code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule _UpperCamelCase : Optional[Any] = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys _UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
304
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self : Tuple , _A : Any , _A : int=3 , _A : str=32 , _A : List[Any]=3 , _A : Optional[Any]=10 , _A : Union[str, Any]=[10, 20, 30, 40] , _A : Dict=[1, 1, 2, 1] , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict="relu" , _A : int=3 , _A : List[Any]=None , ) -> Tuple: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : int = image_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Optional[int] = embeddings_size UpperCAmelCase_ : List[str] = hidden_sizes UpperCAmelCase_ : Optional[Any] = depths UpperCAmelCase_ : Any = is_training UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : List[Any] = scope UpperCAmelCase_ : int = len(_A ) def A ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : int = self.get_config() return config, pixel_values, labels def A ( self : List[Any] ) -> Tuple: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A ( self : List[Any] , _A : Dict , _A : Dict , _A : Union[str, Any] ) -> Tuple: UpperCAmelCase_ : str = TFResNetModel(config=_A ) UpperCAmelCase_ : Union[str, Any] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A ( self : str , _A : int , _A : int , _A : str ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.num_labels UpperCAmelCase_ : Tuple = TFResNetForImageClassification(_A ) UpperCAmelCase_ : Dict = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[str] ) -> Tuple: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs UpperCAmelCase_ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a_ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = TFResNetModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A ) def A ( self : Union[str, Any] ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Any ) -> Union[str, Any]: return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def A ( self : int ) -> int: pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : List[str] = [*signature.parameters.keys()] UpperCAmelCase_ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : int ) -> Union[str, Any]: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Optional[Any] ) -> int: def check_hidden_states_output(_A : Dict , _A : Union[str, Any] , _A : str ): UpperCAmelCase_ : Any = model_class(_A ) UpperCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase_ : Union[str, Any] = layer_type UpperCAmelCase_ : Union[str, Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) def A ( self : List[str] ) -> str: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def A ( self : Tuple ) -> Optional[Any]: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : int = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> Optional[int]: UpperCAmelCase_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : List[Any] ) -> int: UpperCAmelCase_ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase_ : Any = self.default_image_processor UpperCAmelCase_ : List[Any] = prepare_img() UpperCAmelCase_ : Optional[Any] = image_processor(images=_A , return_tensors='''tf''' ) # forward pass UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Optional[Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : List[str] = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _A , atol=1e-4 ) )
304
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Optional[Any] = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _UpperCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
304
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
1
'''simple docstring''' # Imports import numpy as np class snake_case__ : def __init__( self : Optional[Any] , _A : Optional[Any]=None , _A : List[str]=None , _A : Dict=None , _A : Union[str, Any]=None , _A : Optional[int]=None ) -> List[str]: self.set_matricies(red=_A , green=_A , blue=_A , red_edge=_A , nir=_A ) def A ( self : List[str] , _A : Dict=None , _A : Union[str, Any]=None , _A : Optional[int]=None , _A : Optional[int]=None , _A : Any=None ) -> Dict: if red is not None: UpperCAmelCase_ : int = red if green is not None: UpperCAmelCase_ : int = green if blue is not None: UpperCAmelCase_ : Tuple = blue if red_edge is not None: UpperCAmelCase_ : str = red_edge if nir is not None: UpperCAmelCase_ : Tuple = nir return True def A ( self : Dict , _A : Tuple="" , _A : List[str]=None , _A : str=None , _A : List[str]=None , _A : Tuple=None , _A : Union[str, Any]=None ) -> int: self.set_matricies(red=_A , green=_A , blue=_A , red_edge=_A , nir=_A ) UpperCAmelCase_ : List[str] = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def A ( self : Tuple ) -> Union[str, Any]: return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def A ( self : Union[str, Any] ) -> Any: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def A ( self : str ) -> Optional[Any]: return self.nir * (self.red / (self.green**2)) def A ( self : Dict ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def A ( self : Dict ) -> Tuple: return (self.nir - self.red) / (self.nir + self.red) def A ( self : Union[str, Any] ) -> Union[str, Any]: return (self.nir - self.blue) / (self.nir + self.blue) def A ( self : List[Any] ) -> Any: return (self.redEdge - self.red) / (self.redEdge + self.red) def A ( self : int ) -> List[Any]: return (self.nir - self.green) / (self.nir + self.green) def A ( self : int ) -> int: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def A ( self : Tuple ) -> Union[str, Any]: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def A ( self : Any ) -> List[Any]: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def A ( self : Dict ) -> Dict: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def A ( self : int , _A : Tuple=0.08 , _A : str=1.22 , _A : List[Any]=0.03 ) -> str: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def A ( self : Tuple ) -> Tuple: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def A ( self : Optional[int] ) -> List[str]: return (self.nir / self.green) - 1 def A ( self : Tuple ) -> str: return (self.nir / self.redEdge) - 1 def A ( self : List[str] ) -> List[str]: return (self.red - self.blue) / self.red def A ( self : Dict ) -> Any: UpperCAmelCase_ : List[str] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def A ( self : int ) -> Optional[Any]: return self.nir - self.green def A ( self : int ) -> List[str]: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : Any = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def A ( self : Optional[Any] , _A : int=0.16 ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green + y) def A ( self : List[Any] , _A : List[Any]=0.5 ) -> int: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def A ( self : str ) -> int: return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def A ( self : Union[str, Any] , _A : Tuple=None , _A : str=None ) -> Optional[int]: return (self.nir - b) / (a * self.red) def A ( self : List[Any] ) -> List[Any]: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def A ( self : List[str] ) -> int: return (self.red + self.green + self.blue) / 30.5 def A ( self : List[Any] ) -> Optional[int]: return self.nir / self.red def A ( self : Tuple ) -> int: return (self.rvi() - 1) / (self.rvi() + 1) def A ( self : str ) -> List[str]: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def A ( self : Optional[int] ) -> Optional[Any]: return self.green / (self.nir + self.red + self.green) def A ( self : Any ) -> List[str]: return self.nir / (self.nir + self.red + self.green) def A ( self : List[str] ) -> List[Any]: return self.red / (self.nir + self.red + self.green) def A ( self : Any ) -> Any: return (self.green - self.red) / (self.green + self.red) def A ( self : List[Any] ) -> str: return (self.red - self.green) / (self.red + self.green) def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Dict = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCAmelCase_ : Any = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def A ( self : int ) -> Dict: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def A ( self : List[Any] ) -> Tuple: return self.nir / self.red def A ( self : Optional[Any] ) -> Any: return (self.ndvi() + 0.5) ** (1 / 2) def A ( self : Any ) -> List[str]: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
304
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
1
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _UpperCamelCase : int = get_logger(__name__) def __UpperCAmelCase ( A : Tuple , A : Optional[int] , A : Dict , A : Dict , A : str=0 ) -> List[str]: os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase_ : List[str] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase_ : List[Any] = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" UpperCAmelCase_ : Optional[Any] = os.path.join(A , A ) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}" ) torch.save(A , A ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase_ : str = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) UpperCAmelCase_ : str = os.path.join(A , A ) logger.info(F"Saving model to {output_model_file}" ) torch.save(A , A ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase_ : Tuple = os.path.join(A , F"{MODEL_NAME}_{model_index}" ) os.makedirs(A , exist_ok=A ) logger.info(F"Saving model to {ckpt_dir}" ) UpperCAmelCase_ : str = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=A , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(F"Model saved to {ckpt_dir}" ) def __UpperCAmelCase ( A : Any , A : int , A : str , A : Dict , A : Dict=0 ) -> Tuple: accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return UpperCAmelCase_ : Optional[int] = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" UpperCAmelCase_ : str = os.path.join(A , A ) logger.info(F"Loading model from {input_model_file}" ) UpperCAmelCase_ : Union[str, Any] = torch.load(A ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase_ : List[Any] = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) UpperCAmelCase_ : int = os.path.join(A , A ) logger.info(F"Loading model from {input_model_file}" ) UpperCAmelCase_ : Optional[Any] = torch.load(A ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase_ : Optional[int] = ( os.path.join(A , F"{MODEL_NAME}_{model_index}" ) if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}" ) UpperCAmelCase_ : str = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=A , storage_reader=dist_cp.FileSystemReader(A ) , planner=DefaultLoadPlanner() , ) UpperCAmelCase_ : str = state_dict['''model'''] logger.info(F"Model loaded from {ckpt_dir}" ) model.load_state_dict(A ) def __UpperCAmelCase ( A : str , A : Tuple , A : Optional[int] , A : List[str] , A : Optional[int] , A : List[Any]=0 ) -> int: os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase_ : Any = FSDP.optim_state_dict(A , A ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCAmelCase_ : Optional[Any] = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) UpperCAmelCase_ : Tuple = os.path.join(A , A ) logger.info(F"Saving Optimizer state to {output_optimizer_file}" ) torch.save(A , A ) logger.info(F"Optimizer state saved in {output_optimizer_file}" ) else: UpperCAmelCase_ : Union[str, Any] = os.path.join(A , F"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(A , exist_ok=A ) logger.info(F"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(F"Optimizer state saved in {ckpt_dir}" ) def __UpperCAmelCase ( A : Dict , A : List[Any] , A : str , A : List[Any] , A : Optional[int] , A : Union[str, Any]=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase_ : Optional[int] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCAmelCase_ : List[Any] = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) UpperCAmelCase_ : Optional[Any] = os.path.join(A , A ) logger.info(F"Loading Optimizer state from {input_optimizer_file}" ) UpperCAmelCase_ : List[Any] = torch.load(A ) logger.info(F"Optimizer state loaded from {input_optimizer_file}" ) else: UpperCAmelCase_ : str = ( os.path.join(A , F"{OPTIMIZER_NAME}_{optimizer_index}" ) if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}" ) UpperCAmelCase_ : List[Any] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(A ) , ) UpperCAmelCase_ : Dict = optim_state['''optimizer'''] logger.info(F"Optimizer loaded from {ckpt_dir}" ) UpperCAmelCase_ : Tuple = FSDP.optim_state_dict_to_load(A , A , A ) optimizer.load_state_dict(A )
304
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
1
'''simple docstring''' import unittest from transformers import DonutProcessor _UpperCamelCase : Tuple = 'naver-clova-ix/donut-base' class snake_case__ ( unittest.TestCase): def A ( self : str ) -> Dict: UpperCAmelCase_ : str = DonutProcessor.from_pretrained(_A ) def A ( self : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Dict = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } UpperCAmelCase_ : Optional[int] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) UpperCAmelCase_ : int = self.processor.tokenajson(_A ) self.assertDictEqual(_A , _A )
304
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
1
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def __UpperCAmelCase ( A : Dict , A : Any ) -> Tuple: UpperCAmelCase_ : List[Any] = k_size // 2 UpperCAmelCase_ , UpperCAmelCase_ : Any = mgrid[0 - center : k_size - center, 0 - center : k_size - center] UpperCAmelCase_ : str = 1 / (2 * pi * sigma) * exp(-(square(A ) + square(A )) / (2 * square(A )) ) return g def __UpperCAmelCase ( A : Optional[int] , A : Tuple , A : List[str] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[0], image.shape[1] # dst image height and width UpperCAmelCase_ : int = height - k_size + 1 UpperCAmelCase_ : Tuple = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows UpperCAmelCase_ : Optional[int] = zeros((dst_height * dst_width, k_size * k_size) ) UpperCAmelCase_ : Tuple = 0 for i, j in product(range(A ) , range(A ) ): UpperCAmelCase_ : List[Any] = ravel(image[i : i + k_size, j : j + k_size] ) UpperCAmelCase_ : int = window row += 1 # turn the kernel into shape(k*k, 1) UpperCAmelCase_ : Union[str, Any] = gen_gaussian_kernel(A , A ) UpperCAmelCase_ : Optional[int] = ravel(A ) # reshape and get the dst image UpperCAmelCase_ : Optional[Any] = dot(A , A ).reshape(A , A ).astype(A ) return dst if __name__ == "__main__": # read original image _UpperCamelCase : Any = imread(R'../image_data/lena.jpg') # turn image in gray scale value _UpperCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _UpperCamelCase : Optional[Any] = gaussian_filter(gray, 3, sigma=1) _UpperCamelCase : List[str] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('gaussian filter with 3x3 mask', gaussianaxa) imshow('gaussian filter with 5x5 mask', gaussianaxa) waitKey()
304
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
1
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class snake_case__ ( tf.keras.layers.Layer): def __init__( self : Dict , _A : Dict , _A : str , _A : Optional[int] , _A : Union[str, Any] , _A : Optional[Any]=1 , _A : Any=False , **_A : Optional[Any] ) -> Any: super().__init__(**_A ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : List[Any] = d_embed UpperCAmelCase_ : Any = d_proj UpperCAmelCase_ : Tuple = cutoffs + [vocab_size] UpperCAmelCase_ : List[Any] = [0] + self.cutoffs UpperCAmelCase_ : Dict = div_val UpperCAmelCase_ : Any = self.cutoffs[0] UpperCAmelCase_ : Optional[int] = len(self.cutoffs ) - 1 UpperCAmelCase_ : Any = self.shortlist_size + self.n_clusters UpperCAmelCase_ : Union[str, Any] = keep_order UpperCAmelCase_ : Any = [] UpperCAmelCase_ : List[Any] = [] def A ( self : str , _A : str ) -> Union[str, Any]: if self.n_clusters > 0: UpperCAmelCase_ : str = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=_A , name='''cluster_weight''' ) UpperCAmelCase_ : Tuple = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=_A , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: UpperCAmelCase_ : Any = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=_A , name=F"out_projs_._{i}" , ) self.out_projs.append(_A ) else: self.out_projs.append(_A ) UpperCAmelCase_ : Any = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=_A , name=F"out_layers_._{i}_._weight" , ) UpperCAmelCase_ : Optional[int] = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=_A , name=F"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase_ : Optional[Any] = self.d_embed // (self.div_val**i) UpperCAmelCase_ : Optional[Any] = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=_A , name=F"out_projs_._{i}" ) self.out_projs.append(_A ) UpperCAmelCase_ : int = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=_A , name=F"out_layers_._{i}_._weight" , ) UpperCAmelCase_ : str = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=_A , name=F"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) super().build(_A ) @staticmethod def A ( _A : List[Any] , _A : Optional[int] , _A : List[Any] , _A : Union[str, Any]=None ) -> int: UpperCAmelCase_ : Optional[int] = x if proj is not None: UpperCAmelCase_ : Dict = tf.einsum('''ibd,ed->ibe''' , _A , _A ) return tf.einsum('''ibd,nd->ibn''' , _A , _A ) + b @staticmethod def A ( _A : Union[str, Any] , _A : Union[str, Any] ) -> Any: UpperCAmelCase_ : Optional[Any] = shape_list(_A ) UpperCAmelCase_ : Optional[int] = tf.range(lp_size[0] , dtype=target.dtype ) UpperCAmelCase_ : Tuple = tf.stack([r, target] , 1 ) return tf.gather_nd(_A , _A ) def A ( self : int , _A : Optional[Any] , _A : Union[str, Any] , _A : Any=True , _A : Optional[Any]=False ) -> List[Any]: UpperCAmelCase_ : str = 0 if self.n_clusters == 0: UpperCAmelCase_ : Any = self._logit(_A , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: UpperCAmelCase_ : Tuple = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_A , logits=_A ) UpperCAmelCase_ : Any = tf.nn.log_softmax(_A , axis=-1 ) else: UpperCAmelCase_ : Tuple = shape_list(_A ) UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Dict = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: UpperCAmelCase_ : Optional[Any] = (target >= l_idx) & (target < r_idx) UpperCAmelCase_ : List[str] = tf.where(_A ) UpperCAmelCase_ : int = tf.boolean_mask(_A , _A ) - l_idx if self.div_val == 1: UpperCAmelCase_ : Union[str, Any] = self.out_layers[0][0][l_idx:r_idx] UpperCAmelCase_ : Optional[Any] = self.out_layers[0][1][l_idx:r_idx] else: UpperCAmelCase_ : Union[str, Any] = self.out_layers[i][0] UpperCAmelCase_ : int = self.out_layers[i][1] if i == 0: UpperCAmelCase_ : Optional[int] = tf.concat([cur_W, self.cluster_weight] , 0 ) UpperCAmelCase_ : Optional[Any] = tf.concat([cur_b, self.cluster_bias] , 0 ) UpperCAmelCase_ : List[str] = self._logit(_A , _A , _A , self.out_projs[0] ) UpperCAmelCase_ : Union[str, Any] = tf.nn.log_softmax(_A ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: UpperCAmelCase_ : Any = tf.boolean_mask(_A , _A ) UpperCAmelCase_ : List[str] = self._gather_logprob(_A , _A ) else: UpperCAmelCase_ : Any = self._logit(_A , _A , _A , self.out_projs[i] ) UpperCAmelCase_ : Union[str, Any] = tf.nn.log_softmax(_A ) UpperCAmelCase_ : Union[str, Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster UpperCAmelCase_ : Tuple = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_A ) if target is not None: UpperCAmelCase_ : List[Any] = tf.boolean_mask(_A , _A ) UpperCAmelCase_ : Any = tf.boolean_mask(_A , _A ) UpperCAmelCase_ : Tuple = self._gather_logprob(_A , _A ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_A , -cur_logprob , shape_list(_A ) ) UpperCAmelCase_ : int = tf.concat(_A , axis=-1 ) if target is not None: if return_mean: UpperCAmelCase_ : Optional[Any] = tf.reduce_mean(_A ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_A ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_A , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
304
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _UpperCamelCase : Optional[int] = logging.get_logger(__name__) class snake_case__ ( UpperCamelCase): def __init__( self : List[str] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> None: warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
304
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _UpperCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class snake_case__ ( datasets.BuilderConfig): a_ = 10000 a_ = None a_ = None class snake_case__ ( datasets.ArrowBasedBuilder): a_ = ParquetConfig def A ( self : str ) -> str: return datasets.DatasetInfo(features=self.config.features ) def A ( self : Optional[Any] , _A : Dict ) -> Optional[int]: if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) UpperCAmelCase_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A , (str, list, tuple) ): UpperCAmelCase_ : Any = data_files if isinstance(_A , _A ): UpperCAmelCase_ : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase_ : Optional[int] = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] UpperCAmelCase_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_A , _A ): UpperCAmelCase_ : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase_ : Any = [dl_manager.iter_files(_A ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_A ): with open(_A , '''rb''' ) as f: UpperCAmelCase_ : Optional[int] = datasets.Features.from_arrow_schema(pq.read_schema(_A ) ) break splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'''files''': files} ) ) return splits def A ( self : Optional[Any] , _A : pa.Table ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase_ : str = table_cast(_A , self.info.features.arrow_schema ) return pa_table def A ( self : Optional[int] , _A : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(_A ) ): with open(_A , '''rb''' ) as f: UpperCAmelCase_ : List[Any] = pq.ParquetFile(_A ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): UpperCAmelCase_ : str = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"{file_idx}_{batch_idx}", self._cast_table(_A ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(_A )}: {e}" ) raise
304
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
1
'''simple docstring''' from collections import defaultdict class snake_case__ : def __init__( self : str , _A : Dict , _A : int ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCAmelCase_ : Union[str, Any] = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(_A ) ) ] UpperCAmelCase_ : Optional[Any] = defaultdict(_A ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCAmelCase_ : Optional[int] = (1 << len(_A )) - 1 def A ( self : Any , _A : int , _A : List[str] ) -> Tuple: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCAmelCase_ : Tuple = self.count_ways_until(_A , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. UpperCAmelCase_ : List[Any] = total_ways_util return self.dp[mask][task_no] def A ( self : Dict , _A : Tuple ) -> List[str]: # Store the list of persons for each task for i in range(len(_A ) ): for j in task_performed[i]: self.task[j].append(_A ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": _UpperCamelCase : Dict = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _UpperCamelCase : Union[str, Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
304
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
1
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = PriorTransformer a_ = "hidden_states" @property def A ( self : List[str] ) -> List[str]: UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Union[str, Any] = 8 UpperCAmelCase_ : Optional[int] = 7 UpperCAmelCase_ : List[Any] = floats_tensor((batch_size, embedding_dim) ).to(_A ) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, embedding_dim) ).to(_A ) UpperCAmelCase_ : Tuple = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def A ( self : List[Any] , _A : Optional[int]=0 ) -> str: torch.manual_seed(_A ) UpperCAmelCase_ : List[Any] = 4 UpperCAmelCase_ : Optional[int] = 8 UpperCAmelCase_ : Optional[int] = 7 UpperCAmelCase_ : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(_A ) UpperCAmelCase_ : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(_A ) UpperCAmelCase_ : Any = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def A ( self : Optional[Any] ) -> Tuple: return (4, 8) @property def A ( self : Optional[Any] ) -> Tuple: return (4, 8) def A ( self : Dict ) -> Dict: UpperCAmelCase_ : str = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } UpperCAmelCase_ : int = self.dummy_input return init_dict, inputs_dict def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase_ : Optional[Any] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def A ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : Optional[Any] = self.model_class(**_A ) UpperCAmelCase_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : int = [*signature.parameters.keys()] UpperCAmelCase_ : Tuple = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] , _A ) def A ( self : str ) -> str: UpperCAmelCase_ : Union[str, Any] = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) UpperCAmelCase_ : List[Any] = model.to(_A ) if hasattr(_A , '''set_default_attn_processor''' ): model.set_default_attn_processor() UpperCAmelCase_ : Optional[int] = self.get_dummy_seed_input() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**_A )[0] UpperCAmelCase_ : Any = output[0, :5].flatten().cpu() print(_A ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. UpperCAmelCase_ : Dict = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) @slow class snake_case__ ( unittest.TestCase): def A ( self : List[str] , _A : List[str]=1 , _A : int=7_68 , _A : Tuple=77 , _A : Optional[Any]=0 ) -> int: torch.manual_seed(_A ) UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : Optional[int] = embedding_dim UpperCAmelCase_ : Union[str, Any] = num_embeddings UpperCAmelCase_ : Tuple = torch.randn((batch_size, embedding_dim) ).to(_A ) UpperCAmelCase_ : List[Any] = torch.randn((batch_size, embedding_dim) ).to(_A ) UpperCAmelCase_ : int = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def A ( self : Optional[Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def A ( self : Tuple , _A : Any , _A : List[str] ) -> Tuple: UpperCAmelCase_ : List[str] = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' , subfolder='''prior''' ) model.to(_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_seed_input(seed=_A ) with torch.no_grad(): UpperCAmelCase_ : Tuple = model(**_A )[0] assert list(sample.shape ) == [1, 7_68] UpperCAmelCase_ : Optional[int] = sample[0, :8].flatten().cpu() print(_A ) UpperCAmelCase_ : str = torch.tensor(_A ) assert torch_all_close(_A , _A , atol=1e-3 )
304
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Tuple = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[Any] = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _UpperCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
304
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _UpperCamelCase : Optional[Any] = False class snake_case__ ( unittest.TestCase): pass @nightly @require_torch_gpu class snake_case__ ( unittest.TestCase): def A ( self : str ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Dict = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided( prompt='''first prompt''' , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = VersatileDiffusionPipeline.from_pretrained(_A , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Any = generator.manual_seed(0 ) UpperCAmelCase_ : str = pipe.dual_guided( prompt='''first prompt''' , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Any ) -> Dict: UpperCAmelCase_ : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : List[Any] = '''cyberpunk 2077''' UpperCAmelCase_ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe.dual_guided( prompt=_A , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCAmelCase_ : List[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Any = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCAmelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger ''' UpperCAmelCase_ : List[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = pipe.text_to_image( prompt=_A , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images UpperCAmelCase_ : str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : str = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCAmelCase_ : Tuple = pipe.image_variation(_A , generator=_A , output_type='''numpy''' ).images UpperCAmelCase_ : Union[str, Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
304
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1 UpperCAmelCase_ : Dict = [] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator if len(str(A ) ) > len(str(A ) ): result.append(A ) UpperCAmelCase_ : Optional[Any] = numerator UpperCAmelCase_ : Optional[int] = denominator return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
304
1
'''simple docstring''' from collections import deque from .hash_table import HashTable class snake_case__ ( UpperCamelCase): def __init__( self : List[Any] , *_A : Any , **_A : List[str] ) -> str: super().__init__(*_A , **_A ) def A ( self : List[str] , _A : Any , _A : Any ) -> int: UpperCAmelCase_ : Union[str, Any] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_A ) UpperCAmelCase_ : Union[str, Any] = self.values[key] def A ( self : int ) -> Union[str, Any]: return ( sum(self.charge_factor - len(_A ) for slot in self.values ) / self.size_table * self.charge_factor ) def A ( self : Optional[Any] , _A : Union[str, Any] , _A : Optional[Any]=None ) -> int: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_A ) == 0 ): return key return super()._collision_resolution(_A , _A )
304
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Tuple = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
304
