code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf A : List[Any] = logging.get_logger(__name__) @dataclass class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__(self : Optional[int] , **_UpperCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase__ = deprecated_arg[3:] lowercase__ = not kwargs.pop(_UpperCAmelCase ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase__ = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase__ = kwargs.pop("""device_idx""" , self.device_idx ) lowercase__ = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase__ = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_UpperCAmelCase ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Name of TPU'''} , ) A__ = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''Benchmark models in eager model.'''} ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def lowerCamelCase__ (self : Any ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: """simple docstring""" requires_backends(self , ["""tf"""] ) lowercase__ = None if self.tpu: try: if self.tpu_name: lowercase__ = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase__ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase__ = None return tpu @cached_property def lowerCamelCase__ (self : List[Any] ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: """simple docstring""" requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase__ = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase__ = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase__ = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def lowerCamelCase__ (self : List[Any] ) -> bool: """simple docstring""" requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def lowerCamelCase__ (self : str ) -> "tf.distribute.Strategy": """simple docstring""" requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCamelCase__ (self : Dict ) -> bool: """simple docstring""" return self.n_gpu > 0
305
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
1
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def UpperCamelCase ( __magic_name__ : Dict ) -> List[str]: """simple docstring""" if "model" in orig_key: lowercase__ = orig_key.replace("""model.""" , """""" ) if "norm1" in orig_key: lowercase__ = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" ) if "norm2" in orig_key: lowercase__ = orig_key.replace("""norm2""" , """output.LayerNorm""" ) if "norm" in orig_key: lowercase__ = orig_key.replace("""norm""" , """LayerNorm""" ) if "transformer" in orig_key: lowercase__ = orig_key.split(""".""" )[0].split("""_""" )[-1] lowercase__ = orig_key.replace(f'''transformer_{layer_num}''' , f'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: lowercase__ = orig_key.replace("""mha.attn""" , """attention.self""" ) if "mha" in orig_key: lowercase__ = orig_key.replace("""mha""" , """attention""" ) if "W_q" in orig_key: lowercase__ = orig_key.replace("""W_q""" , """self.query""" ) if "W_k" in orig_key: lowercase__ = orig_key.replace("""W_k""" , """self.key""" ) if "W_v" in orig_key: lowercase__ = orig_key.replace("""W_v""" , """self.value""" ) if "ff1" in orig_key: lowercase__ = orig_key.replace("""ff1""" , """intermediate.dense""" ) if "ff2" in orig_key: lowercase__ = orig_key.replace("""ff2""" , """output.dense""" ) if "ff" in orig_key: lowercase__ = orig_key.replace("""ff""" , """output.dense""" ) if "mlm_class" in orig_key: lowercase__ = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" ) if "mlm" in orig_key: lowercase__ = orig_key.replace("""mlm""" , """cls.predictions.transform""" ) if "cls" not in orig_key: lowercase__ = """yoso.""" + orig_key return orig_key def UpperCamelCase ( __magic_name__ : int , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ = val lowercase__ = orig_state_dict["""cls.predictions.decoder.bias"""] lowercase__ = torch.arange(__magic_name__ ).expand((1, -1) ) + 2 return orig_state_dict def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : Any ) -> Any: """simple docstring""" lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model_state_dict"""] lowercase__ = YosoConfig.from_json_file(__magic_name__ ) lowercase__ = YosoForMaskedLM(__magic_name__ ) lowercase__ = convert_checkpoint_helper(config.max_position_embeddings , __magic_name__ ) print(model.load_state_dict(__magic_name__ ) ) model.eval() model.save_pretrained(__magic_name__ ) print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : int = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
305
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A : int = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowercase__ = get_sagemaker_input() else: lowercase__ = get_cluster_input() return config def UpperCamelCase ( __magic_name__ : Optional[Any]=None ) -> int: """simple docstring""" if subparsers is not None: lowercase__ = subparsers.add_parser("""config""" , description=__magic_name__ ) else: lowercase__ = argparse.ArgumentParser("""Accelerate config command""" , description=__magic_name__ ) parser.add_argument( """--config_file""" , default=__magic_name__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=__magic_name__ ) return parser def UpperCamelCase ( __magic_name__ : List[str] ) -> Dict: """simple docstring""" lowercase__ = get_user_input() if args.config_file is not None: lowercase__ = args.config_file else: if not os.path.isdir(__magic_name__ ): os.makedirs(__magic_name__ ) lowercase__ = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(__magic_name__ ) else: config.to_yaml_file(__magic_name__ ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowercase__ = config_command_parser() lowercase__ = parser.parse_args() config_command(__magic_name__ ) if __name__ == "__main__": main()
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Optional[Any] = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''owlvit_text_model''' def __init__(self : int , _UpperCAmelCase : Dict=4_9408 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : int=2048 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : int="quick_gelu" , _UpperCAmelCase : int=1E-5 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Tuple=1.0 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=4_9406 , _UpperCAmelCase : Optional[Any]=4_9407 , **_UpperCAmelCase : int , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = max_position_embeddings lowercase__ = hidden_act lowercase__ = layer_norm_eps lowercase__ = attention_dropout lowercase__ = initializer_range lowercase__ = initializer_factor @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Dict ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) lowercase__ , lowercase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": lowercase__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''owlvit_vision_model''' def __init__(self : List[Any] , _UpperCAmelCase : int=768 , _UpperCAmelCase : Optional[int]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : List[str]=1E-5 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1.0 , **_UpperCAmelCase : List[Any] , ) -> List[str]: """simple docstring""" super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_channels lowercase__ = image_size lowercase__ = patch_size lowercase__ = hidden_act lowercase__ = layer_norm_eps lowercase__ = attention_dropout lowercase__ = initializer_range lowercase__ = initializer_factor @classmethod def lowerCamelCase__ (cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) lowercase__ , lowercase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": lowercase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''owlvit''' A__ = True def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[int]=2.6_592 , _UpperCAmelCase : Optional[Any]=True , **_UpperCAmelCase : Optional[Any] , ) -> List[Any]: """simple docstring""" super().__init__(**_UpperCAmelCase ) if text_config is None: lowercase__ = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: lowercase__ = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) lowercase__ = OwlViTTextConfig(**_UpperCAmelCase ) lowercase__ = OwlViTVisionConfig(**_UpperCAmelCase ) lowercase__ = projection_dim lowercase__ = logit_scale_init_value lowercase__ = return_dict lowercase__ = 1.0 @classmethod def lowerCamelCase__ (cls : Tuple , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) lowercase__ , lowercase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" lowercase__ = {} lowercase__ = text_config lowercase__ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.text_config.to_dict() lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def lowerCamelCase__ (self : Optional[int] ) -> float: """simple docstring""" return 1E-4 def lowerCamelCase__ (self : Any , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: """simple docstring""" lowercase__ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) lowercase__ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" return 14
305
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
1
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCamelCase ( __magic_name__ : List[Any] ) -> Dict: """simple docstring""" lowercase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : str ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase__ = emb.weight.data return lin_layer def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : Optional[int]="facebook/mbart-large-en-ro" , __magic_name__ : str=False , __magic_name__ : Optional[Any]=False ) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] remove_ignore_keys_(__magic_name__ ) lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ ) if mbart_aa and finetuned: lowercase__ = """relu""" lowercase__ = state_dict["""decoder.embed_tokens.weight"""] lowercase__ = MBartForConditionalGeneration(__magic_name__ ) model.model.load_state_dict(__magic_name__ ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A : Dict = parser.parse_args() A : List[str] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : Optional[int] = logging.get_logger(__name__) A : List[str] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''deta''' A__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__(self : List[str] , _UpperCAmelCase : int=None , _UpperCAmelCase : List[str]=900 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Dict=2048 , _UpperCAmelCase : Union[str, Any]=8 , _UpperCAmelCase : str=6 , _UpperCAmelCase : Tuple=1024 , _UpperCAmelCase : Union[str, Any]=8 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]="relu" , _UpperCAmelCase : Optional[Any]=256 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Tuple=1.0 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Dict="sine" , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=300 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Any=5 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.25 , **_UpperCAmelCase : Optional[int] , ) -> Dict: """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowercase__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = backbone_config.pop("""model_type""" ) lowercase__ = CONFIG_MAPPING[backbone_model_type] lowercase__ = config_class.from_dict(_UpperCAmelCase ) lowercase__ = backbone_config lowercase__ = num_queries lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = init_xavier_std lowercase__ = encoder_layerdrop lowercase__ = auxiliary_loss lowercase__ = position_embedding_type # deformable attributes lowercase__ = num_feature_levels lowercase__ = encoder_n_points lowercase__ = decoder_n_points lowercase__ = two_stage lowercase__ = two_stage_num_proposals lowercase__ = with_box_refine lowercase__ = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher lowercase__ = class_cost lowercase__ = bbox_cost lowercase__ = giou_cost # Loss coefficients lowercase__ = mask_loss_coefficient lowercase__ = dice_loss_coefficient lowercase__ = bbox_loss_coefficient lowercase__ = giou_loss_coefficient lowercase__ = eos_coefficient lowercase__ = focal_alpha super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" return self.encoder_attention_heads @property def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" return self.d_model def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.backbone_config.to_dict() lowercase__ = self.__class__.model_type return output
305
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : List[str] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging A : Tuple = logging.get_logger(__name__) def UpperCamelCase ( __magic_name__ : Union[tf.Tensor, np.ndarray] ) -> List[int]: """simple docstring""" if isinstance(__magic_name__ , np.ndarray ): return list(tensor.shape ) lowercase__ = tf.shape(__magic_name__ ) if tensor.shape == tf.TensorShape(__magic_name__ ): return dynamic lowercase__ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__magic_name__ )] def UpperCamelCase ( __magic_name__ : tf.Tensor , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[str] = None ) -> tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=__magic_name__ , name=__magic_name__ ) def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Tuple=1E-5 , __magic_name__ : Any=-1 ) -> Union[str, Any]: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__magic_name__ , __magic_name__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized lowercase__ , lowercase__ = tf.nn.moments(__magic_name__ , axes=[axis] , keepdims=__magic_name__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase__ = [1] * inputs.shape.rank lowercase__ = shape_list(__magic_name__ )[axis] lowercase__ = tf.reshape(__magic_name__ , __magic_name__ ) lowercase__ = tf.reshape(__magic_name__ , __magic_name__ ) # Compute layer normalization using the batch_normalization # function. lowercase__ = tf.nn.batch_normalization( __magic_name__ , __magic_name__ , __magic_name__ , offset=__magic_name__ , scale=__magic_name__ , variance_epsilon=__magic_name__ , ) return outputs def UpperCamelCase ( __magic_name__ : int , __magic_name__ : Tuple=0 , __magic_name__ : Optional[Any]=-1 ) -> Tuple: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase__ = tf.shape(__magic_name__ ) lowercase__ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase__ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : tf.Tensor ) -> tf.Tensor: """simple docstring""" if not isinstance(__magic_name__ , tf.Tensor ): lowercase__ = tf.convert_to_tensor(__magic_name__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase__ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase__ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase__ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCamelCase ( __magic_name__ : tf.Tensor , __magic_name__ : int , __magic_name__ : str = "input_ids" ) -> None: """simple docstring""" tf.debugging.assert_less( __magic_name__ , tf.cast(__magic_name__ , dtype=tensor.dtype ) , message=( f'''The maximum value of {tensor_name} ({tf.math.reduce_max(__magic_name__ )}) must be smaller than the embedding ''' f'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : int ) -> Any: """simple docstring""" lowercase__ = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase__ = [x for x in data if len(__magic_name__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' f'''bytes: {bad_attributes}''' ) lowercase__ = np.asarray(__magic_name__ ) lowercase__ = 1 lowercase__ = np.array_split(__magic_name__ , __magic_name__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase__ = np.array_split(__magic_name__ , __magic_name__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__magic_name__ ): lowercase__ = chunk_data else: lowercase__ = data def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" if name in group.attrs: lowercase__ = [n.decode("""utf8""" ) if hasattr(__magic_name__ , """decode""" ) else n for n in group.attrs[name]] else: lowercase__ = [] lowercase__ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(__magic_name__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" def _expand_single_ad_tensor(__magic_name__ : List[Any] ): if isinstance(__magic_name__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__magic_name__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __magic_name__ )
