert str(__A ) == ""
try:
circular_linked_list.delete_front()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_tail()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_nth(-1 )
raise AssertionError
except IndexError:
assert True
try:
circular_linked_list.delete_nth(0 )
raise AssertionError
except IndexError:
assert True
assert circular_linked_list.is_empty() is True
for i in range(5 ):
assert len(__A ) == i
circular_linked_list.insert_nth(__A , i + 1 )
assert str(__A ) == "->".join(str(__A ) for i in range(1 , 6 ) )
circular_linked_list.insert_tail(6 )
assert str(__A ) == "->".join(str(__A ) for i in range(1 , 7 ) )
circular_linked_list.insert_head(0 )
assert str(__A ) == "->".join(str(__A ) for i in range(0 , 7 ) )
assert circular_linked_list.delete_front() == 0
assert circular_linked_list.delete_tail() == 6
assert str(__A ) == "->".join(str(__A ) for i in range(1 , 6 ) )
assert circular_linked_list.delete_nth(2 ) == 3
circular_linked_list.insert_nth(2 , 3 )
assert str(__A ) == "->".join(str(__A ) for i in range(1 , 6 ) )
assert circular_linked_list.is_empty() is False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 80
|
'''simple docstring'''
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase)
class snake_case__ ( UpperCamelCase):
a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True})
a_ = Features({"text": Value("string")})
a_ = Features({})
a_ = "text"
@property
def A ( self : List[str] ) -> Dict[str, str]:
return {self.text_column: "text"}
| 304
| 0
|
"""simple docstring"""
from __future__ import annotations
import numpy as np
def _A ( lowercase ):
"""simple docstring"""
a , a =np.shape(lowercase )
if rows != columns:
a =(
'''\'table\' has to be of square shaped array but got a '''
f'''{rows}x{columns} array:\n{table}'''
)
raise ValueError(lowercase )
a =np.zeros((rows, columns) )
a =np.zeros((rows, columns) )
for i in range(lowercase ):
for j in range(lowercase ):
a =sum(lower[i][k] * upper[k][j] for k in range(lowercase ) )
if upper[j][j] == 0:
raise ArithmeticError('''No LU decomposition exists''' )
a =(table[i][j] - total) / upper[j][j]
a =1
for j in range(lowercase , lowercase ):
a =sum(lower[i][k] * upper[k][j] for k in range(lowercase ) )
a =table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 81
|
'''simple docstring'''
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict:
with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f:
UpperCAmelCase_ : Union[str, Any] = json.load(A )
UpperCAmelCase_ : Optional[int] = {}
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : str = []
for key, info in class_info.items():
UpperCAmelCase_ : Tuple = info['''name''']
class_names.append(info['''name'''] )
if info["isthing"]:
thing_ids.append(int(A ) )
UpperCAmelCase_ : Any = thing_ids
UpperCAmelCase_ : Union[str, Any] = class_names
return metadata
class snake_case__ ( unittest.TestCase):
def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any:
UpperCAmelCase_ : List[str] = parent
UpperCAmelCase_ : Optional[Any] = batch_size
UpperCAmelCase_ : Optional[Any] = num_channels
UpperCAmelCase_ : Tuple = min_resolution
UpperCAmelCase_ : Optional[int] = max_resolution
UpperCAmelCase_ : Dict = do_resize
UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size
UpperCAmelCase_ : int = do_normalize
UpperCAmelCase_ : List[Any] = image_mean
UpperCAmelCase_ : Dict = image_std
UpperCAmelCase_ : str = class_info_file
UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A )
UpperCAmelCase_ : Tuple = num_text
UpperCAmelCase_ : Union[str, Any] = repo_path
# for the post_process_functions
UpperCAmelCase_ : Any = 2
UpperCAmelCase_ : Dict = 10
UpperCAmelCase_ : int = 10
UpperCAmelCase_ : Optional[Any] = 3
UpperCAmelCase_ : str = 4
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Union[str, Any] = do_reduce_labels
UpperCAmelCase_ : str = ignore_index
def A ( self : Dict ) -> List[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]:
if not batched:
UpperCAmelCase_ : Any = image_inputs[0]
if isinstance(_A , Image.Image ):
UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size
else:
UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2]
if w < h:
UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w )
UpperCAmelCase_ : int = self.size['''shortest_edge''']
elif w > h:
UpperCAmelCase_ : List[Any] = self.size['''shortest_edge''']
UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h )
else:
UpperCAmelCase_ : Dict = self.size['''shortest_edge''']
UpperCAmelCase_ : str = self.size['''shortest_edge''']
else:
UpperCAmelCase_ : Dict = []
for image in image_inputs:
UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0]
UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1]
return expected_height, expected_width
def A ( self : Tuple ) -> str:
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
a_ = image_processing_class
def A ( self : Optional[int] ) -> Any:
UpperCAmelCase_ : int = OneFormerImageProcessorTester(self )
@property
def A ( self : Any ) -> int:
return self.image_processing_tester.prepare_image_processor_dict()
def A ( self : Optional[Any] ) -> List[Any]:
UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , '''image_mean''' ) )
self.assertTrue(hasattr(_A , '''image_std''' ) )
self.assertTrue(hasattr(_A , '''do_normalize''' ) )
self.assertTrue(hasattr(_A , '''do_resize''' ) )
self.assertTrue(hasattr(_A , '''size''' ) )
self.assertTrue(hasattr(_A , '''ignore_index''' ) )
self.assertTrue(hasattr(_A , '''class_info_file''' ) )
self.assertTrue(hasattr(_A , '''num_text''' ) )
self.assertTrue(hasattr(_A , '''repo_path''' ) )
self.assertTrue(hasattr(_A , '''metadata''' ) )
self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) )
def A ( self : Dict ) -> Dict:
pass
def A ( self : Tuple ) -> Dict:
# Initialize image_processor
UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A )
UpperCAmelCase_ : int = image_processor(
_A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : Tuple ) -> Tuple:
# Initialize image_processor
UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A )
UpperCAmelCase_ : Tuple = image_processor(
_A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : Dict ) -> Union[str, Any]:
# Initialize image_processor
UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A )
UpperCAmelCase_ : Optional[int] = image_processor(
_A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str:
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels
UpperCAmelCase_ : int = None
UpperCAmelCase_ : Union[str, Any] = None
UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A )
if with_segmentation_maps:
UpperCAmelCase_ : Any = num_labels
if is_instance_map:
UpperCAmelCase_ : Any = list(range(_A ) ) * 2
UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) )
UpperCAmelCase_ : Dict = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations]
UpperCAmelCase_ : Tuple = image_processor(
_A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , )
return inputs
def A ( self : int ) -> str:
pass
def A ( self : Tuple ) -> Union[str, Any]:
def common(_A : Optional[int]=False , _A : str=None ):
UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs(
with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A )
UpperCAmelCase_ : List[Any] = inputs['''mask_labels''']
UpperCAmelCase_ : Optional[Any] = inputs['''class_labels''']
UpperCAmelCase_ : int = inputs['''pixel_values''']
UpperCAmelCase_ : Tuple = inputs['''text_inputs''']
# check the batch_size
for mask_label, class_label, text_input in zip(_A , _A , _A ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(_A ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=_A )
common(is_instance_map=_A , segmentation_type='''pil''' )
common(is_instance_map=_A , segmentation_type='''pil''' )
def A ( self : List[Any] ) -> List[Any]:
UpperCAmelCase_ : int = np.zeros((20, 50) )
UpperCAmelCase_ : List[str] = 1
UpperCAmelCase_ : Dict = 1
UpperCAmelCase_ : List[Any] = 1
UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A )
self.assertEqual(len(_A ) , 4 )
self.assertEqual(rle[0] , 21 )
self.assertEqual(rle[1] , 45 )
def A ( self : Any ) -> List[Any]:
UpperCAmelCase_ : int = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , )
UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A )
self.assertEqual(len(_A ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def A ( self : Optional[Any] ) -> Tuple:
UpperCAmelCase_ : Any = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , )
UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 )
self.assertTrue(len(_A ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('''segmentation''' in el )
self.assertTrue('''segments_info''' in el )
self.assertEqual(type(el['''segments_info'''] ) , _A )
self.assertEqual(
el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def A ( self : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[Any] = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , )
UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 )
self.assertTrue(len(_A ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('''segmentation''' in el )
self.assertTrue('''segments_info''' in el )
self.assertEqual(type(el['''segments_info'''] ) , _A )
self.assertEqual(
el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
| 304
| 0
|
from __future__ import annotations
import pandas as pd
def _UpperCAmelCase ( snake_case , snake_case , snake_case ):
"""simple docstring"""
_lowerCAmelCase = [0] * no_of_processes
_lowerCAmelCase = [0] * no_of_processes
# Copy the burst time into remaining_time[]
for i in range(snake_case ):
_lowerCAmelCase = burst_time[i]
_lowerCAmelCase = 0
_lowerCAmelCase = 0
_lowerCAmelCase = 9_99_99_99_99
_lowerCAmelCase = 0
_lowerCAmelCase = False
# Process until all processes are completed
while complete != no_of_processes:
for j in range(snake_case ):
if arrival_time[j] <= increment_time and remaining_time[j] > 0:
if remaining_time[j] < minm:
_lowerCAmelCase = remaining_time[j]
_lowerCAmelCase = j
_lowerCAmelCase = True
if not check:
increment_time += 1
continue
remaining_time[short] -= 1
_lowerCAmelCase = remaining_time[short]
if minm == 0:
_lowerCAmelCase = 9_99_99_99_99
if remaining_time[short] == 0:
complete += 1
_lowerCAmelCase = False
# Find finish time of current process
_lowerCAmelCase = increment_time + 1
# Calculate waiting time
_lowerCAmelCase = finish_time - arrival_time[short]
_lowerCAmelCase = finar - burst_time[short]
if waiting_time[short] < 0:
_lowerCAmelCase = 0
# Increment time
increment_time += 1
return waiting_time
def _UpperCAmelCase ( snake_case , snake_case , snake_case ):
"""simple docstring"""
_lowerCAmelCase = [0] * no_of_processes
for i in range(snake_case ):
_lowerCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
def _UpperCAmelCase ( snake_case , snake_case , snake_case ):
"""simple docstring"""
_lowerCAmelCase = 0
_lowerCAmelCase = 0
for i in range(snake_case ):
_lowerCAmelCase = total_waiting_time + waiting_time[i]
_lowerCAmelCase = total_turn_around_time + turn_around_time[i]
print(F'Average waiting time = {total_waiting_time / no_of_processes:.5f}' )
print("""Average turn around time =""" , total_turn_around_time / no_of_processes )
if __name__ == "__main__":
print("""Enter how many process you want to analyze""")
A__ = int(input())
A__ = [0] * no_of_processes
A__ = [0] * no_of_processes
A__ = list(range(1, no_of_processes + 1))
for i in range(no_of_processes):
print("""Enter the arrival time and burst time for process:--""" + str(i + 1))
A__ , A__ = map(int, input().split())
A__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
A__ = burst_time
A__ = no_of_processes
A__ = waiting_time
A__ = calculate_turnaroundtime(bt, n, wt)
calculate_average_times(waiting_time, turn_around_time, no_of_processes)
A__ = pd.DataFrame(
list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)),
columns=[
"""Process""",
"""BurstTime""",
"""ArrivalTime""",
"""WaitingTime""",
"""TurnAroundTime""",
],
)
# Printing the dataFrame
pd.set_option("""display.max_rows""", fcfs.shape[0] + 1)
print(fcfs)
| 82
|
'''simple docstring'''
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
_UpperCamelCase : Optional[int] = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
_UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
_UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
_UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
_UpperCamelCase : List[str] = [
('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'),
('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'),
('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'),
('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'),
('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'),
('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'),
('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'),
('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'),
('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'),
(
'zero-shot-object-detection',
'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES',
'AutoModelForZeroShotObjectDetection',
),
('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'),
('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'),
('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'),
('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'),
(
'table-question-answering',
'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForTableQuestionAnswering',
),
('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'),
('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'),
(
'next-sentence-prediction',
'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES',
'AutoModelForNextSentencePrediction',
),
(
'audio-frame-classification',
'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForAudioFrameClassification',
),
('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'),
(
'document-question-answering',
'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForDocumentQuestionAnswering',
),
(
'visual-question-answering',
'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForVisualQuestionAnswering',
),
('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'),
(
'zero-shot-image-classification',
'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForZeroShotImageClassification',
),
('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'),
('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'),
('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'),
]
def __UpperCAmelCase ( A : Optional[int] ) -> int:
UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A )
return [m.group(0 ) for m in matches]
def __UpperCAmelCase ( ) -> str:
UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
UpperCAmelCase_ : Optional[Any] = {
config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
UpperCAmelCase_ : Dict = collections.defaultdict(A )
UpperCAmelCase_ : str = collections.defaultdict(A )
UpperCAmelCase_ : int = collections.defaultdict(A )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(A ):
UpperCAmelCase_ : int = None
if _re_tf_models.match(A ) is not None:
UpperCAmelCase_ : Optional[Any] = tf_models
UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0]
elif _re_flax_models.match(A ) is not None:
UpperCAmelCase_ : int = flax_models
UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0]
elif _re_pt_models.match(A ) is not None:
UpperCAmelCase_ : Union[str, Any] = pt_models
UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0]
if lookup_dict is not None:
while len(A ) > 0:
if attr_name in model_prefix_to_model_type:
UpperCAmelCase_ : Optional[int] = True
break
# Try again after removing the last word in the name
UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] )
UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
UpperCAmelCase_ : List[Any] = list(A )
all_models.sort()
UpperCAmelCase_ : Dict = {'''model_type''': all_models}
UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models]
UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models]
UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
UpperCAmelCase_ : int = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
UpperCAmelCase_ : Any = '''AutoProcessor'''
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer'''
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
UpperCAmelCase_ : int = '''AutoFeatureExtractor'''
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
UpperCAmelCase_ : Dict = '''AutoTokenizer'''
UpperCAmelCase_ : str = [processors[t] for t in all_models]
return pd.DataFrame(A )
def __UpperCAmelCase ( A : Optional[int] ) -> str:
UpperCAmelCase_ : int = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"]
UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"]
# Loop through all three frameworks
for module, cls, mapping in zip(A , A , A ):
# The type of pipeline may not exist in this framework
if not hasattr(A , A ):
continue
# First extract all model_names
UpperCAmelCase_ : List[str] = []
for name in getattr(A , A ).values():
if isinstance(A , A ):
model_names.append(A )
else:
model_names.extend(list(A ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def __UpperCAmelCase ( A : int , A : Any ) -> Tuple:
UpperCAmelCase_ : Tuple = get_frameworks_table()
UpperCAmelCase_ : Any = Dataset.from_pandas(A )
UpperCAmelCase_ : str = hf_hub_download(
'''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A )
UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A )
UpperCAmelCase_ : Optional[int] = {
tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class'''])
for i in range(len(A ) )
}
UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() )
UpperCAmelCase_ : Optional[Any] = pd.DataFrame(
{
'''model_class''': model_classes,
'''pipeline_tag''': [table[m][0] for m in model_classes],
'''auto_class''': [table[m][1] for m in model_classes],
} )
UpperCAmelCase_ : Dict = Dataset.from_pandas(A )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) )
tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) )
if commit_sha is not None:
UpperCAmelCase_ : List[str] = (
F"Update with commit {commit_sha}\n\nSee: "
F"https://github.com/huggingface/transformers/commit/{commit_sha}"
)
else:
UpperCAmelCase_ : int = '''Update'''
upload_folder(
repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , )
def __UpperCAmelCase ( ) -> int:
UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS
UpperCAmelCase_ : List[str] = []
for key in pipeline_tasks:
if key not in in_table:
UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt''']
if isinstance(A , (list, tuple) ):
UpperCAmelCase_ : Dict = model[0]
UpperCAmelCase_ : Any = model.__name__
if model not in in_table.values():
missing.append(A )
if len(A ) > 0:
UpperCAmelCase_ : List[Any] = ''', '''.join(A )
raise ValueError(
'''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside '''
F"`utils/update_metadata.py`: {msg}. Please add them!" )
if __name__ == "__main__":
_UpperCamelCase : int = argparse.ArgumentParser()
parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.')
parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.')
parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.')
_UpperCamelCase : Tuple = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 304
| 0
|
'''simple docstring'''
print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
| 83
|
'''simple docstring'''
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_UpperCamelCase : Union[str, Any] = logging.getLogger(__name__)
_UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
_UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class snake_case__ :
a_ = field(
default=UpperCamelCase , metadata={
"help": (
"The model checkpoint for weights initialization. Leave None if you want to train a model from"
" scratch."
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"})
a_ = field(
default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
a_ = field(
default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class snake_case__ :
a_ = field(
default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."})
a_ = field(
default=UpperCamelCase , metadata={
"help": (
"The input training data files (multiple files in glob format). "
"Very often splitting large files to smaller files can prevent tokenizer going out of memory"
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."})
a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."})
a_ = field(
default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"})
a_ = field(
default=1 / 6 , metadata={
"help": (
"Ratio of length of a span of masked tokens to surrounding context length for permutation language"
" modeling."