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class snake_case__ ( UpperCamelCase): def __get__( self : int , _A : int , _A : Dict=None ) -> Optional[int]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase_ : Optional[Any] = '''__cached_''' + self.fget.__name__ UpperCAmelCase_ : Dict = getattr(_A , _A , _A ) if cached is None: UpperCAmelCase_ : Optional[Any] = self.fget(_A ) setattr(_A , _A , _A ) return cached def __UpperCAmelCase ( A : str ) -> Tuple: UpperCAmelCase_ : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"invalid truth value {val!r}" ) def __UpperCAmelCase ( A : List[Any] ) -> Union[str, Any]: if is_torch_fx_proxy(A ): return True if is_torch_available(): import torch if isinstance(A , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(A , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(A , (jnp.ndarray, Tracer) ): return True return isinstance(A , np.ndarray ) def __UpperCAmelCase ( A : Union[str, Any] ) -> str: return isinstance(A , np.ndarray ) def __UpperCAmelCase ( A : Dict ) -> int: return _is_numpy(A ) def __UpperCAmelCase ( A : str ) -> Optional[Any]: import torch return isinstance(A , torch.Tensor ) def __UpperCAmelCase ( A : Tuple ) -> Tuple: return False if not is_torch_available() else _is_torch(A ) def __UpperCAmelCase ( A : List[Any] ) -> Union[str, Any]: import torch return isinstance(A , torch.device ) def __UpperCAmelCase ( A : Any ) -> Dict: return False if not is_torch_available() else _is_torch_device(A ) def __UpperCAmelCase ( A : Union[str, Any] ) -> List[Any]: import torch if isinstance(A , A ): if hasattr(A , A ): UpperCAmelCase_ : Optional[Any] = getattr(A , A ) else: return False return isinstance(A , torch.dtype ) def __UpperCAmelCase ( A : List[Any] ) -> Optional[int]: return False if not is_torch_available() else _is_torch_dtype(A ) def __UpperCAmelCase ( A : int ) -> Tuple: import tensorflow as tf return isinstance(A , tf.Tensor ) def __UpperCAmelCase ( A : Dict ) -> Optional[Any]: return False if not is_tf_available() else _is_tensorflow(A ) def __UpperCAmelCase ( A : int ) -> Optional[Any]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(A , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(A ) return type(A ) == tf.Tensor def __UpperCAmelCase ( A : Optional[int] ) -> Dict: return False if not is_tf_available() else _is_tf_symbolic_tensor(A ) def __UpperCAmelCase ( A : Dict ) -> Optional[Any]: import jax.numpy as jnp # noqa: F811 return isinstance(A , jnp.ndarray ) def __UpperCAmelCase ( A : Dict ) -> Optional[int]: return False if not is_flax_available() else _is_jax(A ) def __UpperCAmelCase ( A : Optional[int] ) -> List[str]: if isinstance(A , (dict, UserDict) ): return {k: to_py_obj(A ) for k, v in obj.items()} elif isinstance(A , (list, tuple) ): return [to_py_obj(A ) for o in obj] elif is_tf_tensor(A ): return obj.numpy().tolist() elif is_torch_tensor(A ): return obj.detach().cpu().tolist() elif is_jax_tensor(A ): return np.asarray(A ).tolist() elif isinstance(A , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __UpperCAmelCase ( A : Optional[int] ) -> Dict: if isinstance(A , (dict, UserDict) ): return {k: to_numpy(A ) for k, v in obj.items()} elif isinstance(A , (list, tuple) ): return np.array(A ) elif is_tf_tensor(A ): return obj.numpy() elif is_torch_tensor(A ): return obj.detach().cpu().numpy() elif is_jax_tensor(A ): return np.asarray(A ) else: return obj class snake_case__ ( UpperCamelCase): def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = fields(self ) # Safety and consistency checks if not len(_A ): raise ValueError(F"{self.__class__.__name__} has no fields." ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"{self.__class__.__name__} should not have more than one required field." ) UpperCAmelCase_ : Tuple = getattr(self , class_fields[0].name ) UpperCAmelCase_ : int = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_A ): if isinstance(_A , _A ): UpperCAmelCase_ : Optional[Any] = first_field.items() UpperCAmelCase_ : Union[str, Any] = True else: try: UpperCAmelCase_ : Optional[Any] = iter(_A ) UpperCAmelCase_ : Dict = True except TypeError: UpperCAmelCase_ : Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_A ): if ( not isinstance(_A , (list, tuple) ) or not len(_A ) == 2 or not isinstance(element[0] , _A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase_ : List[Any] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self , element[0] , element[1] ) if element[1] is not None: UpperCAmelCase_ : Union[str, Any] = element[1] elif first_field is not None: UpperCAmelCase_ : Any = first_field else: for field in class_fields: UpperCAmelCase_ : Dict = getattr(self , field.name ) if v is not None: UpperCAmelCase_ : Any = v def __delitem__( self : List[Any] , *_A : Tuple , **_A : int ) -> Union[str, Any]: raise Exception(F"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." ) def A ( self : str , *_A : Dict , **_A : Dict ) -> str: raise Exception(F"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." ) def A ( self : List[Any] , *_A : Any , **_A : List[str] ) -> List[str]: raise Exception(F"You cannot use ``pop`` on a {self.__class__.__name__} instance." ) def A ( self : Dict , *_A : List[Any] , **_A : List[str] ) -> Optional[int]: raise Exception(F"You cannot use ``update`` on a {self.__class__.__name__} instance." ) def __getitem__( self : Optional[Any] , _A : str ) -> Optional[Any]: if isinstance(_A , _A ): UpperCAmelCase_ : List[str] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Tuple , _A : List[str] , _A : str ) -> Optional[Any]: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_A , _A ) super().__setattr__(_A , _A ) def __setitem__( self : Tuple , _A : Tuple , _A : Optional[int] ) -> List[str]: # Will raise a KeyException if needed super().__setitem__(_A , _A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_A , _A ) def A ( self : Dict ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class snake_case__ ( UpperCamelCase , UpperCamelCase): @classmethod def A ( cls : List[str] , _A : int ) -> str: raise ValueError( F"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" ) class snake_case__ ( UpperCamelCase): a_ = "longest" a_ = "max_length" a_ = "do_not_pad" class snake_case__ ( UpperCamelCase): a_ = "pt" a_ = "tf" a_ = "np" a_ = "jax" class snake_case__ : def __init__( self : List[Any] , _A : List[ContextManager] ) -> Any: UpperCAmelCase_ : Tuple = context_managers UpperCAmelCase_ : str = ExitStack() def __enter__( self : str ) -> Union[str, Any]: for context_manager in self.context_managers: self.stack.enter_context(_A ) def __exit__( self : Optional[int] , *_A : Tuple , **_A : Optional[Any] ) -> Optional[Any]: self.stack.__exit__(*_A , **_A ) def __UpperCAmelCase ( A : int ) -> Optional[int]: UpperCAmelCase_ : List[str] = infer_framework(A ) if framework == "tf": UpperCAmelCase_ : List[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase_ : List[str] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase_ : Optional[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __UpperCAmelCase ( A : List[str] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = model_class.__name__ UpperCAmelCase_ : Tuple = infer_framework(A ) if framework == "tf": UpperCAmelCase_ : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase_ : str = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase_ : List[str] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __UpperCAmelCase ( A : MutableMapping , A : str = "" , A : str = "." ) -> List[Any]: def _flatten_dict(A : Optional[int] , A : Optional[Any]="" , A : str="." ): for k, v in d.items(): UpperCAmelCase_ : List[str] = str(A ) + delimiter + str(A ) if parent_key else k if v and isinstance(A , A ): yield from flatten_dict(A , A , delimiter=A ).items() else: yield key, v return dict(_flatten_dict(A , A , A ) ) @contextmanager def __UpperCAmelCase ( A : Optional[int] , A : bool = False ) -> List[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __UpperCAmelCase ( A : Tuple , A : Optional[int]=None ) -> Optional[Any]: if is_numpy_array(A ): return np.transpose(A , axes=A ) elif is_torch_tensor(A ): return array.T if axes is None else array.permute(*A ) elif is_tf_tensor(A ): import tensorflow as tf return tf.transpose(A , perm=A ) elif is_jax_tensor(A ): return jnp.transpose(A , axes=A ) else: raise ValueError(F"Type not supported for transpose: {type(A )}." ) def __UpperCAmelCase ( A : Tuple , A : Optional[int] ) -> Any: if is_numpy_array(A ): return np.reshape(A , A ) elif is_torch_tensor(A ): return array.reshape(*A ) elif is_tf_tensor(A ): import tensorflow as tf return tf.reshape(A , A ) elif is_jax_tensor(A ): return jnp.reshape(A , A ) else: raise ValueError(F"Type not supported for reshape: {type(A )}." ) def __UpperCAmelCase ( A : Any , A : Tuple=None ) -> Any: if is_numpy_array(A ): return np.squeeze(A , axis=A ) elif is_torch_tensor(A ): return array.squeeze() if axis is None else array.squeeze(dim=A ) elif is_tf_tensor(A ): import tensorflow as tf return tf.squeeze(A , axis=A ) elif is_jax_tensor(A ): return jnp.squeeze(A , axis=A ) else: raise ValueError(F"Type not supported for squeeze: {type(A )}." ) def __UpperCAmelCase ( A : str , A : Tuple ) -> List[str]: if is_numpy_array(A ): return np.expand_dims(A , A ) elif is_torch_tensor(A ): return array.unsqueeze(dim=A ) elif is_tf_tensor(A ): import tensorflow as tf return tf.expand_dims(A , axis=A ) elif is_jax_tensor(A ): return jnp.expand_dims(A , axis=A ) else: raise ValueError(F"Type not supported for expand_dims: {type(A )}." ) def __UpperCAmelCase ( A : Optional[int] ) -> List[str]: if is_numpy_array(A ): return np.size(A ) elif is_torch_tensor(A ): return array.numel() elif is_tf_tensor(A ): import tensorflow as tf return tf.size(A ) elif is_jax_tensor(A ): return array.size else: raise ValueError(F"Type not supported for expand_dims: {type(A )}." ) def __UpperCAmelCase ( A : Union[str, Any] , A : Union[str, Any] ) -> Optional[int]: for key, value in auto_map.items(): if isinstance(A , (tuple, list) ): UpperCAmelCase_ : Dict = [F"{repo_id}--{v}" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase_ : Dict = F"{repo_id}--{value}" return auto_map def __UpperCAmelCase ( A : Any ) -> Optional[Any]: for base_class in inspect.getmro(A ): UpperCAmelCase_ : int = base_class.__module__ UpperCAmelCase_ : Optional[int] = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"Could not infer framework from class {model_class}." )
304
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
1
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _UpperCamelCase : List[str] = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def __UpperCAmelCase ( A : str = "dhaka" , A : int = 5 ) -> int: UpperCAmelCase_ : Union[str, Any] = min(A , 5_0 ) # Prevent abuse! UpperCAmelCase_ : List[Any] = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } UpperCAmelCase_ : Tuple = requests.get('''https://www.google.com/search''' , params=A , headers=A ) UpperCAmelCase_ : Dict = BeautifulSoup(html.text , '''html.parser''' ) UpperCAmelCase_ : List[str] = ''''''.join( re.findall(r'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) UpperCAmelCase_ : Optional[int] = json.dumps(A ) UpperCAmelCase_ : Optional[Any] = json.loads(A ) UpperCAmelCase_ : int = re.findall( r'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , A , ) if not matched_google_image_data: return 0 UpperCAmelCase_ : int = re.sub( r'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(A ) , ) UpperCAmelCase_ : Optional[Any] = re.findall( r'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , A , ) for index, fixed_full_res_image in enumerate(A ): if index >= max_images: return index UpperCAmelCase_ : Optional[Any] = bytes(A , '''ascii''' ).decode( '''unicode-escape''' ) UpperCAmelCase_ : Optional[int] = bytes(A , '''ascii''' ).decode( '''unicode-escape''' ) UpperCAmelCase_ : Dict = urllib.request.build_opener() UpperCAmelCase_ : int = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(A ) UpperCAmelCase_ : Tuple = F"query_{query.replace(' ' , '_' )}" if not os.path.exists(A ): os.makedirs(A ) urllib.request.urlretrieve( # noqa: S310 A , F"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: _UpperCamelCase : Tuple = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
304
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
1
'''simple docstring''' from typing import List import numpy as np def __UpperCAmelCase ( A : dict ) -> int: UpperCAmelCase_ : Any = {key: len(A ) for key, value in gen_kwargs.items() if isinstance(A , A )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F"\t- key {key} has length {length}" for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) UpperCAmelCase_ : Any = max(lists_lengths.values() , default=0 ) return max(1 , A ) def __UpperCAmelCase ( A : int , A : int ) -> List[range]: UpperCAmelCase_ : str = [] for group_idx in range(A ): UpperCAmelCase_ : List[str] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break UpperCAmelCase_ : int = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 UpperCAmelCase_ : Any = range(A , start + num_shards_to_add ) shards_indices_per_group.append(A ) return shards_indices_per_group def __UpperCAmelCase ( A : dict , A : int ) -> List[dict]: UpperCAmelCase_ : Optional[int] = _number_of_shards_in_gen_kwargs(A ) if num_shards == 1: return [dict(A )] else: UpperCAmelCase_ : List[str] = _distribute_shards(num_shards=A , max_num_jobs=A ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(A , A ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(A ) ) ] def __UpperCAmelCase ( A : List[dict] ) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , A ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __UpperCAmelCase ( A : np.random.Generator , A : dict ) -> dict: UpperCAmelCase_ : Union[str, Any] = {len(A ) for value in gen_kwargs.values() if isinstance(A , A )} UpperCAmelCase_ : Dict = {} for size in list_sizes: UpperCAmelCase_ : Tuple = list(range(A ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes UpperCAmelCase_ : str = dict(A ) for key, value in shuffled_kwargs.items(): if isinstance(A , A ): UpperCAmelCase_ : List[str] = [value[i] for i in indices_per_size[len(A )]] return shuffled_kwargs
304
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
1
'''simple docstring''' import os def __UpperCAmelCase ( ) -> Union[str, Any]: with open(os.path.dirname(A ) + '''/p022_names.txt''' ) as file: UpperCAmelCase_ : Dict = str(file.readlines()[0] ) UpperCAmelCase_ : Any = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Tuple = 0 for i, name in enumerate(A ): for letter in name: name_score += ord(A ) - 6_4 total_score += (i + 1) * name_score UpperCAmelCase_ : Union[str, Any] = 0 return total_score if __name__ == "__main__": print(solution())
304
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Optional[Any] = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
304
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ReformerTokenizer a_ = ReformerTokenizerFast a_ = True a_ = False a_ = True def A ( self : Optional[Any] ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = '''<s>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 10_00 ) def A ( self : Optional[int] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(_A ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def A ( self : Tuple , _A : Dict=15 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Dict = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def A ( self : Union[str, Any] ) -> int: pass def A ( self : int ) -> Any: UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A ) UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : List[str] ) -> Optional[int]: return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : Tuple = '''Hello World!''' UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def A ( self : List[Any] ) -> str: UpperCAmelCase_ : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase_ : int = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def A ( self : List[str] ) -> Optional[int]: import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ : List[Any] = ''' '''.join(_A ) UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' ) UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape UpperCAmelCase_ : Optional[int] = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def A ( self : int ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ : Optional[Any] = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
304
1
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCamelCase : Union[str, Any] = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __UpperCAmelCase ( A : Tuple , A : List[Any] , A : Any=8 ) -> Optional[Any]: UpperCAmelCase_ : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class snake_case__ ( UpperCamelCase): def __init__( self : List[Any] , _A : UNetaDConditionModel , _A : DDPMScheduler , _A : VQModel , ) -> str: super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) UpperCAmelCase_ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A ( self : str , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Dict , _A : List[Any] ) -> List[str]: if latents is None: UpperCAmelCase_ : List[Any] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase_ : int = latents.to(_A ) UpperCAmelCase_ : Optional[Any] = latents * scheduler.init_noise_sigma return latents def A ( self : Tuple , _A : List[str]=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase_ : Union[str, Any] = torch.device(F"cuda:{gpu_id}" ) UpperCAmelCase_ : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def A ( self : List[Any] , _A : Optional[Any]=0 ) -> str: if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) UpperCAmelCase_ : Union[str, Any] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : Optional[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. UpperCAmelCase_ : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A ( self : Tuple ) -> Any: if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : Tuple , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : int = 5_12 , _A : int = 5_12 , _A : int = 1_00 , _A : float = 4.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , ) -> Dict: UpperCAmelCase_ : Any = self._execution_device UpperCAmelCase_ : Union[str, Any] = guidance_scale > 1.0 if isinstance(_A , _A ): UpperCAmelCase_ : Any = torch.cat(_A , dim=0 ) UpperCAmelCase_ : str = image_embeds.shape[0] * num_images_per_prompt if isinstance(_A , _A ): UpperCAmelCase_ : Optional[Any] = torch.cat(_A , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Dict = image_embeds.repeat_interleave(_A , dim=0 ) UpperCAmelCase_ : Union[str, Any] = negative_image_embeds.repeat_interleave(_A , dim=0 ) UpperCAmelCase_ : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) self.scheduler.set_timesteps(_A , device=_A ) UpperCAmelCase_ : Union[str, Any] = self.scheduler.timesteps UpperCAmelCase_ : Optional[int] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(_A , _A , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : Optional[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _A , _A , _A , self.scheduler , ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : int = {'''image_embeds''': image_embeds} UpperCAmelCase_ : List[str] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = variance_pred.chunk(2 ) UpperCAmelCase_ : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : Optional[Any] = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing UpperCAmelCase_ : str = self.movq.decode(_A , force_not_quantize=_A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : Optional[int] = image * 0.5 + 0.5 UpperCAmelCase_ : Dict = image.clamp(0 , 1 ) UpperCAmelCase_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Union[str, Any] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
304
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _UpperCamelCase : Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') _UpperCamelCase : List[str] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __UpperCAmelCase ( A : str ) -> Optional[Any]: with open(A , '''rb''' ) as f: UpperCAmelCase_ : int = Image.open(A ) return im.convert('''RGB''' ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) a_ = field( default=UpperCamelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}) a_ = field(default=UpperCamelCase , metadata={"help": "A folder containing the training data."}) a_ = field(default=UpperCamelCase , metadata={"help": "A folder containing the validation data."}) a_ = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) a_ = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def A ( self : Union[str, Any] ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class snake_case__ : a_ = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}) a_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) a_ = field(default=UpperCamelCase , metadata={"help": "Name or path of preprocessor config."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __UpperCAmelCase ( A : Union[str, Any] ) -> Tuple: UpperCAmelCase_ : Tuple = torch.stack([example['''pixel_values'''] for example in examples] ) UpperCAmelCase_ : Optional[int] = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __UpperCAmelCase ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , A , A ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(A ) transformers.utils.logging.set_verbosity(A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. UpperCAmelCase_ : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: UpperCAmelCase_ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: UpperCAmelCase_ : str = {} if data_args.train_dir is not None: UpperCAmelCase_ : int = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: UpperCAmelCase_ : str = os.path.join(data_args.validation_dir , '''**''' ) UpperCAmelCase_ : Optional[int] = load_dataset( '''imagefolder''' , data_files=A , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase_ : Union[str, Any] = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , A ) and data_args.train_val_split > 0.0: UpperCAmelCase_ : List[str] = dataset['''train'''].train_test_split(data_args.train_val_split ) UpperCAmelCase_ : str = split['''train'''] UpperCAmelCase_ : Optional[Any] = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCAmelCase_ : List[Any] = dataset['''train'''].features['''labels'''].names UpperCAmelCase_ , UpperCAmelCase_ : Tuple = {}, {} for i, label in enumerate(A ): UpperCAmelCase_ : Tuple = str(A ) UpperCAmelCase_ : Dict = label # Load the accuracy metric from the datasets package UpperCAmelCase_ : List[str] = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(A : int ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) UpperCAmelCase_ : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(A ) , labelaid=A , idalabel=A , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase_ : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) UpperCAmelCase_ : int = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: UpperCAmelCase_ : Dict = image_processor.size['''shortest_edge'''] else: UpperCAmelCase_ : Optional[Any] = (image_processor.size['''height'''], image_processor.size['''width''']) UpperCAmelCase_ : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) UpperCAmelCase_ : str = Compose( [ RandomResizedCrop(A ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) UpperCAmelCase_ : List[str] = Compose( [ Resize(A ), CenterCrop(A ), ToTensor(), normalize, ] ) def train_transforms(A : Optional[Any] ): UpperCAmelCase_ : str = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(A : List[Any] ): UpperCAmelCase_ : List[Any] = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: UpperCAmelCase_ : List[str] = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(A ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: UpperCAmelCase_ : Optional[Any] = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(A ) # Initalize our trainer UpperCAmelCase_ : Union[str, Any] = Trainer( model=A , args=A , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=A , tokenizer=A , data_collator=A , ) # Training if training_args.do_train: UpperCAmelCase_ : Any = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ : Dict = last_checkpoint UpperCAmelCase_ : Tuple = trainer.train(resume_from_checkpoint=A ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase_ : List[str] = trainer.evaluate() trainer.log_metrics('''eval''' , A ) trainer.save_metrics('''eval''' , A ) # Write model card and (optionally) push to hub UpperCAmelCase_ : str = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**A ) else: trainer.create_model_card(**A ) if __name__ == "__main__": main()
304
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __UpperCAmelCase ( A : str ) -> Dict: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __UpperCAmelCase ( A : Union[str, Any] ) -> str: UpperCAmelCase_ : List[str] = create_tensor(A ) UpperCAmelCase_ : Any = gather(A ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __UpperCAmelCase ( A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = [state.process_index] UpperCAmelCase_ : Any = gather_object(A ) assert len(A ) == state.num_processes, F"{gathered_obj}, {len(A )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), F"{gathered_obj} != {list(range(state.num_processes ) )}" def __UpperCAmelCase ( A : Any ) -> Tuple: UpperCAmelCase_ : int = create_tensor(A ) UpperCAmelCase_ : Any = broadcast(A ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __UpperCAmelCase ( A : Dict ) -> Union[str, Any]: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: UpperCAmelCase_ : int = torch.arange(state.num_processes + 1 ).to(state.device ) else: UpperCAmelCase_ : Tuple = torch.arange(state.num_processes ).to(state.device ) UpperCAmelCase_ : str = pad_across_processes(A ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __UpperCAmelCase ( A : List[Any] ) -> Union[str, Any]: # For now runs on only two processes if state.num_processes != 2: return UpperCAmelCase_ : Any = create_tensor(A ) UpperCAmelCase_ : Dict = reduce(A , '''sum''' ) UpperCAmelCase_ : List[Any] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(A , A ), F"{reduced_tensor} != {truth_tensor}" def __UpperCAmelCase ( A : int ) -> Tuple: # For now runs on only two processes if state.num_processes != 2: return UpperCAmelCase_ : Union[str, Any] = create_tensor(A ) UpperCAmelCase_ : List[str] = reduce(A , '''mean''' ) UpperCAmelCase_ : Dict = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(A , A ), F"{reduced_tensor} != {truth_tensor}" def __UpperCAmelCase ( A : Union[str, Any] ) -> List[Any]: # For xla_spawn (TPUs) main() def __UpperCAmelCase ( ) -> List[Any]: UpperCAmelCase_ : Tuple = PartialState() state.print(F"State: {state}" ) state.print('''testing gather''' ) test_gather(A ) state.print('''testing gather_object''' ) test_gather_object(A ) state.print('''testing broadcast''' ) test_broadcast(A ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(A ) state.print('''testing reduce_sum''' ) test_reduce_sum(A ) state.print('''testing reduce_mean''' ) test_reduce_mean(A ) if __name__ == "__main__": main()
304
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
1
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _UpperCamelCase : Dict = datasets.utils.logging.get_logger(__name__) @dataclass class snake_case__ ( datasets.BuilderConfig): a_ = None a_ = "utf-8" a_ = None a_ = None a_ = True # deprecated a_ = None # deprecated a_ = 10 << 20 # 10MB a_ = None class snake_case__ ( datasets.ArrowBasedBuilder): a_ = JsonConfig def A ( self : List[Any] ) -> Union[str, Any]: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) UpperCAmelCase_ : Union[str, Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def A ( self : int , _A : Dict ) -> str: if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) UpperCAmelCase_ : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A , (str, list, tuple) ): UpperCAmelCase_ : Optional[int] = data_files if isinstance(_A , _A ): UpperCAmelCase_ : List[Any] = [files] UpperCAmelCase_ : Optional[Any] = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] UpperCAmelCase_ : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(_A , _A ): UpperCAmelCase_ : int = [files] UpperCAmelCase_ : Dict = [dl_manager.iter_files(_A ) for file in files] splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'''files''': files} ) ) return splits def A ( self : Union[str, Any] , _A : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCAmelCase_ : Any = self.config.features.arrow_schema.field(_A ).type UpperCAmelCase_ : List[Any] = pa_table.append_column(_A , pa.array([None] * len(_A ) , type=_A ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase_ : Union[str, Any] = table_cast(_A , self.config.features.arrow_schema ) return pa_table def A ( self : Optional[Any] , _A : List[str] ) -> Any: for file_idx, file in enumerate(itertools.chain.from_iterable(_A ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_A , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase_ : Tuple = json.load(_A ) # We keep only the field we are interested in UpperCAmelCase_ : str = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_A , (list, tuple) ): UpperCAmelCase_ : str = set().union(*[row.keys() for row in dataset] ) UpperCAmelCase_ : Dict = {col: [row.get(_A ) for row in dataset] for col in keys} else: UpperCAmelCase_ : Optional[int] = dataset UpperCAmelCase_ : Dict = pa.Table.from_pydict(_A ) yield file_idx, self._cast_table(_A ) # If the file has one json object per line else: with open(_A , '''rb''' ) as f: UpperCAmelCase_ : Dict = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCAmelCase_ : str = max(self.config.chunksize // 32 , 16 << 10 ) UpperCAmelCase_ : str = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: UpperCAmelCase_ : Optional[int] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_A ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCAmelCase_ : Dict = batch.decode(self.config.encoding , errors=_A ).encode('''utf-8''' ) try: while True: try: UpperCAmelCase_ : str = paj.read_json( io.BytesIO(_A ) , read_options=paj.ReadOptions(block_size=_A ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_A , pa.ArrowInvalid ) and "straddling" not in str(_A ) or block_size > len(_A ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"Batch of {len(_A )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}." ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _A , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase_ : int = json.load(_A ) except json.JSONDecodeError: logger.error(F"Failed to read file '{file}' with error {type(_A )}: {e}" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_A , _A ): # list is the only sequence type supported in JSON try: UpperCAmelCase_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) UpperCAmelCase_ : Optional[Any] = {col: [row.get(_A ) for row in dataset] for col in keys} UpperCAmelCase_ : int = pa.Table.from_pydict(_A ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"Failed to read file '{file}' with error {type(_A )}: {e}" ) raise ValueError(F"Not able to read records in the JSON file at {file}." ) from None yield file_idx, self._cast_table(_A ) break else: logger.error(F"Failed to read file '{file}' with error {type(_A )}: {e}" ) raise ValueError( F"Not able to read records in the JSON file at {file}. " F"You should probably indicate the field of the JSON file containing your records. " F"This JSON file contain the following fields: {str(list(dataset.keys() ) )}. " F"Select the correct one and provide it as `field='XXX'` to the dataset loading method. " ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_A ) batch_idx += 1