305
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
1
from ....utils import logging A : str = logging.get_logger(__name__) class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : Union[str, Any]=2048 ) -> str: """simple docstring""" lowercase__ = config.__dict__ lowercase__ = modal_hidden_size if num_labels: lowercase__ = num_labels
305
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = BlipImageProcessor() lowercase__ = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) lowercase__ = BlipaProcessor(_UpperCAmelCase , _UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).tokenizer def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> List[str]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = BlipaProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = BlipaProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = BlipaProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Any ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = BlipaProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = BlipaProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
305
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A : Any = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. A : str = 1_0 def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : int ) -> int: """simple docstring""" for i in range(__magic_name__ , __magic_name__ ): if array[i] == target: return i return -1 def UpperCamelCase ( __magic_name__ : list[int] , __magic_name__ : int ) -> int: """simple docstring""" lowercase__ = 0 lowercase__ = len(__magic_name__ ) while left <= right: if right - left < precision: return lin_search(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = (left + right) // 3 + 1 lowercase__ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowercase__ = one_third - 1 elif array[two_third] < target: lowercase__ = two_third + 1 else: lowercase__ = one_third + 1 lowercase__ = two_third - 1 else: return -1 def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : int ) -> int: """simple docstring""" if left < right: if right - left < precision: return lin_search(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = (left + right) // 3 + 1 lowercase__ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__magic_name__ , one_third - 1 , __magic_name__ , __magic_name__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __magic_name__ , __magic_name__ , __magic_name__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __magic_name__ , __magic_name__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() A : Union[str, Any] = input('Enter numbers separated by comma:\n').strip() A : Dict = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." A : Optional[Any] = int(input('Enter the number to be found in the list:\n').strip()) A : Union[str, Any] = ite_ternary_search(collection, target) A : str = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'Iterative search: {target} found at positions: {resulta}') print(F'Recursive search: {target} found at positions: {resulta}') else: print('Not found')
305
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
1
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , """num_attention_heads""" ) ) class A : '''simple docstring''' def __init__(self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : Dict=64 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Tuple=[128, 256, 384] , _UpperCAmelCase : int=[4, 6, 8] , _UpperCAmelCase : List[str]=[2, 3, 4] , _UpperCAmelCase : List[Any]=[16, 16, 16] , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=[2, 2, 2] , _UpperCAmelCase : Optional[Any]=[2, 2, 2] , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=2 , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = kernel_size lowercase__ = stride lowercase__ = padding lowercase__ = hidden_sizes lowercase__ = num_attention_heads lowercase__ = depths lowercase__ = key_dim lowercase__ = drop_path_rate lowercase__ = patch_size lowercase__ = attention_ratio lowercase__ = mlp_ratio lowercase__ = initializer_range lowercase__ = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase__ = is_training lowercase__ = use_labels lowercase__ = num_labels lowercase__ = initializer_range def lowerCamelCase__ (self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = LevitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = (self.image_size, self.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowercase__ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = LevitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) A__ = False A__ = False A__ = False A__ = False A__ = False def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = LevitModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ (self : Optional[Any] ) -> Dict: """simple docstring""" return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" pass @unittest.skip(reason="""Levit does not output attentions""" ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" pass def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Dict: """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : str ): lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = len(self.model_tester.depths ) + 1 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) lowercase__ = (self.model_tester.image_size, self.model_tester.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowercase__ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" pass def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> Optional[Any]: """simple docstring""" if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ = False lowercase__ = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase__ = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): lowercase__ = problem_type["""title"""] lowercase__ = problem_type["""num_labels"""] lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if problem_type["num_labels"] > 1: lowercase__ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase__ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_UpperCAmelCase ) as warning_list: lowercase__ = model(**_UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = LevitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) # verify the logits lowercase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
305
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
1
from __future__ import annotations from random import random from typing import Generic, TypeVar A : int = TypeVar('KT') A : Optional[Any] = TypeVar('VT') class A ( Generic[KT, VT] ): '''simple docstring''' def __init__(self : List[Any] , _UpperCAmelCase : KT | str = "root" , _UpperCAmelCase : VT | None = None ) -> List[str]: """simple docstring""" lowercase__ = key lowercase__ = value lowercase__ = [] def __repr__(self : List[Any] ) -> str: """simple docstring""" return f'''Node({self.key}: {self.value})''' @property def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" return len(self.forward ) class A ( Generic[KT, VT] ): '''simple docstring''' def __init__(self : Tuple , _UpperCAmelCase : float = 0.5 , _UpperCAmelCase : int = 16 ) -> int: """simple docstring""" lowercase__ = Node[KT, VT]() lowercase__ = 0 lowercase__ = p lowercase__ = max_level def __str__(self : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(self ) if len(_UpperCAmelCase ) == 0: return f'''SkipList(level={self.level})''' lowercase__ = max((len(str(_UpperCAmelCase ) ) for item in items) , default=4 ) lowercase__ = max(_UpperCAmelCase , 4 ) + 4 lowercase__ = self.head lowercase__ = [] lowercase__ = node.forward.copy() lines.append(f'''[{node.key}]'''.ljust(_UpperCAmelCase , """-""" ) + """* """ * len(_UpperCAmelCase ) ) lines.append(""" """ * label_size + """| """ * len(_UpperCAmelCase ) ) while len(node.forward ) != 0: lowercase__ = node.forward[0] lines.append( f'''[{node.key}]'''.ljust(_UpperCAmelCase , """-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(_UpperCAmelCase ) ) lowercase__ = node.forward lines.append("""None""".ljust(_UpperCAmelCase ) + """* """ * len(_UpperCAmelCase ) ) return f'''SkipList(level={self.level})\n''' + "\n".join(_UpperCAmelCase ) def __iter__(self : Any ) -> Any: """simple docstring""" lowercase__ = self.head while len(node.forward ) != 0: yield node.forward[0].key lowercase__ = node.forward[0] def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = 1 while random() < self.p and level < self.max_level: level += 1 return level def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: """simple docstring""" lowercase__ = [] lowercase__ = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: lowercase__ = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(_UpperCAmelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : KT ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = self._locate_node(_UpperCAmelCase ) if node is not None: for i, update_node in enumerate(_UpperCAmelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: lowercase__ = node.forward[i] else: lowercase__ = update_node.forward[:i] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : KT , _UpperCAmelCase : VT ) -> str: """simple docstring""" lowercase__ , lowercase__ = self._locate_node(_UpperCAmelCase ) if node is not None: lowercase__ = value else: lowercase__ = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , _UpperCAmelCase ): update_vector.append(self.head ) lowercase__ = level lowercase__ = Node(_UpperCAmelCase , _UpperCAmelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(_UpperCAmelCase ) else: lowercase__ = new_node def lowerCamelCase__ (self : Any , _UpperCAmelCase : VT ) -> VT | None: """simple docstring""" lowercase__ , lowercase__ = self._locate_node(_UpperCAmelCase ) if node is not None: return node.value return None def UpperCamelCase ( ) -> Tuple: """simple docstring""" lowercase__ = SkipList() skip_list.insert("""Key1""" , 3 ) skip_list.insert("""Key2""" , 12 ) skip_list.insert("""Key3""" , 41 ) skip_list.insert("""Key4""" , -19 ) lowercase__ = skip_list.head lowercase__ = {} while node.level != 0: lowercase__ = node.forward[0] lowercase__ = node.value assert len(__magic_name__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = SkipList() skip_list.insert("""Key1""" , 10 ) skip_list.insert("""Key1""" , 12 ) skip_list.insert("""Key5""" , 7 ) skip_list.insert("""Key7""" , 10 ) skip_list.insert("""Key10""" , 5 ) skip_list.insert("""Key7""" , 7 ) skip_list.insert("""Key5""" , 5 ) skip_list.insert("""Key10""" , 10 ) lowercase__ = skip_list.head lowercase__ = {} while node.level != 0: lowercase__ = node.forward[0] lowercase__ = node.value if len(__magic_name__ ) != 4: print() assert len(__magic_name__ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = SkipList() assert skip_list.find("""Some key""" ) is None def UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowercase__ = SkipList() skip_list.insert("""Key2""" , 20 ) assert skip_list.find("""Key2""" ) == 20 skip_list.insert("""Some Key""" , 10 ) skip_list.insert("""Key2""" , 8 ) skip_list.insert("""V""" , 13 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 10 assert skip_list.find("""V""" ) == 13 def UpperCamelCase ( ) -> Any: """simple docstring""" lowercase__ = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def UpperCamelCase ( ) -> Dict: """simple docstring""" lowercase__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def UpperCamelCase ( ) -> List[str]: """simple docstring""" lowercase__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 14 assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowercase__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 142 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""X""" ) def traverse_keys(__magic_name__ : int ): yield node.key for forward_node in node.forward: yield from traverse_keys(__magic_name__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def UpperCamelCase ( ) -> int: """simple docstring""" def is_sorted(__magic_name__ : str ): return all(next_item >= item for item, next_item in zip(__magic_name__ , lst[1:] ) ) lowercase__ = SkipList() for i in range(10 ): skip_list.insert(__magic_name__ , __magic_name__ ) assert is_sorted(list(__magic_name__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(__magic_name__ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(__magic_name__ ) ) def UpperCamelCase ( ) -> Tuple: """simple docstring""" for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = SkipList() skip_list.insert(2 , """2""" ) skip_list.insert(4 , """4""" ) skip_list.insert(6 , """4""" ) skip_list.insert(4 , """5""" ) skip_list.insert(8 , """4""" ) skip_list.insert(9 , """4""" ) skip_list.delete(4 ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : List[Any] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class A ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCamelCase__ (cls : str ) -> Any: """simple docstring""" lowercase__ = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any ) -> Any: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowercase__ = FlaxBertModel(_UpperCAmelCase ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_UpperCAmelCase , repo_id="""test-model-flax""" , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowercase__ = FlaxBertModel(_UpperCAmelCase ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _UpperCAmelCase , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = True lowercase__ = flatten_dict(modela.params ) lowercase__ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: lowercase__ = False return models_are_equal @require_flax class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Tuple: """simple docstring""" lowercase__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowercase__ = FlaxBertModel(_UpperCAmelCase ) lowercase__ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) with self.assertRaises(_UpperCAmelCase ): lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.assertTrue(check_models_equal(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowercase__ = FlaxBertModel(_UpperCAmelCase ) lowercase__ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , max_shard_size="""10KB""" ) with self.assertRaises(_UpperCAmelCase ): lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.assertTrue(check_models_equal(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = """bert""" lowercase__ = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(_UpperCAmelCase ): lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = """bert""" lowercase__ = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(_UpperCAmelCase ): lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase )
305
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
1