)
} , )
a_ = field(
default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."})
a_ = field(
default=-1 , metadata={
"help": (
"Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"})
def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]:
def _dataset(A : Dict , A : str=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' )
return LineByLineWithRefDataset(
tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , )
return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size )
else:
return TextDataset(
tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def __UpperCAmelCase ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
'''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file '''
'''or remove the --do_eval argument.''' )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , A )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.tokenizer_name:
UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another'''
''' script, save it,and load it from here, using --tokenizer_name''' )
if model_args.model_name_or_path:
UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , )
else:
logger.info('''Training new model from scratch''' )
UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A )
model.resize_token_embeddings(len(A ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
'''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the'''
'''--mlm flag (masked language modeling).''' )
if data_args.block_size <= 0:
UpperCAmelCase_ : List[str] = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len )
# Get datasets
UpperCAmelCase_ : str = (
get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
UpperCAmelCase_ : Any = (
get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling(
tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask(
tokenizer=A , mlm_probability=data_args.mlm_probability )
else:
UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling(
tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
UpperCAmelCase_ : Any = Trainer(
model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , )
# Training
if training_args.do_train:
UpperCAmelCase_ : List[str] = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=A )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase_ : Tuple = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase_ : Dict = trainer.evaluate()
UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] )
UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity}
UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' )
if trainer.is_world_master():
with open(A , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key in sorted(result.keys() ):
logger.info(''' %s = %s''' , A , str(result[key] ) )
writer.write('''%s = %s\n''' % (key, str(result[key] )) )
results.update(A )
return results
def __UpperCAmelCase ( A : Tuple ) -> Tuple:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 304
| 0
|
"""simple docstring"""
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
__UpperCAmelCase = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class _SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ):
UpperCAmelCase_ :Optional[datasets.Features] = None
def _snake_case ( lowercase__ : "pyspark.sql.DataFrame" , lowercase__ : List[int] , ) -> Any:
'''simple docstring'''
import pyspark
def generate_fn():
lowerCAmelCase_ :List[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) )
for partition_id in partition_order:
lowerCAmelCase_ :Optional[int] = df_with_partition_id.select("""*""" ).where(f"""part_id = {partition_id}""" ).drop("""part_id""" )
lowerCAmelCase_ :Optional[Any] = partition_df.collect()
lowerCAmelCase_ :Dict = 0
for row in rows:
yield f"""{partition_id}_{row_id}""", row.asDict()
row_id += 1
return generate_fn
class _SCREAMING_SNAKE_CASE ( _BaseExamplesIterable ):
def __init__( self , __A , __A=None , ) -> Optional[Any]:
lowerCAmelCase_ :List[str] = df
lowerCAmelCase_ :str = partition_order or range(self.df.rdd.getNumPartitions() )
lowerCAmelCase_ :int = _generate_iterable_examples(self.df , self.partition_order )
def __iter__( self ) -> Tuple:
yield from self.generate_examples_fn()
def __lowerCAmelCase ( self , __A ) -> "SparkExamplesIterable":
lowerCAmelCase_ :List[Any] = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(__A )
return SparkExamplesIterable(self.df , partition_order=__A )
def __lowerCAmelCase ( self , __A , __A ) -> "SparkExamplesIterable":
lowerCAmelCase_ :Optional[Any] = self.split_shard_indices_by_worker(__A , __A )
return SparkExamplesIterable(self.df , partition_order=__A )
@property
def __lowerCAmelCase ( self ) -> int:
return len(self.partition_order )
class _SCREAMING_SNAKE_CASE ( datasets.DatasetBuilder ):
UpperCAmelCase_ :Optional[Any] = SparkConfig
def __init__( self , __A , __A = None , __A = None , **__A , ) -> int:
import pyspark
lowerCAmelCase_ :Tuple = pyspark.sql.SparkSession.builder.getOrCreate()
lowerCAmelCase_ :Union[str, Any] = df
lowerCAmelCase_ :Optional[Any] = working_dir
super().__init__(
cache_dir=__A , config_name=str(self.df.semanticHash() ) , **__A , )
def __lowerCAmelCase ( self ) -> int:
# Returns the path of the created file.
def create_cache_and_write_probe(__A ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir , exist_ok=__A )
lowerCAmelCase_ :Union[str, Any] = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(__A , """a""" )
return [probe_file]
if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
lowerCAmelCase_ :int = (
self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__A ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
"""When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" )
def __lowerCAmelCase ( self ) -> Optional[Any]:
return datasets.DatasetInfo(features=self.config.features )
def __lowerCAmelCase ( self , __A ) -> Any:
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def __lowerCAmelCase ( self , __A ) -> Union[str, Any]:
import pyspark
def get_arrow_batch_size(__A ):
for batch in it:
yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} )
lowerCAmelCase_ :Tuple = self.df.count()
lowerCAmelCase_ :Union[str, Any] = df_num_rows if df_num_rows <= 100 else 100
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
lowerCAmelCase_ :Tuple = (
self.df.limit(__A )
.repartition(1 )
.mapInArrow(__A , """batch_bytes: long""" )
.agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
lowerCAmelCase_ :List[Any] = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
lowerCAmelCase_ :str = min(__A , int(approx_total_size / max_shard_size ) )
lowerCAmelCase_ :Optional[int] = self.df.repartition(__A )
def __lowerCAmelCase ( self , __A , __A , __A , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
import pyspark
lowerCAmelCase_ :Optional[int] = ParquetWriter if file_format == """parquet""" else ArrowWriter
lowerCAmelCase_ :Dict = os.path.join(self._working_dir , os.path.basename(__A ) ) if self._working_dir else fpath
lowerCAmelCase_ :Optional[Any] = file_format == """parquet"""
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
lowerCAmelCase_ :List[str] = self.config.features
lowerCAmelCase_ :List[Any] = self._writer_batch_size
lowerCAmelCase_ :str = self._fs.storage_options
def write_arrow(__A ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
lowerCAmelCase_ :Dict = pyspark.TaskContext().taskAttemptId()
lowerCAmelCase_ :int = next(__A , __A )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , )
lowerCAmelCase_ :Tuple = 0
lowerCAmelCase_ :List[str] = writer_class(
features=__A , path=working_fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , )
lowerCAmelCase_ :int = pa.Table.from_batches([first_batch] )
writer.write_table(__A )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
lowerCAmelCase_ , lowerCAmelCase_ :int = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , )
shard_id += 1
lowerCAmelCase_ :int = writer_class(
features=writer._features , path=working_fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , )
lowerCAmelCase_ :Any = pa.Table.from_batches([batch] )
writer.write_table(__A )
if writer._num_bytes > 0:
lowerCAmelCase_ , lowerCAmelCase_ :Any = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , )
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(__A ) ):
lowerCAmelCase_ :Optional[int] = os.path.join(os.path.dirname(__A ) , os.path.basename(__A ) )
shutil.move(__A , __A )
lowerCAmelCase_ :Optional[int] = (
self.df.mapInArrow(__A , """task_id: long, num_examples: long, num_bytes: long""" )
.groupBy("""task_id""" )
.agg(
pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , )
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def __lowerCAmelCase ( self , __A , __A = "arrow" , __A = None , __A = None , **__A , ) -> Any:
self._validate_cache_dir()
lowerCAmelCase_ :Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(__A )
lowerCAmelCase_ :Optional[Any] = not is_remote_filesystem(self._fs )
lowerCAmelCase_ :Tuple = os.path.join if is_local else posixpath.join
lowerCAmelCase_ :List[Any] = """-TTTTT-SSSSS-of-NNNNN"""
lowerCAmelCase_ :int = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}"""
lowerCAmelCase_ :Optional[Any] = path_join(self._output_dir , __A )
lowerCAmelCase_ :Dict = 0
lowerCAmelCase_ :Any = 0
lowerCAmelCase_ :str = 0
lowerCAmelCase_ :Union[str, Any] = []
lowerCAmelCase_ :List[str] = []
for task_id, content in self._prepare_split_single(__A , __A , __A ):
(
(
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) ,
) :List[Any] = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(__A )
lowerCAmelCase_ :Optional[int] = total_num_examples
lowerCAmelCase_ :Tuple = total_num_bytes
# should rename everything at the end
logger.debug(f"""Renaming {total_shards} shards.""" )
if total_shards > 1:
lowerCAmelCase_ :Any = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
lowerCAmelCase_ :List[str] = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
__A , __A , __A , ):
rename(
__A , fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , fpath.replace("""TTTTT-SSSSS""" , f"""{global_shard_id:05d}""" ).replace("""NNNNN""" , f"""{total_shards:05d}""" ) , )
lowerCAmelCase_ :Tuple = []
lowerCAmelCase_ :Tuple = 0
for i in range(len(__A ) ):
lowerCAmelCase_ , lowerCAmelCase_ :Dict = task_id_and_num_shards[i]
for shard_id in range(__A ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(__A , len(__A ) ).map(lambda __A : _rename_shard(*__A ) ).collect()
else:
# don't use any pattern
lowerCAmelCase_ :Optional[int] = 0
lowerCAmelCase_ :Optional[Any] = task_id_and_num_shards[0][0]
self._rename(
fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , fpath.replace(__A , """""" ) , )
def __lowerCAmelCase ( self , __A , ) -> SparkExamplesIterable:
return SparkExamplesIterable(self.df )
| 84
|
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
_UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8
@require_flax
@is_staging_test
class snake_case__ ( unittest.TestCase):
@classmethod
def A ( cls : Optional[int] ) -> Tuple:
UpperCAmelCase_ : List[str] = TOKEN
HfFolder.save_token(_A )
@classmethod
def A ( cls : int ) -> Tuple:
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def A ( self : Dict ) -> Optional[int]:
UpperCAmelCase_ : List[Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase_ : List[str] = FlaxBertModel(_A )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" )
UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token )
UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" )
UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
def A ( self : str ) -> Tuple:
UpperCAmelCase_ : List[str] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
_A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token )
UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]:
UpperCAmelCase_ : Optional[int] = True
UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params )
UpperCAmelCase_ : str = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
UpperCAmelCase_ : int = False
return models_are_equal
@require_flax
class snake_case__ ( unittest.TestCase):
def A ( self : Any ) -> Any:
UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase_ : Any = FlaxBertModel(_A )
UpperCAmelCase_ : Tuple = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_A , _A ) )
with self.assertRaises(_A ):
UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertTrue(check_models_equal(_A , _A ) )
def A ( self : int ) -> Tuple:
UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase_ : Tuple = FlaxBertModel(_A )
UpperCAmelCase_ : str = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' )
with self.assertRaises(_A ):
UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertTrue(check_models_equal(_A , _A ) )
def A ( self : int ) -> Optional[int]:
UpperCAmelCase_ : int = '''bert'''
UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(_A ):
UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertIsNotNone(_A )
def A ( self : Any ) -> str:
UpperCAmelCase_ : Optional[Any] = '''bert'''
UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(_A ):
UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertIsNotNone(_A )
| 304
| 0
|
'''simple docstring'''
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class _snake_case ( lowercase_ ):
def lowerCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ = pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type , pa.intaa() )
def lowerCAmelCase__ ( self ) -> int:
'''simple docstring'''
with self.assertRaises(a__ ):
snake_case_ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() )
def lowerCAmelCase__ ( self ) -> str:
'''simple docstring'''
with self.assertRaises(a__ ):
snake_case_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) )
def lowerCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def lowerCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
snake_case_ = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) )
def lowerCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
snake_case_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def lowerCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
snake_case_ = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) )
self.assertEqual(arr.type , pa.string() )
def lowerCAmelCase__ ( self ) -> str:
'''simple docstring'''
snake_case_ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) )
def lowerCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
snake_case_ = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) )
def lowerCAmelCase__ ( self ) -> str:
'''simple docstring'''
snake_case_ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) )
def lowerCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
snake_case_ = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) )
self.assertEqual(arr.type , pa.string() )
@require_pil
def lowerCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
import PIL.Image
snake_case_ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) )
with patch(
"datasets.arrow_writer.cast_to_python_objects" , side_effect=a__ ) as mock_cast_to_python_objects:
snake_case_ = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image() ) )
snake_case_ , snake_case_ = mock_cast_to_python_objects.call_args_list[-1]
self.assertIn("optimize_list_casting" , a__ )
self.assertFalse(kwargs["optimize_list_casting"] )
def UpperCamelCase_( snake_case : Any , snake_case : int ):
'''simple docstring'''
snake_case_ = pa.BufferReader(snake_case ) if isinstance(snake_case , pa.Buffer ) else pa.memory_map(snake_case )
snake_case_ = pa.ipc.open_stream(snake_case )
snake_case_ = f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] )
def UpperCamelCase_( snake_case : Dict , snake_case : Dict ):
'''simple docstring'''
snake_case_ = pa.BufferOutputStream()
snake_case_ = pa.schema(snake_case ) if fields else None
with ArrowWriter(stream=snake_case , schema=snake_case , writer_batch_size=snake_case ) as writer:
writer.write({"col_1": "foo", "col_2": 1} )
writer.write({"col_1": "bar", "col_2": 2} )
snake_case_ , snake_case_ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()}
assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def UpperCamelCase_( ):
'''simple docstring'''
snake_case_ = pa.BufferOutputStream()
snake_case_ = Features({"labels": ClassLabel(names=["neg", "pos"] )} )
with ArrowWriter(stream=snake_case , features=snake_case ) as writer:
writer.write({"labels": 0} )
writer.write({"labels": 1} )
snake_case_ , snake_case_ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
snake_case_ = pa.BufferReader(output.getvalue() )
snake_case_ = pa.ipc.open_stream(snake_case )
snake_case_ = f.read_all()
snake_case_ = pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(snake_case )
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] )
def UpperCamelCase_( snake_case : Optional[Any] ):
'''simple docstring'''
snake_case_ = pa.BufferOutputStream()
with ArrowWriter(
stream=snake_case , writer_batch_size=snake_case , hash_salt="split_name" , check_duplicates=snake_case , ) as writer:
with pytest.raises(snake_case ):
writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] )
snake_case_ , snake_case_ = writer.finalize()
@pytest.mark.parametrize("writer_batch_size" , [None, 2, 1_0] )
def UpperCamelCase_( snake_case : Dict ):
'''simple docstring'''
snake_case_ = pa.BufferOutputStream()
with ArrowWriter(
stream=snake_case , writer_batch_size=snake_case , hash_salt="split_name" , check_duplicates=snake_case , ) as writer:
with pytest.raises(snake_case ):
writer.write({"col_1": "foo", "col_2": 1} , key=1_0 )
writer.write({"col_1": "bar", "col_2": 2} , key=1_0 )
snake_case_ , snake_case_ = writer.finalize()
@pytest.mark.parametrize("writer_batch_size" , [None, 2, 1_0] )
def UpperCamelCase_( snake_case : Any ):
'''simple docstring'''
snake_case_ = pa.BufferOutputStream()
with ArrowWriter(
stream=snake_case , writer_batch_size=snake_case , hash_salt="split_name" , check_duplicates=snake_case , ) as writer:
writer.write({"col_1": "foo", "col_2": 1} , key=1 )
writer.write({"col_1": "bar", "col_2": 2} , key=2 )
snake_case_ , snake_case_ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] )
def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[str] ):
'''simple docstring'''
snake_case_ = pa.BufferOutputStream()
snake_case_ = pa.schema(snake_case ) if fields else None
with ArrowWriter(stream=snake_case , schema=snake_case , writer_batch_size=snake_case ) as writer:
writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} )
writer.write_batch({"col_1": [], "col_2": []} )
snake_case_ , snake_case_ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()}
assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] )
def UpperCamelCase_( snake_case : str , snake_case : Dict ):
'''simple docstring'''
snake_case_ = pa.BufferOutputStream()
snake_case_ = pa.schema(snake_case ) if fields else None
with ArrowWriter(stream=snake_case , schema=snake_case , writer_batch_size=snake_case ) as writer:
writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) )
snake_case_ , snake_case_ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()}
assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] )
def UpperCamelCase_( snake_case : Optional[Any] , snake_case : Optional[int] ):
'''simple docstring'''
snake_case_ = pa.BufferOutputStream()
snake_case_ = pa.schema(snake_case ) if fields else None
with ArrowWriter(stream=snake_case , schema=snake_case , writer_batch_size=snake_case ) as writer:
writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) )
writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) )
snake_case_ , snake_case_ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()}
assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def UpperCamelCase_( ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()}
snake_case_ = os.path.join(snake_case , "test.arrow" )
with ArrowWriter(path=snake_case , schema=pa.schema(snake_case ) ) as writer:
writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} )
snake_case_ , snake_case_ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata )
_check_output(snake_case , 1 )
def UpperCamelCase_( snake_case : Tuple ):
'''simple docstring'''
if pa.types.is_list(snake_case ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def UpperCamelCase_( snake_case : Tuple , snake_case : Dict ):
'''simple docstring'''
if isinstance(lst[0] , snake_case ):
change_first_primitive_element_in_list(lst[0] , snake_case )
else:
snake_case_ = value
@pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] )
@pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def UpperCamelCase_( snake_case : List[Any] , snake_case : Dict , snake_case : int ):
'''simple docstring'''
snake_case_ = pa.array(TypedSequence(snake_case , optimized_int_type=snake_case ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
"col, expected_dtype" , [
("attention_mask", pa.inta()),
("special_tokens_mask", pa.inta()),
("token_type_ids", pa.inta()),
("input_ids", pa.intaa()),
("other", pa.intaa()),
] , )
@pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def UpperCamelCase_( snake_case : Optional[int] , snake_case : Any , snake_case : Dict ):
'''simple docstring'''
snake_case_ = pa.array(OptimizedTypedSequence(snake_case , col=snake_case ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
snake_case_ = copy.deepcopy(snake_case )
snake_case_ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(snake_case , snake_case )
snake_case_ = pa.array(OptimizedTypedSequence(snake_case , col=snake_case ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize("raise_exception" , [False, True] )
def UpperCamelCase_( snake_case : List[str] , snake_case : Union[str, Any] ):
'''simple docstring'''
snake_case_ = str(tmp_path / "dataset-train.arrow" )
try:
with ArrowWriter(path=snake_case ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def UpperCamelCase_( snake_case : Union[str, Any] ):
'''simple docstring'''
snake_case_ = "mock://dataset-train.arrow"
with ArrowWriter(path=snake_case , storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs , type(snake_case ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({"col_1": "foo", "col_2": 1} )
writer.write({"col_1": "bar", "col_2": 2} )
snake_case_ , snake_case_ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(snake_case )
def UpperCamelCase_( ):
'''simple docstring'''
snake_case_ = pa.BufferOutputStream()
with ParquetWriter(stream=snake_case ) as writer:
writer.write({"col_1": "foo", "col_2": 1} )
writer.write({"col_1": "bar", "col_2": 2} )
snake_case_ , snake_case_ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
snake_case_ = pa.BufferReader(output.getvalue() )
snake_case_ = pq.read_table(snake_case )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize("embed_local_files" , [False, True] )
def UpperCamelCase_( snake_case : Optional[int] , snake_case : List[str] ):
'''simple docstring'''
import PIL.Image
snake_case_ = str(tmp_path / "test_image_rgb.jpg" )
PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(snake_case , format="png" )
snake_case_ = pa.BufferOutputStream()
with ParquetWriter(
stream=snake_case , features=Features({"image": Image()} ) , embed_local_files=snake_case ) as writer:
writer.write({"image": image_path} )
writer.finalize()
snake_case_ = pa.BufferReader(output.getvalue() )
snake_case_ = pq.read_table(snake_case )
snake_case_ = pa_table.to_pydict()
if embed_local_files:
assert isinstance(out["image"][0]["path"] , snake_case )
with open(snake_case , "rb" ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def UpperCamelCase_( ):
'''simple docstring'''
snake_case_ = pa.schema([pa.field("col_1" , pa.string() , nullable=snake_case )] )
snake_case_ = pa.BufferOutputStream()
with ArrowWriter(stream=snake_case ) as writer:
writer._build_writer(inferred_schema=snake_case )
assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
| 85
|
'''simple docstring'''
_UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}]
_UpperCamelCase : Dict = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 304
| 0
|
"""simple docstring"""
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def __lowerCAmelCase (_UpperCamelCase="" ):
__lowerCAmelCase : Optional[int] = tempfile.mkdtemp()
return os.path.join(_UpperCamelCase , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class A__ ( unittest.TestCase):
def __lowerCamelCase ( self ):
__lowerCAmelCase : Dict = torch.rand(12 , dtype=torch.floataa ) - 0.5
__lowerCAmelCase : Optional[Any] = AgentAudio(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Optional[Any] = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , agent_type.to_raw() , atol=1E-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) )
# Ensure that the file contains the same value as the original tensor
__lowerCAmelCase , __lowerCAmelCase : int = sf.read(_SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , torch.tensor(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) )
def __lowerCamelCase ( self ):
__lowerCAmelCase : Optional[Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5
__lowerCAmelCase : int = get_new_path(suffix='.wav' )
sf.write(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1_60_00 )
__lowerCAmelCase : int = AgentAudio(_SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , agent_type.to_raw() , atol=1E-4 ) )
self.assertEqual(agent_type.to_string() , _SCREAMING_SNAKE_CASE )
@require_vision
@require_torch
class A__ ( unittest.TestCase):
def __lowerCamelCase ( self ):
__lowerCAmelCase : Optional[Any] = torch.randint(0 , 2_56 , (64, 64, 3) )
__lowerCAmelCase : int = AgentImage(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : List[str] = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , agent_type._tensor , atol=1E-4 ) )
self.assertIsInstance(agent_type.to_raw() , Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) )
def __lowerCamelCase ( self ):
__lowerCAmelCase : Any = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png'
__lowerCAmelCase : Tuple = Image.open(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : List[Any] = AgentImage(_SCREAMING_SNAKE_CASE )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) )
def __lowerCamelCase ( self ):
__lowerCAmelCase : Any = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png'
__lowerCAmelCase : Any = Image.open(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Optional[int] = AgentImage(_SCREAMING_SNAKE_CASE )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) )
class A__ ( unittest.TestCase):
def __lowerCamelCase ( self ):
__lowerCAmelCase : List[str] = 'Hey!'
__lowerCAmelCase : Optional[Any] = AgentText(_SCREAMING_SNAKE_CASE )
self.assertEqual(_SCREAMING_SNAKE_CASE , agent_type.to_string() )
self.assertEqual(_SCREAMING_SNAKE_CASE , agent_type.to_raw() )
self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
| 86
|
'''simple docstring'''
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]:
if isinstance(A , A ):
UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A )
else:
UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A )
for i, tensor in enumerate(A ):
if padding_side == "right":
if isinstance(A , A ):
UpperCAmelCase_ : Tuple = tensor[:sequence_length]
else:
UpperCAmelCase_ : Dict = tensor[:sequence_length]
else:
if isinstance(A , A ):
UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length]
else:
UpperCAmelCase_ : int = tensor[:sequence_length]
return out_tensor.tolist()
def __UpperCAmelCase ( A : List[Any] ) -> str:
UpperCAmelCase_ : Dict = ord(A )
if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6):
return True
UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A )
if cat.startswith('''P''' ):
return True
return False
@dataclass
class snake_case__ ( UpperCamelCase):
a_ = 42
a_ = True
a_ = None
a_ = None
a_ = -100
a_ = "pt"
def A ( self : List[Any] , _A : Dict ) -> Tuple:
import torch
UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels'''
UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
UpperCAmelCase_ : Tuple = self.tokenizer.pad(
_A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , )
if labels is None:
return batch
UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1]
UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side
if padding_side == "right":
UpperCAmelCase_ : Optional[Any] = [
list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels
]
else:
UpperCAmelCase_ : Any = [
[self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels
]
UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features]
UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A )
UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features]
UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A )
UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 304
| 0
|
from datetime import datetime as dt
import os
from github import Github
UpperCamelCase = [
'''good first issue''',
'''good second issue''',
'''good difficult issue''',
'''feature request''',
'''new model''',
'''wip''',
]
def lowercase_ ( ):
lowercase__ : Dict = Github(os.environ["GITHUB_TOKEN"])
lowercase__ : Optional[int] = g.get_repo("huggingface/transformers")
lowercase__ : Optional[Any] = repo.get_issues(state="open")
for issue in open_issues:
lowercase__ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCamelCase: i.created_at , reverse=_lowerCamelCase)
lowercase__ : Dict = comments[0] if len(_lowerCamelCase) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels())
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="closed")
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels())
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored.")