304
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
1
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _UpperCamelCase : Any = logging.get_logger(__name__) class snake_case__ ( UpperCamelCase): def __init__( self : Union[str, Any] , *_A : Optional[Any] , **_A : List[Any] ) -> None: warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
304
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
1
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _UpperCamelCase : List[Any] = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
304
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
1
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins _UpperCamelCase : Tuple = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def __UpperCAmelCase ( A : List[Any] , A : Union[str, Any] ) -> Dict: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __UpperCAmelCase ( A : Union[str, Any] ) -> List[str]: config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=A ) def __UpperCAmelCase ( A : Any , A : Optional[int] ) -> Any: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? UpperCAmelCase_ : Optional[Any] = tmp_path_factory.getbasetemp() / '''cache''' UpperCAmelCase_ : Union[str, Any] = test_hf_cache_home / '''datasets''' UpperCAmelCase_ : Dict = test_hf_cache_home / '''metrics''' UpperCAmelCase_ : Union[str, Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(A ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(A ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(A ) ) UpperCAmelCase_ : Dict = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(A ) ) UpperCAmelCase_ : Union[str, Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(A ) ) @pytest.fixture(autouse=A , scope='''session''' ) def __UpperCAmelCase ( ) -> int: datasets.disable_progress_bar() @pytest.fixture(autouse=A ) def __UpperCAmelCase ( A : List[str] ) -> List[str]: # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , A ) @pytest.fixture def __UpperCAmelCase ( A : str ) -> Dict: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , A )
304
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
1
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : List[Any] = logging.get_logger(__name__) _UpperCamelCase : Optional[int] = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class snake_case__ ( UpperCamelCase): a_ = "swinv2" a_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , _A : List[str]=2_24 , _A : List[str]=4 , _A : Dict=3 , _A : Tuple=96 , _A : List[str]=[2, 2, 6, 2] , _A : List[str]=[3, 6, 12, 24] , _A : List[str]=7 , _A : List[Any]=4.0 , _A : str=True , _A : Optional[Any]=0.0 , _A : Tuple=0.0 , _A : int=0.1 , _A : Optional[Any]="gelu" , _A : Optional[Any]=False , _A : Tuple=0.02 , _A : List[str]=1e-5 , _A : Optional[Any]=32 , **_A : int , ) -> str: super().__init__(**_A ) UpperCAmelCase_ : Dict = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Optional[int] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : int = depths UpperCAmelCase_ : Optional[int] = len(_A ) UpperCAmelCase_ : Any = num_heads UpperCAmelCase_ : Optional[Any] = window_size UpperCAmelCase_ : str = mlp_ratio UpperCAmelCase_ : List[str] = qkv_bias UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Dict = drop_path_rate UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Optional[int] = use_absolute_embeddings UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : int = int(embed_dim * 2 ** (len(_A ) - 1) ) UpperCAmelCase_ : Optional[int] = (0, 0, 0, 0)
304
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase : Optional[int] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _UpperCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
304
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
1
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __UpperCAmelCase ( A : int , A : int=None ) -> int: UpperCAmelCase_ : Optional[Any] = None if token is not None: UpperCAmelCase_ : int = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"Bearer {token}"} UpperCAmelCase_ : List[Any] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" UpperCAmelCase_ : Dict = requests.get(A , headers=A ).json() UpperCAmelCase_ : Dict = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) UpperCAmelCase_ : Optional[int] = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(A ): UpperCAmelCase_ : int = requests.get(url + F"&page={i + 2}" , headers=A ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __UpperCAmelCase ( A : Optional[int] , A : List[Any]=None ) -> Any: UpperCAmelCase_ : List[Any] = None if token is not None: UpperCAmelCase_ : Dict = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"Bearer {token}"} UpperCAmelCase_ : List[Any] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" UpperCAmelCase_ : Tuple = requests.get(A , headers=A ).json() UpperCAmelCase_ : List[str] = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) UpperCAmelCase_ : List[Any] = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(A ): UpperCAmelCase_ : Any = requests.get(url + F"&page={i + 2}" , headers=A ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __UpperCAmelCase ( A : str , A : Optional[Any] , A : Tuple , A : Union[str, Any] ) -> str: UpperCAmelCase_ : int = None if token is not None: UpperCAmelCase_ : Optional[Any] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"Bearer {token}"} UpperCAmelCase_ : Union[str, Any] = requests.get(A , headers=A , allow_redirects=A ) UpperCAmelCase_ : int = result.headers['''Location'''] UpperCAmelCase_ : int = requests.get(A , allow_redirects=A ) UpperCAmelCase_ : Union[str, Any] = os.path.join(A , F"{artifact_name}.zip" ) with open(A , '''wb''' ) as fp: fp.write(response.content ) def __UpperCAmelCase ( A : Optional[Any] , A : Any=None ) -> List[Any]: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : str = None with zipfile.ZipFile(A ) as z: for filename in z.namelist(): if not os.path.isdir(A ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(A ) as f: for line in f: UpperCAmelCase_ : Any = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs UpperCAmelCase_ : int = line[: line.index(''': ''' )] UpperCAmelCase_ : Union[str, Any] = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed UpperCAmelCase_ : List[str] = line[len('''FAILED ''' ) :] failed_tests.append(A ) elif filename == "job_name.txt": UpperCAmelCase_ : List[str] = line if len(A ) != len(A ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(A )} for `errors` " F"and {len(A )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" ''' problem.''' ) UpperCAmelCase_ : List[str] = None if job_name and job_links: UpperCAmelCase_ : Dict = job_links.get(A , A ) # A list with elements of the form (line of error, error, failed test) UpperCAmelCase_ : str = [x + [y] + [job_link] for x, y in zip(A , A )] return result def __UpperCAmelCase ( A : Dict , A : Optional[Any]=None ) -> Optional[int]: UpperCAmelCase_ : str = [] UpperCAmelCase_ : Tuple = [os.path.join(A , A ) for p in os.listdir(A ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(A , job_links=A ) ) return errors def __UpperCAmelCase ( A : Tuple , A : Any=None ) -> str: UpperCAmelCase_ : List[Any] = Counter() counter.update([x[1] for x in logs] ) UpperCAmelCase_ : str = counter.most_common() UpperCAmelCase_ : Optional[Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: UpperCAmelCase_ : Any = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} UpperCAmelCase_ : str = dict(sorted(r.items() , key=lambda A : item[1]["count"] , reverse=A ) ) return r def __UpperCAmelCase ( A : str ) -> Union[str, Any]: UpperCAmelCase_ : int = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): UpperCAmelCase_ : Dict = test.split('''/''' )[2] else: UpperCAmelCase_ : Tuple = None return test def __UpperCAmelCase ( A : List[str] , A : str=None ) -> Optional[Any]: UpperCAmelCase_ : Any = [(x[0], x[1], get_model(x[2] )) for x in logs] UpperCAmelCase_ : List[str] = [x for x in logs if x[2] is not None] UpperCAmelCase_ : str = {x[2] for x in logs} UpperCAmelCase_ : List[str] = {} for test in tests: UpperCAmelCase_ : List[Any] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) UpperCAmelCase_ : List[str] = counter.most_common() UpperCAmelCase_ : List[str] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} UpperCAmelCase_ : int = sum(error_counts.values() ) if n_errors > 0: UpperCAmelCase_ : Tuple = {'''count''': n_errors, '''errors''': error_counts} UpperCAmelCase_ : List[str] = dict(sorted(r.items() , key=lambda A : item[1]["count"] , reverse=A ) ) return r def __UpperCAmelCase ( A : Optional[int] ) -> Optional[int]: UpperCAmelCase_ : int = '''| no. | error | status |''' UpperCAmelCase_ : Optional[int] = '''|-:|:-|:-|''' UpperCAmelCase_ : Tuple = [header, sep] for error in reduced_by_error: UpperCAmelCase_ : Optional[Any] = reduced_by_error[error]['''count'''] UpperCAmelCase_ : Optional[Any] = F"| {count} | {error[:1_0_0]} | |" lines.append(A ) return "\n".join(A ) def __UpperCAmelCase ( A : List[str] ) -> str: UpperCAmelCase_ : List[Any] = '''| model | no. of errors | major error | count |''' UpperCAmelCase_ : int = '''|-:|-:|-:|-:|''' UpperCAmelCase_ : Dict = [header, sep] for model in reduced_by_model: UpperCAmelCase_ : Optional[int] = reduced_by_model[model]['''count'''] UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = list(reduced_by_model[model]['''errors'''].items() )[0] UpperCAmelCase_ : Optional[Any] = F"| {model} | {count} | {error[:6_0]} | {_count} |" lines.append(A ) return "\n".join(A ) if __name__ == "__main__": _UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') _UpperCamelCase : Optional[int] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _UpperCamelCase : Any = get_job_links(args.workflow_run_id, token=args.token) _UpperCamelCase : Any = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _UpperCamelCase : Optional[int] = k.find(' / ') _UpperCamelCase : Tuple = k[index + len(' / ') :] _UpperCamelCase : str = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _UpperCamelCase : List[Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _UpperCamelCase : Any = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _UpperCamelCase : Dict = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _UpperCamelCase : Any = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _UpperCamelCase : Any = reduce_by_error(errors) _UpperCamelCase : List[str] = reduce_by_model(errors) _UpperCamelCase : Dict = make_github_table(reduced_by_error) _UpperCamelCase : Tuple = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
304
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : List[str] = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class snake_case__ ( UpperCamelCase): a_ = "trocr" a_ = ["past_key_values"] a_ = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : Optional[Any] , _A : List[Any]=5_02_65 , _A : Dict=10_24 , _A : Any=12 , _A : Dict=16 , _A : int=40_96 , _A : Any="gelu" , _A : Tuple=5_12 , _A : Dict=0.1 , _A : Tuple=0.0 , _A : str=0.0 , _A : str=2 , _A : List[Any]=0.02 , _A : Any=0.0 , _A : str=True , _A : Dict=False , _A : Dict=True , _A : Optional[int]=True , _A : List[Any]=1 , _A : str=0 , _A : Any=2 , **_A : Union[str, Any] , ) -> List[Any]: UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : str = decoder_ffn_dim UpperCAmelCase_ : Any = activation_function UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : Optional[Any] = dropout UpperCAmelCase_ : List[Any] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : List[Any] = init_std UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Dict = use_cache UpperCAmelCase_ : str = scale_embedding UpperCAmelCase_ : Union[str, Any] = use_learned_position_embeddings UpperCAmelCase_ : List[Any] = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
304
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Any = logging.get_logger(__name__) _UpperCamelCase : Tuple = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case__ ( UpperCamelCase): a_ = "unispeech" def __init__( self : Tuple , _A : List[Any]=32 , _A : Optional[int]=7_68 , _A : int=12 , _A : Tuple=12 , _A : Optional[int]=30_72 , _A : List[str]="gelu" , _A : int=0.1 , _A : Dict=0.1 , _A : Any=0.1 , _A : Optional[Any]=0.0 , _A : Dict=0.0 , _A : Union[str, Any]=0.1 , _A : Tuple=0.1 , _A : Union[str, Any]=0.02 , _A : Union[str, Any]=1e-5 , _A : Dict="group" , _A : Dict="gelu" , _A : Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _A : Tuple=(5, 2, 2, 2, 2, 2, 2) , _A : List[Any]=(10, 3, 3, 3, 3, 2, 2) , _A : str=False , _A : int=1_28 , _A : Dict=16 , _A : Any=False , _A : List[str]=True , _A : str=0.05 , _A : Dict=10 , _A : Union[str, Any]=2 , _A : Optional[int]=0.0 , _A : Dict=10 , _A : Optional[int]=0 , _A : str=3_20 , _A : List[Any]=2 , _A : str=0.1 , _A : Any=1_00 , _A : Union[str, Any]=2_56 , _A : Optional[Any]=2_56 , _A : Optional[Any]=0.1 , _A : Union[str, Any]="mean" , _A : Any=False , _A : List[str]=False , _A : Dict=2_56 , _A : List[Any]=80 , _A : Optional[Any]=0 , _A : str=1 , _A : Dict=2 , _A : Optional[Any]=0.5 , **_A : List[Any] , ) -> int: super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : Optional[int] = feat_extract_norm UpperCAmelCase_ : Optional[Any] = feat_extract_activation UpperCAmelCase_ : Any = list(_A ) UpperCAmelCase_ : Optional[Any] = list(_A ) UpperCAmelCase_ : int = list(_A ) UpperCAmelCase_ : int = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Any = len(self.conv_dim ) UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Tuple = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Union[str, Any] = activation_dropout UpperCAmelCase_ : List[Any] = feat_proj_dropout UpperCAmelCase_ : List[str] = final_dropout UpperCAmelCase_ : Any = layerdrop UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Tuple = num_ctc_classes UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Optional[Any] = use_weighted_layer_sum UpperCAmelCase_ : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Any = mask_time_prob UpperCAmelCase_ : Any = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : List[Any] = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : List[Any] = num_codevectors_per_group UpperCAmelCase_ : Dict = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : str = feat_quantizer_dropout UpperCAmelCase_ : int = num_negatives UpperCAmelCase_ : List[str] = codevector_dim UpperCAmelCase_ : Optional[Any] = proj_codevector_dim UpperCAmelCase_ : Dict = diversity_loss_weight # ctc loss UpperCAmelCase_ : Optional[int] = ctc_loss_reduction UpperCAmelCase_ : List[str] = ctc_zero_infinity # pretraining loss UpperCAmelCase_ : Any = replace_prob @property def A ( self : Optional[int] ) -> List[str]: return functools.reduce(operator.mul , self.conv_stride , 1 )
304
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1 UpperCAmelCase_ : Dict = [] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator if len(str(A ) ) > len(str(A ) ): result.append(A ) UpperCAmelCase_ : Optional[Any] = numerator UpperCAmelCase_ : Optional[int] = denominator return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
304
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCAmelCase ( A : str , A : str , A : str , A : PreTrainedTokenizer , A : int , A : Optional[int] = None , ) -> List[str]: UpperCAmelCase_ : Any = {} if train_file is not None: UpperCAmelCase_ : Any = [train_file] if eval_file is not None: UpperCAmelCase_ : List[str] = [eval_file] if test_file is not None: UpperCAmelCase_ : Optional[Any] = [test_file] UpperCAmelCase_ : Tuple = datasets.load_dataset('''csv''' , data_files=A ) UpperCAmelCase_ : Optional[Any] = list(ds[list(files.keys() )[0]].features.keys() ) UpperCAmelCase_ : Tuple = features_name.pop(A ) UpperCAmelCase_ : Union[str, Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCAmelCase_ : Dict = {label: i for i, label in enumerate(A )} UpperCAmelCase_ : Union[str, Any] = tokenizer.model_input_names UpperCAmelCase_ : List[str] = {} if len(A ) == 1: for k in files.keys(): UpperCAmelCase_ : List[Any] = ds[k].map( lambda A : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=A , max_length=A , padding='''max_length''' ) , batched=A , ) elif len(A ) == 2: for k in files.keys(): UpperCAmelCase_ : Optional[int] = ds[k].map( lambda A : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=A , max_length=A , padding='''max_length''' , ) , batched=A , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCAmelCase_ : List[Any] = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ : Optional[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCAmelCase_ : Optional[int] = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCAmelCase_ : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ : int = labelaid[ex[label_name]] yield (d, label) UpperCAmelCase_ : Dict = ( tf.data.Dataset.from_generator( A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCAmelCase_ : Union[str, Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCAmelCase_ : Any = ( tf.data.Dataset.from_generator( A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCAmelCase_ : Union[str, Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCAmelCase_ : Union[str, Any] = ( tf.data.Dataset.from_generator( A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCAmelCase_ : Any = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _UpperCamelCase : Any = logging.getLogger(__name__) @dataclass class snake_case__ : a_ = field(metadata={"help": "Which column contains the label"}) a_ = field(default=UpperCamelCase , metadata={"help": "The path of the training file"}) a_ = field(default=UpperCamelCase , metadata={"help": "The path of the development file"}) a_ = field(default=UpperCamelCase , metadata={"help": "The path of the test file"}) a_ = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) @dataclass class snake_case__ : a_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field(default=UpperCamelCase , metadata={"help": "Set this flag to use fast tokenization."}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( F"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " F"16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=A , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) UpperCAmelCase_ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(A ) , labelaid=A , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): UpperCAmelCase_ : List[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) def compute_metrics(A : EvalPrediction ) -> Dict: UpperCAmelCase_ : Dict = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCAmelCase_ : Tuple = TFTrainer( model=A , args=A , train_dataset=A , eval_dataset=A , compute_metrics=A , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : List[str] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Any = trainer.evaluate() UpperCAmelCase_ : Any = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) results.update(A ) return results if __name__ == "__main__": main()
304
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _UpperCamelCase : Optional[Any] = get_logger() _UpperCamelCase : Optional[dict] = None class snake_case__ ( TensorFormatter[Mapping, "jax.Array", Mapping]): def __init__( self : Dict , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] ) -> List[Any]: super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A , _A ): raise ValueError( F"Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` " '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) UpperCAmelCase_ : int = device if isinstance(_A , _A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ : Optional[int] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) UpperCAmelCase_ : Optional[int] = str(jax.devices()[0] ) UpperCAmelCase_ : List[str] = jnp_array_kwargs @staticmethod def A ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(_A ): device for device in jax.devices()} def A ( self : Optional[int] , _A : int ) -> str: import jax import jax.numpy as jnp if isinstance(_A , _A ) and column: if all( isinstance(_A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A , axis=0 ) return column def A ( self : List[str] , _A : Union[str, Any] ) -> List[Any]: import jax import jax.numpy as jnp if isinstance(_A , (str, bytes, type(_A )) ): return value elif isinstance(_A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase_ : Union[str, Any] = {} if isinstance(_A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase_ : List[Any] = {'''dtype''': jnp.intaa} else: UpperCAmelCase_ : int = {'''dtype''': jnp.intaa} elif isinstance(_A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase_ : Dict = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A , PIL.Image.Image ): UpperCAmelCase_ : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A , **{**default_dtype, **self.jnp_array_kwargs} ) def A ( self : List[Any] , _A : Any ) -> int: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A , '''__array__''' ) and not isinstance(_A , jax.Array ): UpperCAmelCase_ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def A ( self : List[str] , _A : dict ) -> Union[str, Any]: return map_nested(self._recursive_tensorize , _A , map_list=_A ) def A ( self : int , _A : pa.Table ) -> Mapping: UpperCAmelCase_ : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) UpperCAmelCase_ : List[str] = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def A ( self : Any , _A : pa.Table ) -> "jax.Array": UpperCAmelCase_ : int = self.numpy_arrow_extractor().extract_column(_A ) UpperCAmelCase_ : List[str] = self.python_features_decoder.decode_column(_A , pa_table.column_names[0] ) UpperCAmelCase_ : str = self.recursive_tensorize(_A ) UpperCAmelCase_ : Optional[int] = self._consolidate(_A ) return column def A ( self : int , _A : pa.Table ) -> Mapping: UpperCAmelCase_ : int = self.numpy_arrow_extractor().extract_batch(_A ) UpperCAmelCase_ : str = self.python_features_decoder.decode_batch(_A ) UpperCAmelCase_ : Optional[Any] = self.recursive_tensorize(_A ) for column_name in batch: UpperCAmelCase_ : str = self._consolidate(batch[column_name] ) return batch
304
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
1
'''simple docstring''' class snake_case__ : def __init__( self : List[Any] , _A : Optional[int] ) -> Optional[int]: # we need a list not a string, so do something to change the type UpperCAmelCase_ : Any = arr.split(''',''' ) def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : int = [int(self.array[0] )] * len(self.array ) UpperCAmelCase_ : Optional[int] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): UpperCAmelCase_ : List[Any] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) UpperCAmelCase_ : Tuple = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _UpperCamelCase : Optional[int] = input('please input some numbers:') _UpperCamelCase : Union[str, Any] = SubArray(whole_array) _UpperCamelCase : Optional[Any] = array.solve_sub_array() print(('the results is:', re))
304
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
1
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class snake_case__ : def __init__( self : Tuple , _A : str , _A : Optional[int] , _A : List[str] , _A : int , _A : List[Any] , _A : str=0.2 , _A : Optional[Any]=0.2 ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = bp_numa UpperCAmelCase_ : str = bp_numa UpperCAmelCase_ : Union[str, Any] = bp_numa UpperCAmelCase_ : Optional[int] = conva_get[:2] UpperCAmelCase_ : List[str] = conva_get[2] UpperCAmelCase_ : List[str] = size_pa UpperCAmelCase_ : Dict = rate_w UpperCAmelCase_ : Tuple = rate_t UpperCAmelCase_ : Tuple = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCAmelCase_ : List[str] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCAmelCase_ : str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCAmelCase_ : int = -2 * np.random.rand(self.conva[1] ) + 1 UpperCAmelCase_ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 UpperCAmelCase_ : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 def A ( self : List[str] , _A : List[Any] ) -> Tuple: # save model dict with pickle UpperCAmelCase_ : Any = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_A , '''wb''' ) as f: pickle.dump(_A , _A ) print(F"Model saved: {save_path}" ) @classmethod def A ( cls : int , _A : List[str] ) -> Tuple: # read saved model with open(_A , '''rb''' ) as f: UpperCAmelCase_ : List[Any] = pickle.load(_A ) # noqa: S301 UpperCAmelCase_ : str = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) UpperCAmelCase_ : Optional[Any] = model_dic.get('''size_pooling1''' ) UpperCAmelCase_ : str = model_dic.get('''num_bp1''' ) UpperCAmelCase_ : List[Any] = model_dic.get('''num_bp2''' ) UpperCAmelCase_ : Tuple = model_dic.get('''num_bp3''' ) UpperCAmelCase_ : Any = model_dic.get('''rate_weight''' ) UpperCAmelCase_ : Any = model_dic.get('''rate_thre''' ) # create model instance UpperCAmelCase_ : str = CNN(_A , _A , _A , _A , _A , _A , _A ) # modify model parameter UpperCAmelCase_ : Tuple = model_dic.get('''w_conv1''' ) UpperCAmelCase_ : Dict = model_dic.get('''wkj''' ) UpperCAmelCase_ : List[str] = model_dic.get('''vji''' ) UpperCAmelCase_ : Tuple = model_dic.get('''thre_conv1''' ) UpperCAmelCase_ : Union[str, Any] = model_dic.get('''thre_bp2''' ) UpperCAmelCase_ : Union[str, Any] = model_dic.get('''thre_bp3''' ) return conv_ins def A ( self : Dict , _A : List[str] ) -> List[Any]: return 1 / (1 + np.exp(-1 * x )) def A ( self : Union[str, Any] , _A : Tuple ) -> Tuple: return round(_A , 3 ) def A ( self : Dict , _A : List[Any] , _A : List[str] , _A : Dict , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]: # convolution process UpperCAmelCase_ : Union[str, Any] = convs[0] UpperCAmelCase_ : str = convs[1] UpperCAmelCase_ : Union[str, Any] = np.shape(_A )[0] # get the data slice of original image data, data_focus UpperCAmelCase_ : Optional[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _A ): for j_focus in range(0 , size_data - size_conv + 1 , _A ): UpperCAmelCase_ : List[str] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_A ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Tuple = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_A ): UpperCAmelCase_ : int = [] for i_focus in range(len(_A ) ): UpperCAmelCase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_A ) ) UpperCAmelCase_ : str = np.asmatrix(_A ).reshape( _A , _A ) data_featuremap.append(_A ) # expanding the data slice to One dimenssion UpperCAmelCase_ : List[str] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_A ) ) UpperCAmelCase_ : Any = np.asarray(_A ) return focus_list, data_featuremap def A ( self : List[str] , _A : str , _A : Dict , _A : Optional[int]="average_pool" ) -> List[Any]: # pooling process UpperCAmelCase_ : List[str] = len(featuremaps[0] ) UpperCAmelCase_ : Union[str, Any] = int(size_map / size_pooling ) UpperCAmelCase_ : List[str] = [] for i_map in range(len(_A ) ): UpperCAmelCase_ : Tuple = featuremaps[i_map] UpperCAmelCase_ : List[Any] = [] for i_focus in range(0 , _A , _A ): for j_focus in range(0 , _A , _A ): UpperCAmelCase_ : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_A ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_A ) ) UpperCAmelCase_ : Tuple = np.asmatrix(_A ).reshape(_A , _A ) featuremap_pooled.append(_A ) return featuremap_pooled def A ( self : Tuple , _A : Optional[int] ) -> Dict: # expanding three dimension data to one dimension list UpperCAmelCase_ : str = [] for i in range(len(_A ) ): UpperCAmelCase_ : Optional[int] = np.shape(data[i] ) UpperCAmelCase_ : Union[str, Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) UpperCAmelCase_ : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(_A ) UpperCAmelCase_ : Any = np.asarray(_A ) return data_expanded def A ( self : Any , _A : str ) -> List[str]: # expanding matrix to one dimension list UpperCAmelCase_ : int = np.asarray(_A ) UpperCAmelCase_ : int = np.shape(_A ) UpperCAmelCase_ : Optional[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def A ( self : List[Any] , _A : int , _A : List[Any] , _A : Dict , _A : List[Any] , _A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = 0 for i_map in range(_A ): UpperCAmelCase_ : Optional[Any] = np.ones((size_map, size_map) ) for i in range(0 , _A , _A ): for j in range(0 , _A , _A ): UpperCAmelCase_ : Any = pd_pool[ i_pool ] UpperCAmelCase_ : Dict = i_pool + 1 UpperCAmelCase_ : Any = np.multiply( _A , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_A ) return pd_all def A ( self : Union[str, Any] , _A : str , _A : Union[str, Any] , _A : List[str] , _A : List[str] , _A : str , _A : Any=bool ) -> Optional[Any]: # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_A )) ) print((''' - - Shape: Teach_Data ''', np.shape(_A )) ) UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : List[str] = 1_00_00 while rp < n_repeat and mse >= error_accuracy: UpperCAmelCase_ : str = 0 print(F"-------------Learning Time {rp}--------------" ) for p in range(len(_A ) ): # print('------------Learning Image: %d--------------'%p) UpperCAmelCase_ : Union[str, Any] = np.asmatrix(datas_train[p] ) UpperCAmelCase_ : Optional[int] = np.asarray(datas_teach[p] ) UpperCAmelCase_ , UpperCAmelCase_ : Any = self.convolute( _A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase_ : List[Any] = self.pooling(_A , self.size_poolinga ) UpperCAmelCase_ : Optional[Any] = np.shape(_A ) UpperCAmelCase_ : Optional[Any] = self._expand(_A ) UpperCAmelCase_ : Dict = data_bp_input UpperCAmelCase_ : Tuple = np.dot(_A , self.vji.T ) - self.thre_bpa UpperCAmelCase_ : Union[str, Any] = self.sig(_A ) UpperCAmelCase_ : List[Any] = np.dot(_A , self.wkj.T ) - self.thre_bpa UpperCAmelCase_ : List[Any] = self.sig(_A ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCAmelCase_ : List[str] = np.multiply( (data_teach - bp_outa) , np.multiply(_A , (1 - bp_outa) ) ) UpperCAmelCase_ : List[Any] = np.multiply( np.dot(_A , self.wkj ) , np.multiply(_A , (1 - bp_outa) ) ) UpperCAmelCase_ : Optional[Any] = np.dot(_A , self.vji ) UpperCAmelCase_ : int = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCAmelCase_ : int = pd_conva_pooled.T.getA().tolist() UpperCAmelCase_ : str = self._calculate_gradient_from_pool( _A , _A , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCAmelCase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) UpperCAmelCase_ : Union[str, Any] = self.rate_weight * np.dot(_A , _A ) UpperCAmelCase_ : Tuple = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCAmelCase_ : int = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCAmelCase_ : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : List[str] = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : List[Any] = self.thre_bpa - pd_k_all * self.rate_thre UpperCAmelCase_ : str = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCAmelCase_ : Dict = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCAmelCase_ : Optional[int] = rp + 1 UpperCAmelCase_ : Optional[Any] = error_count / patterns all_mse.append(_A ) def draw_error(): UpperCAmelCase_ : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_A , '''+-''' ) plt.plot(_A , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_A , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def A ( self : Union[str, Any] , _A : Optional[int] ) -> Any: # model predict UpperCAmelCase_ : Any = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_A )) ) for p in range(len(_A ) ): UpperCAmelCase_ : Union[str, Any] = np.asmatrix(datas_test[p] ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.convolute( _A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase_ : Tuple = self.pooling(_A , self.size_poolinga ) UpperCAmelCase_ : Union[str, Any] = self._expand(_A ) UpperCAmelCase_ : Tuple = data_bp_input UpperCAmelCase_ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa UpperCAmelCase_ : str = self.sig(_A ) UpperCAmelCase_ : Dict = bp_outa * self.wkj.T - self.thre_bpa UpperCAmelCase_ : str = self.sig(_A ) produce_out.extend(bp_outa.getA().tolist() ) UpperCAmelCase_ : Any = [list(map(self.do_round , _A ) ) for each in produce_out] return np.asarray(_A ) def A ( self : Any , _A : Tuple ) -> Union[str, Any]: # return the data of image after convoluting process so we can check it out UpperCAmelCase_ : Optional[int] = np.asmatrix(_A ) UpperCAmelCase_ , UpperCAmelCase_ : Any = self.convolute( _A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase_ : int = self.pooling(_A , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