A : Tuple = 'Alexander Joslin' import operator as op from .stack import Stack def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" lowercase__ = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} lowercase__ = Stack() lowercase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__magic_name__ ) ) elif i in operators: # RULE 2 operator_stack.push(__magic_name__ ) elif i == ")": # RULE 4 lowercase__ = operator_stack.peek() operator_stack.pop() lowercase__ = operand_stack.peek() operand_stack.pop() lowercase__ = operand_stack.peek() operand_stack.pop() lowercase__ = operators[opr](__magic_name__ , __magic_name__ ) operand_stack.push(__magic_name__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A : int = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(F'{equation} = {dijkstras_two_stack_algorithm(equation)}')
305
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple=1024 ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = [], [] lowercase__ = list(zip(__magic_name__ , __magic_name__ ) ) lowercase__ , lowercase__ = sorted_examples[0] def is_too_big(__magic_name__ : Union[str, Any] ): return tok(__magic_name__ , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): lowercase__ = new_src + """ """ + src lowercase__ = new_tgt + """ """ + tgt if is_too_big(__magic_name__ ) or is_too_big(__magic_name__ ): # cant fit, finalize example finished_src.append(__magic_name__ ) finished_tgt.append(__magic_name__ ) lowercase__ , lowercase__ = src, tgt else: # can fit, keep adding lowercase__ , lowercase__ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__magic_name__ ) finished_tgt.append(__magic_name__ ) return finished_src, finished_tgt def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Path , __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> List[str]: """simple docstring""" lowercase__ = Path(__magic_name__ ) save_path.mkdir(exist_ok=__magic_name__ ) for split in ["train"]: lowercase__ , lowercase__ = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' lowercase__ = [x.rstrip() for x in Path(__magic_name__ ).open().readlines()] lowercase__ = [x.rstrip() for x in Path(__magic_name__ ).open().readlines()] lowercase__ , lowercase__ = pack_examples(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) print(f'''packed {split} split from {len(__magic_name__ )} examples -> {len(__magic_name__ )}.''' ) Path(save_path / f'''{split}.source''' ).open("""w""" ).write("""\n""".join(__magic_name__ ) ) Path(save_path / f'''{split}.target''' ).open("""w""" ).write("""\n""".join(__magic_name__ ) ) for split in ["val", "test"]: lowercase__ , lowercase__ = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(__magic_name__ , save_path / f'''{split}.source''' ) shutil.copyfile(__magic_name__ , save_path / f'''{split}.target''' ) def UpperCamelCase ( ) -> str: """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=__magic_name__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=__magic_name__ , default=128 ) parser.add_argument("""--data_dir""" , type=__magic_name__ ) parser.add_argument("""--save_path""" , type=__magic_name__ ) lowercase__ = parser.parse_args() lowercase__ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__magic_name__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
305
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') A : Tuple = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A : '''simple docstring''' A__ = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''A folder containing the training data.'''} ) A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''A folder containing the validation data.'''} ) A__ = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) A__ = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) A__ = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = {} if self.train_dir is not None: lowercase__ = self.train_dir if self.validation_dir is not None: lowercase__ = self.validation_dir lowercase__ = data_files if data_files else None @dataclass class A : '''simple docstring''' A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCAmelCase__ )} , ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) A__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class A : '''simple docstring''' def __init__(self : List[Any] , _UpperCAmelCase : Dict=192 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : str=0.6 ) -> str: """simple docstring""" lowercase__ = input_size lowercase__ = mask_patch_size lowercase__ = model_patch_size lowercase__ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase__ = self.input_size // self.mask_patch_size lowercase__ = self.mask_patch_size // self.model_patch_size lowercase__ = self.rand_size**2 lowercase__ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__(self : int ) -> Tuple: """simple docstring""" lowercase__ = np.random.permutation(self.token_count )[: self.mask_count] lowercase__ = np.zeros(self.token_count , dtype=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = mask.reshape((self.rand_size, self.rand_size) ) lowercase__ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCamelCase ( __magic_name__ : List[str] ) -> List[str]: """simple docstring""" lowercase__ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase__ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , __magic_name__ , __magic_name__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ = training_args.get_process_log_level() logger.setLevel(__magic_name__ ) transformers.utils.logging.set_verbosity(__magic_name__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __magic_name__ ) and data_args.train_val_split > 0.0: lowercase__ = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase__ = split["""train"""] lowercase__ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.config_name_or_path , **__magic_name__ ) elif model_args.model_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: lowercase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(__magic_name__ , """decoder_type""" ): lowercase__ = """simmim""" # adapt config lowercase__ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase__ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase__ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase__ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **__magic_name__ ) elif model_args.model_name_or_path: lowercase__ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: lowercase__ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase__ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase__ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase__ = AutoModelForMaskedImageModeling.from_config(__magic_name__ ) if training_args.do_train: lowercase__ = ds["""train"""].column_names else: lowercase__ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase__ = data_args.image_column_name elif "image" in column_names: lowercase__ = """image""" elif "img" in column_names: lowercase__ = """img""" else: lowercase__ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase__ = Compose( [ Lambda(lambda __magic_name__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.6_7, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase__ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(__magic_name__ : Any ): lowercase__ = [transforms(__magic_name__ ) for image in examples[image_column_name]] lowercase__ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase__ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__magic_name__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase__ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__magic_name__ ) # Initialize our trainer lowercase__ = Trainer( model=__magic_name__ , args=__magic_name__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__magic_name__ , data_collator=__magic_name__ , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=__magic_name__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ = trainer.evaluate() trainer.log_metrics("""eval""" , __magic_name__ ) trainer.save_metrics("""eval""" , __magic_name__ ) # Write model card and (optionally) push to hub lowercase__ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**__magic_name__ ) else: trainer.create_model_card(**__magic_name__ ) if __name__ == "__main__": main()
305
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = OmegaConf.load(__magic_name__ ) lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] lowercase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowercase__ = {} lowercase__ = """first_stage_model.""" for key in keys: if key.startswith(__magic_name__ ): lowercase__ = state_dict[key] # extract state_dict for UNetLDM lowercase__ = {} lowercase__ = """model.diffusion_model.""" for key in keys: if key.startswith(__magic_name__ ): lowercase__ = state_dict[key] lowercase__ = config.model.params.first_stage_config.params lowercase__ = config.model.params.unet_config.params lowercase__ = VQModel(**__magic_name__ ).eval() vqvae.load_state_dict(__magic_name__ ) lowercase__ = UNetLDMModel(**__magic_name__ ).eval() unet.load_state_dict(__magic_name__ ) lowercase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__magic_name__ , ) lowercase__ = LDMPipeline(__magic_name__ , __magic_name__ , __magic_name__ ) pipeline.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) A : Dict = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
305
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path A : Optional[Any] = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def UpperCamelCase ( __magic_name__ : Tuple=True ) -> List[Any]: """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=UpperCAmelCase__ ) ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = None A__ = None def lowerCamelCase__ (self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" with TemporaryDirectory() as tmp_dir: lowercase__ = dataset_module_factory(_UpperCAmelCase , cache_dir=_UpperCAmelCase ) lowercase__ = import_main_class(dataset_module.module_path , dataset=_UpperCAmelCase ) lowercase__ = builder_cls( cache_dir=_UpperCAmelCase , config_name=_UpperCAmelCase , hash=dataset_module.hash , ) lowercase__ = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_UpperCAmelCase ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) lowercase__ = cached_path(_UpperCAmelCase , cache_dir=_UpperCAmelCase ) self.assertTrue(os.path.exists(_UpperCAmelCase ) ) @pytest.mark.integration def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" lowercase__ = dataset_module_factory("""wikipedia""" , cache_dir=__magic_name__ ) lowercase__ = import_main_class(dataset_module.module_path ) lowercase__ = builder_cls( cache_dir=__magic_name__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowercase__ = None builder_instance.download_and_prepare() lowercase__ = builder_instance.as_dataset() assert ds @pytest.mark.integration def UpperCamelCase ( __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = dataset_module_factory("""wikipedia""" , cache_dir=__magic_name__ ) lowercase__ = import_main_class(dataset_module.module_path , dataset=__magic_name__ ) lowercase__ = builder_cls( cache_dir=__magic_name__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) lowercase__ = builder_instance.as_streaming_dataset() assert ds assert isinstance(__magic_name__ , __magic_name__ ) assert "train" in ds assert isinstance(ds["""train"""] , __magic_name__ ) assert next(iter(ds["""train"""] ) )
305
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(__magic_name__ , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : Any ) -> Any: """simple docstring""" lowercase__ = _distribute_shards(**__magic_name__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = _split_gen_kwargs(__magic_name__ , __magic_name__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" if expected is RuntimeError: with pytest.raises(__magic_name__ ): _number_of_shards_in_gen_kwargs(__magic_name__ ) else: lowercase__ = _number_of_shards_in_gen_kwargs(__magic_name__ ) assert out == expected
305
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
1
class A : '''simple docstring''' def __init__(self : str ) -> Any: """simple docstring""" lowercase__ = {} def lowerCamelCase__ (self : List[str] ) -> None: """simple docstring""" print(self.vertex ) for i in self.vertex: print(_UpperCAmelCase , """ -> """ , """ -> """.join([str(_UpperCAmelCase ) for j in self.vertex[i]] ) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(_UpperCAmelCase ) else: # else make a new vertex lowercase__ = [to_vertex] def lowerCamelCase__ (self : List[str] ) -> None: """simple docstring""" lowercase__ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : list ) -> None: """simple docstring""" lowercase__ = True print(_UpperCAmelCase , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": A : Any = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar A : Optional[Any] = TypeVar('T') def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" return (position - 1) // 2 def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" return (2 * position) + 1 def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" return (2 * position) + 2 class A ( Generic[T] ): '''simple docstring''' def __init__(self : Optional[int] ) -> None: """simple docstring""" lowercase__ = [] lowercase__ = {} lowercase__ = 0 def __len__(self : Optional[int] ) -> int: """simple docstring""" return self.elements def __repr__(self : Dict ) -> str: """simple docstring""" return str(self.heap ) def lowerCamelCase__ (self : Tuple ) -> bool: """simple docstring""" return self.elements == 0 def lowerCamelCase__ (self : Any , _UpperCAmelCase : T , _UpperCAmelCase : int ) -> None: """simple docstring""" self.heap.append((elem, weight) ) lowercase__ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowercase__ , lowercase__ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowercase__ , lowercase__ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : T , _UpperCAmelCase : int ) -> None: """simple docstring""" lowercase__ = self.position_map[elem] lowercase__ = (elem, weight) if position > 0: lowercase__ = get_parent_position(_UpperCAmelCase ) lowercase__ , lowercase__ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : T ) -> None: """simple docstring""" lowercase__ = self.position_map[elem] if curr_pos == 0: return None lowercase__ = get_parent_position(_UpperCAmelCase ) lowercase__ , lowercase__ = self.heap[curr_pos] lowercase__ , lowercase__ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : T ) -> None: """simple docstring""" lowercase__ = self.position_map[elem] lowercase__ , lowercase__ = self.heap[curr_pos] lowercase__ = get_child_left_position(_UpperCAmelCase ) lowercase__ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: lowercase__ , lowercase__ = self.heap[child_left_position] lowercase__ , lowercase__ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: lowercase__ , lowercase__ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: lowercase__ , lowercase__ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: """simple docstring""" lowercase__ = self.heap[nodea_pos][0] lowercase__ = self.heap[nodea_pos][0] lowercase__ , lowercase__ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowercase__ = nodea_pos lowercase__ = nodea_pos class A ( Generic[T] ): '''simple docstring''' def __init__(self : List[Any] ) -> None: """simple docstring""" lowercase__ = {} lowercase__ = 0 def __repr__(self : str ) -> str: """simple docstring""" return str(self.connections ) def __len__(self : Optional[Any] ) -> int: """simple docstring""" return self.nodes def lowerCamelCase__ (self : Dict , _UpperCAmelCase : T ) -> None: """simple docstring""" if node not in self.connections: lowercase__ = {} self.nodes += 1 def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : T , _UpperCAmelCase : T , _UpperCAmelCase : int ) -> None: """simple docstring""" self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) lowercase__ = weight lowercase__ = weight def UpperCamelCase ( __magic_name__ : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: """simple docstring""" lowercase__ = {node: maxsize for node in graph.connections} lowercase__ = {node: None for node in graph.connections} lowercase__ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__magic_name__ , __magic_name__ ) if priority_queue.is_empty(): return dist, parent # initialization lowercase__ = priority_queue.extract_min() lowercase__ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowercase__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__magic_name__ , dist[neighbour] ) lowercase__ = node # running prim's algorithm while not priority_queue.is_empty(): lowercase__ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowercase__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__magic_name__ , dist[neighbour] ) lowercase__ = node return dist, parent