if __name__ == "__main__":
main()
| 87
|
'''simple docstring'''
import functools
def __UpperCAmelCase ( A : str , A : str ) -> int:
UpperCAmelCase_ : Optional[Any] = len(A )
UpperCAmelCase_ : List[str] = len(A )
@functools.cache
def min_distance(A : int , A : int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 304
| 0
|
import random
def a__ ( A_, A_, A_ ):
'''simple docstring'''
__magic_name__ = a[left_index]
__magic_name__ = left_index + 1
for j in range(left_index + 1, A_ ):
if a[j] < pivot:
__magic_name__ , __magic_name__ = a[i], a[j]
i += 1
__magic_name__ , __magic_name__ = a[i - 1], a[left_index]
return i - 1
def a__ ( A_, A_, A_ ):
'''simple docstring'''
if left < right:
__magic_name__ = random.randint(A_, right - 1 )
__magic_name__ , __magic_name__ = (
a[left],
a[pivot],
) # switches the pivot with the left most bound
__magic_name__ = partition(A_, A_, A_ )
quick_sort_random(
A_, A_, A_ ) # recursive quicksort to the left of the pivot point
quick_sort_random(
A_, pivot_index + 1, A_ ) # recursive quicksort to the right of the pivot point
def a__ ( ):
'''simple docstring'''
__magic_name__ = input("""Enter numbers separated by a comma:\n""" ).strip()
__magic_name__ = [int(A_ ) for item in user_input.split(""",""" )]
quick_sort_random(A_, 0, len(A_ ) )
print(A_ )
if __name__ == "__main__":
main()
| 88
|
'''simple docstring'''
def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int:
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1
UpperCAmelCase_ : Dict = []
for i in range(1 , n + 1 ):
UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator
UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator
if len(str(A ) ) > len(str(A ) ):
result.append(A )
UpperCAmelCase_ : Optional[Any] = numerator
UpperCAmelCase_ : Optional[int] = denominator
return len(A )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 304
| 0
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __magic_name__ ( _UpperCamelCase ):
lowerCAmelCase : Tuple = 'Salesforce/blip-image-captioning-base'
lowerCAmelCase : Tuple = (
'This is a tool that generates a description of an image. It takes an input named `image` which should be the '
'image to caption, and returns a text that contains the description in English.'
)
lowerCAmelCase : Optional[int] = 'image_captioner'
lowerCAmelCase : List[str] = AutoModelForVisionaSeq
lowerCAmelCase : Tuple = ['image']
lowerCAmelCase : Optional[Any] = ['text']
def __init__( self : Dict ,*_UpperCAmelCase : List[Any] ,**_UpperCAmelCase : str ):
requires_backends(self ,['vision'] )
super().__init__(*_UpperCAmelCase ,**_UpperCAmelCase )
def __lowercase ( self : Optional[int] ,_UpperCAmelCase : "Image" ):
return self.pre_processor(images=_UpperCAmelCase ,return_tensors='pt' )
def __lowercase ( self : List[str] ,_UpperCAmelCase : int ):
return self.model.generate(**_UpperCAmelCase )
def __lowercase ( self : int ,_UpperCAmelCase : Dict ):
return self.pre_processor.batch_decode(_UpperCAmelCase ,skip_special_tokens=_UpperCAmelCase )[0].strip()
| 89
|
'''simple docstring'''
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class snake_case__ ( unittest.TestCase):
def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]:
UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20}
UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : Any = num_channels
UpperCAmelCase_ : Optional[Any] = image_size
UpperCAmelCase_ : Tuple = min_resolution
UpperCAmelCase_ : Tuple = max_resolution
UpperCAmelCase_ : Optional[int] = do_resize
UpperCAmelCase_ : Tuple = size
UpperCAmelCase_ : Optional[Any] = do_center_crop
UpperCAmelCase_ : Optional[int] = crop_size
UpperCAmelCase_ : Tuple = do_normalize
UpperCAmelCase_ : Optional[Any] = image_mean
UpperCAmelCase_ : int = image_std
UpperCAmelCase_ : List[Any] = do_reduce_labels
def A ( self : Union[str, Any] ) -> str:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def __UpperCAmelCase ( ) -> Optional[Any]:
UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] )
UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] )
return image, map
def __UpperCAmelCase ( ) -> Any:
UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] )
UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] )
UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] )
UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = BeitImageProcessor if is_vision_available() else None
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self )
@property
def A ( self : List[Any] ) -> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def A ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , '''do_resize''' ) )
self.assertTrue(hasattr(_A , '''size''' ) )
self.assertTrue(hasattr(_A , '''do_center_crop''' ) )
self.assertTrue(hasattr(_A , '''center_crop''' ) )
self.assertTrue(hasattr(_A , '''do_normalize''' ) )
self.assertTrue(hasattr(_A , '''image_mean''' ) )
self.assertTrue(hasattr(_A , '''image_std''' ) )
def A ( self : List[str] ) -> Optional[int]:
UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
self.assertEqual(image_processor.do_reduce_labels , _A )
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
self.assertEqual(image_processor.do_reduce_labels , _A )
def A ( self : Optional[Any] ) -> Any:
pass
def A ( self : List[str] ) -> Optional[int]:
# Initialize image_processing
UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Union[str, Any] ) -> Union[str, Any]:
# Initialize image_processing
UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Optional[int] ) -> str:
# Initialize image_processing
UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Any ) -> Optional[Any]:
# Initialize image_processing
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
UpperCAmelCase_ : Union[str, Any] = []
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched
UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test not batched input (PIL images)
UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs()
UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched input (PIL images)
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs()
UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
2,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
def A ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs()
UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 1_50 )
UpperCAmelCase_ : int = True
UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
| 304
| 0
|
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__A = 16
__A = 32
def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> List[str]:
"""simple docstring"""
return int(x / 2**20 )
class __lowerCAmelCase :
"""simple docstring"""
def __enter__( self ) -> int:
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
__lowerCamelCase = torch.cuda.memory_allocated()
return self
def __exit__( self , *lowerCamelCase__ ) -> Dict:
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
__lowerCamelCase = torch.cuda.memory_allocated()
__lowerCamelCase = torch.cuda.max_memory_allocated()
__lowerCamelCase = bamb(self.end - self.begin )
__lowerCamelCase = bamb(self.peak - self.begin )
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def lowerCamelCase_ ( UpperCamelCase__ : Accelerator , UpperCamelCase__ : int = 16 , UpperCamelCase__ : str = "bert-base-cased" , UpperCamelCase__ : int = 320 , UpperCamelCase__ : int = 160 , ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = AutoTokenizer.from_pretrained(UpperCamelCase__ )
__lowerCamelCase = load_dataset(
'glue' , 'mrpc' , split={'train': F"""train[:{n_train}]""", 'validation': F"""validation[:{n_val}]"""} )
def tokenize_function(UpperCamelCase__ : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
__lowerCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__lowerCamelCase = datasets.map(
UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCamelCase__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__lowerCamelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(UpperCamelCase__ : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' )
return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
__lowerCamelCase = DataLoader(
tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ )
__lowerCamelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowerCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__lowerCamelCase = config['lr']
__lowerCamelCase = int(config['num_epochs'] )
__lowerCamelCase = int(config['seed'] )
__lowerCamelCase = int(config['batch_size'] )
__lowerCamelCase = args.model_name_or_path
set_seed(UpperCamelCase__ )
__lowerCamelCase , __lowerCamelCase = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.n_train , args.n_val )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase__ , return_dict=UpperCamelCase__ )
# Instantiate optimizer
__lowerCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__lowerCamelCase = optimizer_cls(params=model.parameters() , lr=UpperCamelCase__ )
if accelerator.state.deepspeed_plugin is not None:
__lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
__lowerCamelCase = 1
__lowerCamelCase = (len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__lowerCamelCase = get_linear_schedule_with_warmup(
optimizer=UpperCamelCase__ , num_warmup_steps=0 , num_training_steps=UpperCamelCase__ , )
else:
__lowerCamelCase = DummyScheduler(UpperCamelCase__ , total_num_steps=UpperCamelCase__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = accelerator.prepare(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# We need to keep track of how many total steps we have iterated over
__lowerCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__lowerCamelCase = 0
# Now we train the model
__lowerCamelCase = {}
for epoch in range(UpperCamelCase__ , UpperCamelCase__ ):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(UpperCamelCase__ ):
__lowerCamelCase = model(**UpperCamelCase__ )
__lowerCamelCase = outputs.loss
__lowerCamelCase = loss / gradient_accumulation_steps
accelerator.backward(UpperCamelCase__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) )
accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) )
accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) )
accelerator.print(
'Total Peak Memory consumed during the train (max): {}'.format(
tracemalloc.peaked + bamb(tracemalloc.begin ) ) )
__lowerCamelCase = tracemalloc.peaked + bamb(tracemalloc.begin )
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[F"""epoch-{epoch}"""] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f:
json.dump(UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase_ ( ) -> List[str]:
"""simple docstring"""
__lowerCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path' , type=UpperCamelCase__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCamelCase__ , )
parser.add_argument(
'--output_dir' , type=UpperCamelCase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--peak_memory_upper_bound' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , )
parser.add_argument(
'--n_train' , type=UpperCamelCase__ , default=320 , help='Number of training examples to use.' , )
parser.add_argument(
'--n_val' , type=UpperCamelCase__ , default=160 , help='Number of validation examples to use.' , )
parser.add_argument(
'--num_epochs' , type=UpperCamelCase__ , default=1 , help='Number of train epochs.' , )
__lowerCamelCase = parser.parse_args()
__lowerCamelCase = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(UpperCamelCase__ , UpperCamelCase__ )
if __name__ == "__main__":
main()
| 90
|
'''simple docstring'''
import enum
import warnings
from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING
from ..utils import add_end_docstrings, is_tf_available
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
class snake_case__ ( enum.Enum):
a_ = 0
a_ = 1
a_ = 2
@add_end_docstrings(UpperCamelCase)
class snake_case__ ( UpperCamelCase):
a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n "
def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]:
super().__init__(*_A , **_A )
self.check_model_type(
TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING )
if "prefix" not in self._preprocess_params:
# This is very specific. The logic is quite complex and needs to be done
# as a "default".
# It also defines both some preprocess_kwargs and generate_kwargs
# which is why we cannot put them in their respective methods.
UpperCAmelCase_ : Dict = None
if self.model.config.prefix is not None:
UpperCAmelCase_ : Tuple = self.model.config.prefix
if prefix is None and self.model.__class__.__name__ in [
"XLNetLMHeadModel",
"TransfoXLLMHeadModel",
"TFXLNetLMHeadModel",
"TFTransfoXLLMHeadModel",
]:
# For XLNet and TransformerXL we add an article to the prompt to give more state to the model.
UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX
if prefix is not None:
# Recalculate some generate_kwargs linked to prefix.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params )
UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params}
UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params}
def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict:
UpperCAmelCase_ : Union[str, Any] = {}
if prefix is not None:
UpperCAmelCase_ : List[Any] = prefix
if prefix:
UpperCAmelCase_ : Tuple = self.tokenizer(
_A , padding=_A , add_special_tokens=_A , return_tensors=self.framework )
UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1]
if handle_long_generation is not None:
if handle_long_generation not in {"hole"}:
raise ValueError(
F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected"
''' [None, \'hole\']''' )
UpperCAmelCase_ : Union[str, Any] = handle_long_generation
preprocess_params.update(_A )
UpperCAmelCase_ : Optional[int] = generate_kwargs
UpperCAmelCase_ : Tuple = {}
if return_full_text is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' )
if return_tensors is not None:
raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' )
UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
if return_tensors is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' )
UpperCAmelCase_ : List[Any] = ReturnType.TENSORS
if return_type is not None:
UpperCAmelCase_ : List[Any] = return_type
if clean_up_tokenization_spaces is not None:
UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces
if stop_sequence is not None:
UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A )
if len(_A ) > 1:
warnings.warn(
'''Stopping on a multiple token sequence is not yet supported on transformers. The first token of'''
''' the stop sequence will be used as the stop sequence string in the interim.''' )
UpperCAmelCase_ : str = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any:
# Parse arguments
if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
kwargs.update({'''add_space_before_punct_symbol''': True} )
return super()._parse_and_tokenize(*_A , **_A )
def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict:
return super().__call__(_A , **_A )
def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]:
UpperCAmelCase_ : Tuple = self.tokenizer(
prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework )
UpperCAmelCase_ : str = prompt_text
if handle_long_generation == "hole":
UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1]
if "max_new_tokens" in generate_kwargs:
UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens''']
else:
UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len
if new_tokens < 0:
raise ValueError('''We cannot infer how many new tokens are expected''' )
if cur_len + new_tokens > self.tokenizer.model_max_length:
UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens
if keep_length <= 0:
raise ValueError(
'''We cannot use `hole` to handle this generation the number of desired tokens exceeds the'''
''' models max length''' )
UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:]
if "attention_mask" in inputs:
UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:]
return inputs
def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]:
UpperCAmelCase_ : Any = model_inputs['''input_ids''']
UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A )
# Allow empty prompts
if input_ids.shape[1] == 0:
UpperCAmelCase_ : Any = None
UpperCAmelCase_ : List[Any] = None
UpperCAmelCase_ : Union[str, Any] = 1
else:
UpperCAmelCase_ : Optional[int] = input_ids.shape[0]
UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' )
# If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
# generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 )
if prefix_length > 0:
UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].max_new_tokens is not None
)
if not has_max_new_tokens:
UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A )
UpperCAmelCase_ : Any = generated_sequence.shape[0]
if self.framework == "pt":
UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] )
elif self.framework == "tf":
UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) )
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0]
UpperCAmelCase_ : int = model_outputs['''input_ids''']
UpperCAmelCase_ : str = model_outputs['''prompt_text''']
UpperCAmelCase_ : Any = generated_sequence.numpy().tolist()
UpperCAmelCase_ : int = []
for sequence in generated_sequence:
if return_type == ReturnType.TENSORS:
UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence}
elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}:
# Decode text
UpperCAmelCase_ : Any = self.tokenizer.decode(
_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , )
# Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used
if input_ids is None:
UpperCAmelCase_ : List[str] = 0
else:
UpperCAmelCase_ : str = len(
self.tokenizer.decode(
input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) )
if return_type == ReturnType.FULL_TEXT:
UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:]
else:
UpperCAmelCase_ : Dict = text[prompt_length:]
UpperCAmelCase_ : List[str] = {'''generated_text''': all_text}
records.append(_A )
return records
| 304
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
UpperCAmelCase_ : Optional[int] = {
"""google/tapas-base-finetuned-sqa""": (
"""https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-wtq""": (
"""https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-wikisql-supervised""": (
"""https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-tabfact""": (
"""https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json"""
),
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "tapas"
def __init__( self : List[str] , lowercase_ : Tuple=30522 , lowercase_ : str=768 , lowercase_ : List[str]=12 , lowercase_ : str=12 , lowercase_ : str=3072 , lowercase_ : str="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=1024 , lowercase_ : Union[str, Any]=[3, 256, 256, 2, 256, 256, 10] , lowercase_ : Union[str, Any]=0.02 , lowercase_ : List[Any]=1e-12 , lowercase_ : Dict=0 , lowercase_ : Tuple=10.0 , lowercase_ : Optional[int]=0 , lowercase_ : Optional[int]=1.0 , lowercase_ : List[str]=None , lowercase_ : Optional[Any]=1.0 , lowercase_ : int=False , lowercase_ : Any=None , lowercase_ : List[Any]=1.0 , lowercase_ : List[Any]=1.0 , lowercase_ : Any=False , lowercase_ : Optional[int]=False , lowercase_ : Dict="ratio" , lowercase_ : Tuple=None , lowercase_ : Optional[int]=None , lowercase_ : List[str]=64 , lowercase_ : Tuple=32 , lowercase_ : Optional[int]=False , lowercase_ : int=True , lowercase_ : Any=False , lowercase_ : Optional[int]=False , lowercase_ : str=True , lowercase_ : Optional[Any]=False , lowercase_ : str=None , lowercase_ : str=None , **lowercase_ : List[str] , ):
'''simple docstring'''
super().__init__(pad_token_id=lowercase_ , **lowercase_)
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
SCREAMING_SNAKE_CASE_ : Dict = vocab_size
SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_size
SCREAMING_SNAKE_CASE_ : int = num_hidden_layers
SCREAMING_SNAKE_CASE_ : str = num_attention_heads
SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act
SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size
SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ : str = max_position_embeddings
SCREAMING_SNAKE_CASE_ : Dict = type_vocab_sizes
SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range
SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps
# Fine-tuning task hyperparameters
SCREAMING_SNAKE_CASE_ : Dict = positive_label_weight
SCREAMING_SNAKE_CASE_ : Dict = num_aggregation_labels
SCREAMING_SNAKE_CASE_ : Optional[Any] = aggregation_loss_weight
SCREAMING_SNAKE_CASE_ : List[str] = use_answer_as_supervision
SCREAMING_SNAKE_CASE_ : Tuple = answer_loss_importance
SCREAMING_SNAKE_CASE_ : str = use_normalized_answer_loss
SCREAMING_SNAKE_CASE_ : str = huber_loss_delta
SCREAMING_SNAKE_CASE_ : List[str] = temperature
SCREAMING_SNAKE_CASE_ : Optional[Any] = aggregation_temperature
SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_gumbel_for_cells
SCREAMING_SNAKE_CASE_ : List[str] = use_gumbel_for_aggregation
SCREAMING_SNAKE_CASE_ : Tuple = average_approximation_function
SCREAMING_SNAKE_CASE_ : Any = cell_selection_preference
SCREAMING_SNAKE_CASE_ : Tuple = answer_loss_cutoff
SCREAMING_SNAKE_CASE_ : str = max_num_rows
SCREAMING_SNAKE_CASE_ : Any = max_num_columns
SCREAMING_SNAKE_CASE_ : int = average_logits_per_cell
SCREAMING_SNAKE_CASE_ : Dict = select_one_column
SCREAMING_SNAKE_CASE_ : Union[str, Any] = allow_empty_column_selection