304
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
1
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
1
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
1
'''simple docstring''' class snake_case__ : def __init__( self : str , _A : str = "" , _A : bool = False ) -> None: # Mapping from the first character of the prefix of the node UpperCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCAmelCase_ : int = is_leaf UpperCAmelCase_ : Union[str, Any] = prefix def A ( self : Optional[Any] , _A : str ) -> tuple[str, str, str]: UpperCAmelCase_ : int = 0 for q, w in zip(self.prefix , _A ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def A ( self : str , _A : list[str] ) -> None: for word in words: self.insert(_A ) def A ( self : Optional[Any] , _A : str ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCAmelCase_ : Tuple = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCAmelCase_ : Dict = RadixNode(prefix=_A , is_leaf=_A ) else: UpperCAmelCase_ : Dict = self.nodes[word[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = incoming_node.match( _A ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_A ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCAmelCase_ : Dict = remaining_prefix UpperCAmelCase_ : Any = self.nodes[matching_string[0]] UpperCAmelCase_ : List[Any] = RadixNode(_A , _A ) UpperCAmelCase_ : Union[str, Any] = aux_node if remaining_word == "": UpperCAmelCase_ : int = True else: self.nodes[matching_string[0]].insert(_A ) def A ( self : Dict , _A : str ) -> bool: UpperCAmelCase_ : Optional[int] = self.nodes.get(word[0] , _A ) if not incoming_node: return False else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = incoming_node.match( _A ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_A ) def A ( self : Tuple , _A : str ) -> bool: UpperCAmelCase_ : List[Any] = self.nodes.get(word[0] , _A ) if not incoming_node: return False else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = incoming_node.match( _A ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_A ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: UpperCAmelCase_ : List[str] = list(self.nodes.values() )[0] UpperCAmelCase_ : Optional[int] = merging_node.is_leaf self.prefix += merging_node.prefix UpperCAmelCase_ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: UpperCAmelCase_ : int = False # If there is 1 edge, we merge it with its child else: UpperCAmelCase_ : List[Any] = list(incoming_node.nodes.values() )[0] UpperCAmelCase_ : Any = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCAmelCase_ : Dict = merging_node.nodes return True def A ( self : Any , _A : int = 0 ) -> None: if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __UpperCAmelCase ( ) -> bool: UpperCAmelCase_ : Union[str, Any] = '''banana bananas bandana band apple all beast'''.split() UpperCAmelCase_ : Tuple = RadixNode() root.insert_many(A ) assert all(root.find(A ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Optional[Any] = RadixNode() UpperCAmelCase_ : int = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(A ) print('''Words:''' , A ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
304
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ReformerTokenizer a_ = ReformerTokenizerFast a_ = True a_ = False a_ = True def A ( self : Optional[Any] ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = '''<s>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 10_00 ) def A ( self : Optional[int] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(_A ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def A ( self : Tuple , _A : Dict=15 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Dict = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def A ( self : Union[str, Any] ) -> int: pass def A ( self : int ) -> Any: UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A ) UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : List[str] ) -> Optional[int]: return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : Tuple = '''Hello World!''' UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def A ( self : List[Any] ) -> str: UpperCAmelCase_ : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase_ : int = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def A ( self : List[str] ) -> Optional[int]: import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ : List[Any] = ''' '''.join(_A ) UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' ) UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape UpperCAmelCase_ : Optional[int] = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def A ( self : int ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ : Optional[Any] = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
304
1
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case__ ( UpperCamelCase): def __init__( self : int , _A : Union[str, Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : str=True , _A : Dict=True , _A : List[Any]=True , _A : List[Any]=True , _A : Union[str, Any]=True , _A : Optional[Any]=False , _A : Tuple=False , _A : int=False , _A : Optional[Any]=2 , _A : Optional[Any]=99 , _A : Optional[Any]=0 , _A : Union[str, Any]=32 , _A : Union[str, Any]=5 , _A : Tuple=4 , _A : List[Any]=0.1 , _A : Union[str, Any]=0.1 , _A : Union[str, Any]=5_12 , _A : int=12 , _A : List[str]=2 , _A : Tuple=0.02 , _A : List[str]=3 , _A : Union[str, Any]=4 , _A : List[Any]="last" , _A : str=None , _A : Any=None , ) -> Dict: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Optional[Any] = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Dict = use_input_lengths UpperCAmelCase_ : int = use_token_type_ids UpperCAmelCase_ : Dict = use_labels UpperCAmelCase_ : Optional[Any] = gelu_activation UpperCAmelCase_ : List[str] = sinusoidal_embeddings UpperCAmelCase_ : Any = causal UpperCAmelCase_ : Union[str, Any] = asm UpperCAmelCase_ : Dict = n_langs UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Optional[Any] = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : str = num_choices UpperCAmelCase_ : Dict = summary_type UpperCAmelCase_ : Optional[Any] = use_proj UpperCAmelCase_ : str = scope def A ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_lengths: UpperCAmelCase_ : Any = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : Tuple = None if self.use_token_type_ids: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Optional[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A ( self : Any ) -> Optional[Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def A ( self : List[Any] , _A : Tuple , _A : List[Any] , _A : str , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Optional[int] , _A : Union[str, Any] , _A : Optional[Any] , ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = FlaubertModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : List[str] = model(_A , lengths=_A , langs=_A ) UpperCAmelCase_ : Optional[int] = model(_A , langs=_A ) UpperCAmelCase_ : Optional[int] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Optional[int] , _A : List[Any] , _A : int , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : List[Any] , _A : Optional[int] , _A : str , _A : Any , ) -> int: UpperCAmelCase_ : Union[str, Any] = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : List[Any] = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Optional[int] , _A : Dict , _A : Union[str, Any] , _A : Any , _A : Tuple , _A : List[str] , _A : Any , _A : List[Any] , _A : List[str] , _A : Tuple , ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Dict = model(_A ) UpperCAmelCase_ : List[str] = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Dict , _A : Tuple , _A : Tuple , _A : Optional[int] , _A : Any , _A : List[Any] , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : Dict , ) -> Dict: UpperCAmelCase_ : Any = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Dict = model(_A ) UpperCAmelCase_ : Tuple = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) UpperCAmelCase_ : List[Any] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((UpperCAmelCase_) , ) : Optional[int] = result_with_labels.to_tuple() UpperCAmelCase_ : int = model(_A , start_positions=_A , end_positions=_A ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def A ( self : List[str] , _A : List[str] , _A : Union[str, Any] , _A : str , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : Tuple , _A : Optional[int] , ) -> Tuple: UpperCAmelCase_ : Any = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(_A ) UpperCAmelCase_ : Optional[Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : Tuple , _A : List[str] , _A : Tuple , _A : str , _A : Optional[int] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : List[Any] , _A : int , ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : Optional[Any] = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : str = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Optional[int] , _A : Optional[int] , _A : List[Any] , _A : int , _A : List[Any] , _A : Optional[Any] , _A : Dict , _A : Union[str, Any] , _A : str , _A : Dict , ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = self.num_choices UpperCAmelCase_ : List[str] = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Tuple = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Any ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Any = config_and_inputs UpperCAmelCase_ : int = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) a_ = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def A ( self : Any , _A : int , _A : Dict , _A : List[str] , _A : int , _A : Dict ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A ( self : str , _A : str , _A : Optional[int] , _A : Dict=False ) -> str: UpperCAmelCase_ : str = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": UpperCAmelCase_ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) UpperCAmelCase_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def A ( self : List[Any] ) -> str: UpperCAmelCase_ : str = FlaubertModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , emb_dim=37 ) def A ( self : Union[str, Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def A ( self : str ) -> List[Any]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def A ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def A ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def A ( self : str ) -> Dict: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def A ( self : Dict ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Union[str, Any] = model_class(config=_A ) UpperCAmelCase_ : int = self._prepare_for_class(_A , _A ) UpperCAmelCase_ : int = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) UpperCAmelCase_ : Union[str, Any] = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class snake_case__ ( unittest.TestCase): @slow def A ( self : str ) -> List[str]: UpperCAmelCase_ : Tuple = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) UpperCAmelCase_ : Any = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(_A )[0] UpperCAmelCase_ : Any = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _A ) UpperCAmelCase_ : Dict = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
304
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
1
'''simple docstring''' def __UpperCAmelCase ( A : str , A : str ) -> int: if len(A ) != len(A ): raise ValueError('''String lengths must match!''' ) UpperCAmelCase_ : Optional[Any] = 0 for chara, chara in zip(A , A ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
304
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class snake_case__ ( unittest.TestCase): a_ = JukeboxTokenizer a_ = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def A ( self : Any ) -> str: import torch UpperCAmelCase_ : int = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) UpperCAmelCase_ : Union[str, Any] = tokenizer(**self.metas )['''input_ids'''] # fmt: off UpperCAmelCase_ : Any = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def A ( self : Optional[int] ) -> Optional[Any]: import torch UpperCAmelCase_ : int = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) UpperCAmelCase_ : Dict = tokenizer(**self.metas )['''input_ids'''] # fmt: off UpperCAmelCase_ : Optional[int] = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
304
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
1
'''simple docstring''' from importlib import import_module from .logging import get_logger _UpperCamelCase : Optional[int] = get_logger(__name__) class snake_case__ : def __init__( self : int , _A : str , _A : Optional[int]=None ) -> str: UpperCAmelCase_ : Dict = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , _A , getattr(_A , _A ) ) UpperCAmelCase_ : int = module._original_module if isinstance(_A , _PatchedModuleObj ) else module class snake_case__ : a_ = [] def __init__( self : Optional[Any] , _A : Optional[int] , _A : str , _A : List[Any] , _A : int=None ) -> Any: UpperCAmelCase_ : int = obj UpperCAmelCase_ : List[Any] = target UpperCAmelCase_ : str = new UpperCAmelCase_ : Optional[int] = target.split('''.''' )[0] UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : Optional[Any] = attrs or [] def __enter__( self : Any ) -> str: *UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(_A ) ): try: UpperCAmelCase_ : int = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): UpperCAmelCase_ : Any = getattr(self.obj , _A ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(_A , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): UpperCAmelCase_ : List[Any] = obj_attr # patch at top level setattr(self.obj , _A , _PatchedModuleObj(_A , attrs=self.attrs ) ) UpperCAmelCase_ : List[Any] = getattr(self.obj , _A ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(_A , _A , _PatchedModuleObj(getattr(_A , _A , _A ) , attrs=self.attrs ) ) UpperCAmelCase_ : Tuple = getattr(_A , _A ) # finally set the target attribute setattr(_A , _A , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: UpperCAmelCase_ : List[str] = getattr(import_module('''.'''.join(_A ) ) , _A ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , _A ) is attr_value: UpperCAmelCase_ : List[str] = getattr(self.obj , _A ) setattr(self.obj , _A , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" UpperCAmelCase_ : Optional[int] = globals()['''__builtins__'''][target_attr] setattr(self.obj , _A , self.new ) else: raise RuntimeError(F"Tried to patch attribute {target_attr} instead of a submodule." ) def __exit__( self : int , *_A : Any ) -> Any: for attr in list(self.original ): setattr(self.obj , _A , self.original.pop(_A ) ) def A ( self : int ) -> Any: self.__enter__() self._active_patches.append(self ) def A ( self : Optional[Any] ) -> str: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
304
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
1
'''simple docstring''' import numpy as np from transformers import Pipeline def __UpperCAmelCase ( A : List[str] ) -> List[str]: UpperCAmelCase_ : List[str] = np.max(A , axis=-1 , keepdims=A ) UpperCAmelCase_ : Dict = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=A ) class snake_case__ ( UpperCamelCase): def A ( self : Any , **_A : int ) -> Tuple: UpperCAmelCase_ : int = {} if "second_text" in kwargs: UpperCAmelCase_ : List[Any] = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def A ( self : Union[str, Any] , _A : Union[str, Any] , _A : Optional[Any]=None ) -> Optional[int]: return self.tokenizer(_A , text_pair=_A , return_tensors=self.framework ) def A ( self : int , _A : Optional[int] ) -> Optional[Any]: return self.model(**_A ) def A ( self : Optional[int] , _A : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = model_outputs.logits[0].numpy() UpperCAmelCase_ : List[Any] = softmax(_A ) UpperCAmelCase_ : Tuple = np.argmax(_A ) UpperCAmelCase_ : List[Any] = self.model.config.idalabel[best_class] UpperCAmelCase_ : int = probabilities[best_class].item() UpperCAmelCase_ : Any = logits.tolist() return {"label": label, "score": score, "logits": logits}
304
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
1
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel _UpperCamelCase : Optional[Any] = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 48_000, 'sample_size': 131_072, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, } def __UpperCAmelCase ( A : List[Any] , A : Union[str, Any] ) -> Union[str, Any]: return torch.atana(A , A ) / math.pi * 2 def __UpperCAmelCase ( A : int ) -> int: UpperCAmelCase_ : str = torch.sin(t * math.pi / 2 ) ** 2 UpperCAmelCase_ : Optional[Any] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(A , A ) class snake_case__ ( UpperCamelCase): pass class snake_case__ ( nn.Module): def __init__( self : List[str] , _A : Dict ) -> str: super().__init__() UpperCAmelCase_ : Optional[Any] = DiffusionAttnUnetaD(_A , n_attn_layers=4 ) UpperCAmelCase_ : Optional[Any] = deepcopy(self.diffusion ) UpperCAmelCase_ : List[Any] = torch.quasirandom.SobolEngine(1 , scramble=_A ) def __UpperCAmelCase ( A : Optional[Any] ) -> Any: UpperCAmelCase_ : List[str] = MODELS_MAP[model_name]['''url'''] os.system(F"wget {url} ./" ) return F"./{model_name}.ckpt" _UpperCamelCase : Tuple = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } _UpperCamelCase : List[str] = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } _UpperCamelCase : Dict = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } _UpperCamelCase : Any = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } _UpperCamelCase : str = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } _UpperCamelCase : int = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def __UpperCAmelCase ( A : Any ) -> Tuple: if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F"ResConvBlock error with {name}" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __UpperCAmelCase ( A : Tuple ) -> Tuple: for key, value in ATTN_MAP.items(): if name.startswith(A ) and not isinstance(A , A ): return name.replace(A , A ) elif name.startswith(A ): return [name.replace(A , A ) for v in value] raise ValueError(F"Attn error with {name}" ) def __UpperCAmelCase ( A : int , A : Tuple=1_3 ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) UpperCAmelCase_ : int = 0 if string.startswith('''net.3.''' ): depth += 1 UpperCAmelCase_ : Any = string[6:] elif string.startswith('''net.''' ): UpperCAmelCase_ : str = string[4:] while string.startswith('''main.7.''' ): depth += 1 UpperCAmelCase_ : Dict = string[7:] if string.startswith('''main.''' ): UpperCAmelCase_ : Dict = string[5:] # mid block if string[:2].isdigit(): UpperCAmelCase_ : Dict = string[:2] UpperCAmelCase_ : int = string[2:] else: UpperCAmelCase_ : str = string[0] UpperCAmelCase_ : List[str] = string[1:] if depth == max_depth: UpperCAmelCase_ : Any = MID_NUM_TO_LAYER[layer_num] UpperCAmelCase_ : Optional[int] = '''mid_block''' elif depth > 0 and int(A ) < 7: UpperCAmelCase_ : Tuple = DOWN_NUM_TO_LAYER[layer_num] UpperCAmelCase_ : Any = F"down_blocks.{depth}" elif depth > 0 and int(A ) > 7: UpperCAmelCase_ : List[str] = UP_NUM_TO_LAYER[layer_num] UpperCAmelCase_ : Optional[Any] = F"up_blocks.{max_depth - depth - 1}" elif depth == 0: UpperCAmelCase_ : Dict = DEPTH_0_TO_LAYER[layer_num] UpperCAmelCase_ : List[Any] = F"up_blocks.{max_depth - 1}" if int(A ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F"Naming error with {input_string} and string_left: {string_left}." ) UpperCAmelCase_ : Optional[int] = string_left[1:] if "resnets" in new_layer: UpperCAmelCase_ : Optional[int] = convert_resconv_naming(A ) elif "attentions" in new_layer: UpperCAmelCase_ : Optional[int] = convert_attn_naming(A ) UpperCAmelCase_ : Union[str, Any] = new_string_left if not isinstance(A , A ): UpperCAmelCase_ : List[Any] = prefix + '''.''' + new_layer + '''.''' + string_left else: UpperCAmelCase_ : int = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : List[Any] = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue UpperCAmelCase_ : List[Any] = rename(A ) # check if we need to transform from Conv => Linear for attention if isinstance(A , A ): UpperCAmelCase_ : str = transform_conv_attns(A , A , A ) else: UpperCAmelCase_ : Any = v return new_state_dict def __UpperCAmelCase ( A : int , A : str , A : Dict ) -> Dict: if len(A ) == 1: if len(v.shape ) == 3: # weight UpperCAmelCase_ : Any = v[:, :, 0] else: # bias UpperCAmelCase_ : List[Any] = v else: # qkv matrices UpperCAmelCase_ : Union[str, Any] = v.shape[0] UpperCAmelCase_ : int = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: UpperCAmelCase_ : List[Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: UpperCAmelCase_ : List[Any] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __UpperCAmelCase ( A : Optional[Any] ) -> int: UpperCAmelCase_ : Optional[int] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) UpperCAmelCase_ : List[Any] = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"Make sure to provide one of the official model names {MODELS_MAP.keys()}" UpperCAmelCase_ : List[Any] = download(A ) UpperCAmelCase_ : Any = MODELS_MAP[model_name]['''sample_rate'''] UpperCAmelCase_ : int = MODELS_MAP[model_name]['''sample_size'''] UpperCAmelCase_ : List[Any] = Object() UpperCAmelCase_ : Any = sample_size UpperCAmelCase_ : List[Any] = sample_rate UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Optional[Any] = UNetaDModel(sample_size=A , sample_rate=A ) UpperCAmelCase_ : Union[str, Any] = diffusers_model.state_dict() UpperCAmelCase_ : Optional[int] = DiffusionUncond(A ) orig_model.load_state_dict(torch.load(args.model_path , map_location=A )['''state_dict'''] ) UpperCAmelCase_ : Tuple = orig_model.diffusion_ema.eval() UpperCAmelCase_ : Optional[int] = orig_model.state_dict() UpperCAmelCase_ : List[Any] = rename_orig_weights(A ) UpperCAmelCase_ : Tuple = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) UpperCAmelCase_ : Optional[int] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(A ) == 0, F"Problem with {renamed_minus_diffusers}" assert all(k.endswith('''kernel''' ) for k in list(A ) ), F"Problem with {diffusers_minus_renamed}" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}" if key == "time_proj.weight": UpperCAmelCase_ : Union[str, Any] = value.squeeze() UpperCAmelCase_ : Optional[Any] = value diffusers_model.load_state_dict(A ) UpperCAmelCase_ : Optional[int] = 1_0_0 UpperCAmelCase_ : List[Any] = 3_3 UpperCAmelCase_ : Any = IPNDMScheduler(num_train_timesteps=A ) UpperCAmelCase_ : Dict = torch.manual_seed(A ) UpperCAmelCase_ : str = torch.randn([1, 2, config.sample_size] , generator=A ).to(A ) UpperCAmelCase_ : Tuple = torch.linspace(1 , 0 , steps + 1 , device=A )[:-1] UpperCAmelCase_ : Optional[Any] = get_crash_schedule(A ) UpperCAmelCase_ : int = DanceDiffusionPipeline(unet=A , scheduler=A ) UpperCAmelCase_ : Tuple = torch.manual_seed(3_3 ) UpperCAmelCase_ : str = pipe(num_inference_steps=A , generator=A ).audios UpperCAmelCase_ : Any = sampling.iplms_sample(A , A , A , {} ) UpperCAmelCase_ : List[Any] = generated.clamp(-1 , 1 ) UpperCAmelCase_ : str = (generated - audio).abs().sum() UpperCAmelCase_ : List[Any] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , A ) print('''Diff max''' , A ) assert diff_max < 1e-3, F"Diff max: {diff_max} is too much :-/" print(F"Conversion for {model_name} successful!" ) if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') _UpperCamelCase : Union[str, Any] = parser.parse_args() main(args)
304
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase : Tuple = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Any = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _UpperCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
304
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _UpperCamelCase : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Any = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _UpperCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
304
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase : Tuple = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
304
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
1
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase : Any = logging.get_logger(__name__) _UpperCamelCase : Dict = {'vocab_file': 'vocab.txt'} _UpperCamelCase : Dict = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } _UpperCamelCase : Dict = { 'openbmb/cpm-ant-10b': 1_024, } def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : Dict = collections.OrderedDict() with open(A , '''r''' , encoding='''utf-8''' ) as reader: UpperCAmelCase_ : Dict = reader.readlines() for index, token in enumerate(A ): UpperCAmelCase_ : Tuple = token.rstrip('''\n''' ) UpperCAmelCase_ : Union[str, Any] = index return vocab class snake_case__ ( UpperCamelCase): def __init__( self : Dict , _A : int , _A : int="<unk>" , _A : Dict=2_00 ) -> Dict: UpperCAmelCase_ : List[str] = vocab UpperCAmelCase_ : Optional[Any] = unk_token UpperCAmelCase_ : Optional[Any] = max_input_chars_per_word def A ( self : str , _A : Union[str, Any] ) -> Any: UpperCAmelCase_ : Optional[int] = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Optional[int] = [] while start < len(_A ): UpperCAmelCase_ : Union[str, Any] = len(_A ) UpperCAmelCase_ : List[Any] = None while start < end: UpperCAmelCase_ : Dict = ''''''.join(chars[start:end] ) if substr in self.vocab: UpperCAmelCase_ : Tuple = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) UpperCAmelCase_ : List[Any] = end return sub_tokens class snake_case__ ( UpperCamelCase): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] a_ = False def __init__( self : Optional[int] , _A : Tuple , _A : int="<d>" , _A : str="</d>" , _A : Any="<s>" , _A : Dict="</s>" , _A : Union[str, Any]="<pad>" , _A : Optional[int]="<unk>" , _A : int="</n>" , _A : Optional[Any]="</_>" , _A : Union[str, Any]="left" , **_A : Tuple , ) -> Tuple: requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) UpperCAmelCase_ : Union[str, Any] = bod_token UpperCAmelCase_ : Union[str, Any] = eod_token UpperCAmelCase_ : List[str] = load_vocab(_A ) UpperCAmelCase_ : Dict = self.encoder[space_token] UpperCAmelCase_ : List[str] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCAmelCase_ : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) UpperCAmelCase_ : str = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def A ( self : int ) -> Union[str, Any]: return self.encoder[self.bod_token] @property def A ( self : Dict ) -> Any: return self.encoder[self.eod_token] @property def A ( self : int ) -> Any: return self.encoder["\n"] @property def A ( self : List[Any] ) -> int: return len(self.encoder ) def A ( self : Any ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def A ( self : Optional[int] , _A : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def A ( self : List[str] , _A : List[str] , **_A : List[str] ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = [i for i in token_ids if i >= 0] UpperCAmelCase_ : Union[str, Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def A ( self : List[str] , _A : Tuple ) -> Optional[int]: return token in self.encoder def A ( self : Optional[Any] , _A : List[str] ) -> str: return "".join(_A ) def A ( self : Any , _A : int ) -> Union[str, Any]: return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def A ( self : Optional[Any] , _A : Tuple ) -> Tuple: return self.decoder.get(_A , self.unk_token ) def A ( self : int , _A : str , _A : Optional[str] = None ) -> Tuple[str]: if os.path.isdir(_A ): UpperCAmelCase_ : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCAmelCase_ : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCAmelCase_ : Optional[int] = 0 if " " in self.encoder: UpperCAmelCase_ : Any = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCAmelCase_ : Optional[Any] = self.encoder['''\n'''] del self.encoder["\n"] UpperCAmelCase_ : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase_ : int = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def A ( self : List[str] , _A : List[int] , _A : List[int] = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def A ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