305
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
1
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() A : Dict = logging.get_logger(__name__) A : Tuple = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } A : Union[str, Any] = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCamelCase ( __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" for attribute in key.split(""".""" ): lowercase__ = getattr(__magic_name__ , __magic_name__ ) if weight_type is not None: lowercase__ = getattr(__magic_name__ , __magic_name__ ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(__magic_name__ )[0].split(""".""" )[-2] lowercase__ = mapped_key.replace("""*""" , __magic_name__ ) if "weight_g" in name: lowercase__ = """weight_g""" elif "weight_v" in name: lowercase__ = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: lowercase__ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ = """weight""" else: lowercase__ = None set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple ) -> Tuple: """simple docstring""" lowercase__ = full_name.split("""conv_layers.""" )[-1] lowercase__ = name.split(""".""" ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__magic_name__ ) @torch.no_grad() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[Any]=None ) -> Dict: """simple docstring""" lowercase__ = torch.load(__magic_name__ ) lowercase__ = WavLMConfigOrig(checkpoint["""cfg"""] ) lowercase__ = WavLMOrig(__magic_name__ ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: lowercase__ = WavLMConfig.from_pretrained(__magic_name__ ) else: lowercase__ = WavLMConfig() lowercase__ = WavLMModel(__magic_name__ ) recursively_load_weights(__magic_name__ , __magic_name__ ) hf_wavlm.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A : Optional[Any] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: lowercase__ = tf.cast(tf.math.not_equal(__magic_name__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class A : '''simple docstring''' A__ = OPTConfig A__ = {} A__ = '''gelu''' def __init__(self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any=13 , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : str=16 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Tuple=16 , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = eos_token_id lowercase__ = pad_token_id lowercase__ = bos_token_id lowercase__ = embed_dim lowercase__ = word_embed_proj_dim lowercase__ = False def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase__ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_UpperCAmelCase , **self.config_updates , ) lowercase__ = prepare_opt_inputs_dict(_UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFOPTModel(config=_UpperCAmelCase ) lowercase__ = inputs_dict["""input_ids"""] lowercase__ = input_ids[:1, :] lowercase__ = inputs_dict["""attention_mask"""][:1, :] lowercase__ = 1 # first forward pass lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) lowercase__ , lowercase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowercase__ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowercase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowercase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowercase__ = output_from_no_past[:, -3:, random_slice_idx] lowercase__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-3 ) @require_tf class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () A__ = (TFOPTForCausalLM,) if is_tf_available() else () A__ = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) A__ = False A__ = False A__ = False A__ = 10 def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = TFOPTModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> str: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ): if hasattr(_UpperCAmelCase , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_UpperCAmelCase , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = _get_word_embedding_weight(_UpperCAmelCase , model.get_input_embeddings() ) lowercase__ = _get_word_embedding_weight(_UpperCAmelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_UpperCAmelCase ) lowercase__ = _get_word_embedding_weight(_UpperCAmelCase , model.get_input_embeddings() ) lowercase__ = _get_word_embedding_weight(_UpperCAmelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowercase__ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _UpperCAmelCase ) # check that weights remain the same after resizing lowercase__ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowercase__ = False self.assertTrue(_UpperCAmelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _UpperCAmelCase ) lowercase__ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowercase__ = False self.assertTrue(_UpperCAmelCase ) def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[str]: """simple docstring""" return tf.constant(__magic_name__ , dtype=tf.intaa ) @require_tf class A ( unittest.TestCase ): '''simple docstring''' A__ = 99 def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowercase__ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowercase__ = input_ids.shape[0] lowercase__ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) lowercase__ = _long_tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) lowercase__ = tf.not_equal(_UpperCAmelCase , model.config.pad_token_id ) with tf.GradientTape(): lowercase__ = model(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ).last_hidden_state lowercase__ = (1, 11, 512) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=4E-3 ) ) lowercase__ = tf.function(_UpperCAmelCase , jit_compile=_UpperCAmelCase ) lowercase__ = xla_generate(_UpperCAmelCase , _UpperCAmelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=4E-2 ) ) @require_tf @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" super().setUp() lowercase__ = """facebook/opt-350m""" def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowercase__ = GPTaTokenizer.from_pretrained(self.path_model ) lowercase__ = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowercase__ = tokenizer(_UpperCAmelCase , return_tensors="""tf""" , padding=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowercase__ = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-4 ) ) lowercase__ = tf.function(_UpperCAmelCase , jit_compile=_UpperCAmelCase ) lowercase__ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-4 ) ) @require_tf @slow class A ( unittest.TestCase ): '''simple docstring''' @property def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = """facebook/opt-125m""" lowercase__ = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowercase__ = [] lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) for prompt in self.prompts: lowercase__ = tokenizer(_UpperCAmelCase , return_tensors="""tf""" ).input_ids lowercase__ = model.generate(_UpperCAmelCase , max_length=10 ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = """facebook/opt-350m""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) lowercase__ = """left""" # use different length sentences to test batching lowercase__ = [ """Hello, my dog is a little""", """Today, I""", ] lowercase__ = tokenizer(_UpperCAmelCase , return_tensors="""tf""" , padding=_UpperCAmelCase ) lowercase__ = inputs["""input_ids"""] lowercase__ = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs["""attention_mask"""] ) lowercase__ = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowercase__ = model.generate(input_ids=_UpperCAmelCase ) lowercase__ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) lowercase__ = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowercase__ = model.generate(input_ids=_UpperCAmelCase , max_length=model.config.max_length - num_paddings ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase ) lowercase__ = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] ) def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" lowercase__ = """facebook/opt-350m""" lowercase__ = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowercase__ = [] lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) for prompt in self.prompts: lowercase__ = tokenizer(_UpperCAmelCase , return_tensors="""tf""" ).input_ids lowercase__ = model.generate(_UpperCAmelCase , max_length=10 ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
305
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" lowercase__ = jnp.ones((batch_size, length) ) / length return scores def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" lowercase__ = None lowercase__ = 20 lowercase__ = self._get_uniform_logits(batch_size=2 , length=_UpperCAmelCase ) # tweak scores to not be uniform anymore lowercase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowercase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowercase__ = jax.nn.softmax(_UpperCAmelCase , axis=-1 ) lowercase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowercase__ = jax.nn.softmax(temp_dist_warper_sharper(_UpperCAmelCase , scores.copy() , cur_len=_UpperCAmelCase ) , axis=-1 ) lowercase__ = jax.nn.softmax(temp_dist_warper_smoother(_UpperCAmelCase , scores.copy() , cur_len=_UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = None lowercase__ = 10 lowercase__ = 2 # create ramp distribution lowercase__ = np.broadcast_to(np.arange(_UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() lowercase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowercase__ = FlaxTopKLogitsWarper(3 ) lowercase__ = top_k_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowercase__ = 5 lowercase__ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowercase__ = np.broadcast_to(np.arange(_UpperCAmelCase )[None, :] , (batch_size, length) ).copy() lowercase__ = top_k_warp_safety_check(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowerCamelCase__ (self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = None lowercase__ = 10 lowercase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowercase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowercase__ = FlaxTopPLogitsWarper(0.8 ) lowercase__ = np.exp(top_p_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowercase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # check edge cases with negative and extreme logits lowercase__ = np.broadcast_to(np.arange(_UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowercase__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowercase__ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowercase__ = top_p_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = 20 lowercase__ = 4 lowercase__ = 0 lowercase__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_UpperCAmelCase ) # check that min length is applied at length 5 lowercase__ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowercase__ = 5 lowercase__ = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = min_dist_processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowercase__ = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = 15 lowercase__ = min_dist_processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) self.assertFalse(jnp.isinf(_UpperCAmelCase ).any() ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = 20 lowercase__ = 4 lowercase__ = 0 lowercase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score lowercase__ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowercase__ = 1 lowercase__ = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = logits_processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowercase__ = 3 lowercase__ = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = logits_processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) self.assertFalse(jnp.isinf(_UpperCAmelCase ).any() ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = 20 lowercase__ = 4 lowercase__ = 0 lowercase__ = 5 lowercase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowercase__ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowercase__ = 4 lowercase__ = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = logits_processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowercase__ = 3 lowercase__ = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = logits_processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) self.assertFalse(jnp.isinf(_UpperCAmelCase ).any() ) def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = 4 lowercase__ = 10 lowercase__ = 15 lowercase__ = 2 lowercase__ = 1 lowercase__ = 15 # dummy input_ids and scores lowercase__ = ids_tensor((batch_size, sequence_length) , _UpperCAmelCase ) lowercase__ = input_ids.copy() lowercase__ = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = scores.copy() # instantiate all dist processors lowercase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase__ = FlaxTopKLogitsWarper(3 ) lowercase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowercase__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_UpperCAmelCase ) lowercase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_UpperCAmelCase ) lowercase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__ = 10 # no processor list lowercase__ = temp_dist_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) lowercase__ = top_k_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) lowercase__ = top_p_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) lowercase__ = min_dist_proc(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) lowercase__ = bos_dist_proc(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) lowercase__ = eos_dist_proc(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) # with processor list lowercase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowercase__ = processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = 4 lowercase__ = 10 lowercase__ = 15 lowercase__ = 2 lowercase__ = 1 lowercase__ = 15 # dummy input_ids and scores lowercase__ = ids_tensor((batch_size, sequence_length) , _UpperCAmelCase ) lowercase__ = input_ids.copy() lowercase__ = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = scores.copy() # instantiate all dist processors lowercase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase__ = FlaxTopKLogitsWarper(3 ) lowercase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowercase__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_UpperCAmelCase ) lowercase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_UpperCAmelCase ) lowercase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__ = 10 # no processor list def run_no_processor_list(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ): lowercase__ = temp_dist_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) lowercase__ = top_k_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) lowercase__ = top_p_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) lowercase__ = min_dist_proc(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) lowercase__ = bos_dist_proc(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) lowercase__ = eos_dist_proc(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) return scores # with processor list def run_processor_list(_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] ): lowercase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowercase__ = processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) return scores lowercase__ = jax.jit(_UpperCAmelCase ) lowercase__ = jax.jit(_UpperCAmelCase ) lowercase__ = jitted_run_no_processor_list(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = jitted_run_processor_list(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