SCREAMING_SNAKE_CASE_ : int = init_cell_selection_weights_to_zero
SCREAMING_SNAKE_CASE_ : Union[str, Any] = reset_position_index_per_cell
SCREAMING_SNAKE_CASE_ : Union[str, Any] = disable_per_token_loss
# Aggregation hyperparameters
SCREAMING_SNAKE_CASE_ : List[str] = aggregation_labels
SCREAMING_SNAKE_CASE_ : Any = no_aggregation_label_index
if isinstance(self.aggregation_labels , lowercase_):
SCREAMING_SNAKE_CASE_ : Dict = {int(lowercase_): v for k, v in aggregation_labels.items()}
| 91
|
'''simple docstring'''
from __future__ import annotations
import math
def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int:
if depth < 0:
raise ValueError('''Depth cannot be less than 0''' )
if not scores:
raise ValueError('''Scores cannot be empty''' )
if depth == height:
return scores[node_index]
return (
max(
minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , )
if is_max
else min(
minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , )
)
def __UpperCAmelCase ( ) -> None:
UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 )
print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 304
| 0
|
from __future__ import annotations
from statistics import mean
def _a ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ):
__lowerCAmelCase = [0] * no_of_processes
__lowerCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(SCREAMING_SNAKE_CASE_ ):
__lowerCAmelCase = burst_time[i]
__lowerCAmelCase = []
__lowerCAmelCase = 0
__lowerCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
__lowerCAmelCase = []
__lowerCAmelCase = -1
for i in range(SCREAMING_SNAKE_CASE_ ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
__lowerCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
__lowerCAmelCase = i
total_time += burst_time[target_process]
completed += 1
__lowerCAmelCase = 0
__lowerCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def _a ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] ):
__lowerCAmelCase = [0] * no_of_processes
for i in range(SCREAMING_SNAKE_CASE_ ):
__lowerCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("""[TEST CASE 01]""")
UpperCamelCase__ = 4
UpperCamelCase__ = [2, 5, 3, 7]
UpperCamelCase__ = [0, 0, 0, 0]
UpperCamelCase__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
UpperCamelCase__ = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""")
for i, process_id in enumerate(list(range(1, 5))):
print(
f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t'''
f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}'''
)
print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''')
print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
| 92
|
'''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list:
UpperCAmelCase_ : Any = []
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
UpperCAmelCase_ : List[Any] = result + left + right
return input_list
def __UpperCAmelCase ( A : list ) -> list:
if len(A ) <= 1:
return input_list
UpperCAmelCase_ : List[str] = list(A )
# iteration for two-way merging
UpperCAmelCase_ : Tuple = 2
while p <= len(A ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(A ) , A ):
UpperCAmelCase_ : Union[str, Any] = i
UpperCAmelCase_ : int = i + p - 1
UpperCAmelCase_ : Any = (low + high + 1) // 2
UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A )
# final merge of last two parts
if p * 2 >= len(A ):
UpperCAmelCase_ : str = i
UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
_UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip()
if user_input == "":
_UpperCamelCase : List[str] = []
else:
_UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')]
print(iter_merge_sort(unsorted))
| 304
| 0
|
'''simple docstring'''
def snake_case_ ( __SCREAMING_SNAKE_CASE : dict ):
"""simple docstring"""
lowercase_ : set[int] = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
lowercase_ : set[int] = set()
return any(
node not in visited and depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
for node in graph )
def snake_case_ ( __SCREAMING_SNAKE_CASE : dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : set , __SCREAMING_SNAKE_CASE : set ):
"""simple docstring"""
visited.add(__SCREAMING_SNAKE_CASE )
rec_stk.add(__SCREAMING_SNAKE_CASE )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(__SCREAMING_SNAKE_CASE )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 93
|
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class snake_case__ :
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42
a_ = 42
a_ = 42
a_ = 42
a_ = 42
def A ( self : Tuple ) -> Optional[int]:
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def A ( self : List[Any] ) -> Union[str, Any]:
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def A ( self : Any ) -> Optional[Any]:
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def A ( self : Optional[int] ) -> torch.Tensor:
UpperCAmelCase_ : Dict = torch.arange(self.height * self.width )
UpperCAmelCase_ : int = torch.stack(
[
pixel_indices % self.width,
torch.div(_A , self.width , rounding_mode='''trunc''' ),
] , axis=1 , )
return coords
@property
def A ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape
UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) )
UpperCAmelCase_ : Any = self.get_image_coords()
UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A )
UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor:
UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 )
UpperCAmelCase_ : Union[str, Any] = self.resolution()
UpperCAmelCase_ : int = self.fov()
UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1
UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 )
UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 )
UpperCAmelCase_ : List[Any] = (
self.z.view(_A , 1 , 3 )
+ self.x.view(_A , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:]
)
UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A )
UpperCAmelCase_ : Union[str, Any] = torch.stack(
[
torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(_A , *_A , 2 , 3 )
def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera":
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , )
def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera:
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : Optional[int] = []
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : str = []
for theta in np.linspace(0 , 2 * np.pi , num=2_0 ):
UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
UpperCAmelCase_ : Optional[int] = -z * 4
UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] )
UpperCAmelCase_ : List[Any] = np.cross(A , A )
origins.append(A )
xs.append(A )
ys.append(A )
zs.append(A )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
| 304
| 0
|
from arguments import InitializationArguments
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
# Configuration
snake_case : str = HfArgumentParser(InitializationArguments)
snake_case : Tuple = parser.parse_args()
# Load codeparrot tokenizer trained for Python code tokenization
snake_case : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_name)
# Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks
snake_case : str = {
'''vocab_size''': len(tokenizer),
'''scale_attn_by_inverse_layer_idx''': True,
'''reorder_and_upcast_attn''': True,
}
# Load model config (GPT-2 large in this case)
snake_case : Tuple = AutoConfig.from_pretrained(args.config_name, **config_kwargs)
# Initialize new model with config
snake_case : Any = AutoModelForCausalLM.from_config(config)
# Save model to the hub
model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
| 94
|
'''simple docstring'''
import random
class snake_case__ :
@staticmethod
def A ( _A : str ) -> tuple[list[int], list[int]]:
UpperCAmelCase_ : Dict = [ord(_A ) for i in text]
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : Any = []
for i in plain:
UpperCAmelCase_ : int = random.randint(1 , 3_00 )
UpperCAmelCase_ : str = (i + k) * k
cipher.append(_A )
key.append(_A )
return cipher, key
@staticmethod
def A ( _A : list[int] , _A : list[int] ) -> str:
UpperCAmelCase_ : Dict = []
for i in range(len(_A ) ):
UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(_A ) )
return "".join(_A )
if __name__ == "__main__":
_UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello')
print(c, k)
print(Onepad().decrypt(c, k))
| 304
| 0
|
UpperCAmelCase : str = 0 # The first color of the flag.
UpperCAmelCase : Any = 1 # The second color of the flag.
UpperCAmelCase : int = 2 # The third color of the flag.
UpperCAmelCase : List[Any] = (red, white, blue)
def _A ( SCREAMING_SNAKE_CASE : list ):
"""simple docstring"""
if not sequence:
return []
if len(SCREAMING_SNAKE_CASE ) == 1:
return list(SCREAMING_SNAKE_CASE )
a__ : Tuple =0
a__ : Tuple =len(SCREAMING_SNAKE_CASE ) - 1
a__ : Optional[int] =0
while mid <= high:
if sequence[mid] == colors[0]:
a__ , a__ : Tuple =sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
a__ , a__ : Dict =sequence[high], sequence[mid]
high -= 1
else:
a__ : Tuple =f'''The elements inside the sequence must contains only {colors} values'''
raise ValueError(SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase : Optional[Any] = input("""Enter numbers separated by commas:\n""").strip()
UpperCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 95
|
'''simple docstring'''
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = ReformerTokenizer
a_ = ReformerTokenizerFast
a_ = True
a_ = False
a_ = True
def A ( self : Optional[Any] ) -> List[Any]:
super().setUp()
UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A )
tokenizer.save_pretrained(self.tmpdirname )
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase_ : List[Any] = '''<s>'''
UpperCAmelCase_ : int = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def A ( self : Any ) -> str:
UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(_A ) , 10_00 )
def A ( self : Optional[int] ) -> int:
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def A ( self : Optional[Any] ) -> List[Any]:
if not self.test_rust_tokenizer:
return
UpperCAmelCase_ : int = self.get_tokenizer()
UpperCAmelCase_ : Tuple = self.get_rust_tokenizer()
UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A )
UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A )
UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
UpperCAmelCase_ : Tuple = self.get_rust_tokenizer()
UpperCAmelCase_ : Dict = tokenizer.encode(_A )
UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A )
self.assertListEqual(_A , _A )
def A ( self : Tuple , _A : Dict=15 ) -> str:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A )
# Simple input
UpperCAmelCase_ : Optional[int] = '''This is a simple input'''
UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2''']
UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''')
UpperCAmelCase_ : Dict = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' )
# Simple input
self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' )
# Simple input
self.assertRaises(
_A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , )
# Pair input
self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' )
# Pair input
self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' )
# Pair input
self.assertRaises(
_A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , )
def A ( self : Union[str, Any] ) -> int:
pass
def A ( self : int ) -> Any:
UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A )
UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , )
UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A )
self.assertListEqual(
_A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def A ( self : List[str] ) -> Optional[int]:
return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' )
@slow
def A ( self : str ) -> str:
UpperCAmelCase_ : Tuple = '''Hello World!'''
UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@slow
def A ( self : List[Any] ) -> str:
UpperCAmelCase_ : Tuple = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
UpperCAmelCase_ : int = [
1_08,
2_65,
24,
1_11,
4,
2_58,
1_56,
35,
28,
2_75,
3,
2_59,
2_97,
2_60,
84,
4,
35,
1_10,
44,
8,
2_59,
91,
2_68,
21,
11,
2_09,
2_74,
1_09,
2_66,
2_77,
1_17,
86,
93,
3_15,
2_58,
2_78,
2_58,
2_77,
2_58,
0,
2_58,
2_88,
2_58,
3_19,
2_58,
0,
2_58,
0,
2_58,
0,
2_58,
0,
2_58,
2_87,
2_58,
3_15,
2_58,
2_89,
2_58,
2_78,
99,
2_69,
2_66,
2_62,
8,
2_59,
2_41,
4,
2_17,
2_30,
2_68,
2_66,
55,
1_68,
1_06,
75,
1_93,
2_66,
2_23,
27,
49,
26,
2_82,
25,
2_64,
2_99,
19,
26,
0,
2_58,
2_77,
1_17,
86,
93,
1_76,
1_83,
2_70,
11,
2_62,
42,
61,
2_65,
]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@require_torch
@slow
def A ( self : List[str] ) -> Optional[int]:
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10]
UpperCAmelCase_ : List[Any] = ''' '''.join(_A )
UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' )
UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' )
UpperCAmelCase_ : List[Any] = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape
UpperCAmelCase_ : Optional[int] = ReformerModel(_A )
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**_A )
model(**_A )
@slow
def A ( self : int ) -> Optional[Any]:
# fmt: off
UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
UpperCAmelCase_ : Optional[Any] = [
'''This is a very simple sentence.''',
'''The quick brown fox jumps over the lazy dog.''',
]
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
| 304
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
lowercase__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = ["""MLukeTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 96
|
'''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( A : str ) -> list[int]:
return [ord(A ) - 9_6 for elem in plain]
def __UpperCAmelCase ( A : list[int] ) -> str:
return "".join(chr(elem + 9_6 ) for elem in encoded )
def __UpperCAmelCase ( ) -> None:
UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() )
print('''Encoded: ''' , A )
print('''Decoded:''' , decode(A ) )
if __name__ == "__main__":
main()
| 304
| 0
|
'''simple docstring'''
from __future__ import annotations
from typing import Any
class lowercase :
"""simple docstring"""
def __init__( self , UpperCamelCase_ ):
'''simple docstring'''
UpperCamelCase__ :Dict = num_of_nodes
UpperCamelCase__ :list[list[int]] = []
UpperCamelCase__ :dict[int, int] = {}
def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
'''simple docstring'''
self.m_edges.append([u_node, v_node, weight] )
def lowerCAmelCase__ ( self , UpperCamelCase_ ):
'''simple docstring'''
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def lowerCAmelCase__ ( self , UpperCamelCase_ ):
'''simple docstring'''
if self.m_component[u_node] != u_node:
for k in self.m_component:
UpperCamelCase__ :Dict = self.find_component(UpperCamelCase_ )
def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
'''simple docstring'''
if component_size[u_node] <= component_size[v_node]:
UpperCamelCase__ :str = v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCamelCase_ )
elif component_size[u_node] >= component_size[v_node]:
UpperCamelCase__ :Union[str, Any] = self.find_component(UpperCamelCase_ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCamelCase_ )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :int = []
UpperCamelCase__ :List[Any] = 0
UpperCamelCase__ :list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
UpperCamelCase__ :Optional[int] = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Tuple = edge
UpperCamelCase__ :List[Any] = self.m_component[u]
UpperCamelCase__ :str = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
UpperCamelCase__ :Dict = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = edge
UpperCamelCase__ :Any = self.m_component[u]
UpperCamelCase__ :List[Any] = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' )
num_of_components -= 1
UpperCamelCase__ :List[Any] = [-1] * self.m_num_of_nodes
print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' )
def a ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 97
|
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 304
| 0
|
"""simple docstring"""
from __future__ import annotations
from math import ceil, floor, sqrt
def a_ ( lowerCamelCase = 2_0_0_0_0_0_0 ):
UpperCAmelCase__ = [0]
UpperCAmelCase__ = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
UpperCAmelCase__ = 0
# the area corresponding to the grid that gives the product closest to target
UpperCAmelCase__ = 0
# an estimate of b, using the quadratic formula
UpperCAmelCase__ = 42
# the largest integer less than b_estimate
UpperCAmelCase__ = 42
# the largest integer less than b_estimate
UpperCAmelCase__ = 42
# the triangle number corresponding to b_floor
UpperCAmelCase__ = 42
# the triangle number corresponding to b_ceil
UpperCAmelCase__ = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
UpperCAmelCase__ = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
UpperCAmelCase__ = floor(lowerCamelCase )
UpperCAmelCase__ = ceil(lowerCamelCase )
UpperCAmelCase__ = triangle_numbers[b_floor]
UpperCAmelCase__ = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
UpperCAmelCase__ = triangle_b_first_guess * triangle_a
UpperCAmelCase__ = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
UpperCAmelCase__ = triangle_b_second_guess * triangle_a
UpperCAmelCase__ = idx_a * b_ceil
return area
if __name__ == "__main__":
print(F"""{solution() = }""")
| 98
|
'''simple docstring'''
def __UpperCAmelCase ( A : int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
UpperCAmelCase_ : int = gray_code_sequence_string(A )
#
# convert them to integers
for i in range(len(A ) ):
UpperCAmelCase_ : List[str] = int(sequence[i] , 2 )
return sequence
def __UpperCAmelCase ( A : int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 )
UpperCAmelCase_ : int = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i]
sequence.append(A )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i]
sequence.append(A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 304
| 0
|
def A_ ( A__ ) -> int:
a__ : Any = len(A__ )
a__ : Union[str, Any] = len(matrix[0] )
a__ : Union[str, Any] = min(A__ , A__ )
for row in range(A__ ):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1 , A__ ):
a__ : int = matrix[col][row] / matrix[row][row]
for i in range(A__ , A__ ):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
a__ : Optional[Any] = True
for i in range(row + 1 , A__ ):
if matrix[i][row] != 0:
a__ , a__ : Tuple = matrix[i], matrix[row]
a__ : Optional[Any] = False
break
if reduce:
rank -= 1
for i in range(A__ ):
a__ : int = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()
| 99
|
'''simple docstring'''
import logging
from transformers.configuration_utils import PretrainedConfig
_UpperCamelCase : Any = logging.getLogger(__name__)
class snake_case__ ( UpperCamelCase):
a_ = "masked_bert"
def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]:
super().__init__(pad_token_id=_A , **_A )
UpperCAmelCase_ : Union[str, Any] = vocab_size
UpperCAmelCase_ : str = hidden_size
UpperCAmelCase_ : Union[str, Any] = num_hidden_layers
UpperCAmelCase_ : Optional[int] = num_attention_heads
UpperCAmelCase_ : Optional[Any] = hidden_act
UpperCAmelCase_ : str = intermediate_size
UpperCAmelCase_ : int = hidden_dropout_prob
UpperCAmelCase_ : Tuple = attention_probs_dropout_prob
UpperCAmelCase_ : Optional[Any] = max_position_embeddings
UpperCAmelCase_ : List[str] = type_vocab_size
UpperCAmelCase_ : str = initializer_range
UpperCAmelCase_ : Union[str, Any] = layer_norm_eps
UpperCAmelCase_ : Optional[int] = pruning_method
UpperCAmelCase_ : Optional[int] = mask_init
UpperCAmelCase_ : List[Any] = mask_scale
| 304
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {
"EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json",
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class SCREAMING_SNAKE_CASE_ ( __a ):
"""simple docstring"""
__lowercase : Optional[int] = '''gptj'''
__lowercase : Optional[Any] = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , lowerCAmelCase__=5_0_4_0_0 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=4_0_9_6 , lowerCAmelCase__=2_8 , lowerCAmelCase__=1_6 , lowerCAmelCase__=6_4 , lowerCAmelCase__=None , lowerCAmelCase__="gelu_new" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=5_0_2_5_6 , lowerCAmelCase__=5_0_2_5_6 , lowerCAmelCase__=False , **lowerCAmelCase__ , ):
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = n_positions
__SCREAMING_SNAKE_CASE = n_embd
__SCREAMING_SNAKE_CASE = n_layer
__SCREAMING_SNAKE_CASE = n_head
__SCREAMING_SNAKE_CASE = n_inner
__SCREAMING_SNAKE_CASE = rotary_dim
__SCREAMING_SNAKE_CASE = activation_function
__SCREAMING_SNAKE_CASE = resid_pdrop
__SCREAMING_SNAKE_CASE = embd_pdrop
__SCREAMING_SNAKE_CASE = attn_pdrop
__SCREAMING_SNAKE_CASE = layer_norm_epsilon
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = use_cache
__SCREAMING_SNAKE_CASE = bos_token_id
__SCREAMING_SNAKE_CASE = eos_token_id
super().__init__(
bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , tie_word_embeddings=lowerCAmelCase__ , **lowerCAmelCase__)
class SCREAMING_SNAKE_CASE_ ( __a ):
"""simple docstring"""
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = "default" , lowerCAmelCase__ = None , lowerCAmelCase__ = False , ):
super().__init__(lowerCAmelCase__ , task=lowerCAmelCase__ , patching_specs=lowerCAmelCase__ , use_past=lowerCAmelCase__)
if not getattr(self._config , """pad_token_id""" , lowerCAmelCase__):