304
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
1
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ConsistencyModelPipeline a_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS a_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt a_ = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ]) @property def A ( self : Any ) -> str: UpperCAmelCase_ : Any = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def A ( self : Optional[int] ) -> List[str]: UpperCAmelCase_ : int = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def A ( self : Dict , _A : List[str]=False ) -> int: if class_cond: UpperCAmelCase_ : str = self.dummy_cond_unet else: UpperCAmelCase_ : Optional[int] = self.dummy_uncond_unet # Default to CM multistep sampler UpperCAmelCase_ : int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_ : List[str] = { '''unet''': unet, '''scheduler''': scheduler, } return components def A ( self : int , _A : Dict , _A : List[str]=0 ) -> Optional[int]: if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : int = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Tuple = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase_ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : int = self.get_dummy_components() UpperCAmelCase_ : str = ConsistencyModelPipeline(**_A ) UpperCAmelCase_ : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : List[Any] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[str] = pipe(**_A ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : List[str] ) -> str: UpperCAmelCase_ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : List[str] = self.get_dummy_components(class_cond=_A ) UpperCAmelCase_ : Optional[int] = ConsistencyModelPipeline(**_A ) UpperCAmelCase_ : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Any = self.get_dummy_inputs(_A ) UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Tuple = pipe(**_A ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[int] = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : Optional[Any] ) -> List[str]: UpperCAmelCase_ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : int = ConsistencyModelPipeline(**_A ) UpperCAmelCase_ : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : int = self.get_dummy_inputs(_A ) UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : int = pipe(**_A ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : int = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : str ) -> Any: UpperCAmelCase_ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : str = self.get_dummy_components(class_cond=_A ) UpperCAmelCase_ : Optional[Any] = ConsistencyModelPipeline(**_A ) UpperCAmelCase_ : Union[str, Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : int = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Optional[int] = pipe(**_A ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : str = image[0, -3:, -3:, -1] UpperCAmelCase_ : str = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class snake_case__ ( unittest.TestCase): def A ( self : List[str] ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Tuple , _A : Tuple=0 , _A : Tuple=False , _A : int="cpu" , _A : Any=torch.floataa , _A : Dict=(1, 3, 64, 64) ) -> List[Any]: UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) UpperCAmelCase_ : List[Any] = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: UpperCAmelCase_ : str = self.get_fixed_latents(seed=_A , device=_A , dtype=_A , shape=_A ) UpperCAmelCase_ : int = latents return inputs def A ( self : List[Any] , _A : Tuple=0 , _A : Optional[Any]="cpu" , _A : Union[str, Any]=torch.floataa , _A : List[Any]=(1, 3, 64, 64) ) -> Any: if type(_A ) == str: UpperCAmelCase_ : str = torch.device(_A ) UpperCAmelCase_ : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : List[Any] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) return latents def A ( self : int ) -> List[Any]: UpperCAmelCase_ : int = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) UpperCAmelCase_ : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_ : List[Any] = ConsistencyModelPipeline(unet=_A , scheduler=_A ) pipe.to(torch_device=_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Any = self.get_inputs() UpperCAmelCase_ : str = pipe(**_A ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def A ( self : List[Any] ) -> int: UpperCAmelCase_ : Optional[int] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) UpperCAmelCase_ : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_ : Dict = ConsistencyModelPipeline(unet=_A , scheduler=_A ) pipe.to(torch_device=_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Tuple = self.get_inputs() UpperCAmelCase_ : str = 1 UpperCAmelCase_ : str = None UpperCAmelCase_ : str = pipe(**_A ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def A ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : str = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) UpperCAmelCase_ : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_ : List[str] = ConsistencyModelPipeline(unet=_A , scheduler=_A ) pipe.to(torch_device=_A , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : List[Any] = self.get_inputs(get_fixed_latents=_A , device=_A ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_A , enable_math=_A , enable_mem_efficient=_A ): UpperCAmelCase_ : Optional[int] = pipe(**_A ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def A ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) UpperCAmelCase_ : int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_ : str = ConsistencyModelPipeline(unet=_A , scheduler=_A ) pipe.to(torch_device=_A , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : int = self.get_inputs(get_fixed_latents=_A , device=_A ) UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : Dict = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_A , enable_math=_A , enable_mem_efficient=_A ): UpperCAmelCase_ : Union[str, Any] = pipe(**_A ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
304
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
1
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _UpperCamelCase : List[Any] = logging.getLogger(__name__) _UpperCamelCase : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _UpperCamelCase : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) a_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) a_ = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def A ( self : Optional[Any] ) -> Tuple: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The name of the dataset to use (via the datasets library)."}) a_ = field( default=UpperCamelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}) a_ = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) a_ = field( default=5 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) def A ( self : Optional[int] ) -> Optional[Any]: if self.train_file is not None: UpperCAmelCase_ : List[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: UpperCAmelCase_ : Optional[int] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def __UpperCAmelCase ( A : Union[str, Any] , A : List[Any] ) -> List[str]: with open(A , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ : Any = [json.loads(A ) for line in f.read().splitlines() if (len(A ) > 0 and not line.isspace())] assert len(A ) == len(A ) UpperCAmelCase_ : List[str] = {c: dataset[c] for c in dataset.column_names} UpperCAmelCase_ : str = refs return Dataset.from_dict(A ) def __UpperCAmelCase ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = parser.parse_args_into_dataclasses() # Detecting last checkpoint. UpperCAmelCase_ : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCAmelCase_ : int = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): UpperCAmelCase_ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) UpperCAmelCase_ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: UpperCAmelCase_ : Any = {} if data_args.train_file is not None: UpperCAmelCase_ : Tuple = data_args.train_file if data_args.validation_file is not None: UpperCAmelCase_ : List[Any] = data_args.validation_file UpperCAmelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1] if extension == "txt": UpperCAmelCase_ : Dict = '''text''' UpperCAmelCase_ : Optional[Any] = load_dataset(A , data_files=A ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : Any = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: UpperCAmelCase_ : str = AutoConfig.from_pretrained(model_args.config_name , **A ) elif model_args.model_name_or_path: UpperCAmelCase_ : Any = AutoConfig.from_pretrained(model_args.model_name_or_path , **A ) else: UpperCAmelCase_ : List[str] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) UpperCAmelCase_ : Dict = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: UpperCAmelCase_ : int = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **A ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **A ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: UpperCAmelCase_ : Tuple = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : List[str] = AutoModelForMaskedLM.from_config(A ) model.resize_token_embeddings(len(A ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: UpperCAmelCase_ : Tuple = datasets['''train'''].column_names else: UpperCAmelCase_ : str = datasets['''validation'''].column_names UpperCAmelCase_ : List[Any] = '''text''' if '''text''' in column_names else column_names[0] UpperCAmelCase_ : Dict = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(A : Any ): # Remove empty lines UpperCAmelCase_ : Any = [line for line in examples['''text'''] if len(A ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=A , truncation=A , max_length=data_args.max_seq_length ) UpperCAmelCase_ : int = datasets.map( A , batched=A , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: UpperCAmelCase_ : List[Any] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: UpperCAmelCase_ : Optional[Any] = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer UpperCAmelCase_ : Tuple = data_args.train_ref_file or data_args.validation_ref_file if has_ref: UpperCAmelCase_ : Optional[Any] = False # Data collator # This one will take care of randomly masking the tokens. UpperCAmelCase_ : str = DataCollatorForWholeWordMask(tokenizer=A , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : str = Trainer( model=A , args=A , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=A , data_collator=A , ) # Training if training_args.do_train: if last_checkpoint is not None: UpperCAmelCase_ : Optional[Any] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): UpperCAmelCase_ : Optional[int] = model_args.model_name_or_path else: UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = trainer.train(resume_from_checkpoint=A ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(A , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation UpperCAmelCase_ : str = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Tuple = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : List[str] = perplexity UpperCAmelCase_ : Tuple = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def __UpperCAmelCase ( A : Tuple ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
1
'''simple docstring''' import math _UpperCamelCase : Tuple = 10 _UpperCamelCase : Any = 7 _UpperCamelCase : Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def __UpperCAmelCase ( A : int = 2_0 ) -> str: UpperCAmelCase_ : Tuple = math.comb(A , A ) UpperCAmelCase_ : Optional[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , A ) UpperCAmelCase_ : Any = NUM_COLOURS * (1 - missing_colour / total) return F"{result:.9f}" if __name__ == "__main__": print(solution(20))
304
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
1
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __UpperCAmelCase ( A : str , A : str , **A : List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(A , **A ) UpperCAmelCase_ : Optional[int] = AutoModelForSeqaSeqLM.from_config(A ) model.save_pretrained(A ) AutoTokenizer.from_pretrained(A ).save_pretrained(A ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
304
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
1
'''simple docstring''' class snake_case__ ( UpperCamelCase): pass class snake_case__ ( UpperCamelCase): pass class snake_case__ : def __init__( self : str ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = [ [], [], [], ] def A ( self : str , _A : int , _A : int ) -> None: try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(_A ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def A ( self : Optional[Any] ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__( self : Tuple ) -> str: return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class snake_case__ : def __init__( self : Any ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = [] def A ( self : str , _A : int ) -> None: if len(self.queue ) == 1_00: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(_A ) def A ( self : Tuple ) -> int: if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: UpperCAmelCase_ : List[Any] = min(self.queue ) self.queue.remove(_A ) return data def __str__( self : Optional[Any] ) -> str: return str(self.queue ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : List[Any] = FixedPriorityQueue() fpq.enqueue(0 , 1_0 ) fpq.enqueue(1 , 7_0 ) fpq.enqueue(0 , 1_0_0 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 6_4 ) fpq.enqueue(0 , 1_2_8 ) print(A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase ( ) -> List[str]: UpperCAmelCase_ : Tuple = ElementPriorityQueue() epq.enqueue(1_0 ) epq.enqueue(7_0 ) epq.enqueue(1_0_0 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(6_4 ) epq.enqueue(1_2_8 ) print(A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
304
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1 UpperCAmelCase_ : Dict = [] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator if len(str(A ) ) > len(str(A ) ): result.append(A ) UpperCAmelCase_ : Optional[Any] = numerator UpperCAmelCase_ : Optional[int] = denominator return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
304
1
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _UpperCamelCase : Dict = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } _UpperCamelCase : Optional[Any] = { '169M': 768, '430M': 1_024, '1B5': 2_048, '3B': 2_560, '7B': 4_096, '14B': 5_120, } def __UpperCAmelCase ( A : List[str] ) -> List[Any]: UpperCAmelCase_ : int = list(state_dict.keys() ) for name in state_dict_keys: UpperCAmelCase_ : str = state_dict.pop(A ) # emb -> embedding if name.startswith('''emb.''' ): UpperCAmelCase_ : Any = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): UpperCAmelCase_ : str = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention UpperCAmelCase_ : Optional[int] = re.sub(r'''blocks\.(\d+)\.att''' , r'''blocks.\1.attention''' , A ) # ffn -> feed_forward UpperCAmelCase_ : Dict = re.sub(r'''blocks\.(\d+)\.ffn''' , r'''blocks.\1.feed_forward''' , A ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): UpperCAmelCase_ : Tuple = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): UpperCAmelCase_ : Tuple = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): UpperCAmelCase_ : Optional[int] = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": UpperCAmelCase_ : int = '''rwkv.''' + name UpperCAmelCase_ : List[str] = weight return state_dict def __UpperCAmelCase ( A : int , A : str , A : List[str] , A : int=None , A : Dict=None , A : Union[str, Any]=False , A : str=None ) -> str: # 1. If possible, build the tokenizer. if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) UpperCAmelCase_ : str = 5_0_2_7_7 UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: UpperCAmelCase_ : Dict = PreTrainedTokenizerFast(tokenizer_file=A ) UpperCAmelCase_ : List[Any] = len(A ) tokenizer.save_pretrained(A ) # 2. Build the config UpperCAmelCase_ : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: UpperCAmelCase_ : Tuple = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F"`size` should be one of {possible_sizes}, got {size}." ) UpperCAmelCase_ : str = RwkvConfig( vocab_size=A , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(A ) # 3. Download model file then convert state_dict UpperCAmelCase_ : Dict = hf_hub_download(A , A ) UpperCAmelCase_ : List[str] = torch.load(A , map_location='''cpu''' ) UpperCAmelCase_ : str = convert_state_dict(A ) # 4. Split in shards and save UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = shard_checkpoint(A ) for shard_file, shard in shards.items(): torch.save(A , os.path.join(A , A ) ) if index is not None: UpperCAmelCase_ : Union[str, Any] = os.path.join(A , A ) # Save the index as well with open(A , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ : Tuple = json.dumps(A , indent=2 , sort_keys=A ) + '''\n''' f.write(A ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) UpperCAmelCase_ : Optional[int] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: UpperCAmelCase_ : Tuple = torch.load(os.path.join(A , A ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(A , A ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) UpperCAmelCase_ : Optional[int] = AutoModelForCausalLM.from_pretrained(A ) model.push_to_hub(A , max_shard_size='''2GB''' ) tokenizer.push_to_hub(A ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) _UpperCamelCase : str = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
304
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
1
'''simple docstring''' def __UpperCAmelCase ( A : Tuple , A : List[str] ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = '''''' for i in table: res += inp[i - 1] return res def __UpperCAmelCase ( A : Tuple ) -> Union[str, Any]: return data[1:] + data[0] def __UpperCAmelCase ( A : List[str] , A : Tuple ) -> Dict: UpperCAmelCase_ : Any = '''''' for i in range(len(A ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def __UpperCAmelCase ( A : int , A : int ) -> Dict: UpperCAmelCase_ : List[str] = int('''0b''' + data[0] + data[-1] , 2 ) UpperCAmelCase_ : str = int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def __UpperCAmelCase ( A : int , A : Optional[int] , A : Optional[int] , A : Union[str, Any] , A : Optional[int] ) -> Any: UpperCAmelCase_ : Dict = message[:4] UpperCAmelCase_ : List[Any] = message[4:] UpperCAmelCase_ : Tuple = apply_table(A , A ) UpperCAmelCase_ : Tuple = xor(A , A ) UpperCAmelCase_ : str = apply_sbox(A , temp[:4] ) # noqa: E741 UpperCAmelCase_ : List[str] = apply_sbox(A , temp[4:] ) UpperCAmelCase_ : Tuple = '''0''' * (2 - len(A )) + l # noqa: E741 UpperCAmelCase_ : Union[str, Any] = '''0''' * (2 - len(A )) + r UpperCAmelCase_ : str = apply_table(l + r , A ) UpperCAmelCase_ : int = xor(A , A ) return temp + right if __name__ == "__main__": _UpperCamelCase : Optional[int] = input('Enter 10 bit key: ') _UpperCamelCase : Union[str, Any] = input('Enter 8 bit message: ') _UpperCamelCase : Any = [6, 3, 7, 4, 8, 5, 10, 9] _UpperCamelCase : Dict = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _UpperCamelCase : Union[str, Any] = [2, 4, 3, 1] _UpperCamelCase : Union[str, Any] = [2, 6, 3, 1, 4, 8, 5, 7] _UpperCamelCase : List[Any] = [4, 1, 3, 5, 7, 2, 8, 6] _UpperCamelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] _UpperCamelCase : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _UpperCamelCase : Optional[int] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _UpperCamelCase : Tuple = apply_table(key, paa_table) _UpperCamelCase : Any = temp[:5] _UpperCamelCase : Any = temp[5:] _UpperCamelCase : Optional[Any] = left_shift(left) _UpperCamelCase : int = left_shift(right) _UpperCamelCase : Tuple = apply_table(left + right, pa_table) _UpperCamelCase : Union[str, Any] = left_shift(left) _UpperCamelCase : str = left_shift(right) _UpperCamelCase : Dict = left_shift(left) _UpperCamelCase : Any = left_shift(right) _UpperCamelCase : int = apply_table(left + right, pa_table) # encryption _UpperCamelCase : List[Any] = apply_table(message, IP) _UpperCamelCase : List[Any] = function(expansion, sa, sa, keya, temp) _UpperCamelCase : Dict = temp[4:] + temp[:4] _UpperCamelCase : List[str] = function(expansion, sa, sa, keya, temp) _UpperCamelCase : Any = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption _UpperCamelCase : Union[str, Any] = apply_table(CT, IP) _UpperCamelCase : Any = function(expansion, sa, sa, keya, temp) _UpperCamelCase : List[Any] = temp[4:] + temp[:4] _UpperCamelCase : Optional[int] = function(expansion, sa, sa, keya, temp) _UpperCamelCase : Any = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
304
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _UpperCamelCase : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class snake_case__ : a_ = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"}) a_ = field( default=UpperCamelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}) a_ = field( default=UpperCamelCase , metadata={"help": "The column name of the images in the files."}) a_ = field(default=UpperCamelCase , metadata={"help": "A folder containing the training data."}) a_ = field(default=UpperCamelCase , metadata={"help": "A folder containing the validation data."}) a_ = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) a_ = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = {} if self.train_dir is not None: UpperCAmelCase_ : Any = self.train_dir if self.validation_dir is not None: UpperCAmelCase_ : Union[str, Any] = self.validation_dir UpperCAmelCase_ : int = data_files if data_files else None @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}) a_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) a_ = field(default=UpperCamelCase , metadata={"help": "Name or path of preprocessor config."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) a_ = field( default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."}) a_ = field( default=UpperCamelCase , metadata={"help": "Whether or not to train with normalized pixel values as target."}) @dataclass class snake_case__ ( UpperCamelCase): a_ = field( default=1E-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."}) def __UpperCAmelCase ( A : Optional[int] ) -> List[str]: UpperCAmelCase_ : Dict = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def __UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , A , A ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase_ : int = training_args.get_process_log_level() logger.setLevel(A ) transformers.utils.logging.set_verbosity(A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. UpperCAmelCase_ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. UpperCAmelCase_ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase_ : Union[str, Any] = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , A ) and data_args.train_val_split > 0.0: UpperCAmelCase_ : str = ds['''train'''].train_test_split(data_args.train_val_split ) UpperCAmelCase_ : List[Any] = split['''train'''] UpperCAmelCase_ : Optional[int] = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : Dict = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: UpperCAmelCase_ : str = ViTMAEConfig.from_pretrained(model_args.config_name , **A ) elif model_args.model_name_or_path: UpperCAmelCase_ : Optional[Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **A ) else: UpperCAmelCase_ : List[str] = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCAmelCase_ : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **A ) elif model_args.model_name_or_path: UpperCAmelCase_ : Optional[int] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **A ) else: UpperCAmelCase_ : Union[str, Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCAmelCase_ : List[Any] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : Dict = ViTMAEForPreTraining(A ) if training_args.do_train: UpperCAmelCase_ : Any = ds['''train'''].column_names else: UpperCAmelCase_ : Any = ds['''validation'''].column_names if data_args.image_column_name is not None: UpperCAmelCase_ : List[str] = data_args.image_column_name elif "image" in column_names: UpperCAmelCase_ : List[str] = '''image''' elif "img" in column_names: UpperCAmelCase_ : int = '''img''' else: UpperCAmelCase_ : Tuple = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCAmelCase_ : Optional[Any] = image_processor.size['''shortest_edge'''] else: UpperCAmelCase_ : List[Any] = (image_processor.size['''height'''], image_processor.size['''width''']) UpperCAmelCase_ : Any = Compose( [ Lambda(lambda A : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(A , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(A : Any ): UpperCAmelCase_ : Optional[int] = [transforms(A ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: UpperCAmelCase_ : Optional[int] = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(A ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: UpperCAmelCase_ : List[str] = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(A ) # Compute absolute learning rate UpperCAmelCase_ : Optional[Any] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCAmelCase_ : List[Any] = training_args.base_learning_rate * total_train_batch_size / 2_5_6 # Initialize our trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=A , data_collator=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ : Tuple = last_checkpoint UpperCAmelCase_ : Optional[int] = trainer.train(resume_from_checkpoint=A ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase_ : Any = trainer.evaluate() trainer.log_metrics('''eval''' , A ) trainer.save_metrics('''eval''' , A ) # Write model card and (optionally) push to hub UpperCAmelCase_ : Any = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**A ) else: trainer.create_model_card(**A ) def __UpperCAmelCase ( A : Optional[int] ) -> List[str]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
1
'''simple docstring''' from collections import deque class snake_case__ : def __init__( self : int , _A : str , _A : int , _A : int ) -> None: UpperCAmelCase_ : Union[str, Any] = process_name # process name UpperCAmelCase_ : int = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCAmelCase_ : List[str] = arrival_time UpperCAmelCase_ : List[str] = burst_time # remaining burst time UpperCAmelCase_ : List[Any] = 0 # total time of the process wait in ready queue UpperCAmelCase_ : Optional[int] = 0 # time from arrival time to completion time class snake_case__ : def __init__( self : Tuple , _A : int , _A : list[int] , _A : deque[Process] , _A : int , ) -> None: # total number of mlfq's queues UpperCAmelCase_ : Optional[int] = number_of_queues # time slice of queues that round robin algorithm applied UpperCAmelCase_ : Any = time_slices # unfinished process is in this ready_queue UpperCAmelCase_ : List[str] = queue # current time UpperCAmelCase_ : Dict = current_time # finished process is in this sequence queue UpperCAmelCase_ : deque[Process] = deque() def A ( self : Optional[int] ) -> list[str]: UpperCAmelCase_ : int = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def A ( self : str , _A : list[Process] ) -> list[int]: UpperCAmelCase_ : List[str] = [] for i in range(len(_A ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def A ( self : str , _A : list[Process] ) -> list[int]: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def A ( self : Any , _A : list[Process] ) -> list[int]: UpperCAmelCase_ : Union[str, Any] = [] for i in range(len(_A ) ): completion_times.append(queue[i].stop_time ) return completion_times def A ( self : Optional[int] , _A : deque[Process] ) -> list[int]: return [q.burst_time for q in queue] def A ( self : Union[str, Any] , _A : Process ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def A ( self : Dict , _A : deque[Process] ) -> deque[Process]: UpperCAmelCase_ : deque[Process] = deque() # sequence deque of finished process while len(_A ) != 0: UpperCAmelCase_ : Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_A ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCAmelCase_ : Dict = 0 # set the process's turnaround time because it is finished UpperCAmelCase_ : str = self.current_time - cp.arrival_time # set the completion time UpperCAmelCase_ : Any = self.current_time # add the process to queue that has finished queue finished.append(_A ) self.finish_queue.extend(_A ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def A ( self : Tuple , _A : deque[Process] , _A : int ) -> tuple[deque[Process], deque[Process]]: UpperCAmelCase_ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_A ) ): UpperCAmelCase_ : Optional[int] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_A ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCAmelCase_ : Union[str, Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_A ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCAmelCase_ : Union[str, Any] = 0 # set the finish time UpperCAmelCase_ : Tuple = self.current_time # update the process' turnaround time because it is finished UpperCAmelCase_ : List[str] = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_A ) self.finish_queue.extend(_A ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def A ( self : Optional[Any] ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): UpperCAmelCase_ , UpperCAmelCase_ : str = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _UpperCamelCase : Tuple = Process('P1', 0, 53) _UpperCamelCase : Optional[Any] = Process('P2', 0, 17) _UpperCamelCase : int = Process('P3', 0, 68) _UpperCamelCase : int = Process('P4', 0, 24) _UpperCamelCase : List[Any] = 3 _UpperCamelCase : Any = [17, 25] _UpperCamelCase : Optional[Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _UpperCamelCase : Optional[Any] = Process('P1', 0, 53) _UpperCamelCase : List[str] = Process('P2', 0, 17) _UpperCamelCase : int = Process('P3', 0, 68) _UpperCamelCase : Union[str, Any] = Process('P4', 0, 24) _UpperCamelCase : Optional[Any] = 3 _UpperCamelCase : Tuple = [17, 25] _UpperCamelCase : Tuple = deque([Pa, Pa, Pa, Pa]) _UpperCamelCase : Dict = MLFQ(number_of_queues, time_slices, queue, 0) _UpperCamelCase : Optional[Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