305
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
1
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> Dict: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__magic_name__ , int(b / 2 ) ) * actual_power(__magic_name__ , int(b / 2 ) ) else: return a * actual_power(__magic_name__ , int(b / 2 ) ) * actual_power(__magic_name__ , int(b / 2 ) ) def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__magic_name__ , __magic_name__ ) return actual_power(__magic_name__ , __magic_name__ ) if __name__ == "__main__": print(power(-2, -3))
305
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class A : '''simple docstring''' A__ = None def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(_UpperCAmelCase , """feat_extract.json""" ) feat_extract_first.to_json_file(_UpperCAmelCase ) lowercase__ = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) lowercase__ = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.feature_extraction_class() self.assertIsNotNone(_UpperCAmelCase )
305
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
1
import cmath import math def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ) -> complex: """simple docstring""" lowercase__ = math.radians(__magic_name__ ) lowercase__ = math.radians(__magic_name__ ) # Convert voltage and current to rectangular form lowercase__ = cmath.rect(__magic_name__ , __magic_name__ ) lowercase__ = cmath.rect(__magic_name__ , __magic_name__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
305
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
1
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A : int = logging.get_logger(__name__) def UpperCamelCase ( __magic_name__ : Dict ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = ['''pixel_values'''] def __init__(self : Optional[int] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) lowercase__ = size if size is not None else {"""shortest_edge""": 256} lowercase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) lowercase__ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase__ = get_size_dict(_UpperCAmelCase , param_name="""crop_size""" ) lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = resample lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = offset lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: lowercase__ = get_resize_output_image_size(_UpperCAmelCase , size["""shortest_edge"""] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: lowercase__ = (size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> Tuple: """simple docstring""" lowercase__ = image.astype(np.floataa ) if offset: lowercase__ = image - (scale / 2) return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[Any] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. lowercase__ = to_numpy_array(_UpperCAmelCase ) if do_resize: lowercase__ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: lowercase__ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: lowercase__ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase , offset=_UpperCAmelCase ) if do_normalize: lowercase__ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) lowercase__ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = resample if resample is not None else self.resample lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = offset if offset is not None else self.offset lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(_UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(_UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) lowercase__ = make_batched(_UpperCAmelCase ) lowercase__ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , offset=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] lowercase__ = {"""pixel_values""": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
305
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
1
from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''flax''', '''transformers'''] def __init__(self : Union[str, Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ (cls : List[Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ (cls : Dict , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : int ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''flax''', '''transformers'''] def __init__(self : Optional[Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Tuple ) -> str: """simple docstring""" requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ (cls : int , *_UpperCAmelCase : str , **_UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ (cls : Dict , *_UpperCAmelCase : int , **_UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''flax''', '''transformers'''] def __init__(self : int , *_UpperCAmelCase : Any , **_UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ (cls : str , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : int ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ (cls : int , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''flax''', '''transformers'''] def __init__(self : List[Any] , *_UpperCAmelCase : Any , **_UpperCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ (cls : Optional[int] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ (cls : int , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] )
305
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = LxmertConfig.from_json_file(__magic_name__ ) print(f'''Building PyTorch model from configuration: {config}''' ) lowercase__ = LxmertForPreTraining(__magic_name__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __magic_name__ ) if __name__ == "__main__": A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
305
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def UpperCamelCase ( __magic_name__ : List[Any] ) -> int: """simple docstring""" lowercase__ = 384 if "tiny" in model_name: lowercase__ = [3, 3, 9, 3] lowercase__ = [96, 192, 384, 768] if "small" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [96, 192, 384, 768] if "base" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [128, 256, 512, 1024] lowercase__ = 512 if "large" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [192, 384, 768, 1536] lowercase__ = 768 if "xlarge" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [256, 512, 1024, 2048] lowercase__ = 1024 # set label information lowercase__ = 150 lowercase__ = """huggingface/label-files""" lowercase__ = """ade20k-id2label.json""" lowercase__ = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) lowercase__ = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = ConvNextConfig( depths=__magic_name__ , hidden_sizes=__magic_name__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) lowercase__ = UperNetConfig( backbone_config=__magic_name__ , auxiliary_in_channels=__magic_name__ , num_labels=__magic_name__ , idalabel=__magic_name__ , labelaid=__magic_name__ , ) return config def UpperCamelCase ( __magic_name__ : str ) -> Optional[Any]: """simple docstring""" lowercase__ = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = dct.pop(__magic_name__ ) lowercase__ = val def UpperCamelCase ( __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> int: """simple docstring""" lowercase__ = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } lowercase__ = model_name_to_url[model_name] lowercase__ = torch.hub.load_state_dict_from_url(__magic_name__ , map_location="""cpu""" )["""state_dict"""] lowercase__ = get_upernet_config(__magic_name__ ) lowercase__ = UperNetForSemanticSegmentation(__magic_name__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(__magic_name__ ) if "bn" in key: lowercase__ = key.replace("""bn""" , """batch_norm""" ) lowercase__ = val # rename keys lowercase__ = create_rename_keys(__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify on image lowercase__ = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" lowercase__ = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ).convert("""RGB""" ) lowercase__ = SegformerImageProcessor() lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): lowercase__ = model(__magic_name__ ) if model_name == "upernet-convnext-tiny": lowercase__ = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": lowercase__ = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": lowercase__ = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": lowercase__ = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": lowercase__ = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __magic_name__ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F'upernet-convnext-{size}' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A : int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
305
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
1
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) lowercase__ = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(_UpperCAmelCase ) from datasets import load_dataset lowercase__ = load_dataset("""nielsr/rvlcdip-demo""" ) lowercase__ = dataset["""train"""][0]["""image"""].convert("""RGB""" ) lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) lowercase__ = outputs.logits lowercase__ = torch.Size((1, 16) ) self.assertEqual(logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=_UpperCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
305
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
1
import re from filelock import FileLock try: import nltk A : Dict = True except (ImportError, ModuleNotFoundError): A : Any = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def UpperCamelCase ( __magic_name__ : str ) -> str: """simple docstring""" re.sub("""<n>""" , """""" , __magic_name__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__magic_name__ ) )
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
1
def UpperCamelCase ( __magic_name__ : list ) -> list: """simple docstring""" if any(not isinstance(__magic_name__ , __magic_name__ ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(__magic_name__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__magic_name__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
305
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
1
import random class A : '''simple docstring''' @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> tuple[list[int], list[int]]: """simple docstring""" lowercase__ = [ord(_UpperCAmelCase ) for i in text] lowercase__ = [] lowercase__ = [] for i in plain: lowercase__ = random.randint(1 , 300 ) lowercase__ = (i + k) * k cipher.append(_UpperCAmelCase ) key.append(_UpperCAmelCase ) return cipher, key @staticmethod def lowerCamelCase__ (_UpperCAmelCase : list[int] , _UpperCAmelCase : list[int] ) -> str: """simple docstring""" lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): lowercase__ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_UpperCAmelCase ) ) return "".join(_UpperCAmelCase ) if __name__ == "__main__": A , A : List[str] = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
305
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING A : Dict = logging.get_logger(__name__) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''upernet''' def __init__(self : List[str] , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[Any]=[1, 2, 3, 6] , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=0.4 , _UpperCAmelCase : Any=384 , _UpperCAmelCase : Tuple=256 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=255 , **_UpperCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" super().__init__(**_UpperCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowercase__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = backbone_config.get("""model_type""" ) lowercase__ = CONFIG_MAPPING[backbone_model_type] lowercase__ = config_class.from_dict(_UpperCAmelCase ) lowercase__ = backbone_config lowercase__ = hidden_size lowercase__ = initializer_range lowercase__ = pool_scales lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_in_channels lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = loss_ignore_index def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.backbone_config.to_dict() lowercase__ = self.__class__.model_type return output
305
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) A : Dict = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" inspect_dataset(__magic_name__ , __magic_name__ ) lowercase__ = path + """.py""" assert script_name in os.listdir(__magic_name__ ) assert "__pycache__" not in os.listdir(__magic_name__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : Optional[int] ) -> Optional[Any]: """simple docstring""" inspect_metric(__magic_name__ , __magic_name__ ) lowercase__ = path + """.py""" assert script_name in os.listdir(__magic_name__ ) assert "__pycache__" not in os.listdir(__magic_name__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Dict ) -> List[str]: """simple docstring""" lowercase__ = get_dataset_config_info(__magic_name__ , config_name=__magic_name__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__magic_name__ ): get_dataset_config_info(__magic_name__ , config_name=__magic_name__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = get_dataset_config_names(__magic_name__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] ) -> str: """simple docstring""" lowercase__ = get_dataset_infos(__magic_name__ ) assert list(infos.keys() ) == expected_configs lowercase__ = expected_configs[0] assert expected_config in infos lowercase__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[Any]: """simple docstring""" lowercase__ = get_dataset_infos(__magic_name__ ) assert expected_config in infos lowercase__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Tuple ) -> Tuple: """simple docstring""" with pytest.raises(__magic_name__ ): get_dataset_split_names(__magic_name__ , config_name=__magic_name__ )
305