# TODO: how to do that better?
__SCREAMING_SNAKE_CASE = 0
@property
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}})
if self.use_past:
self.fill_with_past_key_values_(lowerCAmelCase__ , direction="""inputs""")
__SCREAMING_SNAKE_CASE = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def snake_case_ ( self):
return self._config.n_layer
@property
def snake_case_ ( self):
return self._config.n_head
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ):
__SCREAMING_SNAKE_CASE = super(lowerCAmelCase__ , self).generate_dummy_inputs(
lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__)
# We need to order the input in the way they appears in the forward()
__SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""")
else:
import torch
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__SCREAMING_SNAKE_CASE = seqlen + 2
__SCREAMING_SNAKE_CASE = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__SCREAMING_SNAKE_CASE = [
(torch.zeros(lowerCAmelCase__), torch.zeros(lowerCAmelCase__)) for _ in range(self.num_layers)
]
__SCREAMING_SNAKE_CASE = common_inputs["""attention_mask"""]
if self.use_past:
__SCREAMING_SNAKE_CASE = ordered_inputs["""attention_mask"""].dtype
__SCREAMING_SNAKE_CASE = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__)] , dim=1)
return ordered_inputs
@property
def snake_case_ ( self):
return 1_3
| 100
|
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
a_ = StableDiffusionDiffEditPipeline
a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"}
a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"}
a_ = frozenset(
[]) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
a_ = frozenset([])
def A ( self : Tuple ) -> Optional[Any]:
torch.manual_seed(0 )
UpperCAmelCase_ : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , )
UpperCAmelCase_ : Optional[Any] = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , )
UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , )
torch.manual_seed(0 )
UpperCAmelCase_ : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
UpperCAmelCase_ : List[str] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , )
UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A )
UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
UpperCAmelCase_ : Optional[int] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''inverse_scheduler''': inverse_scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def A ( self : str , _A : List[str] , _A : Any=0 ) -> str:
UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A )
UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A )
if str(_A ).startswith('''mps''' ):
UpperCAmelCase_ : Any = torch.manual_seed(_A )
else:
UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A )
UpperCAmelCase_ : str = {
'''prompt''': '''a dog and a newt''',
'''mask_image''': mask,
'''image_latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]:
UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' )
if str(_A ).startswith('''mps''' ):
UpperCAmelCase_ : Dict = torch.manual_seed(_A )
else:
UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A )
UpperCAmelCase_ : Optional[Any] = {
'''image''': image,
'''source_prompt''': '''a cat and a frog''',
'''target_prompt''': '''a dog and a newt''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''num_maps_per_mask''': 2,
'''mask_encode_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any:
UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' )
if str(_A ).startswith('''mps''' ):
UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A )
else:
UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A )
UpperCAmelCase_ : Optional[int] = {
'''image''': image,
'''prompt''': '''a cat and a frog''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''decode_latents''': True,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : List[str] ) -> Optional[Any]:
if not hasattr(self.pipeline_class , '''_optional_components''' ):
return
UpperCAmelCase_ : str = self.get_dummy_components()
UpperCAmelCase_ : Any = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(_A , _A , _A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A )
UpperCAmelCase_ : str = pipe(**_A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(_A )
UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A )
pipe_loaded.to(_A )
pipe_loaded.set_progress_bar_config(disable=_A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , )
UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A )
UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0]
UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max()
self.assertLess(_A , 1e-4 )
def A ( self : Tuple ) -> int:
UpperCAmelCase_ : Optional[Any] = '''cpu'''
UpperCAmelCase_ : Any = self.get_dummy_components()
UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A )
UpperCAmelCase_ : int = pipe.generate_mask(**_A )
UpperCAmelCase_ : Tuple = mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
UpperCAmelCase_ : List[Any] = np.array([0] * 9 )
UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_A , 1e-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def A ( self : str ) -> Optional[int]:
UpperCAmelCase_ : Union[str, Any] = '''cpu'''
UpperCAmelCase_ : str = self.get_dummy_components()
UpperCAmelCase_ : str = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A )
UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images
UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
UpperCAmelCase_ : int = np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_A , 1e-3 )
def A ( self : Tuple ) -> Optional[Any]:
super().test_inference_batch_single_identical(expected_max_diff=5e-3 )
def A ( self : str ) -> Tuple:
UpperCAmelCase_ : Any = '''cpu'''
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components()
UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''}
UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A )
UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A )
UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A )
UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images
UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
UpperCAmelCase_ : List[Any] = np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_A , 1e-3 )
@require_torch_gpu
@slow
class snake_case__ ( unittest.TestCase):
def A ( self : Optional[Any] ) -> Optional[int]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def A ( cls : Dict ) -> List[Any]:
UpperCAmelCase_ : Optional[int] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' )
UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) )
UpperCAmelCase_ : Any = raw_image
def A ( self : List[Any] ) -> List[str]:
UpperCAmelCase_ : int = torch.manual_seed(0 )
UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa )
UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config )
UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit'''
UpperCAmelCase_ : Tuple = '''a bowl of pears'''
UpperCAmelCase_ : Optional[int] = pipe.generate_mask(
image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , )
UpperCAmelCase_ : List[str] = pipe.invert(
prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents
UpperCAmelCase_ : Any = pipe(
prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0]
UpperCAmelCase_ : str = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5e-1
def A ( self : Tuple ) -> List[str]:
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa )
UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=_A )
UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit'''
UpperCAmelCase_ : Dict = '''a bowl of pears'''
UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask(
image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , )
UpperCAmelCase_ : List[Any] = pipe.invert(
prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents
UpperCAmelCase_ : Dict = pipe(
prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0]
UpperCAmelCase_ : Tuple = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5e-1
| 304
| 0
|
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
lowercase__ :List[Any] = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--txt2img_unclip",
default="kakaobrain/karlo-v1-alpha",
type=str,
required=False,
help="The pretrained txt2img unclip.",
)
lowercase__ :List[Any] = parser.parse_args()
lowercase__ :List[str] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
lowercase__ :Dict = CLIPImageProcessor()
lowercase__ :Dict = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
lowercase__ :Any = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 101
|
'''simple docstring'''
import inspect
import unittest
from math import floor
from transformers import CvtConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import CvtForImageClassification, CvtModel
from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ ( UpperCamelCase):
def A ( self : List[str] ) -> List[Any]:
UpperCAmelCase_ : int = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) )
self.parent.assertTrue(hasattr(_A , '''num_heads''' ) )
class snake_case__ :
def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]:
UpperCAmelCase_ : int = parent
UpperCAmelCase_ : List[Any] = batch_size
UpperCAmelCase_ : Any = image_size
UpperCAmelCase_ : Tuple = patch_sizes
UpperCAmelCase_ : int = patch_stride
UpperCAmelCase_ : Any = patch_padding
UpperCAmelCase_ : List[Any] = is_training
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Union[str, Any] = num_labels
UpperCAmelCase_ : List[str] = num_channels
UpperCAmelCase_ : int = embed_dim
UpperCAmelCase_ : Optional[int] = num_heads
UpperCAmelCase_ : Tuple = stride_kv
UpperCAmelCase_ : Optional[Any] = depth
UpperCAmelCase_ : Dict = cls_token
UpperCAmelCase_ : Dict = attention_drop_rate
UpperCAmelCase_ : Any = initializer_range
UpperCAmelCase_ : List[str] = layer_norm_eps
def A ( self : int ) -> List[str]:
UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ : List[str] = self.get_config()
return config, pixel_values, labels
def A ( self : List[str] ) -> int:
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]:
UpperCAmelCase_ : List[Any] = CvtModel(config=_A )
model.to(_A )
model.eval()
UpperCAmelCase_ : Tuple = model(_A )
UpperCAmelCase_ : List[str] = (self.image_size, self.image_size)
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]:
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : str = CvtForImageClassification(_A )
model.to(_A )
model.eval()
UpperCAmelCase_ : int = model(_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : Dict ) -> Any:
UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs
UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else ()
a_ = (
{"feature-extraction": CvtModel, "image-classification": CvtForImageClassification}
if is_torch_available()
else {}
)
a_ = False
a_ = False
a_ = False
a_ = False
a_ = False
def A ( self : int ) -> List[str]:
UpperCAmelCase_ : Optional[int] = CvtModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def A ( self : Any ) -> Dict:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A ( self : int ) -> List[str]:
return
@unittest.skip(reason='''Cvt does not output attentions''' )
def A ( self : Optional[int] ) -> Optional[int]:
pass
@unittest.skip(reason='''Cvt does not use inputs_embeds''' )
def A ( self : Any ) -> Optional[Any]:
pass
@unittest.skip(reason='''Cvt does not support input and output embeddings''' )
def A ( self : List[Any] ) -> Any:
pass
def A ( self : int ) -> str:
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Tuple = model_class(_A )
UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : Tuple = [*signature.parameters.keys()]
UpperCAmelCase_ : str = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _A )
def A ( self : Tuple ) -> int:
UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def A ( self : Dict ) -> List[str]:
def check_hidden_states_output(_A : Dict , _A : str , _A : int ):
UpperCAmelCase_ : str = model_class(_A )
model.to(_A )
model.eval()
with torch.no_grad():
UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) )
UpperCAmelCase_ : Optional[Any] = outputs.hidden_states
UpperCAmelCase_ : Any = len(self.model_tester.depth )
self.assertEqual(len(_A ) , _A )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Optional[Any] = True
check_hidden_states_output(_A , _A , _A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : Dict = True
check_hidden_states_output(_A , _A , _A )
def A ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_A )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def A ( self : List[Any] ) -> Optional[Any]:
pass
@slow
def A ( self : Optional[int] ) -> int:
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def __UpperCAmelCase ( ) -> str:
UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class snake_case__ ( unittest.TestCase):
@cached_property
def A ( self : Union[str, Any] ) -> Union[str, Any]:
return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def A ( self : str ) -> str:
UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A )
UpperCAmelCase_ : Optional[int] = self.default_image_processor
UpperCAmelCase_ : List[str] = prepare_img()
UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Any = model(**_A )
# verify the logits
UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _A )
UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
| 304
| 0
|
"""simple docstring"""
import baseaa
def lowercase ( _snake_case : str ) ->bytes:
"""simple docstring"""
return baseaa.baaencode(string.encode('''utf-8''' ) )
def lowercase ( _snake_case : bytes ) ->str:
"""simple docstring"""
return baseaa.baadecode(_snake_case ).decode('''utf-8''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Optional[Any] = """Hello World!"""
SCREAMING_SNAKE_CASE : Optional[Any] = baseaa_encode(test)
print(encoded)
SCREAMING_SNAKE_CASE : str = baseaa_decode(encoded)
print(decoded)
| 102
|
'''simple docstring'''
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase)
class snake_case__ ( UpperCamelCase):
a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True})
a_ = Features({"text": Value("string")})
a_ = Features({})
a_ = "text"
@property
def A ( self : List[str] ) -> Dict[str, str]:
return {self.text_column: "text"}
| 304
| 0
|
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
A__ : List[str] = datasets.load_iris()
A__ : List[Any] = np.array(data['''data'''])
A__ : Tuple = np.array(data['''target'''])
A__ : Tuple = data['''target_names''']
A__ , A__ , A__ , A__ : List[str] = train_test_split(X, y)
def UpperCamelCase( __UpperCamelCase : Dict ,__UpperCamelCase : Optional[int] ):
return np.linalg.norm(np.array(__UpperCamelCase ) - np.array(__UpperCamelCase ) )
def UpperCamelCase( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[str]=5 ):
lowerCAmelCase_ : Union[str, Any] = zip(__UpperCamelCase ,__UpperCamelCase )
# List of distances of all points from the point to be classified
lowerCAmelCase_ : Tuple = []
for data_point in data:
lowerCAmelCase_ : str = euclidean_distance(data_point[0] ,__UpperCamelCase )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
lowerCAmelCase_ : str = [i[1] for i in sorted(__UpperCamelCase )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
lowerCAmelCase_ : List[str] = Counter(__UpperCamelCase ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 103
|
'''simple docstring'''
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict:
with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f:
UpperCAmelCase_ : Union[str, Any] = json.load(A )
UpperCAmelCase_ : Optional[int] = {}
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : str = []
for key, info in class_info.items():
UpperCAmelCase_ : Tuple = info['''name''']
class_names.append(info['''name'''] )
if info["isthing"]:
thing_ids.append(int(A ) )
UpperCAmelCase_ : Any = thing_ids
UpperCAmelCase_ : Union[str, Any] = class_names
return metadata
class snake_case__ ( unittest.TestCase):
def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any:
UpperCAmelCase_ : List[str] = parent
UpperCAmelCase_ : Optional[Any] = batch_size
UpperCAmelCase_ : Optional[Any] = num_channels
UpperCAmelCase_ : Tuple = min_resolution
UpperCAmelCase_ : Optional[int] = max_resolution
UpperCAmelCase_ : Dict = do_resize
UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size
UpperCAmelCase_ : int = do_normalize
UpperCAmelCase_ : List[Any] = image_mean
UpperCAmelCase_ : Dict = image_std
UpperCAmelCase_ : str = class_info_file
UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A )
UpperCAmelCase_ : Tuple = num_text
UpperCAmelCase_ : Union[str, Any] = repo_path
# for the post_process_functions
UpperCAmelCase_ : Any = 2
UpperCAmelCase_ : Dict = 10
UpperCAmelCase_ : int = 10
UpperCAmelCase_ : Optional[Any] = 3
UpperCAmelCase_ : str = 4
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Union[str, Any] = do_reduce_labels
UpperCAmelCase_ : str = ignore_index
def A ( self : Dict ) -> List[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]:
if not batched:
UpperCAmelCase_ : Any = image_inputs[0]
if isinstance(_A , Image.Image ):
UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size
else:
UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2]
if w < h:
UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w )
UpperCAmelCase_ : int = self.size['''shortest_edge''']
elif w > h:
UpperCAmelCase_ : List[Any] = self.size['''shortest_edge''']
UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h )
else:
UpperCAmelCase_ : Dict = self.size['''shortest_edge''']
UpperCAmelCase_ : str = self.size['''shortest_edge''']
else:
UpperCAmelCase_ : Dict = []
for image in image_inputs:
UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0]
UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1]
return expected_height, expected_width
def A ( self : Tuple ) -> str:
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
a_ = image_processing_class
def A ( self : Optional[int] ) -> Any:
UpperCAmelCase_ : int = OneFormerImageProcessorTester(self )
@property
def A ( self : Any ) -> int:
return self.image_processing_tester.prepare_image_processor_dict()
def A ( self : Optional[Any] ) -> List[Any]:
UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , '''image_mean''' ) )
self.assertTrue(hasattr(_A , '''image_std''' ) )
self.assertTrue(hasattr(_A , '''do_normalize''' ) )
self.assertTrue(hasattr(_A , '''do_resize''' ) )
self.assertTrue(hasattr(_A , '''size''' ) )
self.assertTrue(hasattr(_A , '''ignore_index''' ) )
self.assertTrue(hasattr(_A , '''class_info_file''' ) )
self.assertTrue(hasattr(_A , '''num_text''' ) )
self.assertTrue(hasattr(_A , '''repo_path''' ) )
self.assertTrue(hasattr(_A , '''metadata''' ) )
self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) )
def A ( self : Dict ) -> Dict:
pass
def A ( self : Tuple ) -> Dict:
# Initialize image_processor
UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A )
UpperCAmelCase_ : int = image_processor(
_A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : Tuple ) -> Tuple:
# Initialize image_processor
UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A )
UpperCAmelCase_ : Tuple = image_processor(
_A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : Dict ) -> Union[str, Any]:
# Initialize image_processor
UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A )
UpperCAmelCase_ : Optional[int] = image_processor(
_A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str:
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels
UpperCAmelCase_ : int = None
UpperCAmelCase_ : Union[str, Any] = None
UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A )
if with_segmentation_maps:
UpperCAmelCase_ : Any = num_labels
if is_instance_map:
UpperCAmelCase_ : Any = list(range(_A ) ) * 2
UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) )
UpperCAmelCase_ : Dict = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations]
UpperCAmelCase_ : Tuple = image_processor(
_A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , )
return inputs
def A ( self : int ) -> str:
pass
def A ( self : Tuple ) -> Union[str, Any]:
def common(_A : Optional[int]=False , _A : str=None ):
UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs(
with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A )
UpperCAmelCase_ : List[Any] = inputs['''mask_labels''']
UpperCAmelCase_ : Optional[Any] = inputs['''class_labels''']
UpperCAmelCase_ : int = inputs['''pixel_values''']
UpperCAmelCase_ : Tuple = inputs['''text_inputs''']
# check the batch_size
for mask_label, class_label, text_input in zip(_A , _A , _A ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(_A ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=_A )
common(is_instance_map=_A , segmentation_type='''pil''' )
common(is_instance_map=_A , segmentation_type='''pil''' )
def A ( self : List[Any] ) -> List[Any]:
UpperCAmelCase_ : int = np.zeros((20, 50) )
UpperCAmelCase_ : List[str] = 1
UpperCAmelCase_ : Dict = 1
UpperCAmelCase_ : List[Any] = 1
UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A )
self.assertEqual(len(_A ) , 4 )
self.assertEqual(rle[0] , 21 )
self.assertEqual(rle[1] , 45 )
def A ( self : Any ) -> List[Any]:
UpperCAmelCase_ : int = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , )
UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A )
self.assertEqual(len(_A ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def A ( self : Optional[Any] ) -> Tuple:
UpperCAmelCase_ : Any = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , )
UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 )
self.assertTrue(len(_A ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('''segmentation''' in el )
self.assertTrue('''segments_info''' in el )
self.assertEqual(type(el['''segments_info'''] ) , _A )
self.assertEqual(
el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def A ( self : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[Any] = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , )
UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs()
UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 )
self.assertTrue(len(_A ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('''segmentation''' in el )
self.assertTrue('''segments_info''' in el )
self.assertEqual(type(el['''segments_info'''] ) , _A )
self.assertEqual(
el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
| 304
| 0
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
lowerCAmelCase__ = {
'''Acehnese Arabic''': '''ace_Arab''',
'''Acehnese Latin''': '''ace_Latn''',
'''Mesopotamian Arabic''': '''acm_Arab''',
'''Ta\'izzi-Adeni Arabic''': '''acq_Arab''',
'''Tunisian Arabic''': '''aeb_Arab''',
'''Afrikaans''': '''afr_Latn''',
'''South Levantine Arabic''': '''ajp_Arab''',
'''Akan''': '''aka_Latn''',
'''Amharic''': '''amh_Ethi''',
'''North Levantine Arabic''': '''apc_Arab''',
'''Modern Standard Arabic''': '''arb_Arab''',
'''Modern Standard Arabic Romanized''': '''arb_Latn''',
'''Najdi Arabic''': '''ars_Arab''',
'''Moroccan Arabic''': '''ary_Arab''',
'''Egyptian Arabic''': '''arz_Arab''',
'''Assamese''': '''asm_Beng''',
'''Asturian''': '''ast_Latn''',
'''Awadhi''': '''awa_Deva''',
'''Central Aymara''': '''ayr_Latn''',
'''South Azerbaijani''': '''azb_Arab''',
'''North Azerbaijani''': '''azj_Latn''',
'''Bashkir''': '''bak_Cyrl''',
'''Bambara''': '''bam_Latn''',
'''Balinese''': '''ban_Latn''',
'''Belarusian''': '''bel_Cyrl''',
'''Bemba''': '''bem_Latn''',
'''Bengali''': '''ben_Beng''',
'''Bhojpuri''': '''bho_Deva''',
'''Banjar Arabic''': '''bjn_Arab''',
'''Banjar Latin''': '''bjn_Latn''',
'''Standard Tibetan''': '''bod_Tibt''',
'''Bosnian''': '''bos_Latn''',
'''Buginese''': '''bug_Latn''',
'''Bulgarian''': '''bul_Cyrl''',
'''Catalan''': '''cat_Latn''',
'''Cebuano''': '''ceb_Latn''',
'''Czech''': '''ces_Latn''',
'''Chokwe''': '''cjk_Latn''',
'''Central Kurdish''': '''ckb_Arab''',
'''Crimean Tatar''': '''crh_Latn''',
'''Welsh''': '''cym_Latn''',
'''Danish''': '''dan_Latn''',
'''German''': '''deu_Latn''',
'''Southwestern Dinka''': '''dik_Latn''',
'''Dyula''': '''dyu_Latn''',
'''Dzongkha''': '''dzo_Tibt''',
'''Greek''': '''ell_Grek''',
'''English''': '''eng_Latn''',
'''Esperanto''': '''epo_Latn''',
'''Estonian''': '''est_Latn''',
'''Basque''': '''eus_Latn''',
'''Ewe''': '''ewe_Latn''',
'''Faroese''': '''fao_Latn''',
'''Fijian''': '''fij_Latn''',
'''Finnish''': '''fin_Latn''',
'''Fon''': '''fon_Latn''',
'''French''': '''fra_Latn''',
'''Friulian''': '''fur_Latn''',
'''Nigerian Fulfulde''': '''fuv_Latn''',
'''Scottish Gaelic''': '''gla_Latn''',
'''Irish''': '''gle_Latn''',
'''Galician''': '''glg_Latn''',
'''Guarani''': '''grn_Latn''',
'''Gujarati''': '''guj_Gujr''',
'''Haitian Creole''': '''hat_Latn''',
'''Hausa''': '''hau_Latn''',
'''Hebrew''': '''heb_Hebr''',
'''Hindi''': '''hin_Deva''',
'''Chhattisgarhi''': '''hne_Deva''',
'''Croatian''': '''hrv_Latn''',
'''Hungarian''': '''hun_Latn''',
'''Armenian''': '''hye_Armn''',
'''Igbo''': '''ibo_Latn''',
'''Ilocano''': '''ilo_Latn''',
'''Indonesian''': '''ind_Latn''',
'''Icelandic''': '''isl_Latn''',
'''Italian''': '''ita_Latn''',
'''Javanese''': '''jav_Latn''',
'''Japanese''': '''jpn_Jpan''',
'''Kabyle''': '''kab_Latn''',
'''Jingpho''': '''kac_Latn''',
'''Kamba''': '''kam_Latn''',
'''Kannada''': '''kan_Knda''',
'''Kashmiri Arabic''': '''kas_Arab''',
'''Kashmiri Devanagari''': '''kas_Deva''',
'''Georgian''': '''kat_Geor''',
'''Central Kanuri Arabic''': '''knc_Arab''',
'''Central Kanuri Latin''': '''knc_Latn''',
'''Kazakh''': '''kaz_Cyrl''',
'''Kabiyè''': '''kbp_Latn''',
'''Kabuverdianu''': '''kea_Latn''',
'''Khmer''': '''khm_Khmr''',
'''Kikuyu''': '''kik_Latn''',
'''Kinyarwanda''': '''kin_Latn''',
'''Kyrgyz''': '''kir_Cyrl''',
'''Kimbundu''': '''kmb_Latn''',
'''Northern Kurdish''': '''kmr_Latn''',
'''Kikongo''': '''kon_Latn''',
'''Korean''': '''kor_Hang''',
'''Lao''': '''lao_Laoo''',
'''Ligurian''': '''lij_Latn''',
'''Limburgish''': '''lim_Latn''',
'''Lingala''': '''lin_Latn''',
'''Lithuanian''': '''lit_Latn''',
'''Lombard''': '''lmo_Latn''',
'''Latgalian''': '''ltg_Latn''',
'''Luxembourgish''': '''ltz_Latn''',
'''Luba-Kasai''': '''lua_Latn''',
'''Ganda''': '''lug_Latn''',
'''Luo''': '''luo_Latn''',
'''Mizo''': '''lus_Latn''',
'''Standard Latvian''': '''lvs_Latn''',
'''Magahi''': '''mag_Deva''',
'''Maithili''': '''mai_Deva''',
'''Malayalam''': '''mal_Mlym''',
'''Marathi''': '''mar_Deva''',
'''Minangkabau Arabic ''': '''min_Arab''',
'''Minangkabau Latin''': '''min_Latn''',
'''Macedonian''': '''mkd_Cyrl''',
'''Plateau Malagasy''': '''plt_Latn''',
'''Maltese''': '''mlt_Latn''',
'''Meitei Bengali''': '''mni_Beng''',
'''Halh Mongolian''': '''khk_Cyrl''',
'''Mossi''': '''mos_Latn''',
'''Maori''': '''mri_Latn''',
'''Burmese''': '''mya_Mymr''',
'''Dutch''': '''nld_Latn''',
'''Norwegian Nynorsk''': '''nno_Latn''',
'''Norwegian Bokmål''': '''nob_Latn''',
'''Nepali''': '''npi_Deva''',
'''Northern Sotho''': '''nso_Latn''',
'''Nuer''': '''nus_Latn''',
'''Nyanja''': '''nya_Latn''',
'''Occitan''': '''oci_Latn''',
'''West Central Oromo''': '''gaz_Latn''',
'''Odia''': '''ory_Orya''',
'''Pangasinan''': '''pag_Latn''',
'''Eastern Panjabi''': '''pan_Guru''',
'''Papiamento''': '''pap_Latn''',
'''Western Persian''': '''pes_Arab''',
'''Polish''': '''pol_Latn''',
'''Portuguese''': '''por_Latn''',
'''Dari''': '''prs_Arab''',
'''Southern Pashto''': '''pbt_Arab''',
'''Ayacucho Quechua''': '''quy_Latn''',
'''Romanian''': '''ron_Latn''',
'''Rundi''': '''run_Latn''',
'''Russian''': '''rus_Cyrl''',
'''Sango''': '''sag_Latn''',
'''Sanskrit''': '''san_Deva''',
'''Santali''': '''sat_Olck''',
'''Sicilian''': '''scn_Latn''',
'''Shan''': '''shn_Mymr''',
'''Sinhala''': '''sin_Sinh''',
'''Slovak''': '''slk_Latn''',
'''Slovenian''': '''slv_Latn''',
'''Samoan''': '''smo_Latn''',
'''Shona''': '''sna_Latn''',
'''Sindhi''': '''snd_Arab''',
'''Somali''': '''som_Latn''',
'''Southern Sotho''': '''sot_Latn''',
'''Spanish''': '''spa_Latn''',
'''Tosk Albanian''': '''als_Latn''',
'''Sardinian''': '''srd_Latn''',
'''Serbian''': '''srp_Cyrl''',
'''Swati''': '''ssw_Latn''',
'''Sundanese''': '''sun_Latn''',
'''Swedish''': '''swe_Latn''',
'''Swahili''': '''swh_Latn''',
'''Silesian''': '''szl_Latn''',
'''Tamil''': '''tam_Taml''',
'''Tatar''': '''tat_Cyrl''',
'''Telugu''': '''tel_Telu''',
'''Tajik''': '''tgk_Cyrl''',
'''Tagalog''': '''tgl_Latn''',
'''Thai''': '''tha_Thai''',
'''Tigrinya''': '''tir_Ethi''',
'''Tamasheq Latin''': '''taq_Latn''',
'''Tamasheq Tifinagh''': '''taq_Tfng''',
'''Tok Pisin''': '''tpi_Latn''',
'''Tswana''': '''tsn_Latn''',
'''Tsonga''': '''tso_Latn''',
'''Turkmen''': '''tuk_Latn''',
'''Tumbuka''': '''tum_Latn''',
'''Turkish''': '''tur_Latn''',
'''Twi''': '''twi_Latn''',
'''Central Atlas Tamazight''': '''tzm_Tfng''',
'''Uyghur''': '''uig_Arab''',
'''Ukrainian''': '''ukr_Cyrl''',
'''Umbundu''': '''umb_Latn''',
'''Urdu''': '''urd_Arab''',
'''Northern Uzbek''': '''uzn_Latn''',
'''Venetian''': '''vec_Latn''',
'''Vietnamese''': '''vie_Latn''',
'''Waray''': '''war_Latn''',
'''Wolof''': '''wol_Latn''',
'''Xhosa''': '''xho_Latn''',
'''Eastern Yiddish''': '''ydd_Hebr''',
'''Yoruba''': '''yor_Latn''',
'''Yue Chinese''': '''yue_Hant''',
'''Chinese Simplified''': '''zho_Hans''',
'''Chinese Traditional''': '''zho_Hant''',
'''Standard Malay''': '''zsm_Latn''',
'''Zulu''': '''zul_Latn''',
}
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = 'facebook/nllb-200-distilled-600M'
SCREAMING_SNAKE_CASE : Dict = (
'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '
'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '
'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '
'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'
)
SCREAMING_SNAKE_CASE : Union[str, Any] = 'translator'
SCREAMING_SNAKE_CASE : str = AutoTokenizer
SCREAMING_SNAKE_CASE : List[str] = AutoModelForSeqaSeqLM
SCREAMING_SNAKE_CASE : Union[str, Any] = LANGUAGE_CODES
SCREAMING_SNAKE_CASE : Union[str, Any] = ['text', 'text', 'text']
SCREAMING_SNAKE_CASE : Tuple = ['text']
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ):
if src_lang not in self.lang_to_code:
raise ValueError(F"{src_lang} is not a supported language." )
if tgt_lang not in self.lang_to_code:
raise ValueError(F"{tgt_lang} is not a supported language." )
__lowercase = self.lang_to_code[src_lang]
__lowercase = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
lowercase__ ,return_tensors='''pt''' ,src_lang=lowercase__ ,tgt_lang=lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[str] ):
return self.model.generate(**lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ):
return self.post_processor.decode(outputs[0].tolist() ,skip_special_tokens=lowercase__ )
| 104
|
'''simple docstring'''
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
_UpperCamelCase : Optional[int] = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
_UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
_UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
_UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
_UpperCamelCase : List[str] = [
('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'),
('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'),
('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'),
('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'),
('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'),
('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'),
('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'),
('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'),
('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'),
(
'zero-shot-object-detection',
'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES',
'AutoModelForZeroShotObjectDetection',
),
('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'),
('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'),
('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'),
('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'),
(
'table-question-answering',
'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForTableQuestionAnswering',
),
('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'),
('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'),
(
'next-sentence-prediction',
'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES',
'AutoModelForNextSentencePrediction',
),
(
'audio-frame-classification',
'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForAudioFrameClassification',
),
('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'),
(
'document-question-answering',
'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForDocumentQuestionAnswering',
),
(
'visual-question-answering',
'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForVisualQuestionAnswering',
),
('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'),
(
'zero-shot-image-classification',
'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForZeroShotImageClassification',
),
('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'),
('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'),
('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'),
]
def __UpperCAmelCase ( A : Optional[int] ) -> int:
UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A )
return [m.group(0 ) for m in matches]
def __UpperCAmelCase ( ) -> str:
UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
UpperCAmelCase_ : Optional[Any] = {
config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
UpperCAmelCase_ : Dict = collections.defaultdict(A )
UpperCAmelCase_ : str = collections.defaultdict(A )
UpperCAmelCase_ : int = collections.defaultdict(A )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(A ):
UpperCAmelCase_ : int = None
if _re_tf_models.match(A ) is not None:
UpperCAmelCase_ : Optional[Any] = tf_models
UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0]
elif _re_flax_models.match(A ) is not None:
UpperCAmelCase_ : int = flax_models
UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0]
elif _re_pt_models.match(A ) is not None:
UpperCAmelCase_ : Union[str, Any] = pt_models
UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0]
if lookup_dict is not None:
while len(A ) > 0:
if attr_name in model_prefix_to_model_type:
UpperCAmelCase_ : Optional[int] = True
break
# Try again after removing the last word in the name
UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] )
UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
UpperCAmelCase_ : List[Any] = list(A )
all_models.sort()
UpperCAmelCase_ : Dict = {'''model_type''': all_models}
UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models]
UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models]
UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
UpperCAmelCase_ : int = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
UpperCAmelCase_ : Any = '''AutoProcessor'''
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer'''
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
UpperCAmelCase_ : int = '''AutoFeatureExtractor'''
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
UpperCAmelCase_ : Dict = '''AutoTokenizer'''
UpperCAmelCase_ : str = [processors[t] for t in all_models]
return pd.DataFrame(A )
def __UpperCAmelCase ( A : Optional[int] ) -> str:
UpperCAmelCase_ : int = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"]
UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"]
# Loop through all three frameworks
for module, cls, mapping in zip(A , A , A ):
# The type of pipeline may not exist in this framework
if not hasattr(A , A ):
continue
# First extract all model_names
UpperCAmelCase_ : List[str] = []
for name in getattr(A , A ).values():
if isinstance(A , A ):
model_names.append(A )
else:
model_names.extend(list(A ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def __UpperCAmelCase ( A : int , A : Any ) -> Tuple:
UpperCAmelCase_ : Tuple = get_frameworks_table()
UpperCAmelCase_ : Any = Dataset.from_pandas(A )
UpperCAmelCase_ : str = hf_hub_download(
'''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A )
UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A )
UpperCAmelCase_ : Optional[int] = {
tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class'''])
for i in range(len(A ) )
}
UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() )
UpperCAmelCase_ : Optional[Any] = pd.DataFrame(
{
'''model_class''': model_classes,
'''pipeline_tag''': [table[m][0] for m in model_classes],
'''auto_class''': [table[m][1] for m in model_classes],
} )
UpperCAmelCase_ : Dict = Dataset.from_pandas(A )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) )
tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) )
if commit_sha is not None:
UpperCAmelCase_ : List[str] = (
F"Update with commit {commit_sha}\n\nSee: "
F"https://github.com/huggingface/transformers/commit/{commit_sha}"
)
else:
UpperCAmelCase_ : int = '''Update'''
upload_folder(
repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , )
def __UpperCAmelCase ( ) -> int:
UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS
UpperCAmelCase_ : List[str] = []
for key in pipeline_tasks:
if key not in in_table:
UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt''']
if isinstance(A , (list, tuple) ):
UpperCAmelCase_ : Dict = model[0]
UpperCAmelCase_ : Any = model.__name__
if model not in in_table.values():
missing.append(A )
if len(A ) > 0:
UpperCAmelCase_ : List[Any] = ''', '''.join(A )
raise ValueError(
'''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside '''
F"`utils/update_metadata.py`: {msg}. Please add them!" )
if __name__ == "__main__":
_UpperCamelCase : int = argparse.ArgumentParser()
parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.')
parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.')
parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.')
_UpperCamelCase : Tuple = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 304
| 0
|
"""simple docstring"""
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
a : List[str] = logging.get_logger(__name__)
a : List[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a : str = {
'''vocab_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'''
},
'''merges_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'''
},
}
a : Tuple = {'''allegro/herbert-base-cased''': 514}
a : Optional[int] = {}
class __UpperCamelCase ( a__ ):
lowerCamelCase : str =VOCAB_FILES_NAMES
lowerCamelCase : Dict =PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Dict =PRETRAINED_INIT_CONFIGURATION
lowerCamelCase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[Any] =HerbertTokenizer
def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__="</s>" , **lowerCAmelCase__ , ) -> Optional[int]:
super().__init__(
lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
a : Optional[Any] = [self.cls_token_id]
a : Any = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
a : Dict = [self.sep_token_id]
a : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
a : List[str] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ )
return tuple(lowerCAmelCase__ )
| 105
|
'''simple docstring'''
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_UpperCamelCase : Union[str, Any] = logging.getLogger(__name__)
_UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
_UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class snake_case__ :
a_ = field(
default=UpperCamelCase , metadata={
"help": (
"The model checkpoint for weights initialization. Leave None if you want to train a model from"
" scratch."
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"})
a_ = field(
default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
a_ = field(
default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class snake_case__ :
a_ = field(
default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."})
a_ = field(
default=UpperCamelCase , metadata={
"help": (
"The input training data files (multiple files in glob format). "
"Very often splitting large files to smaller files can prevent tokenizer going out of memory"
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."})
a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."})
a_ = field(
default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"})
a_ = field(
default=1 / 6 , metadata={
"help": (
"Ratio of length of a span of masked tokens to surrounding context length for permutation language"
" modeling."
)
} , )
a_ = field(
default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."})
a_ = field(
default=-1 , metadata={
"help": (
"Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"})
def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]:
def _dataset(A : Dict , A : str=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' )
return LineByLineWithRefDataset(
tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , )
return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size )
else:
return TextDataset(
tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def __UpperCAmelCase ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
'''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file '''
'''or remove the --do_eval argument.''' )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , A )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.tokenizer_name:
UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another'''
''' script, save it,and load it from here, using --tokenizer_name''' )
if model_args.model_name_or_path:
UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , )
else:
logger.info('''Training new model from scratch''' )
UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A )
model.resize_token_embeddings(len(A ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
'''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the'''
'''--mlm flag (masked language modeling).''' )
if data_args.block_size <= 0:
UpperCAmelCase_ : List[str] = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len )
# Get datasets
UpperCAmelCase_ : str = (
get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
UpperCAmelCase_ : Any = (
get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling(
tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask(
tokenizer=A , mlm_probability=data_args.mlm_probability )
else:
UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling(
tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
UpperCAmelCase_ : Any = Trainer(
model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , )
# Training
if training_args.do_train:
UpperCAmelCase_ : List[str] = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=A )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase_ : Tuple = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase_ : Dict = trainer.evaluate()
UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] )
UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity}
UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' )
if trainer.is_world_master():
with open(A , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key in sorted(result.keys() ):
logger.info(''' %s = %s''' , A , str(result[key] ) )
writer.write('''%s = %s\n''' % (key, str(result[key] )) )
results.update(A )
return results
def __UpperCAmelCase ( A : Tuple ) -> Tuple:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 304
| 0
|
"""simple docstring"""
__UpperCamelCase : Any = [
[0, 1_6, 1_3, 0, 0, 0],
[0, 0, 1_0, 1_2, 0, 0],
[0, 4, 0, 0, 1_4, 0],
[0, 0, 9, 0, 0, 2_0],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ):
# Return True if there is node that has not iterated.
lowerCAmelCase__ : Union[str, Any] = [False] * len(A_ )
lowerCAmelCase__ : Union[str, Any] = [s]
lowerCAmelCase__ : Union[str, Any] = True
while queue:
lowerCAmelCase__ : List[Any] = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(A_ )
lowerCAmelCase__ : Union[str, Any] = True
lowerCAmelCase__ : str = u
return visited[t]
def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ):
lowerCAmelCase__ : List[Any] = [-1] * (len(A_ ))
lowerCAmelCase__ : Any = 0
lowerCAmelCase__ : Any = []
lowerCAmelCase__ : Dict = [i[:] for i in graph] # Record original cut, copy.