304
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class snake_case__ ( UpperCamelCase): a_ = "SpeechT5FeatureExtractor" a_ = "SpeechT5Tokenizer" def __init__( self : List[Any] , _A : Dict , _A : Any ) -> Tuple: super().__init__(_A , _A ) def __call__( self : Optional[int] , *_A : Tuple , **_A : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = kwargs.pop('''audio''' , _A ) UpperCAmelCase_ : List[Any] = kwargs.pop('''text''' , _A ) UpperCAmelCase_ : Optional[int] = kwargs.pop('''text_target''' , _A ) UpperCAmelCase_ : Optional[int] = kwargs.pop('''audio_target''' , _A ) UpperCAmelCase_ : Optional[int] = kwargs.pop('''sampling_rate''' , _A ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: UpperCAmelCase_ : Optional[Any] = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) elif text is not None: UpperCAmelCase_ : int = self.tokenizer(_A , **_A ) else: UpperCAmelCase_ : Dict = None if audio_target is not None: UpperCAmelCase_ : Union[str, Any] = self.feature_extractor(audio_target=_A , *_A , sampling_rate=_A , **_A ) UpperCAmelCase_ : List[Any] = targets['''input_values'''] elif text_target is not None: UpperCAmelCase_ : List[Any] = self.tokenizer(_A , **_A ) UpperCAmelCase_ : List[str] = targets['''input_ids'''] else: UpperCAmelCase_ : Optional[Any] = None if inputs is None: return targets if targets is not None: UpperCAmelCase_ : Optional[Any] = labels UpperCAmelCase_ : Any = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: UpperCAmelCase_ : Dict = decoder_attention_mask return inputs def A ( self : str , *_A : List[Any] , **_A : List[Any] ) -> Tuple: UpperCAmelCase_ : Optional[int] = kwargs.pop('''input_values''' , _A ) UpperCAmelCase_ : List[Any] = kwargs.pop('''input_ids''' , _A ) UpperCAmelCase_ : str = kwargs.pop('''labels''' , _A ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: UpperCAmelCase_ : List[Any] = self.feature_extractor.pad(_A , *_A , **_A ) elif input_ids is not None: UpperCAmelCase_ : List[str] = self.tokenizer.pad(_A , **_A ) else: UpperCAmelCase_ : Optional[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(_A , _A ) and "input_ids" in labels[0]): UpperCAmelCase_ : int = self.tokenizer.pad(_A , **_A ) UpperCAmelCase_ : Optional[int] = targets['''input_ids'''] else: UpperCAmelCase_ : List[Any] = self.feature_extractor.feature_size UpperCAmelCase_ : Union[str, Any] = self.feature_extractor.num_mel_bins UpperCAmelCase_ : int = self.feature_extractor.pad(_A , *_A , **_A ) UpperCAmelCase_ : Union[str, Any] = feature_size_hack UpperCAmelCase_ : Any = targets['''input_values'''] else: UpperCAmelCase_ : Union[str, Any] = None if inputs is None: return targets if targets is not None: UpperCAmelCase_ : Union[str, Any] = labels UpperCAmelCase_ : str = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: UpperCAmelCase_ : int = decoder_attention_mask return inputs def A ( self : int , *_A : Any , **_A : Optional[Any] ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def A ( self : Tuple , *_A : Tuple , **_A : List[Any] ) -> str: return self.tokenizer.decode(*_A , **_A )
304
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
1
'''simple docstring''' from __future__ import annotations import numpy as np def __UpperCAmelCase ( A : list[float] ) -> Tuple: return np.maximum(0 , A ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
304
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class snake_case__ ( unittest.TestCase): a_ = ViTImageProcessor if is_vision_available() else None @property def A ( self : List[str] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Tuple ) -> List[Any]: UpperCAmelCase_ : Optional[int] = (3, 32, 1_28) UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() # fmt: off UpperCAmelCase_ : List[str] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on UpperCAmelCase_ : List[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) UpperCAmelCase_ : Any = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 1_28}, } UpperCAmelCase_ : Any = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_A , _A ) def A ( self : Optional[Any] , **_A : Any ) -> Tuple: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_A ) def A ( self : Union[str, Any] , **_A : Union[str, Any] ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def A ( self : Union[str, Any] ) -> Tuple: shutil.rmtree(self.tmpdirname ) def A ( self : List[str] ) -> Any: UpperCAmelCase_ : Dict = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) UpperCAmelCase_ : Optional[int] = Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) return image_input def A ( self : Dict ) -> Union[str, Any]: UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = self.get_image_processor() UpperCAmelCase_ : Union[str, Any] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Any = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def A ( self : Any ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = self.get_image_processor() UpperCAmelCase_ : Any = MgpstrProcessor(tokenizer=_A , image_processor=_A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase_ : int = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) UpperCAmelCase_ : Optional[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def A ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : List[str] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) UpperCAmelCase_ : List[str] = self.prepare_image_inputs() UpperCAmelCase_ : Union[str, Any] = image_processor(_A , return_tensors='''np''' ) UpperCAmelCase_ : Optional[int] = processor(images=_A , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Tuple = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : List[Any] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) UpperCAmelCase_ : Optional[int] = '''test''' UpperCAmelCase_ : int = processor(text=_A ) UpperCAmelCase_ : Tuple = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A ( self : Optional[int] ) -> int: UpperCAmelCase_ : Dict = self.get_image_processor() UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) UpperCAmelCase_ : Optional[Any] = '''test''' UpperCAmelCase_ : Optional[Any] = self.prepare_image_inputs() UpperCAmelCase_ : Dict = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = self.get_image_processor() UpperCAmelCase_ : List[str] = self.get_tokenizer() UpperCAmelCase_ : Dict = MgpstrProcessor(tokenizer=_A , image_processor=_A ) UpperCAmelCase_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ : List[str] = processor.char_decode(_A ) UpperCAmelCase_ : str = tokenizer.batch_decode(_A ) UpperCAmelCase_ : str = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(_A , _A ) def A ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = self.get_image_processor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : int = MgpstrProcessor(tokenizer=_A , image_processor=_A ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[Any] = self.prepare_image_inputs() UpperCAmelCase_ : Union[str, Any] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def A ( self : Dict ) -> str: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) UpperCAmelCase_ : Tuple = torch.randn(1 , 27 , 38 ) UpperCAmelCase_ : int = torch.randn(1 , 27 , 5_02_57 ) UpperCAmelCase_ : Optional[Any] = torch.randn(1 , 27 , 3_05_22 ) UpperCAmelCase_ : Dict = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
304
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ReformerTokenizer a_ = ReformerTokenizerFast a_ = True a_ = False a_ = True def A ( self : Optional[Any] ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = '''<s>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 10_00 ) def A ( self : Optional[int] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(_A ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def A ( self : Tuple , _A : Dict=15 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Dict = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def A ( self : Union[str, Any] ) -> int: pass def A ( self : int ) -> Any: UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A ) UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : List[str] ) -> Optional[int]: return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : Tuple = '''Hello World!''' UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def A ( self : List[Any] ) -> str: UpperCAmelCase_ : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase_ : int = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def A ( self : List[str] ) -> Optional[int]: import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ : List[Any] = ''' '''.join(_A ) UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' ) UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape UpperCAmelCase_ : Optional[int] = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def A ( self : int ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ : Optional[Any] = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
304
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCamelCase : Tuple = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
304
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class snake_case__ ( UpperCamelCase): a_ = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) a_ = "CIDAS/clipseg-rd64-refined" a_ = "image_segmenter" a_ = CLIPSegForImageSegmentation a_ = ["image", "text"] a_ = ["image"] def __init__( self : Any , *_A : Dict , **_A : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ['''vision'''] ) super().__init__(*_A , **_A ) def A ( self : int , _A : "Image" , _A : str ) -> Optional[Any]: return self.pre_processor(text=[label] , images=[image] , padding=_A , return_tensors='''pt''' ) def A ( self : Optional[Any] , _A : List[str] ) -> List[str]: with torch.no_grad(): UpperCAmelCase_ : int = self.model(**_A ).logits return logits def A ( self : List[str] , _A : int ) -> int: UpperCAmelCase_ : int = outputs.cpu().detach().numpy() UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Dict = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
304
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _UpperCamelCase : Optional[Any] = (3, 9, -11, 0, 7, 5, 1, -1) _UpperCamelCase : Tuple = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class snake_case__ : a_ = 42 a_ = 42 class snake_case__ : def __init__( self : Tuple , _A : Iterable[int] ) -> None: UpperCAmelCase_ : Node | None = None for i in sorted(_A , reverse=_A ): UpperCAmelCase_ : Tuple = Node(_A , self.head ) def __iter__( self : Optional[int] ) -> Iterator[int]: UpperCAmelCase_ : Tuple = self.head while node: yield node.data UpperCAmelCase_ : Optional[Any] = node.next_node def __len__( self : Tuple ) -> int: return sum(1 for _ in self ) def __str__( self : str ) -> str: return " -> ".join([str(_A ) for node in self] ) def __UpperCAmelCase ( A : SortedLinkedList , A : SortedLinkedList ) -> SortedLinkedList: return SortedLinkedList(list(A ) + list(A ) ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
304
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
1
'''simple docstring''' def __UpperCAmelCase ( A : int , A : int , A : int ) -> int: if exponent == 1: return base if exponent % 2 == 0: UpperCAmelCase_ : int = _modexpt(A , exponent // 2 , A ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(A , exponent - 1 , A )) % modulo_value def __UpperCAmelCase ( A : int = 1_7_7_7 , A : int = 1_8_5_5 , A : int = 8 ) -> int: UpperCAmelCase_ : Optional[Any] = base for _ in range(1 , A ): UpperCAmelCase_ : List[str] = _modexpt(A , A , 1_0**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
304
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
1
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case__ ( UpperCamelCase , UpperCamelCase): @register_to_config def __init__( self : str , _A : bool , _A : Optional[int] = None , _A : Optional[int] = None ) -> Tuple: super().__init__() UpperCAmelCase_ : Optional[Any] = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase_ : Union[str, Any] = torch.zeros(_A , _A ) else: UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = torch.nn.Parameter(_A ) class snake_case__ ( UpperCamelCase): a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def __init__( self : int , _A : VQModel , _A : CLIPTextModel , _A : CLIPTokenizer , _A : TransformeraDModel , _A : VQDiffusionScheduler , _A : LearnedClassifierFreeSamplingEmbeddings , ) -> int: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def A ( self : Dict , _A : Tuple , _A : Optional[Any] , _A : Any ) -> Dict: UpperCAmelCase_ : Tuple = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase_ : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase_ : int = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCAmelCase_ : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase_ : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase_ : str = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt UpperCAmelCase_ : int = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase_ : Union[str, Any] = self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase_ : Union[str, Any] = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: UpperCAmelCase_ : Union[str, Any] = [''''''] * batch_size UpperCAmelCase_ : Union[str, Any] = text_input_ids.shape[-1] UpperCAmelCase_ : Dict = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) UpperCAmelCase_ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase_ : Any = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ : Tuple = negative_prompt_embeds.shape[1] UpperCAmelCase_ : Tuple = negative_prompt_embeds.repeat(1 , _A , 1 ) UpperCAmelCase_ : Dict = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : str = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : str , _A : Union[str, List[str]] , _A : int = 1_00 , _A : float = 5.0 , _A : float = 1.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , _A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _A : int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): UpperCAmelCase_ : Optional[Any] = 1 elif isinstance(_A , _A ): UpperCAmelCase_ : str = len(_A ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(_A )}" ) UpperCAmelCase_ : Tuple = batch_size * num_images_per_prompt UpperCAmelCase_ : str = guidance_scale > 1.0 UpperCAmelCase_ : Tuple = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(_A )}." ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase_ : Optional[int] = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase_ : Optional[int] = self.transformer.num_vector_embeds - 1 UpperCAmelCase_ : Tuple = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F" {self.transformer.num_vector_embeds - 1} (inclusive)." ) UpperCAmelCase_ : Optional[int] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) UpperCAmelCase_ : int = self.scheduler.timesteps.to(self.device ) UpperCAmelCase_ : Tuple = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase_ : int = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase_ : List[str] = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Dict = model_output.chunk(2 ) UpperCAmelCase_ : Optional[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) UpperCAmelCase_ : Optional[Any] = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase_ : List[str] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : Any = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) UpperCAmelCase_ : List[str] = self.vqvae.config.vq_embed_dim UpperCAmelCase_ : List[Any] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase_ : Optional[Any] = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) UpperCAmelCase_ : List[str] = self.vqvae.decode(_A , force_not_quantize=_A ).sample UpperCAmelCase_ : int = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ : Optional[int] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def A ( self : Optional[Any] , _A : torch.FloatTensor , _A : float ) -> torch.FloatTensor: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = torch.sort(_A , 1 , descending=_A ) UpperCAmelCase_ : List[str] = torch.exp(_A ) UpperCAmelCase_ : Optional[int] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase_ : Optional[Any] = torch.full_like(keep_mask[:, 0:1, :] , _A ) UpperCAmelCase_ : Dict = torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase_ : str = keep_mask[:, :-1, :] UpperCAmelCase_ : Optional[Any] = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase_ : Any = log_p_x_0.clone() UpperCAmelCase_ : Optional[Any] = -torch.inf # -inf = log(0) return rv
304
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
1
'''simple docstring''' from collections.abc import Callable def __UpperCAmelCase ( A : Callable[[float], float] , A : float , A : float ) -> float: UpperCAmelCase_ : float = a UpperCAmelCase_ : float = b if function(A ) == 0: # one of the a or b is a root for the function return a elif function(A ) == 0: return b elif ( function(A ) * function(A ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: UpperCAmelCase_ : float = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(A ) == 0: return mid elif function(A ) * function(A ) < 0: UpperCAmelCase_ : List[str] = mid else: UpperCAmelCase_ : List[str] = mid UpperCAmelCase_ : Dict = start + (end - start) / 2.0 return mid def __UpperCAmelCase ( A : float ) -> float: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
304
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class snake_case__ : def __init__( self : Optional[int] , _A : int , _A : Optional[int]=13 , _A : Dict=7 , _A : Dict=True , _A : Optional[int]=True , _A : str=True , _A : str=True , _A : Optional[int]=99 , _A : List[Any]=[1, 1, 2] , _A : Tuple=1 , _A : int=32 , _A : List[Any]=4 , _A : Optional[int]=8 , _A : Union[str, Any]=37 , _A : Union[str, Any]="gelu_new" , _A : Tuple=0.1 , _A : str=0.1 , _A : Optional[int]=0.0 , _A : List[Any]=5_12 , _A : List[str]=3 , _A : int=0.02 , _A : str=3 , _A : Optional[Any]=4 , _A : Dict=None , _A : str=False , ) -> int: UpperCAmelCase_ : str = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Tuple = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : List[Any] = use_input_mask UpperCAmelCase_ : Optional[int] = use_token_type_ids UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Dict = block_sizes UpperCAmelCase_ : Union[str, Any] = num_decoder_layers UpperCAmelCase_ : Tuple = d_model UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : int = d_head UpperCAmelCase_ : str = d_inner UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : int = hidden_dropout UpperCAmelCase_ : Optional[Any] = attention_dropout UpperCAmelCase_ : List[Any] = activation_dropout UpperCAmelCase_ : Dict = max_position_embeddings UpperCAmelCase_ : Dict = type_vocab_size UpperCAmelCase_ : Dict = 2 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = num_choices UpperCAmelCase_ : Dict = scope UpperCAmelCase_ : Optional[Any] = initializer_std # Used in the tests to check the size of the first attention layer UpperCAmelCase_ : Union[str, Any] = n_head # Used in the tests to check the size of the first hidden state UpperCAmelCase_ : List[Any] = self.d_model # Used in the tests to check the number of output hidden states/attentions UpperCAmelCase_ : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: UpperCAmelCase_ : Optional[int] = self.num_hidden_layers + 2 def A ( self : Union[str, Any] ) -> str: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Dict = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : str = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Union[str, Any] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def A ( self : List[Any] , _A : Any , _A : Tuple , _A : Optional[int] , _A : Dict , _A : Union[str, Any] , _A : Optional[int] , _A : Optional[int] , ) -> Any: UpperCAmelCase_ : Tuple = TFFunnelModel(config=_A ) UpperCAmelCase_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : Optional[int] = model(_A ) UpperCAmelCase_ : Union[str, Any] = [input_ids, input_mask] UpperCAmelCase_ : List[Any] = model(_A ) UpperCAmelCase_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : Optional[Any] = TFFunnelModel(config=_A ) UpperCAmelCase_ : Tuple = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : Tuple = TFFunnelModel(config=_A ) UpperCAmelCase_ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def A ( self : Optional[Any] , _A : Optional[Any] , _A : List[Any] , _A : int , _A : str , _A : Optional[Any] , _A : Tuple , _A : int , ) -> str: UpperCAmelCase_ : List[str] = TFFunnelBaseModel(config=_A ) UpperCAmelCase_ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : Optional[Any] = model(_A ) UpperCAmelCase_ : Union[str, Any] = [input_ids, input_mask] UpperCAmelCase_ : Any = model(_A ) UpperCAmelCase_ : Tuple = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) UpperCAmelCase_ : int = False UpperCAmelCase_ : List[str] = TFFunnelBaseModel(config=_A ) UpperCAmelCase_ : str = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Any = TFFunnelBaseModel(config=_A ) UpperCAmelCase_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def A ( self : int , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , ) -> List[Any]: UpperCAmelCase_ : Dict = TFFunnelForPreTraining(config=_A ) UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def A ( self : str , _A : int , _A : int , _A : Any , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : Dict , ) -> Optional[Any]: UpperCAmelCase_ : Dict = TFFunnelForMaskedLM(config=_A ) UpperCAmelCase_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[str] , _A : List[Any] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : List[str] , _A : Dict , _A : Union[str, Any] , ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.num_labels UpperCAmelCase_ : List[str] = TFFunnelForSequenceClassification(config=_A ) UpperCAmelCase_ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Optional[Any] , _A : List[str] , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : str , _A : List[Any] , _A : Union[str, Any] , ) -> Tuple: UpperCAmelCase_ : List[str] = self.num_choices UpperCAmelCase_ : Any = TFFunnelForMultipleChoice(config=_A ) UpperCAmelCase_ : List[Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : Optional[int] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : List[str] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : Optional[Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Any , _A : List[Any] , _A : Optional[Any] , _A : str , _A : Optional[Any] , _A : str , _A : str , _A : Optional[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : List[str] = TFFunnelForTokenClassification(config=_A ) UpperCAmelCase_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : List[Any] , _A : List[str] , _A : Any , _A : List[str] , _A : Union[str, Any] , _A : Dict , _A : Tuple , _A : List[Any] , ) -> Dict: UpperCAmelCase_ : Tuple = TFFunnelForQuestionAnswering(config=_A ) UpperCAmelCase_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : Any = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : int ) -> str: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Tuple = config_and_inputs UpperCAmelCase_ : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) a_ = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def A ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = TFFunnelModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self , config_class=_A ) def A ( self : Any ) -> Union[str, Any]: self.config_tester.run_common_tests() def A ( self : int ) -> Optional[Any]: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Optional[Any] ) -> str: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def A ( self : Tuple ) -> str: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def A ( self : Dict ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @require_tf class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) a_ = False a_ = False def A ( self : int ) -> int: UpperCAmelCase_ : List[str] = TFFunnelModelTester(self , base=_A ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=_A ) def A ( self : List[str] ) -> Optional[Any]: self.config_tester.run_common_tests() def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*_A ) def A ( self : List[Any] ) -> Any: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def A ( self : Dict ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A )
304
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
1
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: return sum(e for e in range(3 , A ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
304
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _UpperCamelCase : List[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def __UpperCAmelCase ( A : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = {} with open(A , '''r''' ) as file: for line_number, line in enumerate(A ): UpperCAmelCase_ : Any = line.strip() if line: UpperCAmelCase_ : Optional[int] = line.split() UpperCAmelCase_ : List[Any] = line_number UpperCAmelCase_ : str = words[0] UpperCAmelCase_ : Dict = value return result def __UpperCAmelCase ( A : str , A : Any , A : Dict , A : int , A : Optional[Any] ) -> str: for attribute in key.split('''.''' ): UpperCAmelCase_ : Union[str, Any] = getattr(A , A ) UpperCAmelCase_ : Optional[int] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): UpperCAmelCase_ : Optional[int] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase_ : str = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase_ : Optional[Any] = getattr(A , A ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase_ : int = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase_ : List[Any] = getattr(A , A ) UpperCAmelCase_ : Dict = shape_pointer.shape # let's reduce dimension UpperCAmelCase_ : Optional[int] = value[0] else: UpperCAmelCase_ : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCAmelCase_ : Optional[int] = value elif weight_type == "weight_g": UpperCAmelCase_ : int = value elif weight_type == "weight_v": UpperCAmelCase_ : Union[str, Any] = value elif weight_type == "bias": UpperCAmelCase_ : Optional[int] = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase_ : int = getattr(A , A ) UpperCAmelCase_ : str = value else: UpperCAmelCase_ : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __UpperCAmelCase ( A : Tuple , A : Dict , A : List[str] , A : int , A : List[str] ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): UpperCAmelCase_ : str = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase_ : str = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase_ : int = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase_ : Union[str, Any] = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase_ : Optional[int] = key UpperCAmelCase_ : str = value if '''lm_head''' in full_key else value[0] _UpperCamelCase : int = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def __UpperCAmelCase ( A : Any , A : Dict , A : Any=None , A : Tuple=None ) -> int: UpperCAmelCase_ : Optional[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase_ : Dict = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase_ : Any = True if "*" in mapped_key: UpperCAmelCase_ : Optional[int] = name.split(A )[0].split('''.''' )[-2] UpperCAmelCase_ : Optional[Any] = mapped_key.replace('''*''' , A ) if "weight_g" in name: UpperCAmelCase_ : List[Any] = '''weight_g''' elif "weight_v" in name: UpperCAmelCase_ : List[str] = '''weight_v''' elif "bias" in name: UpperCAmelCase_ : List[str] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ : int = '''weight''' else: UpperCAmelCase_ : Union[str, Any] = None if hf_dict is not None: rename_dict(A , A , A , A , A ) else: set_recursively(A , A , A , A , A ) return is_used return is_used def __UpperCAmelCase ( A : Tuple , A : List[Any] , A : int ) -> Tuple: UpperCAmelCase_ : Any = [] UpperCAmelCase_ : int = fairseq_model.state_dict() UpperCAmelCase_ : Any = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ : Any = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase_ : Optional[int] = True else: UpperCAmelCase_ : Tuple = load_wavaveca_layer(A , A , A ) if not is_used: unused_weights.append(A ) logger.warning(F"Unused weights: {unused_weights}" ) def __UpperCAmelCase ( A : Tuple , A : int , A : int , A : int , A : Tuple ) -> str: UpperCAmelCase_ : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase_ : str = name.split('''.''' ) UpperCAmelCase_ : int = int(items[0] ) UpperCAmelCase_ : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCAmelCase_ : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCAmelCase_ : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) UpperCAmelCase_ : Tuple = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) UpperCAmelCase_ : Optional[int] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(A ) @torch.no_grad() def __UpperCAmelCase ( A : List[Any] , A : Tuple , A : Tuple=None , A : Tuple=None , A : Dict=True , A : Union[str, Any]=False ) -> Dict: if config_path is not None: UpperCAmelCase_ : Dict = WavaVecaConfig.from_pretrained(A ) else: UpperCAmelCase_ : List[str] = WavaVecaConfig() if is_seq_class: UpperCAmelCase_ : List[Any] = read_txt_into_dict(A ) UpperCAmelCase_ : List[str] = idalabel UpperCAmelCase_ : List[str] = WavaVecaForSequenceClassification(A ) UpperCAmelCase_ : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) feature_extractor.save_pretrained(A ) elif is_finetuned: if dict_path: UpperCAmelCase_ : Dict = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ : int = target_dict.pad_index UpperCAmelCase_ : Tuple = target_dict.bos_index UpperCAmelCase_ : Tuple = target_dict.eos_index UpperCAmelCase_ : Dict = len(target_dict.symbols ) UpperCAmelCase_ : Any = os.path.join(A , '''vocab.json''' ) if not os.path.isdir(A ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(A ) ) return os.makedirs(A , exist_ok=A ) UpperCAmelCase_ : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ : int = 0 UpperCAmelCase_ : List[str] = 1 with open(A , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(A , A ) UpperCAmelCase_ : Union[str, Any] = WavaVecaCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=A , ) UpperCAmelCase_ : Tuple = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase_ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) UpperCAmelCase_ : List[Any] = WavaVecaProcessor(feature_extractor=A , tokenizer=A ) processor.save_pretrained(A ) UpperCAmelCase_ : Dict = WavaVecaForCTC(A ) else: UpperCAmelCase_ : Tuple = WavaVecaForPreTraining(A ) if is_finetuned or is_seq_class: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase_ : Dict = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase_ : List[str] = fairseq.tasks.setup_task(A ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A ) UpperCAmelCase_ : Optional[int] = model[0].eval() recursively_load_weights(A , A , not is_finetuned ) hf_wavavec.save_pretrained(A ) if __name__ == "__main__": _UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _UpperCamelCase : str = parser.parse_args() _UpperCamelCase : List[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