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = KandinskyVaaControlnetPipeline A__ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] A__ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] A__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : List[Any] ) -> Optional[Any]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" return self.time_input_dim @property def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : int ) -> Union[str, Any]: """simple docstring""" return 100 @property def lowerCamelCase__ (self : int ) -> str: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase__ = UNetaDConditionModel(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" torch.manual_seed(0 ) lowercase__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = self.dummy_unet lowercase__ = self.dummy_movq lowercase__ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_UpperCAmelCase , ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> List[str]: """simple docstring""" lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCAmelCase ) # create hint lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images lowercase__ = pipe( **self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[int] ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) lowercase__ = torch.from_numpy(np.array(_UpperCAmelCase ) ).float() / 255.0 lowercase__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowercase__ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCAmelCase ) lowercase__ = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) lowercase__ = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """A robot, 4k photo""" lowercase__ = torch.Generator(device="""cuda""" ).manual_seed(0 ) lowercase__ , lowercase__ = pipe_prior( _UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase__ = torch.Generator(device="""cuda""" ).manual_seed(0 ) lowercase__ = pipeline( image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , hint=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=100 , output_type="""np""" , ) lowercase__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A ( unittest.TestCase ): '''simple docstring''' A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ (self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" lowercase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) lowercase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, ] , ) @require_torch def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) lowercase__ = pipeline( """video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" pass
305
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class A ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__(self : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 5_0257 , _UpperCAmelCase : int = 1024 , _UpperCAmelCase : int = 768 , _UpperCAmelCase : int = 12 , _UpperCAmelCase : int = 12 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : str = "gelu_new" , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 1E-5 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> List[str]: """simple docstring""" super().__init__() lowercase__ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) lowercase__ = prefix_inner_dim lowercase__ = prefix_hidden_dim lowercase__ = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase__ = ( nn.Linear(self.prefix_hidden_dim , _UpperCAmelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase__ = GPTaConfig( vocab_size=_UpperCAmelCase , n_positions=_UpperCAmelCase , n_embd=_UpperCAmelCase , n_layer=_UpperCAmelCase , n_head=_UpperCAmelCase , n_inner=_UpperCAmelCase , activation_function=_UpperCAmelCase , resid_pdrop=_UpperCAmelCase , embd_pdrop=_UpperCAmelCase , attn_pdrop=_UpperCAmelCase , layer_norm_epsilon=_UpperCAmelCase , initializer_range=_UpperCAmelCase , scale_attn_weights=_UpperCAmelCase , use_cache=_UpperCAmelCase , scale_attn_by_inverse_layer_idx=_UpperCAmelCase , reorder_and_upcast_attn=_UpperCAmelCase , ) lowercase__ = GPTaLMHeadModel(_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[torch.Tensor] = None , ) -> str: """simple docstring""" lowercase__ = self.transformer.transformer.wte(_UpperCAmelCase ) lowercase__ = self.encode_prefix(_UpperCAmelCase ) lowercase__ = self.decode_prefix(_UpperCAmelCase ) lowercase__ = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowercase__ = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowercase__ = torch.cat((dummy_token, input_ids) , dim=1 ) lowercase__ = self.transformer(inputs_embeds=_UpperCAmelCase , labels=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCamelCase__ (self : int , _UpperCAmelCase : int , _UpperCAmelCase : torch.device ) -> torch.Tensor: """simple docstring""" return torch.zeros(_UpperCAmelCase , self.prefix_length , dtype=torch.intaa , device=_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.encode_prefix(_UpperCAmelCase ) @torch.no_grad() def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ) -> Tuple: """simple docstring""" lowercase__ = torch.split(_UpperCAmelCase , 1 , dim=0 ) lowercase__ = [] lowercase__ = [] for feature in features: lowercase__ = self.decode_prefix(feature.to(_UpperCAmelCase ) ) # back to the clip feature # Only support beam search for now lowercase__ , lowercase__ = self.generate_beam( input_embeds=_UpperCAmelCase , device=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowercase__ = torch.stack(_UpperCAmelCase ) lowercase__ = torch.stack(_UpperCAmelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int = 5 , _UpperCAmelCase : int = 67 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : Optional[int] = None , ) -> List[Any]: """simple docstring""" lowercase__ = eos_token_id lowercase__ = None lowercase__ = None lowercase__ = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase , dtype=torch.int ) lowercase__ = torch.zeros(_UpperCAmelCase , device=_UpperCAmelCase , dtype=torch.bool ) if input_embeds is not None: lowercase__ = input_embeds else: lowercase__ = self.transformer.transformer.wte(_UpperCAmelCase ) for i in range(_UpperCAmelCase ): lowercase__ = self.transformer(inputs_embeds=_UpperCAmelCase ) lowercase__ = outputs.logits lowercase__ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowercase__ = logits.softmax(-1 ).log() if scores is None: lowercase__ , lowercase__ = logits.topk(_UpperCAmelCase , -1 ) lowercase__ = generated.expand(_UpperCAmelCase , *generated.shape[1:] ) lowercase__ , lowercase__ = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowercase__ = next_tokens else: lowercase__ = tokens.expand(_UpperCAmelCase , *tokens.shape[1:] ) lowercase__ = torch.cat((tokens, next_tokens) , dim=1 ) else: lowercase__ = -float(np.inf ) lowercase__ = 0 lowercase__ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowercase__ = scores_sum / seq_lengths[:, None] lowercase__ , lowercase__ = scores_sum_average.view(-1 ).topk(_UpperCAmelCase , -1 ) lowercase__ = next_tokens // scores_sum.shape[1] lowercase__ = seq_lengths[next_tokens_source] lowercase__ = next_tokens % scores_sum.shape[1] lowercase__ = next_tokens.unsqueeze(1 ) lowercase__ = tokens[next_tokens_source] lowercase__ = torch.cat((tokens, next_tokens) , dim=1 ) lowercase__ = generated[next_tokens_source] lowercase__ = scores_sum_average * seq_lengths lowercase__ = is_stopped[next_tokens_source] lowercase__ = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowercase__ = torch.cat((generated, next_token_embed) , dim=1 ) lowercase__ = is_stopped + next_tokens.eq(_UpperCAmelCase ).squeeze() if is_stopped.all(): break lowercase__ = scores / seq_lengths lowercase__ = scores.argsort(descending=_UpperCAmelCase ) # tokens tensors are already padded to max_seq_length lowercase__ = [tokens[i] for i in order] lowercase__ = torch.stack(_UpperCAmelCase , dim=0 ) lowercase__ = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
305
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A : str = logging.get_logger(__name__) A : Optional[int] = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''wav2vec2''' def __init__(self : str , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : str=1E-5 , _UpperCAmelCase : Dict="group" , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase : Dict=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase : int=False , _UpperCAmelCase : str=128 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Any=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[Any]=0.05 , _UpperCAmelCase : Tuple=10 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : int=10 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Union[str, Any]=320 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[Any]=100 , _UpperCAmelCase : Any=256 , _UpperCAmelCase : List[str]=256 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : List[Any]="sum" , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : str=False , _UpperCAmelCase : Any=256 , _UpperCAmelCase : Tuple=(512, 512, 512, 512, 1500) , _UpperCAmelCase : Tuple=(5, 3, 3, 1, 1) , _UpperCAmelCase : List[str]=(1, 2, 3, 1, 1) , _UpperCAmelCase : int=512 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = feat_extract_norm lowercase__ = feat_extract_activation lowercase__ = list(_UpperCAmelCase ) lowercase__ = list(_UpperCAmelCase ) lowercase__ = list(_UpperCAmelCase ) lowercase__ = conv_bias lowercase__ = num_conv_pos_embeddings lowercase__ = num_conv_pos_embedding_groups lowercase__ = len(self.conv_dim ) lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_attention_heads lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = feat_proj_dropout lowercase__ = final_dropout lowercase__ = layerdrop lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = vocab_size lowercase__ = do_stable_layer_norm lowercase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = apply_spec_augment lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ = num_codevectors_per_group lowercase__ = num_codevector_groups lowercase__ = contrastive_logits_temperature lowercase__ = feat_quantizer_dropout lowercase__ = num_negatives lowercase__ = codevector_dim lowercase__ = proj_codevector_dim lowercase__ = diversity_loss_weight # ctc loss lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # adapter lowercase__ = add_adapter lowercase__ = adapter_kernel_size lowercase__ = adapter_stride lowercase__ = num_adapter_layers lowercase__ = output_hidden_size or hidden_size lowercase__ = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__ = list(_UpperCAmelCase ) lowercase__ = list(_UpperCAmelCase ) lowercase__ = list(_UpperCAmelCase ) lowercase__ = xvector_output_dim @property def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
305
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
1
import qiskit def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> qiskit.result.counts.Counts: """simple docstring""" lowercase__ = qiskit.Aer.get_backend("""aer_simulator""" ) lowercase__ = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowercase__ = qiskit.execute(__magic_name__ , __magic_name__ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__magic_name__ ) if __name__ == "__main__": A : Union[str, Any] = half_adder(1, 1) print(F'Half Adder Output Qubit Counts: {counts}')
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
1
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] , __magic_name__ : list[int] , __magic_name__ : list[int] , __magic_name__ : list[list[str]] , __magic_name__ : int , ) -> None: """simple docstring""" lowercase__ = len(__magic_name__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__magic_name__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __magic_name__ , __magic_name__ , ) def UpperCamelCase ( __magic_name__ : int ) -> None: """simple docstring""" lowercase__ = [] depth_first_search([] , [] , [] , __magic_name__ , __magic_name__ ) # Print all the boards for board in boards: for column in board: print(__magic_name__ ) print("""""" ) print(len(__magic_name__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
305
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home A : Any = HUGGINGFACE_HUB_CACHE A : Dict = 'config.json' A : Any = 'diffusion_pytorch_model.bin' A : Optional[Any] = 'diffusion_flax_model.msgpack' A : str = 'model.onnx' A : List[str] = 'diffusion_pytorch_model.safetensors' A : int = 'weights.pb' A : int = 'https://huggingface.co' A : Union[str, Any] = default_cache_path A : Tuple = 'diffusers_modules' A : Tuple = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) A : List[str] = ['fp16', 'non-ema'] A : Any = '.self_attn'
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : Optional[Any] = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''decision_transformer''' A__ = ['''past_key_values'''] A__ = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__(self : Union[str, Any] , _UpperCAmelCase : List[Any]=17 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Dict=128 , _UpperCAmelCase : Any=4096 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : List[Any]=1024 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Optional[int]=1E-5 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[int]=5_0256 , _UpperCAmelCase : Tuple=5_0256 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=False , **_UpperCAmelCase : List[str] , ) -> Union[str, Any]: """simple docstring""" lowercase__ = state_dim lowercase__ = act_dim lowercase__ = hidden_size lowercase__ = max_ep_len lowercase__ = action_tanh lowercase__ = vocab_size lowercase__ = n_positions lowercase__ = n_layer lowercase__ = n_head lowercase__ = n_inner lowercase__ = activation_function lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = attn_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = scale_attn_weights lowercase__ = use_cache lowercase__ = scale_attn_by_inverse_layer_idx lowercase__ = reorder_and_upcast_attn lowercase__ = bos_token_id lowercase__ = eos_token_id super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
305
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : int=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : int=512 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Dict=4 , ) -> Dict: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_UpperCAmelCase ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" lowercase__ = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) lowercase__ = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = 5_0000 lowercase__ = (1, 6, vocab_size) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
305
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures A : int = logging.get_logger(__name__) @dataclass class A : '''simple docstring''' A__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) A__ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) A__ = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.task_name.lower() class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''train''' A__ = '''dev''' A__ = '''test''' class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = 42 A__ = 42 A__ = 42 def __init__(self : Dict , _UpperCAmelCase : GlueDataTrainingArguments , _UpperCAmelCase : PreTrainedTokenizerBase , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Union[str, Split] = Split.train , _UpperCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _UpperCAmelCase , ) lowercase__ = args lowercase__ = glue_processors[args.task_name]() lowercase__ = glue_output_modes[args.task_name] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: lowercase__ = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file lowercase__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) lowercase__ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase__ , lowercase__ = label_list[2], label_list[1] lowercase__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase__ = cached_features_file + """.lock""" with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not args.overwrite_cache: lowercase__ = time.time() lowercase__ = torch.load(_UpperCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: lowercase__ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowercase__ = self.processor.get_test_examples(args.data_dir ) else: lowercase__ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowercase__ = examples[:limit_length] lowercase__ = glue_convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , max_length=args.max_seq_length , label_list=_UpperCAmelCase , output_mode=self.output_mode , ) lowercase__ = time.time() torch.save(self.features , _UpperCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__(self : Optional[Any] ) -> Tuple: """simple docstring""" return len(self.features ) def __getitem__(self : Optional[int] , _UpperCAmelCase : Tuple ) -> InputFeatures: """simple docstring""" return self.features[i] def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return self.label_list