while bfs(A_ , A_ , A_ , A_ ):
lowerCAmelCase__ : Optional[Any] = float('''Inf''' )
lowerCAmelCase__ : List[Any] = sink
while s != source:
# Find the minimum value in select path
lowerCAmelCase__ : Optional[Any] = min(A_ , graph[parent[s]][s] )
lowerCAmelCase__ : Dict = parent[s]
max_flow += path_flow
lowerCAmelCase__ : str = sink
while v != source:
lowerCAmelCase__ : List[Any] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
lowerCAmelCase__ : List[Any] = parent[v]
for i in range(len(A_ ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5))
| 106
|
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
_UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8
@require_flax
@is_staging_test
class snake_case__ ( unittest.TestCase):
@classmethod
def A ( cls : Optional[int] ) -> Tuple:
UpperCAmelCase_ : List[str] = TOKEN
HfFolder.save_token(_A )
@classmethod
def A ( cls : int ) -> Tuple:
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def A ( self : Dict ) -> Optional[int]:
UpperCAmelCase_ : List[Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase_ : List[str] = FlaxBertModel(_A )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" )
UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token )
UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" )
UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
def A ( self : str ) -> Tuple:
UpperCAmelCase_ : List[str] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
_A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token )
UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" )
def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]:
UpperCAmelCase_ : Optional[int] = True
UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params )
UpperCAmelCase_ : str = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
UpperCAmelCase_ : int = False
return models_are_equal
@require_flax
class snake_case__ ( unittest.TestCase):
def A ( self : Any ) -> Any:
UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase_ : Any = FlaxBertModel(_A )
UpperCAmelCase_ : Tuple = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_A , _A ) )
with self.assertRaises(_A ):
UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertTrue(check_models_equal(_A , _A ) )
def A ( self : int ) -> Tuple:
UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase_ : Tuple = FlaxBertModel(_A )
UpperCAmelCase_ : str = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' )
with self.assertRaises(_A ):
UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertTrue(check_models_equal(_A , _A ) )
def A ( self : int ) -> Optional[int]:
UpperCAmelCase_ : int = '''bert'''
UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(_A ):
UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertIsNotNone(_A )
def A ( self : Any ) -> str:
UpperCAmelCase_ : Optional[Any] = '''bert'''
UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(_A ):
UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A )
UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A )
self.assertIsNotNone(_A )
| 304
| 0
|
import math
def __magic_name__ ( A : int = 100 ):
'''simple docstring'''
a = sum(i * i for i in range(1, n + 1 ) )
a = int(math.pow(sum(range(1, n + 1 ) ), 2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(F'''{solution() = }''')
| 107
|
'''simple docstring'''
_UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}]
_UpperCamelCase : Dict = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 304
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'''facebook/data2vec-vision-base-ft''': (
'''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE__ ( lowercase ):
"""simple docstring"""
a : List[Any] ="data2vec-vision"
def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=[3, 5, 7, 11] , snake_case__=[1, 2, 3, 6] , snake_case__=True , snake_case__=0.4 , snake_case__=256 , snake_case__=1 , snake_case__=False , snake_case__=255 , **snake_case__ , ):
"""simple docstring"""
super().__init__(**snake_case__ )
lowerCAmelCase : Tuple = hidden_size
lowerCAmelCase : List[Any] = num_hidden_layers
lowerCAmelCase : Tuple = num_attention_heads
lowerCAmelCase : Optional[int] = intermediate_size
lowerCAmelCase : Optional[int] = hidden_act
lowerCAmelCase : Dict = hidden_dropout_prob
lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob
lowerCAmelCase : int = initializer_range
lowerCAmelCase : Dict = layer_norm_eps
lowerCAmelCase : Optional[int] = image_size
lowerCAmelCase : Optional[Any] = patch_size
lowerCAmelCase : Optional[Any] = num_channels
lowerCAmelCase : Union[str, Any] = use_mask_token
lowerCAmelCase : str = use_absolute_position_embeddings
lowerCAmelCase : Any = use_relative_position_bias
lowerCAmelCase : List[str] = use_shared_relative_position_bias
lowerCAmelCase : str = layer_scale_init_value
lowerCAmelCase : Union[str, Any] = drop_path_rate
lowerCAmelCase : Any = use_mean_pooling
# decode head attributes (semantic segmentation)
lowerCAmelCase : Optional[int] = out_indices
lowerCAmelCase : Union[str, Any] = pool_scales
# auxiliary head attributes (semantic segmentation)
lowerCAmelCase : str = use_auxiliary_head
lowerCAmelCase : int = auxiliary_loss_weight
lowerCAmelCase : Tuple = auxiliary_channels
lowerCAmelCase : List[str] = auxiliary_num_convs
lowerCAmelCase : Tuple = auxiliary_concat_input
lowerCAmelCase : List[str] = semantic_loss_ignore_index
class SCREAMING_SNAKE_CASE__ ( lowercase ):
"""simple docstring"""
a : Union[str, Any] =version.parse("1.11" )
@property
def lowercase__ ( self ):
"""simple docstring"""
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def lowercase__ ( self ):
"""simple docstring"""
return 1e-4
| 108
|
'''simple docstring'''
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]:
if isinstance(A , A ):
UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A )
else:
UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A )
for i, tensor in enumerate(A ):
if padding_side == "right":
if isinstance(A , A ):
UpperCAmelCase_ : Tuple = tensor[:sequence_length]
else:
UpperCAmelCase_ : Dict = tensor[:sequence_length]
else:
if isinstance(A , A ):
UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length]
else:
UpperCAmelCase_ : int = tensor[:sequence_length]
return out_tensor.tolist()
def __UpperCAmelCase ( A : List[Any] ) -> str:
UpperCAmelCase_ : Dict = ord(A )
if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6):
return True
UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A )
if cat.startswith('''P''' ):
return True
return False
@dataclass
class snake_case__ ( UpperCamelCase):
a_ = 42
a_ = True
a_ = None
a_ = None
a_ = -100
a_ = "pt"
def A ( self : List[Any] , _A : Dict ) -> Tuple:
import torch
UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels'''
UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
UpperCAmelCase_ : Tuple = self.tokenizer.pad(
_A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , )
if labels is None:
return batch
UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1]
UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side
if padding_side == "right":
UpperCAmelCase_ : Optional[Any] = [
list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels
]
else:
UpperCAmelCase_ : Any = [
[self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels
]
UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features]
UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A )
UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features]
UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A )
UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 304
| 0
|
"""simple docstring"""
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ ):
__lowerCAmelCase : Tuple = 1
@register_to_config
def __init__( self , _SCREAMING_SNAKE_CASE = 1000 , _SCREAMING_SNAKE_CASE = None ) -> Dict:
'''simple docstring'''
self.set_timesteps(_SCREAMING_SNAKE_CASE )
# standard deviation of the initial noise distribution
UpperCAmelCase : Optional[int] = 1.0
# For now we only support F-PNDM, i.e. the runge-kutta method
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
# mainly at formula (9), (12), (13) and the Algorithm 2.
UpperCAmelCase : List[str] = 4
# running values
UpperCAmelCase : str = []
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Dict:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = num_inference_steps
UpperCAmelCase : Tuple = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1]
UpperCAmelCase : str = torch.cat([steps, torch.tensor([0.0] )] )
if self.config.trained_betas is not None:
UpperCAmelCase : Optional[Any] = torch.tensor(self.config.trained_betas , dtype=torch.floataa )
else:
UpperCAmelCase : Optional[Any] = torch.sin(steps * math.pi / 2 ) ** 2
UpperCAmelCase : Dict = (1.0 - self.betas**2) ** 0.5
UpperCAmelCase : List[Any] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1]
UpperCAmelCase : List[Any] = timesteps.to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Dict = []
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> Union[SchedulerOutput, Tuple]:
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
UpperCAmelCase : Optional[int] = (self.timesteps == timestep).nonzero().item()
UpperCAmelCase : Optional[Any] = timestep_index + 1
UpperCAmelCase : Union[str, Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
self.ets.append(_SCREAMING_SNAKE_CASE )
if len(self.ets ) == 1:
UpperCAmelCase : Union[str, Any] = self.ets[-1]
elif len(self.ets ) == 2:
UpperCAmelCase : Union[str, Any] = (3 * self.ets[-1] - self.ets[-2]) / 2
elif len(self.ets ) == 3:
UpperCAmelCase : str = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
else:
UpperCAmelCase : List[str] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
UpperCAmelCase : Union[str, Any] = self._get_prev_sample(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> torch.FloatTensor:
'''simple docstring'''
return sample
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.alphas[timestep_index]
UpperCAmelCase : List[str] = self.betas[timestep_index]
UpperCAmelCase : Tuple = self.alphas[prev_timestep_index]
UpperCAmelCase : int = self.betas[prev_timestep_index]
UpperCAmelCase : List[Any] = (sample - sigma * ets) / max(_SCREAMING_SNAKE_CASE , 1E-8 )
UpperCAmelCase : Union[str, Any] = next_alpha * pred + ets * next_sigma
return prev_sample
def __len__( self ) -> int:
'''simple docstring'''
return self.config.num_train_timesteps
| 109
|
'''simple docstring'''
import functools
def __UpperCAmelCase ( A : str , A : str ) -> int:
UpperCAmelCase_ : Optional[Any] = len(A )
UpperCAmelCase_ : List[str] = len(A )
@functools.cache
def min_distance(A : int , A : int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 304
| 0
|
from typing import TYPE_CHECKING
from ...utils import _LazyModule
__snake_case = {'tokenization_byt5': ['ByT5Tokenizer']}
if TYPE_CHECKING:
from .tokenization_byta import ByTaTokenizer
else:
import sys
__snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 176
|
'''simple docstring'''
def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int:
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1
UpperCAmelCase_ : Dict = []
for i in range(1 , n + 1 ):
UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator
UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator
if len(str(A ) ) > len(str(A ) ):
result.append(A )
UpperCAmelCase_ : Optional[Any] = numerator
UpperCAmelCase_ : Optional[int] = denominator
return len(A )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 304
| 0
|
import argparse
UpperCAmelCase_ = 'docs/source/_static/js/custom.js'
def lowerCAmelCase_ ( __UpperCAmelCase: Any ) -> Optional[int]:
with open(__UpperCAmelCase , encoding='''utf-8''' , newline='''\n''' ) as f:
UpperCamelCase__ : int = f.readlines()
UpperCamelCase__ : List[Any] = 0
# First let's put the right version
while not lines[index].startswith('''const stableVersion =''' ):
index += 1
UpperCamelCase__ : int = f"const stableVersion = \"v{version}\"\n"
# Then update the dictionary
while not lines[index].startswith('''const versionMapping = {''' ):
index += 1
# We go until the end
while not lines[index].startswith('''}''' ):
index += 1
# We add the new version at the end
lines[index - 1] += f" \"v{version}\": \"v{version}\",\n"
with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(__UpperCAmelCase )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--version', help='Release version.')
UpperCAmelCase_ = parser.parse_args()
update_custom_js(args.version)
| 201
|
'''simple docstring'''
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class snake_case__ ( unittest.TestCase):
def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]:
UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20}
UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : Any = num_channels
UpperCAmelCase_ : Optional[Any] = image_size
UpperCAmelCase_ : Tuple = min_resolution
UpperCAmelCase_ : Tuple = max_resolution
UpperCAmelCase_ : Optional[int] = do_resize
UpperCAmelCase_ : Tuple = size
UpperCAmelCase_ : Optional[Any] = do_center_crop
UpperCAmelCase_ : Optional[int] = crop_size
UpperCAmelCase_ : Tuple = do_normalize
UpperCAmelCase_ : Optional[Any] = image_mean
UpperCAmelCase_ : int = image_std
UpperCAmelCase_ : List[Any] = do_reduce_labels
def A ( self : Union[str, Any] ) -> str:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def __UpperCAmelCase ( ) -> Optional[Any]:
UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] )
UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] )
return image, map
def __UpperCAmelCase ( ) -> Any:
UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] )
UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] )
UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] )
UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = BeitImageProcessor if is_vision_available() else None
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self )
@property
def A ( self : List[Any] ) -> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def A ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , '''do_resize''' ) )
self.assertTrue(hasattr(_A , '''size''' ) )
self.assertTrue(hasattr(_A , '''do_center_crop''' ) )
self.assertTrue(hasattr(_A , '''center_crop''' ) )
self.assertTrue(hasattr(_A , '''do_normalize''' ) )
self.assertTrue(hasattr(_A , '''image_mean''' ) )
self.assertTrue(hasattr(_A , '''image_std''' ) )
def A ( self : List[str] ) -> Optional[int]:
UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
self.assertEqual(image_processor.do_reduce_labels , _A )
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
self.assertEqual(image_processor.do_reduce_labels , _A )
def A ( self : Optional[Any] ) -> Any:
pass
def A ( self : List[str] ) -> Optional[int]:
# Initialize image_processing
UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Union[str, Any] ) -> Union[str, Any]:
# Initialize image_processing
UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Optional[int] ) -> str:
# Initialize image_processing
UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Any ) -> Optional[Any]:
# Initialize image_processing
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
UpperCAmelCase_ : Union[str, Any] = []
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched
UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test not batched input (PIL images)
UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs()
UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched input (PIL images)
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs()
UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
2,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
def A ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs()
UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 1_50 )
UpperCAmelCase_ : int = True
UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
| 304
| 0
|
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def A__ ( ):
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
_UpperCamelCase : Optional[int] = '''__test_patch_submodule_mock__'''
with patch_submodule(_test_patching , 'os.path.join' , UpperCAmelCase_ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def A__ ( ):
assert _test_patching.open is open
_UpperCamelCase : str = '''__test_patch_submodule_builtin_mock__'''
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , 'open' , UpperCAmelCase_ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def A__ ( ):
# pandas.read_csv is not present in _test_patching
_UpperCamelCase : Union[str, Any] = '''__test_patch_submodule_missing_mock__'''
with patch_submodule(_test_patching , 'pandas.read_csv' , UpperCAmelCase_ ):
pass
def A__ ( ):
# builtin should always be mocked even if they're not in the globals
# in case they're loaded at one point
_UpperCamelCase : List[str] = '''__test_patch_submodule_missing_builtin_mock__'''
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , 'len' , UpperCAmelCase_ ) is None
with patch_submodule(_test_patching , 'len' , UpperCAmelCase_ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def A__ ( ):
_UpperCamelCase : List[str] = '''__test_patch_submodule_start_and_stop_mock__'''
_UpperCamelCase : Dict = patch_submodule(_test_patching , 'open' , UpperCAmelCase_ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def A__ ( ):
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
_UpperCamelCase : List[str] = '''__test_patch_submodule_successive_join__'''
_UpperCamelCase : Dict = '''__test_patch_submodule_successive_dirname__'''
_UpperCamelCase : int = '''__test_patch_submodule_successive_rename__'''
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , 'os.path.join' , UpperCAmelCase_ ):
with patch_submodule(_test_patching , 'os.rename' , UpperCAmelCase_ ):
with patch_submodule(_test_patching , 'os.path.dirname' , UpperCAmelCase_ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , 'os.rename' , UpperCAmelCase_ ):
with patch_submodule(_test_patching , 'os.path.join' , UpperCAmelCase_ ):
with patch_submodule(_test_patching , 'os.path.dirname' , UpperCAmelCase_ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def A__ ( ):
_UpperCamelCase : Tuple = '''__test_patch_submodule_doesnt_exist_mock__'''
with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , UpperCAmelCase_ ):
pass
with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , UpperCAmelCase_ ):
pass
| 83
|
'''simple docstring'''
import enum
import warnings
from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING
from ..utils import add_end_docstrings, is_tf_available
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
class snake_case__ ( enum.Enum):
a_ = 0
a_ = 1
a_ = 2
@add_end_docstrings(UpperCamelCase)
class snake_case__ ( UpperCamelCase):
a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n "
def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]:
super().__init__(*_A , **_A )
self.check_model_type(
TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING )
if "prefix" not in self._preprocess_params:
# This is very specific. The logic is quite complex and needs to be done
# as a "default".
# It also defines both some preprocess_kwargs and generate_kwargs
# which is why we cannot put them in their respective methods.
UpperCAmelCase_ : Dict = None
if self.model.config.prefix is not None:
UpperCAmelCase_ : Tuple = self.model.config.prefix
if prefix is None and self.model.__class__.__name__ in [
"XLNetLMHeadModel",
"TransfoXLLMHeadModel",
"TFXLNetLMHeadModel",
"TFTransfoXLLMHeadModel",
]:
# For XLNet and TransformerXL we add an article to the prompt to give more state to the model.
UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX
if prefix is not None:
# Recalculate some generate_kwargs linked to prefix.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params )
UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params}
UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params}
def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict:
UpperCAmelCase_ : Union[str, Any] = {}
if prefix is not None:
UpperCAmelCase_ : List[Any] = prefix
if prefix:
UpperCAmelCase_ : Tuple = self.tokenizer(
_A , padding=_A , add_special_tokens=_A , return_tensors=self.framework )
UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1]
if handle_long_generation is not None:
if handle_long_generation not in {"hole"}:
raise ValueError(
F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected"
''' [None, \'hole\']''' )
UpperCAmelCase_ : Union[str, Any] = handle_long_generation
preprocess_params.update(_A )
UpperCAmelCase_ : Optional[int] = generate_kwargs
UpperCAmelCase_ : Tuple = {}
if return_full_text is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' )
if return_tensors is not None:
raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' )
UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
if return_tensors is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' )
UpperCAmelCase_ : List[Any] = ReturnType.TENSORS
if return_type is not None:
UpperCAmelCase_ : List[Any] = return_type
if clean_up_tokenization_spaces is not None:
UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces
if stop_sequence is not None:
UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A )
if len(_A ) > 1:
warnings.warn(
'''Stopping on a multiple token sequence is not yet supported on transformers. The first token of'''
''' the stop sequence will be used as the stop sequence string in the interim.''' )
UpperCAmelCase_ : str = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any:
# Parse arguments
if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
kwargs.update({'''add_space_before_punct_symbol''': True} )
return super()._parse_and_tokenize(*_A , **_A )
def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict:
return super().__call__(_A , **_A )
def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]:
UpperCAmelCase_ : Tuple = self.tokenizer(
prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework )
UpperCAmelCase_ : str = prompt_text
if handle_long_generation == "hole":
UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1]
if "max_new_tokens" in generate_kwargs:
UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens''']
else:
UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len
if new_tokens < 0:
raise ValueError('''We cannot infer how many new tokens are expected''' )
if cur_len + new_tokens > self.tokenizer.model_max_length:
UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens
if keep_length <= 0:
raise ValueError(
'''We cannot use `hole` to handle this generation the number of desired tokens exceeds the'''
''' models max length''' )
UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:]
if "attention_mask" in inputs:
UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:]
return inputs
def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]:
UpperCAmelCase_ : Any = model_inputs['''input_ids''']
UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A )
# Allow empty prompts
if input_ids.shape[1] == 0:
UpperCAmelCase_ : Any = None
UpperCAmelCase_ : List[Any] = None
UpperCAmelCase_ : Union[str, Any] = 1
else:
UpperCAmelCase_ : Optional[int] = input_ids.shape[0]
UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' )
# If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
# generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 )
if prefix_length > 0:
UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].max_new_tokens is not None
)
if not has_max_new_tokens:
UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A )
UpperCAmelCase_ : Any = generated_sequence.shape[0]
if self.framework == "pt":
UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] )
elif self.framework == "tf":
UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) )
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0]
UpperCAmelCase_ : int = model_outputs['''input_ids''']
UpperCAmelCase_ : str = model_outputs['''prompt_text''']
UpperCAmelCase_ : Any = generated_sequence.numpy().tolist()
UpperCAmelCase_ : int = []
for sequence in generated_sequence:
if return_type == ReturnType.TENSORS:
UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence}
elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}:
# Decode text
UpperCAmelCase_ : Any = self.tokenizer.decode(
_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , )
# Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used
if input_ids is None:
UpperCAmelCase_ : List[str] = 0
else:
UpperCAmelCase_ : str = len(
self.tokenizer.decode(
input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) )
if return_type == ReturnType.FULL_TEXT:
UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:]
else:
UpperCAmelCase_ : Dict = text[prompt_length:]
UpperCAmelCase_ : List[str] = {'''generated_text''': all_text}
records.append(_A )
return records
| 304
| 0
|
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case : Optional[Any] = False
class _snake_case ( unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE ( self ):
__magic_name__ : Dict = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
__magic_name__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" )
__magic_name__ : Union[str, Any] = torch.manual_seed(0 )
__magic_name__ : Union[str, Any] = pipe.dual_guided(
prompt="first prompt" , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_A )
__magic_name__ : Any = VersatileDiffusionPipeline.from_pretrained(_A , torch_dtype=torch.floataa )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
__magic_name__ : Any = generator.manual_seed(0 )
__magic_name__ : str = pipe.dual_guided(
prompt="first prompt" , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def SCREAMING_SNAKE_CASE ( self ):
__magic_name__ : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
__magic_name__ : List[Any] = '''cyberpunk 2077'''
__magic_name__ : str = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" )
__magic_name__ : Optional[Any] = torch.manual_seed(0 )
__magic_name__ : Optional[Any] = pipe.dual_guided(
prompt=_A , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images
__magic_name__ : List[Any] = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
__magic_name__ : Any = np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
__magic_name__ : Optional[Any] = '''A painting of a squirrel eating a burger '''
__magic_name__ : List[Any] = torch.manual_seed(0 )
__magic_name__ : Tuple = pipe.text_to_image(
prompt=_A , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images
__magic_name__ : str = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
__magic_name__ : str = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
__magic_name__ : Tuple = pipe.image_variation(_A , generator=_A , output_type="numpy" ).images
__magic_name__ : Union[str, Any] = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
__magic_name__ : Optional[Any] = np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
| 281
|
'''simple docstring'''
from __future__ import annotations
import math
def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int:
if depth < 0:
raise ValueError('''Depth cannot be less than 0''' )
if not scores:
raise ValueError('''Scores cannot be empty''' )
if depth == height:
return scores[node_index]
return (
max(
minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , )
if is_max
else min(
minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , )
)
def __UpperCAmelCase ( ) -> None:
UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 )
print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 304
| 0
|
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCamelCase : Any = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Optional[Any] = [
'MRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'MraForMaskedLM',
'MraForMultipleChoice',
'MraForQuestionAnswering',
'MraForSequenceClassification',
'MraForTokenClassification',
'MraLayer',
'MraModel',
'MraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 219
|
'''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list:
UpperCAmelCase_ : Any = []
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
UpperCAmelCase_ : List[Any] = result + left + right
return input_list
def __UpperCAmelCase ( A : list ) -> list:
if len(A ) <= 1:
return input_list
UpperCAmelCase_ : List[str] = list(A )
# iteration for two-way merging
UpperCAmelCase_ : Tuple = 2
while p <= len(A ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(A ) , A ):
UpperCAmelCase_ : Union[str, Any] = i
UpperCAmelCase_ : int = i + p - 1
UpperCAmelCase_ : Any = (low + high + 1) // 2
UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A )
# final merge of last two parts
if p * 2 >= len(A ):
UpperCAmelCase_ : str = i
UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
_UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip()
if user_input == "":
_UpperCamelCase : List[str] = []
else:
_UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')]
print(iter_merge_sort(unsorted))
| 304
| 0
|
'''simple docstring'''
from __future__ import annotations
import math
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
'''simple docstring'''
if depth < 0:
raise ValueError('''Depth cannot be less than 0''' )
if not scores:
raise ValueError('''Scores cannot be empty''' )
if depth == height:
return scores[node_index]
return (
max(
minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , )
if is_max
else min(
minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , )
)
def lowercase_ ( ) -> None:
'''simple docstring'''
lowerCamelCase_ : List[str] = [90, 23, 6, 33, 21, 65, 123, 34_423]
lowerCamelCase_ : List[Any] = math.log(len(_lowercase ) , 2 )
print(F"""Optimal value : {minimax(0 , 0 , _lowercase , _lowercase , _lowercase )}""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 318
|
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class snake_case__ :
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42 # [batch_size x 3]
a_ = 42
a_ = 42
a_ = 42
a_ = 42
a_ = 42
def A ( self : Tuple ) -> Optional[int]:
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def A ( self : List[Any] ) -> Union[str, Any]:
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def A ( self : Any ) -> Optional[Any]:
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def A ( self : Optional[int] ) -> torch.Tensor:
UpperCAmelCase_ : Dict = torch.arange(self.height * self.width )
UpperCAmelCase_ : int = torch.stack(
[
pixel_indices % self.width,
torch.div(_A , self.width , rounding_mode='''trunc''' ),
] , axis=1 , )
return coords
@property
def A ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape
UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) )
UpperCAmelCase_ : Any = self.get_image_coords()
UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A )
UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor:
UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 )
UpperCAmelCase_ : Union[str, Any] = self.resolution()
UpperCAmelCase_ : int = self.fov()
UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1
UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 )
UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 )
UpperCAmelCase_ : List[Any] = (
self.z.view(_A , 1 , 3 )
+ self.x.view(_A , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:]
)
UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A )
UpperCAmelCase_ : Union[str, Any] = torch.stack(
[
torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(_A , *_A , 2 , 3 )
def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera":
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , )
def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera:
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : Optional[int] = []
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : str = []
for theta in np.linspace(0 , 2 * np.pi , num=2_0 ):
UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
UpperCAmelCase_ : Optional[int] = -z * 4
UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] )
UpperCAmelCase_ : List[Any] = np.cross(A , A )
origins.append(A )
xs.append(A )
ys.append(A )
zs.append(A )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
| 304
| 0
|
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__: Optional[Any] = {
'configuration_trajectory_transformer': [
'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TrajectoryTransformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__: Dict = [
'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrajectoryTransformerModel',
'TrajectoryTransformerPreTrainedModel',
'load_tf_weights_in_trajectory_transformer',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
a__: str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 193
|
'''simple docstring'''
import random
class snake_case__ :
@staticmethod
def A ( _A : str ) -> tuple[list[int], list[int]]:
UpperCAmelCase_ : Dict = [ord(_A ) for i in text]
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : Any = []
for i in plain:
UpperCAmelCase_ : int = random.randint(1 , 3_00 )
UpperCAmelCase_ : str = (i + k) * k
cipher.append(_A )
key.append(_A )
return cipher, key
@staticmethod
def A ( _A : list[int] , _A : list[int] ) -> str:
UpperCAmelCase_ : Dict = []
for i in range(len(_A ) ):
UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(_A ) )
return "".join(_A )
if __name__ == "__main__":
_UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello')
print(c, k)
print(Onepad().decrypt(c, k))
| 304
| 0
|
'''simple docstring'''
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ):
lowercase : Tuple ='pixel_values'
lowercase : List[str] =False
lowercase : str =TimmBackboneConfig
def __init__( self, lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
requires_backends(self, '''timm''' )
super().__init__(_A )
lowerCamelCase_ =config
if config.backbone is None:
raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' )
if config.backbone not in timm.list_models():
raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' )
if hasattr(_A, '''out_features''' ) and config.out_features is not None:
raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' )
lowerCamelCase_ =getattr(_A, '''use_pretrained_backbone''', _A )
if pretrained is None:
raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' )
# We just take the final layer by default. This matches the default for the transformers models.
lowerCamelCase_ =config.out_indices if getattr(_A, '''out_indices''', _A ) is not None else (-1,)
lowerCamelCase_ =timm.create_model(
config.backbone, pretrained=_A, features_only=config.features_only, in_chans=config.num_channels, out_indices=_A, **_A, )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
lowerCamelCase_ =self._backbone.return_layers
lowerCamelCase_ ={layer['''module''']: str(_A ) for i, layer in enumerate(self._backbone.feature_info.info )}
super()._init_backbone(_A )
@classmethod
def lowercase__ ( cls, lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls, ['''vision''', '''timm'''] )
from ...models.timm_backbone import TimmBackboneConfig
lowerCamelCase_ =kwargs.pop('''config''', TimmBackboneConfig() )
lowerCamelCase_ =kwargs.pop('''use_timm_backbone''', _A )
if not use_timm:
raise ValueError('''use_timm_backbone must be True for timm backbones''' )
lowerCamelCase_ =kwargs.pop('''num_channels''', config.num_channels )
lowerCamelCase_ =kwargs.pop('''features_only''', config.features_only )
lowerCamelCase_ =kwargs.pop('''use_pretrained_backbone''', config.use_pretrained_backbone )
lowerCamelCase_ =kwargs.pop('''out_indices''', config.out_indices )
lowerCamelCase_ =TimmBackboneConfig(
backbone=_A, num_channels=_A, features_only=_A, use_pretrained_backbone=_A, out_indices=_A, )
return super()._from_config(_A, **_A )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
pass
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =return_dict if return_dict is not None else self.config.use_return_dict
lowerCamelCase_ =(
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCamelCase_ =output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError('''Cannot output attentions for timm backbones at the moment''' )
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
lowerCamelCase_ =self._all_layers
lowerCamelCase_ =self._backbone(_A, **_A )
lowerCamelCase_ =self._return_layers
lowerCamelCase_ =tuple(hidden_states[i] for i in self.out_indices )
else:
lowerCamelCase_ =self._backbone(_A, **_A )
lowerCamelCase_ =None
lowerCamelCase_ =tuple(_A )
lowerCamelCase_ =tuple(_A ) if hidden_states is not None else None
if not return_dict:
lowerCamelCase_ =(feature_maps,)
if output_hidden_states:
lowerCamelCase_ =output + (hidden_states,)
return output
return BackboneOutput(feature_maps=_A, hidden_states=_A, attentions=_A )
| 75
|
'''simple docstring'''
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class snake_case__ ( UpperCamelCase , unittest.TestCase):
a_ = ReformerTokenizer
a_ = ReformerTokenizerFast
a_ = True
a_ = False
a_ = True
def A ( self : Optional[Any] ) -> List[Any]:
super().setUp()
UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A )
tokenizer.save_pretrained(self.tmpdirname )
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase_ : List[Any] = '''<s>'''
UpperCAmelCase_ : int = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def A ( self : Any ) -> str:
UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(_A ) , 10_00 )
def A ( self : Optional[int] ) -> int:
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def A ( self : Optional[Any] ) -> List[Any]:
if not self.test_rust_tokenizer:
return
UpperCAmelCase_ : int = self.get_tokenizer()
UpperCAmelCase_ : Tuple = self.get_rust_tokenizer()
UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A )
UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A )
UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
UpperCAmelCase_ : Tuple = self.get_rust_tokenizer()
UpperCAmelCase_ : Dict = tokenizer.encode(_A )
UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A )
self.assertListEqual(_A , _A )
def A ( self : Tuple , _A : Dict=15 ) -> str:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A )
# Simple input
UpperCAmelCase_ : Optional[int] = '''This is a simple input'''
UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2''']
UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''')
UpperCAmelCase_ : Dict = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' )
# Simple input
self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' )
# Simple input
self.assertRaises(
_A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , )
# Pair input
self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' )
# Pair input
self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' )
# Pair input
self.assertRaises(
_A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , )
def A ( self : Union[str, Any] ) -> int:
pass
def A ( self : int ) -> Any:
UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A )
UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , )
UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A )
self.assertListEqual(
_A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def A ( self : List[str] ) -> Optional[int]:
return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' )
@slow
def A ( self : str ) -> str:
UpperCAmelCase_ : Tuple = '''Hello World!'''
UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@slow
def A ( self : List[Any] ) -> str:
UpperCAmelCase_ : Tuple = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
UpperCAmelCase_ : int = [
1_08,
2_65,
24,
1_11,
4,
2_58,
1_56,
35,
28,
2_75,
3,
2_59,
2_97,
2_60,
84,
4,
35,
1_10,
44,
8,
2_59,
91,
2_68,
21,
11,
2_09,
2_74,
1_09,
2_66,
2_77,
1_17,
86,
93,
3_15,
2_58,
2_78,
2_58,
2_77,
2_58,
0,
2_58,
2_88,
2_58,
3_19,
2_58,
0,
2_58,
0,
2_58,
0,
2_58,
0,
2_58,
2_87,
2_58,
3_15,
2_58,
2_89,
2_58,
2_78,
99,
2_69,
2_66,
2_62,
8,
2_59,
2_41,
4,
2_17,
2_30,
2_68,
2_66,
55,
1_68,
1_06,
75,
1_93,
2_66,
2_23,
27,
49,
26,
2_82,
25,
2_64,
2_99,
19,
26,
0,
2_58,
2_77,
1_17,
86,
93,
1_76,
1_83,
2_70,
11,
2_62,
42,
61,
2_65,
]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@require_torch
@slow
def A ( self : List[str] ) -> Optional[int]:
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10]
UpperCAmelCase_ : List[Any] = ''' '''.join(_A )
UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' )
UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' )
UpperCAmelCase_ : List[Any] = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape
UpperCAmelCase_ : Optional[int] = ReformerModel(_A )
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**_A )
model(**_A )
@slow
def A ( self : int ) -> Optional[Any]:
# fmt: off
UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
UpperCAmelCase_ : Optional[Any] = [
'''This is a very simple sentence.''',
'''The quick brown fox jumps over the lazy dog.''',
]
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
| 304
| 0
|
"""simple docstring"""
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class _UpperCAmelCase ( _lowerCAmelCase ):
def a ( self : Optional[int] ):
__UpperCAmelCase = SMALL_MODEL_IDENTIFIER
__UpperCAmelCase = '''pt'''
__UpperCAmelCase = '''tf'''
def a ( self : str , _lowercase : Any ):
__UpperCAmelCase = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(_A )
def a ( self : Tuple , _lowercase : Union[str, Any] ):
__UpperCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_A )
model_tf.save_pretrained(_A )
def a ( self : Dict ):
__UpperCAmelCase = '''mock_framework'''
# Framework provided - return whatever the user provides
__UpperCAmelCase = FeaturesManager.determine_framework(self.test_model , _A )
self.assertEqual(_A , _A )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_A )
__UpperCAmelCase = FeaturesManager.determine_framework(_A , _A )
self.assertEqual(_A , _A )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_A )
__UpperCAmelCase = FeaturesManager.determine_framework(_A , _A )
self.assertEqual(_A , _A )
def a ( self : str ):
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_A )
__UpperCAmelCase = FeaturesManager.determine_framework(_A )
self.assertEqual(_A , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_A )
__UpperCAmelCase = FeaturesManager.determine_framework(_A )
self.assertEqual(_A , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(_A ):
__UpperCAmelCase = FeaturesManager.determine_framework(_A )
def a ( self : int ):
__UpperCAmelCase = MagicMock(return_value=_A )
with patch('''transformers.onnx.features.is_tf_available''' , _A ):
__UpperCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_A , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
__UpperCAmelCase = MagicMock(return_value=_A )
with patch('''transformers.onnx.features.is_torch_available''' , _A ):
__UpperCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_A , self.framework_tf )
# Both in environment -> use PyTorch
__UpperCAmelCase = MagicMock(return_value=_A )
__UpperCAmelCase = MagicMock(return_value=_A )
with patch('''transformers.onnx.features.is_tf_available''' , _A ), patch(
'''transformers.onnx.features.is_torch_available''' , _A ):
__UpperCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_A , self.framework_pt )
# Both not in environment -> raise error
__UpperCAmelCase = MagicMock(return_value=_A )
__UpperCAmelCase = MagicMock(return_value=_A )
with patch('''transformers.onnx.features.is_tf_available''' , _A ), patch(
'''transformers.onnx.features.is_torch_available''' , _A ):
with self.assertRaises(_A ):
__UpperCAmelCase = FeaturesManager.determine_framework(self.test_model )
| 332
|
'''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( A : str ) -> list[int]:
return [ord(A ) - 9_6 for elem in plain]
def __UpperCAmelCase ( A : list[int] ) -> str:
return "".join(chr(elem + 9_6 ) for elem in encoded )
def __UpperCAmelCase ( ) -> None:
UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() )
print('''Encoded: ''' , A )
print('''Decoded:''' , decode(A ) )
if __name__ == "__main__":
main()
| 304
| 0
|
class lowerCamelCase__ ( lowerCamelCase__):
'''simple docstring'''
pass
class lowerCamelCase__ ( lowerCamelCase__):
'''simple docstring'''
pass
class lowerCamelCase__ :
'''simple docstring'''
def __init__(self ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ : Optional[Any] = [
[],
[],
[],
]
def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> None:
"""simple docstring"""
try:
if len(self.queues[priority] ) >= 1_00:
raise OverflowError('''Maximum queue size is 100''' )
self.queues[priority].append(_A )
except IndexError:
raise ValueError('''Valid priorities are 0, 1, and 2''' )
def lowerCAmelCase__ (self ) -> int:
"""simple docstring"""
for queue in self.queues:
if queue:
return queue.pop(0 )
raise UnderFlowError('''All queues are empty''' )
def __str__(self ) -> str:
"""simple docstring"""
return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) )
class lowerCamelCase__ :
'''simple docstring'''
def __init__(self ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ : Union[str, Any] = []
def lowerCAmelCase__ (self ,__lowerCamelCase ) -> None:
"""simple docstring"""
if len(self.queue ) == 1_00:
raise OverFlowError('''Maximum queue size is 100''' )
self.queue.append(_A )
def lowerCAmelCase__ (self ) -> int:
"""simple docstring"""
if not self.queue:
raise UnderFlowError('''The queue is empty''' )
else:
lowerCAmelCase__ : List[Any] = min(self.queue )
self.queue.remove(_A )
return data
def __str__(self ) -> str:
"""simple docstring"""
return str(self.queue )
def lowerCAmelCase__ ( ):
'''simple docstring'''
lowerCAmelCase__ : List[Any] = FixedPriorityQueue()
fpq.enqueue(0 ,10)
fpq.enqueue(1 ,70)
fpq.enqueue(0 ,100)
fpq.enqueue(2 ,1)
fpq.enqueue(2 ,5)
fpq.enqueue(1 ,7)
fpq.enqueue(2 ,4)
fpq.enqueue(1 ,64)
fpq.enqueue(0 ,128)
print(lowerCamelCase_)
print(fpq.dequeue())
print(fpq.dequeue())
print(fpq.dequeue())
print(fpq.dequeue())
print(fpq.dequeue())
print(lowerCamelCase_)
print(fpq.dequeue())
print(fpq.dequeue())
print(fpq.dequeue())
print(fpq.dequeue())
print(fpq.dequeue())
def lowerCAmelCase__ ( ):
'''simple docstring'''
lowerCAmelCase__ : Tuple = ElementPriorityQueue()
epq.enqueue(10)
epq.enqueue(70)
epq.enqueue(100)
epq.enqueue(1)
epq.enqueue(5)
epq.enqueue(7)
epq.enqueue(4)
epq.enqueue(64)
epq.enqueue(128)
print(lowerCamelCase_)
print(epq.dequeue())
print(epq.dequeue())
print(epq.dequeue())
print(epq.dequeue())
print(epq.dequeue())
print(lowerCamelCase_)
print(epq.dequeue())
print(epq.dequeue())
print(epq.dequeue())
print(epq.dequeue())
print(epq.dequeue())
if __name__ == "__main__":
fixed_priority_queue()
element_priority_queue()
| 129
|
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 304
| 0
|
def _A ( _lowercase , _lowercase ) -> bool:
"""simple docstring"""
__UpperCamelCase = len(_lowercase )
__UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__UpperCamelCase = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__UpperCamelCase = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__UpperCamelCase = subset[i - 1][j]
if arr[i - 1] <= j:
__UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 310
|
'''simple docstring'''
def __UpperCAmelCase ( A : int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
UpperCAmelCase_ : int = gray_code_sequence_string(A )
#
# convert them to integers
for i in range(len(A ) ):
UpperCAmelCase_ : List[str] = int(sequence[i] , 2 )
return sequence
def __UpperCAmelCase ( A : int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 )
UpperCAmelCase_ : int = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i]
sequence.append(A )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i]
sequence.append(A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 304
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.