304
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
1
'''simple docstring''' def __UpperCAmelCase ( A : Tuple , A : Any ) -> int: UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Optional[int] = len(A ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_ : List[Any] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(A ): return None UpperCAmelCase_ : Optional[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase_ : List[str] = left UpperCAmelCase_ : Any = point elif point > right: UpperCAmelCase_ : Dict = right UpperCAmelCase_ : Optional[Any] = point else: if item < current_item: UpperCAmelCase_ : Union[str, Any] = point - 1 else: UpperCAmelCase_ : Any = point + 1 return None def __UpperCAmelCase ( A : List[Any] , A : Tuple , A : Union[str, Any] , A : str ) -> Union[str, Any]: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_ : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(A ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(A , A , A , A ) elif point > right: return interpolation_search_by_recursion(A , A , A , A ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( A , A , A , point - 1 ) else: return interpolation_search_by_recursion( A , A , point + 1 , A ) def __UpperCAmelCase ( A : Optional[int] ) -> Dict: if collection != sorted(A ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys _UpperCamelCase : Union[str, Any] = 0 if debug == 1: _UpperCamelCase : str = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') _UpperCamelCase : Optional[int] = 67 _UpperCamelCase : int = interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print('Not found')
304
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
1
'''simple docstring''' from functools import reduce _UpperCamelCase : List[str] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __UpperCAmelCase ( A : str = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda A , A : str(int(A ) * int(A ) ) , n[i : i + 1_3] ) ) for i in range(len(A ) - 1_2 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
304
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
1
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case__ ( UpperCamelCase): def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : Dict=7 , _A : List[Any]=True , _A : List[Any]=True , _A : Any=True , _A : List[Any]=True , _A : Dict=99 , _A : Union[str, Any]=32 , _A : Tuple=5 , _A : Tuple=4 , _A : Dict=37 , _A : Optional[Any]="gelu" , _A : Optional[Any]=0.1 , _A : int=0.1 , _A : Optional[int]=5_12 , _A : List[str]=16 , _A : List[Any]=2 , _A : List[Any]=0.02 , _A : List[Any]=False , _A : str=True , _A : Tuple="None" , _A : List[Any]=3 , _A : List[str]=4 , _A : Dict=None , ) -> Tuple: UpperCAmelCase_ : int = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : int = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : str = use_input_mask UpperCAmelCase_ : Union[str, Any] = use_token_type_ids UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Union[str, Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : Dict = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : List[str] = num_labels UpperCAmelCase_ : List[str] = num_choices UpperCAmelCase_ : Tuple = relative_attention UpperCAmelCase_ : Dict = position_biased_input UpperCAmelCase_ : Dict = pos_att_type UpperCAmelCase_ : Optional[Any] = scope def A ( self : Dict ) -> List[Any]: UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Any = None if self.use_input_mask: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase_ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : str = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[Any] = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : List[str] ) -> int: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def A ( self : Optional[Any] , _A : str ) -> Optional[int]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def A ( self : Dict , _A : Union[str, Any] , _A : Any , _A : Any , _A : Union[str, Any] , _A : Optional[int] , _A : int , _A : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = DebertaVaModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Any = model(_A , attention_mask=_A , token_type_ids=_A )[0] UpperCAmelCase_ : Union[str, Any] = model(_A , token_type_ids=_A )[0] UpperCAmelCase_ : Tuple = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def A ( self : Any , _A : List[Any] , _A : List[str] , _A : int , _A : Tuple , _A : Tuple , _A : int , _A : Dict ) -> List[Any]: UpperCAmelCase_ : List[Any] = DebertaVaForMaskedLM(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Dict = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[Any] , _A : List[str] , _A : Any , _A : Optional[Any] , _A : int , _A : int , _A : int , _A : str ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : int = DebertaVaForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def A ( self : List[Any] , _A : Dict , _A : List[Any] , _A : Dict , _A : Dict , _A : Any , _A : Any , _A : int ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.num_labels UpperCAmelCase_ : List[str] = DebertaVaForTokenClassification(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Union[str, Any] , _A : str , _A : List[str] , _A : Union[str, Any] , _A : List[Any] , _A : Tuple , _A : Any , _A : Dict ) -> Dict: UpperCAmelCase_ : Any = DebertaVaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Dict = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : List[str] , _A : List[Any] , _A : Optional[int] , _A : List[str] , _A : str , _A : Optional[Any] , _A : Dict , _A : List[str] ) -> Dict: UpperCAmelCase_ : Optional[int] = DebertaVaForMultipleChoice(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : int ) -> int: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a_ = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a_ = True a_ = False a_ = False a_ = False a_ = False def A ( self : Dict ) -> List[str]: UpperCAmelCase_ : Optional[Any] = DebertaVaModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def A ( self : str ) -> str: self.config_tester.run_common_tests() def A ( self : Dict ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def A ( self : Union[str, Any] ) -> Dict: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def A ( self : Union[str, Any] ) -> Any: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def A ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def A ( self : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) def A ( self : int ) -> Dict: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*_A ) @slow def A ( self : Dict ) -> List[str]: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Union[str, Any] = DebertaVaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class snake_case__ ( unittest.TestCase): @unittest.skip(reason='''Model not available yet''' ) def A ( self : Any ) -> int: pass @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) UpperCAmelCase_ : Tuple = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) UpperCAmelCase_ : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase_ : List[str] = model(_A , attention_mask=_A )[0] # compare the actual values for a slice. UpperCAmelCase_ : List[str] = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1e-4 ) , F"{output[:, 1:4, 1:4]}" )
304
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
1
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _UpperCamelCase : Union[str, Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class snake_case__ ( datasets.BuilderConfig): a_ = None def __UpperCAmelCase ( A : "pyspark.sql.DataFrame" , A : List[int] , ) -> str: import pyspark def generate_fn(): UpperCAmelCase_ : List[str] = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: UpperCAmelCase_ : Any = df_with_partition_id.select('''*''' ).where(F"part_id = {partition_id}" ).drop('''part_id''' ) UpperCAmelCase_ : Union[str, Any] = partition_df.collect() UpperCAmelCase_ : Optional[Any] = 0 for row in rows: yield F"{partition_id}_{row_id}", row.asDict() row_id += 1 return generate_fn class snake_case__ ( _BaseExamplesIterable): def __init__( self : int , _A : "pyspark.sql.DataFrame" , _A : Tuple=None , ) -> Optional[Any]: UpperCAmelCase_ : Dict = df UpperCAmelCase_ : str = partition_order or range(self.df.rdd.getNumPartitions() ) UpperCAmelCase_ : List[str] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[str] ) -> Tuple: yield from self.generate_examples_fn() def A ( self : Optional[Any] , _A : np.random.Generator ) -> "SparkExamplesIterable": UpperCAmelCase_ : Dict = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(_A ) return SparkExamplesIterable(self.df , partition_order=_A ) def A ( self : List[Any] , _A : int , _A : int ) -> "SparkExamplesIterable": UpperCAmelCase_ : Any = self.split_shard_indices_by_worker(_A , _A ) return SparkExamplesIterable(self.df , partition_order=_A ) @property def A ( self : List[str] ) -> int: return len(self.partition_order ) class snake_case__ ( datasets.DatasetBuilder): a_ = SparkConfig def __init__( self : Tuple , _A : "pyspark.sql.DataFrame" , _A : str = None , _A : str = None , **_A : Union[str, Any] , ) -> str: import pyspark UpperCAmelCase_ : Dict = pyspark.sql.SparkSession.builder.getOrCreate() UpperCAmelCase_ : List[Any] = df UpperCAmelCase_ : Optional[Any] = working_dir super().__init__( cache_dir=_A , config_name=str(self.df.semanticHash() ) , **_A , ) def A ( self : int ) -> Optional[int]: # Returns the path of the created file. def create_cache_and_write_probe(_A : str ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=_A ) UpperCAmelCase_ : Any = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(_A , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: UpperCAmelCase_ : str = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(_A ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def A ( self : str ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def A ( self : Optional[Any] , _A : datasets.download.download_manager.DownloadManager ) -> Union[str, Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def A ( self : Any , _A : Dict ) -> Optional[Any]: import pyspark def get_arrow_batch_size(_A : Tuple ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) UpperCAmelCase_ : List[str] = self.df.count() UpperCAmelCase_ : Any = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. UpperCAmelCase_ : Any = ( self.df.limit(_A ) .repartition(1 ) .mapInArrow(_A , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) UpperCAmelCase_ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. UpperCAmelCase_ : Union[str, Any] = min(_A , int(approx_total_size / max_shard_size ) ) UpperCAmelCase_ : Dict = self.df.repartition(_A ) def A ( self : str , _A : str , _A : str , _A : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark UpperCAmelCase_ : Optional[int] = ParquetWriter if file_format == '''parquet''' else ArrowWriter UpperCAmelCase_ : Tuple = os.path.join(self._working_dir , os.path.basename(_A ) ) if self._working_dir else fpath UpperCAmelCase_ : Dict = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. UpperCAmelCase_ : Optional[Any] = self.config.features UpperCAmelCase_ : List[str] = self._writer_batch_size UpperCAmelCase_ : Tuple = self._fs.storage_options def write_arrow(_A : Dict ): # Within the same SparkContext, no two task attempts will share the same attempt ID. UpperCAmelCase_ : Dict = pyspark.TaskContext().taskAttemptId() UpperCAmelCase_ : Union[str, Any] = next(_A , _A ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : List[str] = writer_class( features=_A , path=working_fpath.replace('''SSSSS''' , F"{shard_id:05d}" ).replace('''TTTTT''' , F"{task_id:05d}" ) , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) UpperCAmelCase_ : int = pa.Table.from_batches([first_batch] ) writer.write_table(_A ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 UpperCAmelCase_ : Dict = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , F"{shard_id:05d}" ).replace('''TTTTT''' , F"{task_id:05d}" ) , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) UpperCAmelCase_ : Optional[int] = pa.Table.from_batches([batch] ) writer.write_table(_A ) if writer._num_bytes > 0: UpperCAmelCase_ , UpperCAmelCase_ : Any = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(_A ) ): UpperCAmelCase_ : Tuple = os.path.join(os.path.dirname(_A ) , os.path.basename(_A ) ) shutil.move(_A , _A ) UpperCAmelCase_ : Union[str, Any] = ( self.df.mapInArrow(_A , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def A ( self : Optional[int] , _A : "datasets.SplitGenerator" , _A : str = "arrow" , _A : Optional[Union[str, int]] = None , _A : Optional[int] = None , **_A : int , ) -> Optional[int]: self._validate_cache_dir() UpperCAmelCase_ : Any = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(_A ) UpperCAmelCase_ : List[str] = not is_remote_filesystem(self._fs ) UpperCAmelCase_ : List[Any] = os.path.join if is_local else posixpath.join UpperCAmelCase_ : List[Any] = '''-TTTTT-SSSSS-of-NNNNN''' UpperCAmelCase_ : Any = F"{self.name}-{split_generator.name}{SUFFIX}.{file_format}" UpperCAmelCase_ : str = path_join(self._output_dir , _A ) UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Optional[Any] = [] for task_id, content in self._prepare_split_single(_A , _A , _A ): ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[str] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(_A ) UpperCAmelCase_ : List[str] = total_num_examples UpperCAmelCase_ : Optional[Any] = total_num_bytes # should rename everything at the end logger.debug(F"Renaming {total_shards} shards." ) if total_shards > 1: UpperCAmelCase_ : int = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. UpperCAmelCase_ : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( _A : int , _A : int , _A : int , ): rename( _A , fpath.replace('''SSSSS''' , F"{shard_id:05d}" ).replace('''TTTTT''' , F"{task_id:05d}" ) , fpath.replace('''TTTTT-SSSSS''' , F"{global_shard_id:05d}" ).replace('''NNNNN''' , F"{total_shards:05d}" ) , ) UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Any = 0 for i in range(len(_A ) ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = task_id_and_num_shards[i] for shard_id in range(_A ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(_A , len(_A ) ).map(lambda _A : _rename_shard(*_A ) ).collect() else: # don't use any pattern UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Optional[int] = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , F"{shard_id:05d}" ).replace('''TTTTT''' , F"{task_id:05d}" ) , fpath.replace(_A , '''''' ) , ) def A ( self : List[Any] , _A : "datasets.SplitGenerator" , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
304
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
1
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[int] , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any ) ->None: """simple docstring""" warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
0
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1 UpperCAmelCase_ : Dict = [] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator if len(str(A ) ) > len(str(A ) ): result.append(A ) UpperCAmelCase_ : Optional[Any] = numerator UpperCAmelCase_ : Optional[int] = denominator return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
304
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_: str =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Optional[Any] ={ 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __A ( UpperCamelCase__ ): a__ : Tuple = """big_bird""" def __init__(self : int , __a : Optional[Any]=50358 , __a : Any=768 , __a : Optional[Any]=12 , __a : List[Any]=12 , __a : Any=3072 , __a : Tuple="gelu_new" , __a : str=0.1 , __a : int=0.1 , __a : List[str]=4096 , __a : str=2 , __a : List[str]=0.02 , __a : Any=1E-12 , __a : Any=True , __a : Any=0 , __a : Optional[Any]=1 , __a : List[Any]=2 , __a : Dict=66 , __a : Optional[int]="block_sparse" , __a : List[Any]=True , __a : Tuple=False , __a : Any=64 , __a : Optional[Any]=3 , __a : Tuple=None , **__a : Union[str, Any] , ): super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , sep_token_id=__a , **__a , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = rescale_embeddings UpperCAmelCase_ = attention_type UpperCAmelCase_ = use_bias UpperCAmelCase_ = block_size UpperCAmelCase_ = num_random_blocks UpperCAmelCase_ = classifier_dropout class __A ( UpperCamelCase__ ): @property def _lowercase (self : Dict ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
1
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : int , _A : List[str] , _A : Dict=7 , _A : List[str]=3 , _A : List[str]=18 , _A : Dict=30 , _A : Union[str, Any]=4_00 , _A : List[str]=True , _A : List[str]=None , _A : int=True , _A : Tuple=None , _A : Union[str, Any]=True , _A : Tuple=[0.5, 0.5, 0.5] , _A : Union[str, Any]=[0.5, 0.5, 0.5] , _A : Tuple=False , ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Optional[int] = crop_size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[Any] = image_mean UpperCAmelCase_ : int = image_std UpperCAmelCase_ : List[Any] = do_reduce_labels def A ( self : Union[str, Any] ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[Any] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : str = Image.open(dataset[1]['''file'''] ) return image, map def __UpperCAmelCase ( ) -> Any: UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : int = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Optional[Any] = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BeitImageProcessor if is_vision_available() else None def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BeitImageProcessingTester(self ) @property def A ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _A ) UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _A ) def A ( self : Optional[Any] ) -> Any: pass def A ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> str: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) UpperCAmelCase_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : List[str] = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_semantic_batch_inputs() UpperCAmelCase_ : int = image_processing(_A , _A , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def A ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_semantic_single_inputs() UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) UpperCAmelCase_ : int = True UpperCAmelCase_ : Dict = image_processing(_A , _A , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
304
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Any = """mctct""" def __init__(self : Any , UpperCamelCase : str=8065 , UpperCamelCase : List[str]=1536 , UpperCamelCase : List[Any]=36 , UpperCamelCase : List[Any]=6144 , UpperCamelCase : str=4 , UpperCamelCase : str=384 , UpperCamelCase : List[Any]=920 , UpperCamelCase : Any=1E-5 , UpperCamelCase : str=0.3 , UpperCamelCase : List[Any]="relu" , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Tuple=0.3 , UpperCamelCase : Tuple=0.3 , UpperCamelCase : Any=1 , UpperCamelCase : Optional[int]=0 , UpperCamelCase : Tuple=2 , UpperCamelCase : int=1 , UpperCamelCase : int=0.3 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Dict=(7,) , UpperCamelCase : Optional[Any]=(3,) , UpperCamelCase : Union[str, Any]=80 , UpperCamelCase : int=1 , UpperCamelCase : Dict=None , UpperCamelCase : Any="sum" , UpperCamelCase : List[str]=False , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__(**UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = num_attention_heads lowercase__ = attention_head_dim lowercase__ = max_position_embeddings lowercase__ = layer_norm_eps lowercase__ = layerdrop lowercase__ = hidden_act lowercase__ = initializer_range lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = pad_token_id lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = conv_glu_dim lowercase__ = conv_dropout lowercase__ = num_conv_layers lowercase__ = input_feat_per_channel lowercase__ = input_channels lowercase__ = conv_channels lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # prevents config testing fail with exporting to json lowercase__ = list(UpperCamelCase ) lowercase__ = list(UpperCamelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' f"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." )
2
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' assert x is not None assert y is not None A : str = len(snake_case__ ) A : Dict = len(snake_case__ ) # declaring the array for storing the dp values A : Dict = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): A : List[Any] = 1 if x[i - 1] == y[j - 1] else 0 A : Optional[Any] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) A : Tuple = '''''' A, A : Optional[int] = m, n while i > 0 and j > 0: A : Any = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: A : List[str] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowercase : Tuple = 'AGGTAB' lowercase : Tuple = 'GXTXAYB' lowercase : Union[str, Any] = 4 lowercase : int = 'GTAB' lowercase , lowercase : Tuple = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
3
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int , A : int , A : bool , A : list[int] , A : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCAmelCase_ : List[Any] = math.log(len(A ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , A , A , A )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
0
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( __lowercase ): def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]: return self[-1] < other[-1] def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple: return self[-1] == other[-1] def a_ ( lowerCamelCase : list ): lowerCAmelCase = [] # sort into stacks for element in collection: lowerCAmelCase = Stack([element] ) lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase ) if i != len(lowerCamelCase ): stacks[i].append(lowerCamelCase ) else: stacks.append(lowerCamelCase ) # use a heap-based merge to merge stack efficiently lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
4
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = '''▁''' UpperCAmelCase__ = {'''vocab_file''': '''spiece.model'''} UpperCAmelCase__ = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } UpperCAmelCase__ = { '''google/reformer-crime-and-punishment''': 52_4288, } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] def __init__(self , UpperCAmelCase , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase=[] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: _lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) _lowercase =vocab_file _lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase ) @property def __A (self ) -> Optional[int]: return self.sp_model.get_piece_size() def __A (self ) -> Dict[str, int]: _lowercase ={self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Union[str, Any]: _lowercase =self.__dict__.copy() _lowercase =None return state def __setstate__(self , UpperCAmelCase ) -> Optional[Any]: _lowercase =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowercase ={} _lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A (self , UpperCAmelCase ) -> List[str]: return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def __A (self , UpperCAmelCase ) -> str: return self.sp_model.piece_to_id(UpperCAmelCase ) def __A (self , UpperCAmelCase ) -> Tuple: if index < self.sp_model.get_piece_size(): _lowercase =self.sp_model.IdToPiece(UpperCAmelCase ) return token def __A (self , UpperCAmelCase ) -> str: _lowercase =[] _lowercase ='''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase ) + token _lowercase =[] else: current_sub_tokens.append(UpperCAmelCase ) out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowercase =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , '''wb''' ) as fi: _lowercase =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
5
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
0
from __future__ import annotations import typing from collections import Counter def __lowerCAmelCase ( a__ ) -> typing.Counter[int]: __a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): __a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCAmelCase ( a__ = 1000 ) -> int: __a = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
6
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : str,lowercase_ : NestedDataStructureLike[PathLike],lowercase_ : Optional[NamedSplit] = None,lowercase_ : Optional[Features] = None,lowercase_ : str = None,lowercase_ : bool = False,lowercase_ : bool = False,lowercase_ : Optional[str] = None,lowercase_ : Optional[int] = None,**lowercase_ : int,)-> Any: '''simple docstring''' super().__init__( lowercase_,split=lowercase_,features=lowercase_,cache_dir=lowercase_,keep_in_memory=lowercase_,streaming=lowercase_,num_proc=lowercase_,**lowercase_,) A__ = field A__ = path_or_paths if isinstance(lowercase_,lowercase_ ) else {self.split: path_or_paths} A__ = Json( cache_dir=lowercase_,data_files=lowercase_,features=lowercase_,field=lowercase_,**lowercase_,) def snake_case__ ( self : Any )-> str: '''simple docstring''' if self.streaming: A__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=lowercase_,download_mode=lowercase_,verification_mode=lowercase_,base_path=lowercase_,num_proc=self.num_proc,) A__ = self.builder.as_dataset( split=self.split,verification_mode=lowercase_,in_memory=self.keep_in_memory ) return dataset class A : """simple docstring""" def __init__( self : Tuple,lowercase_ : Dataset,lowercase_ : Union[PathLike, BinaryIO],lowercase_ : Optional[int] = None,lowercase_ : Optional[int] = None,**lowercase_ : Tuple,)-> Union[str, Any]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) A__ = dataset A__ = path_or_buf A__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A__ = num_proc A__ = 'utf-8' A__ = to_json_kwargs def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' A__ = self.to_json_kwargs.pop('path_or_buf',lowercase_ ) A__ = self.to_json_kwargs.pop('orient','records' ) A__ = self.to_json_kwargs.pop('lines',True if orient == 'records' else False ) A__ = self.to_json_kwargs.pop('index',False if orient in ['split', 'table'] else True ) A__ = self.to_json_kwargs.pop('compression',lowercase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf,(str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf,'wb',compression=lowercase_ ) as buffer: A__ = self._write(file_obj=lowercase_,orient=lowercase_,lines=lowercase_,index=lowercase_,**self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' ' was passed. Please provide a local path instead.' ) A__ = self._write( file_obj=self.path_or_buf,orient=lowercase_,lines=lowercase_,index=lowercase_,**self.to_json_kwargs ) return written def snake_case__ ( self : List[Any],lowercase_ : int )-> Dict: '''simple docstring''' A__ , A__ , A__ , A__ , A__ = args A__ = query_table( table=self.dataset.data,key=slice(lowercase_,offset + self.batch_size ),indices=self.dataset._indices,) A__ = batch.to_pandas().to_json( path_or_buf=lowercase_,orient=lowercase_,lines=lowercase_,index=lowercase_,**lowercase_ ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def snake_case__ ( self : Any,lowercase_ : BinaryIO,lowercase_ : Optional[Any],lowercase_ : Optional[int],lowercase_ : Optional[Any],**lowercase_ : Optional[Any],)-> int: '''simple docstring''' A__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0,len(self.dataset ),self.batch_size ),unit='ba',disable=not logging.is_progress_bar_enabled(),desc='Creating json from Arrow format',): A__ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowercase_ ) else: A__ , A__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json,[(offset, orient, lines, index, to_json_kwargs) for offset in range(0,lowercase_,lowercase_ )],),total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size,unit='ba',disable=not logging.is_progress_bar_enabled(),desc='Creating json from Arrow format',): written += file_obj.write(lowercase_ ) return written
7
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ReformerTokenizer a_ = ReformerTokenizerFast a_ = True a_ = False a_ = True def A ( self : Optional[Any] ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = ReformerTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = '''<s>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 10_00 ) def A ( self : Optional[int] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Any = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(_A ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase_ : int = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(_A ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def A ( self : Tuple , _A : Dict=15 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Dict = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def A ( self : Union[str, Any] ) -> int: pass def A ( self : int ) -> Any: UpperCAmelCase_ : Any = ReformerTokenizer(_A , keep_accents=_A ) UpperCAmelCase_ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : List[str] ) -> Optional[int]: return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : Tuple = '''Hello World!''' UpperCAmelCase_ : int = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def A ( self : List[Any] ) -> str: UpperCAmelCase_ : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase_ : int = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def A ( self : List[str] ) -> Optional[int]: import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ : int = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ : List[Any] = ''' '''.join(_A ) UpperCAmelCase_ : str = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' ) UpperCAmelCase_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ : Any = encoded_sequence['''input_ids'''].shape UpperCAmelCase_ : Optional[int] = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def A ( self : int ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : int = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ : Optional[Any] = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