305
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
305
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar A : Union[str, Any] = TypeVar('T') class A ( Generic[T] ): '''simple docstring''' def __init__(self : str , _UpperCAmelCase : list[T] , _UpperCAmelCase : Callable[[T, T], T] ) -> None: """simple docstring""" lowercase__ = None lowercase__ = len(_UpperCAmelCase ) lowercase__ = [any_type for _ in range(self.N )] + arr lowercase__ = fnc self.build() def lowerCamelCase__ (self : List[str] ) -> None: """simple docstring""" for p in range(self.N - 1 , 0 , -1 ): lowercase__ = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : T ) -> None: """simple docstring""" p += self.N lowercase__ = v while p > 1: lowercase__ = p // 2 lowercase__ = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> T | None: # noqa: E741 """simple docstring""" lowercase__ , lowercase__ = l + self.N, r + self.N lowercase__ = None while l <= r: if l % 2 == 1: lowercase__ = self.st[l] if res is None else self.fn(_UpperCAmelCase , self.st[l] ) if r % 2 == 0: lowercase__ = self.st[r] if res is None else self.fn(_UpperCAmelCase , self.st[r] ) lowercase__ , lowercase__ = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce A : Optional[Any] = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] A : Any = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } A : str = SegmentTree(test_array, min) A : List[Any] = SegmentTree(test_array, max) A : Dict = SegmentTree(test_array, lambda a, b: a + b) def UpperCamelCase ( ) -> None: """simple docstring""" for i in range(len(__magic_name__ ) ): for j in range(__magic_name__ , len(__magic_name__ ) ): lowercase__ = reduce(__magic_name__ , test_array[i : j + 1] ) lowercase__ = reduce(__magic_name__ , test_array[i : j + 1] ) lowercase__ = reduce(lambda __magic_name__ , __magic_name__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__magic_name__ , __magic_name__ ) assert max_range == max_segment_tree.query(__magic_name__ , __magic_name__ ) assert sum_range == sum_segment_tree.query(__magic_name__ , __magic_name__ ) test_all_segments() for index, value in test_updates.items(): A : List[str] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
305
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A : List[str] = {'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwinForImageClassification', 'SwinForMaskedImageModeling', 'SwinModel', 'SwinPreTrainedModel', 'SwinBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSwinForImageClassification', 'TFSwinForMaskedImageModeling', 'TFSwinModel', 'TFSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
1
from __future__ import annotations from typing import Any class A : '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : int = 6 ) -> None: """simple docstring""" lowercase__ = None lowercase__ = None self.create_linked_list(_UpperCAmelCase ) def lowerCamelCase__ (self : str , _UpperCAmelCase : int ) -> None: """simple docstring""" lowercase__ = Node() lowercase__ = current_node lowercase__ = current_node lowercase__ = current_node for _ in range(1 , _UpperCAmelCase ): lowercase__ = Node() lowercase__ = current_node lowercase__ = previous_node lowercase__ = current_node lowercase__ = self.front lowercase__ = previous_node def lowerCamelCase__ (self : List[Any] ) -> bool: """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowerCamelCase__ (self : Optional[int] ) -> Any | None: """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> None: """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase__ = self.rear.next if self.rear: lowercase__ = data def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase__ = self.front.data lowercase__ = None return data lowercase__ = self.front lowercase__ = old_front.next lowercase__ = old_front.data lowercase__ = None return data def lowerCamelCase__ (self : Optional[int] ) -> None: """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""" ) def lowerCamelCase__ (self : Tuple ) -> None: """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class A : '''simple docstring''' def __init__(self : str ) -> None: """simple docstring""" lowercase__ = None lowercase__ = None lowercase__ = None if __name__ == "__main__": import doctest doctest.testmod()
305
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
1
import math def UpperCamelCase ( __magic_name__ : int ) -> list[int]: """simple docstring""" lowercase__ = [] lowercase__ = 2 lowercase__ = int(math.sqrt(__magic_name__ ) ) # Size of every segment lowercase__ = [True] * (end + 1) lowercase__ = [] while start <= end: if temp[start] is True: in_prime.append(__magic_name__ ) for i in range(start * start , end + 1 , __magic_name__ ): lowercase__ = False start += 1 prime += in_prime lowercase__ = end + 1 lowercase__ = min(2 * end , __magic_name__ ) while low <= n: lowercase__ = [True] * (high - low + 1) for each in in_prime: lowercase__ = math.floor(low / each ) * each if t < low: t += each for j in range(__magic_name__ , high + 1 , __magic_name__ ): lowercase__ = False for j in range(len(__magic_name__ ) ): if temp[j] is True: prime.append(j + low ) lowercase__ = high + 1 lowercase__ = min(high + end , __magic_name__ ) return prime print(sieve(1_0**6))
305
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
1
import math def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): lowercase__ = f'''Input value of [number={number}] must be an integer''' raise TypeError(__magic_name__ ) if number < 1: lowercase__ = f'''Input value of [number={number}] must be > 0''' raise ValueError(__magic_name__ ) elif number == 1: return 3 elif number == 2: return 5 else: lowercase__ = int(math.log(number // 3 , 2 ) ) + 2 lowercase__ = [3, 5] lowercase__ = 2 lowercase__ = 3 for block in range(1 , __magic_name__ ): for _ in range(__magic_name__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): A : Any = 0 try: A : List[str] = proth(number) except ValueError: print(F'ValueError: there is no {number}th Proth number') continue print(F'The {number}th Proth number: {value}')
305
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A : str = 1_6 A : Union[str, Any] = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 , __magic_name__ : str = "bert-base-cased" ) -> List[Any]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained(__magic_name__ ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : Dict ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__magic_name__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__magic_name__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__magic_name__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = args.model_name_or_path set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(__magic_name__ , return_dict=__magic_name__ ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=__magic_name__ ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowercase__ = 1 lowercase__ = (len(__magic_name__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=0 , num_training_steps=__magic_name__ , ) else: lowercase__ = DummyScheduler(__magic_name__ , total_num_steps=__magic_name__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("""glue""" , """mrpc""" ) lowercase__ = 0 lowercase__ = {} for epoch in range(__magic_name__ , __magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(__magic_name__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__magic_name__ ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) lowercase__ = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(__magic_name__ , __magic_name__ ) def UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__magic_name__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__magic_name__ , ) parser.add_argument( """--output_dir""" , type=__magic_name__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=__magic_name__ , default=__magic_name__ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=__magic_name__ , default=3 , help="""Number of train epochs.""" , ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A : Dict = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) A : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase ( ) -> Any: """simple docstring""" lowercase__ = """https://pypi.org/pypi/diffusers/json""" lowercase__ = json.loads(request.urlopen(__magic_name__ ).read() )["""releases"""].keys() return sorted(__magic_name__ , key=lambda __magic_name__ : version.Version(__magic_name__ ) ) def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(__magic_name__ ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowercase__ = Path(__magic_name__ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCamelCase ( __magic_name__ : Union[str, os.PathLike] ) -> List[str]: """simple docstring""" init_hf_modules() lowercase__ = Path(__magic_name__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowercase__ = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCamelCase ( __magic_name__ : Union[str, Any] ) -> Dict: """simple docstring""" with open(__magic_name__ , """r""" , encoding="""utf-8""" ) as f: lowercase__ = f.read() # Imports of the form `import .xxx` lowercase__ = re.findall("""^\s*import\s+\.(\S+)\s*$""" , __magic_name__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , __magic_name__ , flags=re.MULTILINE ) # Unique-ify return list(set(__magic_name__ ) ) def UpperCamelCase ( __magic_name__ : str ) -> Any: """simple docstring""" lowercase__ = False lowercase__ = [module_file] lowercase__ = [] # Let's recurse through all relative imports while not no_change: lowercase__ = [] for f in files_to_check: new_imports.extend(get_relative_imports(__magic_name__ ) ) lowercase__ = Path(__magic_name__ ).parent lowercase__ = [str(module_path / m ) for m in new_imports] lowercase__ = [f for f in new_import_files if f not in all_relative_imports] lowercase__ = [f'''{f}.py''' for f in new_import_files] lowercase__ = len(__magic_name__ ) == 0 all_relative_imports.extend(__magic_name__ ) return all_relative_imports def UpperCamelCase ( __magic_name__ : int ) -> Dict: """simple docstring""" with open(__magic_name__ , """r""" , encoding="""utf-8""" ) as f: lowercase__ = f.read() # Imports of the form `import xxx` lowercase__ = re.findall("""^\s*import\s+(\S+)\s*$""" , __magic_name__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , __magic_name__ , flags=re.MULTILINE ) # Only keep the top-level module lowercase__ = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all lowercase__ = list(set(__magic_name__ ) ) lowercase__ = [] for imp in imports: try: importlib.import_module(__magic_name__ ) except ImportError: missing_packages.append(__magic_name__ ) if len(__magic_name__ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ f'''{", ".join(__magic_name__ )}. Run `pip install {" ".join(__magic_name__ )}`''' ) return get_relative_imports(__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" lowercase__ = module_path.replace(os.path.sep , """.""" ) lowercase__ = importlib.import_module(__magic_name__ ) if class_name is None: return find_pipeline_class(__magic_name__ ) return getattr(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" from ..pipelines import DiffusionPipeline lowercase__ = dict(inspect.getmembers(__magic_name__ , inspect.isclass ) ) lowercase__ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __magic_name__ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' f''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' f''' {loaded_module}.''' ) lowercase__ = cls return pipeline_class def UpperCamelCase ( __magic_name__ : Union[str, os.PathLike] , __magic_name__ : str , __magic_name__ : Optional[Union[str, os.PathLike]] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : Optional[Dict[str, str]] = None , __magic_name__ : Optional[Union[bool, str]] = None , __magic_name__ : Optional[str] = None , __magic_name__ : bool = False , ) -> Dict: """simple docstring""" lowercase__ = str(__magic_name__ ) lowercase__ = os.path.join(__magic_name__ , __magic_name__ ) if os.path.isfile(__magic_name__ ): lowercase__ = module_file_or_url lowercase__ = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: lowercase__ = get_diffusers_versions() # cut ".dev0" lowercase__ = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: lowercase__ = latest_version if latest_version[1:] in available_versions else """main""" logger.info(f'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: lowercase__ = f'''v{revision}''' elif revision == "main": lowercase__ = revision else: raise ValueError( f'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' f''' {", ".join(available_versions + ["main"] )}.''' ) # community pipeline on GitHub lowercase__ = COMMUNITY_PIPELINES_URL.format(revision=__magic_name__ , pipeline=__magic_name__ ) try: lowercase__ = cached_download( __magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , ) lowercase__ = """git""" lowercase__ = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(f'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached lowercase__ = hf_hub_download( __magic_name__ , __magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , ) lowercase__ = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(f'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment lowercase__ = check_imports(__magic_name__ ) # Now we move the module inside our cached dynamic modules. lowercase__ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__magic_name__ ) lowercase__ = Path(__magic_name__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__magic_name__ , submodule_path / module_file ) for module_needed in modules_needed: lowercase__ = f'''{module_needed}.py''' shutil.copy(os.path.join(__magic_name__ , __magic_name__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__magic_name__ , __magic_name__ ): lowercase__ = use_auth_token elif use_auth_token is True: lowercase__ = HfFolder.get_token() else: lowercase__ = None lowercase__ = model_info(__magic_name__ , revision=__magic_name__ , token=__magic_name__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. lowercase__ = submodule_path / commit_hash lowercase__ = full_submodule + os.path.sep + commit_hash create_dynamic_module(__magic_name__ ) if not (submodule_path / module_file).exists(): shutil.copy(__magic_name__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __magic_name__ , f'''{module_needed}.py''' , cache_dir=__magic_name__ , force_download=__magic_name__ , resume_download=__magic_name__ , proxies=__magic_name__ , use_auth_token=__magic_name__ , revision=__magic_name__ , local_files_only=__magic_name__ , ) return os.path.join(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : Union[str, os.PathLike] , __magic_name__ : str , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[Union[str, os.PathLike]] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : Optional[Dict[str, str]] = None , __magic_name__ : Optional[Union[bool, str]] = None , __magic_name__ : Optional[str] = None , __magic_name__ : bool = False , **__magic_name__ : str , ) -> Dict: """simple docstring""" lowercase__ = get_cached_module_file( __magic_name__ , __magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , resume_download=__magic_name__ , proxies=__magic_name__ , use_auth_token=__magic_name__ , revision=__magic_name__ , local_files_only=__magic_name__ , ) return get_class_in_module(__magic_name__ , final_module.replace(""".py""" , """""" ) )