304
0
from statistics import mean import numpy as np def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = 0 # Number of processes finished snake_case_ = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. snake_case_ = [0] * no_of_process # List to include calculation results snake_case_ = [0] * no_of_process # Sort by arrival time. snake_case_ = [burst_time[i] for i in np.argsort(SCREAMING_SNAKE_CASE__ )] snake_case_ = [process_name[i] for i in np.argsort(SCREAMING_SNAKE_CASE__ )] arrival_time.sort() while no_of_process > finished_process_count: snake_case_ = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: snake_case_ = arrival_time[i] snake_case_ = 0 # Index showing the location of the process being performed snake_case_ = 0 # Saves the current response ratio. snake_case_ = 0 for i in range(0 , SCREAMING_SNAKE_CASE__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: snake_case_ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: snake_case_ = temp snake_case_ = i # Calculate the turn around time snake_case_ = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. snake_case_ = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0] * no_of_process for i in range(0 , SCREAMING_SNAKE_CASE__ ): snake_case_ = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowerCAmelCase_ = 5 lowerCAmelCase_ = ['''A''', '''B''', '''C''', '''D''', '''E'''] lowerCAmelCase_ = [1, 2, 3, 4, 5] lowerCAmelCase_ = [1, 2, 3, 4, 5] lowerCAmelCase_ = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowerCAmelCase_ = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( f"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" f"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(f"""average waiting time : {mean(waiting_time):.5f}""") print(f"""average turn around time : {mean(turn_around_time):.5f}""")
8
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
0
from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''keras_nlp'''] def __init__( self :Tuple , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Dict ) -> Dict: requires_backends(self , ['''keras_nlp'''] )
9
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __A = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Union[str, Any] , UpperCAmelCase_ : Optional[int]) ->Dict: '''simple docstring''' super().__init__() lowerCamelCase__: int =torchvision.models.resnetaaa(pretrained=UpperCAmelCase_) lowerCamelCase__: Optional[int] =list(model.children())[:-2] lowerCamelCase__: Optional[int] =nn.Sequential(*UpperCAmelCase_) lowerCamelCase__: Dict =nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds]) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Dict) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.pool(self.model(UpperCAmelCase_)) lowerCamelCase__: str =torch.flatten(UpperCAmelCase_ , start_dim=2) lowerCamelCase__: int =out.transpose(1 , 2).contiguous() return out # BxNx2048 class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict) ->Any: '''simple docstring''' lowerCamelCase__: Dict =[json.loads(UpperCAmelCase_) for l in open(UpperCAmelCase_)] lowerCamelCase__: Tuple =os.path.dirname(UpperCAmelCase_) lowerCamelCase__: Any =tokenizer lowerCamelCase__: List[str] =labels lowerCamelCase__: int =len(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =max_seq_length lowerCamelCase__: str =transforms def __len__(self : List[Any]) ->Union[str, Any]: '''simple docstring''' return len(self.data) def __getitem__(self : Tuple , UpperCAmelCase_ : Dict) ->int: '''simple docstring''' lowerCamelCase__: Optional[int] =torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=UpperCAmelCase_)) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =sentence[0], sentence[1:-1], sentence[-1] lowerCamelCase__: Union[str, Any] =sentence[: self.max_seq_length] lowerCamelCase__: str =torch.zeros(self.n_classes) lowerCamelCase__: str =1 lowerCamelCase__: List[Any] =Image.open(os.path.join(self.data_dir , self.data[index]["img"])).convert("RGB") lowerCamelCase__: int =self.transforms(UpperCAmelCase_) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =Counter() for row in self.data: label_freqs.update(row["label"]) return label_freqs def lowerCAmelCase_ ( __a ) -> Any: """simple docstring""" lowerCamelCase__: Tuple =[len(row["sentence"] ) for row in batch] lowerCamelCase__ , lowerCamelCase__: Optional[int] =len(__a ), max(__a ) lowerCamelCase__: List[str] =torch.zeros(__a , __a , dtype=torch.long ) lowerCamelCase__: Optional[int] =torch.zeros(__a , __a , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__a , __a ) ): lowerCamelCase__: Optional[int] =input_row["sentence"] lowerCamelCase__: Dict =1 lowerCamelCase__: List[str] =torch.stack([row["image"] for row in batch] ) lowerCamelCase__: Optional[int] =torch.stack([row["label"] for row in batch] ) lowerCamelCase__: List[str] =torch.stack([row["image_start_token"] for row in batch] ) lowerCamelCase__: List[Any] =torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCAmelCase_ ( ) -> int: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] , std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] , ), ] )
10
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase__ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase__ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase__ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCAmelCase__ ( datasets.Metric): '''simple docstring''' def _lowerCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Value("string" , id="sequence"), }) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="auto" , __lowerCamelCase=-1 , __lowerCamelCase=0.9 , __lowerCamelCase=5 , __lowerCamelCase=5_0_0 , __lowerCamelCase="gpt2-large" , __lowerCamelCase=-1 , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=2_5 , __lowerCamelCase=5 , __lowerCamelCase=True , __lowerCamelCase=2_5 , ) -> Optional[Any]: _A : Optional[int] = compute_mauve( p_text=__lowerCamelCase , q_text=__lowerCamelCase , p_features=__lowerCamelCase , q_features=__lowerCamelCase , p_tokens=__lowerCamelCase , q_tokens=__lowerCamelCase , num_buckets=__lowerCamelCase , pca_max_data=__lowerCamelCase , kmeans_explained_var=__lowerCamelCase , kmeans_num_redo=__lowerCamelCase , kmeans_max_iter=__lowerCamelCase , featurize_model_name=__lowerCamelCase , device_id=__lowerCamelCase , max_text_length=__lowerCamelCase , divergence_curve_discretization_size=__lowerCamelCase , mauve_scaling_factor=__lowerCamelCase , verbose=__lowerCamelCase , seed=__lowerCamelCase , ) return out
11
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : int = MobileBertTokenizer UpperCAmelCase__ : Any = MobileBertTokenizerFast UpperCAmelCase__ : int = True UpperCAmelCase__ : Any = True UpperCAmelCase__ : List[str] = filter_non_english UpperCAmelCase__ : Any = 'google/mobilebert-uncased' def lowerCAmelCase__ ( self: List[str] ): super().setUp() __lowerCamelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __lowerCamelCase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: int ): __lowerCamelCase = """UNwant\u00E9d,running""" __lowerCamelCase = """unwanted, running""" return input_text, output_text def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.tokenizer_class(self.vocab_file ) __lowerCamelCase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(UpperCamelCase_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [9, 6, 7, 12, 10, 11] ) def lowerCAmelCase__ ( self: List[str] ): if not self.test_rust_tokenizer: return __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = """UNwant\u00E9d,running""" __lowerCamelCase = tokenizer.tokenize(UpperCamelCase_ ) __lowerCamelCase = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(UpperCamelCase_ ) __lowerCamelCase = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # With lower casing __lowerCamelCase = self.get_tokenizer(do_lower_case=UpperCamelCase_ ) __lowerCamelCase = self.get_rust_tokenizer(do_lower_case=UpperCamelCase_ ) __lowerCamelCase = """UNwant\u00E9d,running""" __lowerCamelCase = tokenizer.tokenize(UpperCamelCase_ ) __lowerCamelCase = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(UpperCamelCase_ ) __lowerCamelCase = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = BasicTokenizer(do_lower_case=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = BasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = BasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = BasicTokenizer(do_lower_case=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = BasicTokenizer(do_lower_case=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = BasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = BasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = BasicTokenizer(do_lower_case=UpperCamelCase_ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __lowerCamelCase = {} for i, token in enumerate(UpperCamelCase_ ): __lowerCamelCase = i __lowerCamelCase = WordpieceTokenizer(vocab=UpperCamelCase_ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def lowerCAmelCase__ ( self: str ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def lowerCAmelCase__ ( self: Union[str, Any] ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def lowerCAmelCase__ ( self: Union[str, Any] ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCamelCase_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(UpperCamelCase_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) __lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def lowerCAmelCase__ ( self: Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __lowerCamelCase = tokenizer_r.encode_plus( UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , ) __lowerCamelCase = tokenizer_r.do_lower_case if hasattr(UpperCamelCase_ , """do_lower_case""" ) else False __lowerCamelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = ["""的""", """人""", """有"""] __lowerCamelCase = """""".join(UpperCamelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase = True __lowerCamelCase = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = tokenizer_p.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer_r.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer_r.convert_ids_to_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer_p.convert_ids_to_tokens(UpperCamelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = False __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = tokenizer_r.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer_p.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer_r.convert_ids_to_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer_p.convert_ids_to_tokens(UpperCamelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". __lowerCamelCase = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(UpperCamelCase_ ) ] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
12
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = StableDiffusionDiffEditPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} a_ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([]) def A ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) UpperCAmelCase_ : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_zero=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : str , _A : List[str] , _A : Any=0 ) -> str: UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Any = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Tuple , _A : Optional[Any] , _A : Optional[Any]=0 ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase_ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : int , _A : Tuple , _A : List[str]=0 ) -> Any: UpperCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_A , _A , _A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase_ : str = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase_ : Any = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase_ : List[Any] = pipe_loaded(**_A )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_A , 1e-4 ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[Any] = '''cpu''' UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_mask_inputs(_A ) UpperCAmelCase_ : int = pipe.generate_mask(**_A ) UpperCAmelCase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : List[Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : str ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = '''cpu''' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : Tuple ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : Any = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Any = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**_A ) UpperCAmelCase_ : Optional[Any] = DPMSolverMultistepInverseScheduler(**_A ) UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inversion_inputs(_A ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**_A ).images UpperCAmelCase_ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase): def A ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) UpperCAmelCase_ : int = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) UpperCAmelCase_ : Any = raw_image def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : int = torch.manual_seed(0 ) UpperCAmelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[str] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Tuple = '''a bowl of pears''' UpperCAmelCase_ : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[str] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A ).latents UpperCAmelCase_ : Any = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''a bowl of fruit''' UpperCAmelCase_ : Dict = '''a bowl of pears''' UpperCAmelCase_ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_A , target_prompt=_A , generator=_A , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=_A , image=self.raw_image , inpaint_strength=0.7 , generator=_A , num_inference_steps=25 , ).latents UpperCAmelCase_ : Dict = pipe( prompt=_A , mask_image=_A , image_latents=_A , generator=_A , negative_prompt=_A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Tuple = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
304
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Initialise PyTorch model SCREAMING_SNAKE_CASE_: Tuple = FunnelConfig.from_json_file(_UpperCAmelCase ) print(f"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE_: Optional[Any] = FunnelBaseModel(_UpperCAmelCase ) if base_model else FunnelModel(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
13
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
0
from maths.prime_factors import prime_factors def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ): A__ = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase_ ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(lowercase_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
14
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE :Dict = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE :Optional[Any] = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Optional[int] ,A : Optional[Any] ,A : Optional[int]=False ,A : int=False ,A : Union[str, Any]=False ,A : int=None ,A : Optional[Any]=None ,A : Union[str, Any]=None ,A : Optional[Any]=None ,A : Optional[Dict[str, Any]] = None ,**A : Tuple ,): __A = {} if sp_model_kwargs is None else sp_model_kwargs __A = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) __A = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __A = "<|endoftext|>" if eos_token is None else eos_token __A = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __A = unk_token if pad_token is None else pad_token __A = eos_token if bos_token is None else bos_token else: __A = "<pad>" if pad_token is None else pad_token __A = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=A ,remove_space=A ,keep_accents=A ,bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = do_lower_case __A = remove_space __A = keep_accents __A = vocab_file __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # Used for whitespace normalization in input texts # fmt : off __A = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __A = re.compile( f'''[{''.join(map(A ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(1_27 ,1_60 ) ) + [1_60, 1_73, 82_03] ) )}]''' ) def __getstate__( self : Optional[int] ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : Optional[Any] ,A : Union[str, Any] ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase_ ( self : List[str] ): return len(self.sp_model ) def UpperCamelCase_ ( self : int ,A : str ): __A = self.non_printing_characters_re.sub("" ,A ) # Normalize whitespaces __A = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization __A = unicodedata.normalize("NFC" ,A ) return text def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,**A : Optional[int] ): __A = self.preprocess_text(A ) return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.PieceToId(A ) def UpperCamelCase_ ( self : Dict ,A : int ): return self.sp_model.IdToPiece(A ) @staticmethod def UpperCamelCase_ ( A : str ): return out_string def UpperCamelCase_ ( self : str ,A : List[str] ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string def UpperCamelCase_ ( self : str ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def UpperCamelCase_ ( self : Union[str, Any] ,A : Union[str, List[str]] ,A : Union[str, bool] = False ): if isinstance(A ,A ): __A = self.preprocess_text(A ) __A = self.sp_model.encode(A ) else: __A = [self.preprocess_text(A ) for t in text] __A = self.sp_model.encode(A ) if return_tensors is True or return_tensors == "pt": __A = torch.tensor(A ) return token_ids def UpperCamelCase_ ( self : List[Any] ,A : Union[int, List[int]] ): return self.sp_model.decode(A ) def UpperCamelCase_ ( self : List[str] ,A : "Conversation" ): __A = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] __A = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(A ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=A )
15
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
0
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__lowerCamelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowercase__ : Union[str, Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowercase__ : str = min(__lowerCamelCase , __lowerCamelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__lowerCamelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowercase__ : Dict = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowercase__ : str = max(__lowerCamelCase , __lowerCamelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : Any = [] lowercase__ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowercase__ : int = Pipe() lowercase__ : int = Pipe() process_array_.append( Process( target=__lowerCamelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowercase__ : List[str] = temp_rs lowercase__ : Optional[Any] = temp_rr for i in range(1 , len(__lowerCamelCase ) - 1 ): lowercase__ : Optional[Any] = Pipe() lowercase__ : int = Pipe() process_array_.append( Process( target=__lowerCamelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowercase__ : Union[str, Any] = temp_rs lowercase__ : Any = temp_rr process_array_.append( Process( target=__lowerCamelCase , args=( len(__lowerCamelCase ) - 1, arr[len(__lowerCamelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__lowerCamelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__lowerCamelCase ) ): lowercase__ : Tuple = result_pipe[p][0].recv() process_array_[p].join() return arr def __UpperCAmelCase ( ) -> Union[str, Any]: lowercase__ : Optional[Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*__lowerCamelCase ) lowercase__ : str = odd_even_transposition(__lowerCamelCase ) print('''Sorted List\n''' ) print(*__lowerCamelCase ) if __name__ == "__main__": main()
16
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
0
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Dict=(), UpperCamelCase_ : int=None, UpperCamelCase_ : List[str]="no", UpperCamelCase_ : int="29500") -> Dict: '''simple docstring''' __lowercase = False __lowercase = False if any(key.startswith("KAGGLE") for key in os.environ.keys()): __lowercase = True elif "IPython" in sys.modules: __lowercase = "google.colab" in str(sys.modules["IPython"].get_ipython()) try: __lowercase = PrecisionType(mixed_precision.lower()) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""") if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME", UpperCamelCase_) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`.") if num_processes is None: __lowercase = 8 __lowercase = PrepareForLaunch(UpperCamelCase_, distributed_type="TPU") print(F"""Launching a training on {num_processes} TPU cores.""") xmp.spawn(UpperCamelCase_, args=UpperCamelCase_, nprocs=UpperCamelCase_, start_method="fork") elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU.") else: print("Launching training on one CPU.") function(*UpperCamelCase_) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.") if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`.") if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function.") # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCamelCase_, master_addr="127.0.01", master_port=UpperCamelCase_, mixed_precision=UpperCamelCase_): __lowercase = PrepareForLaunch(UpperCamelCase_, distributed_type="MULTI_GPU") print(F"""Launching training on {num_processes} GPUs.""") try: start_processes(UpperCamelCase_, args=UpperCamelCase_, nprocs=UpperCamelCase_, start_method="fork") except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic.") from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): __lowercase = "1" print("Launching training on MPS.") elif torch.cuda.is_available(): print("Launching training on one GPU.") else: print("Launching training on CPU.") function(*UpperCamelCase_) def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]=(), UpperCamelCase_ : Optional[int]=2) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCamelCase_, master_addr="127.0.01", master_port="29500", accelerate_mixed_precision="no", accelerate_debug_rdv_file=tmp_file.name, accelerate_use_cpu="yes", ): __lowercase = PrepareForLaunch(UpperCamelCase_, debug=UpperCamelCase_) start_processes(UpperCamelCase_, args=UpperCamelCase_, nprocs=UpperCamelCase_, start_method="fork")
17
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
0
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : str = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class a__ ( A__ , unittest.TestCase ): A = ReformerTokenizer A = ReformerTokenizerFast A = True A = False A = True def __UpperCamelCase ( self : Dict ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ : int = ReformerTokenizer(_A,keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = "<s>" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ),_A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ),_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],"<unk>" ) self.assertEqual(vocab_keys[1],"<s>" ) self.assertEqual(vocab_keys[-1],"j" ) self.assertEqual(len(_A ),1000 ) def __UpperCamelCase ( self : str ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size,1000 ) def __UpperCamelCase ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : int = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_ : Dict = tokenizer.tokenize(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A,_A ) SCREAMING_SNAKE_CASE_ : int = tokenizer.encode(_A,add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ : Tuple = rust_tokenizer.encode(_A,add_special_tokens=_A ) self.assertListEqual(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.encode(_A ) SCREAMING_SNAKE_CASE_ : str = rust_tokenizer.encode(_A ) self.assertListEqual(_A,_A ) def __UpperCamelCase ( self : str,_A : List[str]=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : List[str] = self.rust_tokenizer_class.from_pretrained(_A,**_A ) # Simple input SCREAMING_SNAKE_CASE_ : int = "This is a simple input" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE_ : Optional[Any] = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE_ : List[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_A,tokenizer_r.encode,_A,max_length=_A,padding="max_length" ) # Simple input self.assertRaises(_A,tokenizer_r.encode_plus,_A,max_length=_A,padding="max_length" ) # Simple input self.assertRaises( _A,tokenizer_r.batch_encode_plus,_A,max_length=_A,padding="max_length",) # Pair input self.assertRaises(_A,tokenizer_r.encode,_A,max_length=_A,padding="max_length" ) # Pair input self.assertRaises(_A,tokenizer_r.encode_plus,_A,max_length=_A,padding="max_length" ) # Pair input self.assertRaises( _A,tokenizer_r.batch_encode_plus,_A,max_length=_A,padding="max_length",) def __UpperCamelCase ( self : int ): """simple docstring""" pass def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ReformerTokenizer(_A,keep_accents=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(_A,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ),[285, 46, 10, 170, 382],) SCREAMING_SNAKE_CASE_ : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _A,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ],) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4],) SCREAMING_SNAKE_CASE_ : int = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ],) @cached_property def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "Hello World!" SCREAMING_SNAKE_CASE_ : Optional[int] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_A,self.big_tokenizer.encode(_A ) ) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) SCREAMING_SNAKE_CASE_ : str = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_A,self.big_tokenizer.encode(_A ) ) @require_torch @slow def __UpperCamelCase ( self : List[str] ): """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence SCREAMING_SNAKE_CASE_ : Any = list(self.big_tokenizer.get_vocab().keys() )[:10] SCREAMING_SNAKE_CASE_ : str = " ".join(_A ) SCREAMING_SNAKE_CASE_ : str = self.big_tokenizer.encode_plus(_A,return_tensors="pt" ) SCREAMING_SNAKE_CASE_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence],return_tensors="pt" ) SCREAMING_SNAKE_CASE_ : List[str] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) SCREAMING_SNAKE_CASE_ : int = encoded_sequence["input_ids"].shape SCREAMING_SNAKE_CASE_ : Any = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 SCREAMING_SNAKE_CASE_ : Optional[Any] = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=_A,model_name="google/reformer-crime-and-punishment",revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a",padding=_A,sequences=_A,)
18
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base" ) lowerCamelCase_ = { "input_ids": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" "attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowerCamelCase_ = model(lowercase )["last_hidden_state"] lowerCamelCase_ = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , lowercase ) # compare the actual values for a slice. lowerCamelCase_ = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
19
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : Dict = { """xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""", """xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""", """xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""", """xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""", """xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""", """xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""", """xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""", """xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""", """xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""", """xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""", } class __snake_case ( lowerCAmelCase ): _a : Optional[int]= "xlm" _a : List[str]= { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self ,snake_case=30145 ,snake_case=2048 ,snake_case=12 ,snake_case=16 ,snake_case=0.1 ,snake_case=0.1 ,snake_case=True ,snake_case=False ,snake_case=False ,snake_case=False ,snake_case=1 ,snake_case=True ,snake_case=512 ,snake_case=2048**-0.5 ,snake_case=1e-12 ,snake_case=0.02 ,snake_case=0 ,snake_case=1 ,snake_case=2 ,snake_case=3 ,snake_case=5 ,snake_case=True ,snake_case="first" ,snake_case=True ,snake_case=None ,snake_case=True ,snake_case=0.1 ,snake_case=5 ,snake_case=5 ,snake_case=0 ,snake_case=0 ,snake_case=2 ,snake_case=0 ,**snake_case ,): '''simple docstring''' lowercase : Optional[int] = vocab_size lowercase : Any = emb_dim lowercase : Union[str, Any] = n_layers lowercase : Tuple = n_heads lowercase : Any = dropout lowercase : Optional[int] = attention_dropout lowercase : List[Any] = gelu_activation lowercase : List[str] = sinusoidal_embeddings lowercase : Dict = causal lowercase : List[Any] = asm lowercase : Optional[Any] = n_langs lowercase : Any = use_lang_emb lowercase : Optional[Any] = layer_norm_eps lowercase : Dict = bos_index lowercase : List[str] = eos_index lowercase : str = pad_index lowercase : str = unk_index lowercase : str = mask_index lowercase : str = is_encoder lowercase : Optional[int] = max_position_embeddings lowercase : Optional[Any] = embed_init_std lowercase : str = init_std lowercase : str = summary_type lowercase : Optional[Any] = summary_use_proj lowercase : int = summary_activation lowercase : List[str] = summary_proj_to_labels lowercase : Tuple = summary_first_dropout lowercase : str = start_n_top lowercase : Optional[int] = end_n_top lowercase : Optional[Any] = mask_token_id lowercase : Union[str, Any] = lang_id if "n_words" in kwargs: lowercase : Tuple = kwargs["""n_words"""] super().__init__(pad_token_id=snake_case ,bos_token_id=snake_case ,**snake_case ) class __snake_case ( lowerCAmelCase ): @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.task == "multiple-choice": lowercase : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
20
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
0