305
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : '''simple docstring''' def __init__(self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Tuple=30 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[Any]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Optional[Any]=10 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : List[Any]=0.6 , _UpperCAmelCase : Dict=None , ) -> List[str]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" lowercase__ = TFViTMAEModel(config=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , training=_UpperCAmelCase ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(_UpperCAmelCase ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(_UpperCAmelCase , training=_UpperCAmelCase ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase__ (self : int ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () A__ = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} A__ = False A__ = False A__ = False A__ = False def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : List[str] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" pass def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , tf.keras.layers.Layer ) ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , noise=_UpperCAmelCase ) lowercase__ = copy.deepcopy(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = model(**_UpperCAmelCase , noise=_UpperCAmelCase ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_UpperCAmelCase : Any ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(_UpperCAmelCase ): lowercase__ = v.numpy() else: lowercase__ = np.array(_UpperCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = prepare_numpy_arrays(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , noise=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase , noise=_UpperCAmelCase ) self.assert_outputs_same(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(_UpperCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_UpperCAmelCase ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(_UpperCAmelCase , _UpperCAmelCase ),) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_UpperCAmelCase , """_keras_serializable""" , _UpperCAmelCase ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(_UpperCAmelCase ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(_UpperCAmelCase ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(_UpperCAmelCase , outputs=main_layer(_UpperCAmelCase ) ) lowercase__ = model(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(_UpperCAmelCase , """keras_model.h5""" ) model.save(_UpperCAmelCase ) lowercase__ = tf.keras.models.load_model( _UpperCAmelCase , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_UpperCAmelCase , tf.keras.Model ) lowercase__ = model(_UpperCAmelCase ) self.assert_outputs_same(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowerCamelCase__ (self : List[str] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , noise=_UpperCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) lowercase__ = model_class.from_pretrained(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , noise=_UpperCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs["""last_hidden_state"""].numpy() lowercase__ = 0 else: lowercase__ = after_outputs["""logits"""].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_UpperCAmelCase , 1E-5 ) def lowerCamelCase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , noise=_UpperCAmelCase ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_UpperCAmelCase ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(_UpperCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(_UpperCAmelCase , noise=_UpperCAmelCase ) self.assert_outputs_same(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" pass @slow def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> int: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : int ) -> Union[str, Any]: """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def lowerCamelCase__ (self : Tuple ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**_UpperCAmelCase , noise=_UpperCAmelCase ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__ = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 )
305
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A : Union[str, Any] = sys.version_info >= (3, 1_0) def UpperCamelCase ( __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=None ) -> Optional[Any]: """simple docstring""" return field(default_factory=lambda: default , metadata=__magic_name__ ) @dataclass class A : '''simple docstring''' A__ = 42 A__ = 42 A__ = 42 A__ = 42 @dataclass class A : '''simple docstring''' A__ = 42 A__ = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class A : '''simple docstring''' A__ = False A__ = True A__ = None class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''titi''' A__ = '''toto''' class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''titi''' A__ = '''toto''' A__ = 42 @dataclass class A : '''simple docstring''' A__ = "toto" def lowerCamelCase__ (self : Tuple ) -> Tuple: """simple docstring""" lowercase__ = BasicEnum(self.foo ) @dataclass class A : '''simple docstring''' A__ = "toto" def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = MixedTypeEnum(self.foo ) @dataclass class A : '''simple docstring''' A__ = None A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''help message'''} ) A__ = None A__ = list_field(default=[] ) A__ = list_field(default=[] ) @dataclass class A : '''simple docstring''' A__ = list_field(default=[] ) A__ = list_field(default=[1, 2, 3] ) A__ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) A__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A : '''simple docstring''' A__ = field() A__ = field() A__ = field() def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = BasicEnum(self.required_enum ) @dataclass class A : '''simple docstring''' A__ = 42 A__ = field() A__ = None A__ = field(default='''toto''' , metadata={'''help''': '''help message'''} ) A__ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class A : '''simple docstring''' A__ = False A__ = True A__ = None @dataclass class A : '''simple docstring''' A__ = None A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''help message'''} ) A__ = None A__ = list_field(default=[] ) A__ = list_field(default=[] ) class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict , _UpperCAmelCase : argparse.ArgumentParser , _UpperCAmelCase : argparse.ArgumentParser ) -> Union[str, Any]: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowercase__ = {k: v for k, v in vars(_UpperCAmelCase ).items() if k != """container"""} lowercase__ = {k: v for k, v in vars(_UpperCAmelCase ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , _UpperCAmelCase ) and yy.get("""choices""" , _UpperCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](_UpperCAmelCase ) , yy["""type"""](_UpperCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> str: """simple docstring""" lowercase__ = HfArgumentParser(_UpperCAmelCase ) lowercase__ = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument("""--bar""" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument("""--baz""" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument("""--flag""" , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs="""?""" ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((lowercase__) , ) = parser.parse_args_into_dataclasses(_UpperCAmelCase , look_for_args_file=_UpperCAmelCase ) self.assertFalse(example.flag ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = HfArgumentParser(_UpperCAmelCase ) lowercase__ = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=_UpperCAmelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=_UpperCAmelCase , help="""help message""" ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs="""?""" ) expected.add_argument("""--baz""" , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=_UpperCAmelCase , dest="""baz""" ) expected.add_argument("""--opt""" , type=_UpperCAmelCase , default=_UpperCAmelCase ) lowercase__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase ) for dataclass_type in dataclass_types: lowercase__ = HfArgumentParser(_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = parser.parse_args([] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) lowercase__ = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) lowercase__ = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) lowercase__ = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) lowercase__ = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" lowercase__ = HfArgumentParser(_UpperCAmelCase ) lowercase__ = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) lowercase__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowercase__ = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) lowercase__ = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowercase__ = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) lowercase__ = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCamelCase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" @dataclass class A : '''simple docstring''' A__ = "toto" lowercase__ = HfArgumentParser(_UpperCAmelCase ) lowercase__ = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) lowercase__ = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) lowercase__ = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" lowercase__ = HfArgumentParser(_UpperCAmelCase ) lowercase__ = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=_UpperCAmelCase ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=_UpperCAmelCase ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_UpperCAmelCase ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = parser.parse_args([] ) self.assertEqual( _UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) lowercase__ = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(_UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def lowerCamelCase__ (self : str ) -> int: """simple docstring""" lowercase__ = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=_UpperCAmelCase , type=_UpperCAmelCase ) expected.add_argument("""--bar""" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="""help message""" ) expected.add_argument("""--baz""" , default=_UpperCAmelCase , type=_UpperCAmelCase ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=_UpperCAmelCase ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=_UpperCAmelCase ) lowercase__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase ) for dataclass_type in dataclass_types: lowercase__ = HfArgumentParser(_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = parser.parse_args([] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , bar=_UpperCAmelCase , baz=_UpperCAmelCase , ces=[] , des=[] ) ) lowercase__ = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(_UpperCAmelCase , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = HfArgumentParser(_UpperCAmelCase ) lowercase__ = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument("""--required_str""" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_UpperCAmelCase , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" lowercase__ = HfArgumentParser(_UpperCAmelCase ) lowercase__ = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_UpperCAmelCase , ) expected.add_argument("""--opt""" , type=_UpperCAmelCase , default=_UpperCAmelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=_UpperCAmelCase , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" lowercase__ = HfArgumentParser(_UpperCAmelCase ) lowercase__ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } lowercase__ = parser.parse_dict(_UpperCAmelCase )[0] lowercase__ = BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = HfArgumentParser(_UpperCAmelCase ) lowercase__ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(_UpperCAmelCase , parser.parse_dict , _UpperCAmelCase , allow_extra_keys=_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = HfArgumentParser(_UpperCAmelCase ) lowercase__ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = os.path.join(_UpperCAmelCase , """temp_json""" ) os.mkdir(_UpperCAmelCase ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] lowercase__ = BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = HfArgumentParser(_UpperCAmelCase ) lowercase__ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = os.path.join(_UpperCAmelCase , """temp_yaml""" ) os.mkdir(_UpperCAmelCase ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] lowercase__ = BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = HfArgumentParser(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase )
305
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A : Optional[Any] = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') A : Any = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A : List[Any] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A : str = sorted(arg_to_scheduler.keys()) A : List[str] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class A ( pl.LightningModule ): '''simple docstring''' def __init__(self : Union[str, Any] , _UpperCAmelCase : argparse.Namespace , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]="base" , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_UpperCAmelCase ) lowercase__ = 0 lowercase__ = Path(self.hparams.output_dir ) lowercase__ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowercase__ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=_UpperCAmelCase , **_UpperCAmelCase , ) else: lowercase__ = config lowercase__ = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , _UpperCAmelCase , _UpperCAmelCase ): assert hasattr(self.config , _UpperCAmelCase ), f'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , _UpperCAmelCase , getattr(self.hparams , _UpperCAmelCase ) ) if tokenizer is None: lowercase__ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_UpperCAmelCase , ) else: lowercase__ = tokenizer lowercase__ = MODEL_MODES[mode] if model is None: lowercase__ = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_UpperCAmelCase , ) else: lowercase__ = model def lowerCamelCase__ (self : List[str] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = self.model_type.from_pretrained(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ = arg_to_scheduler[self.hparams.lr_scheduler] lowercase__ = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) lowercase__ = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def lowerCamelCase__ (self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ = self.model lowercase__ = ["""bias""", """LayerNorm.weight"""] lowercase__ = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: lowercase__ = Adafactor( _UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=_UpperCAmelCase , relative_step=_UpperCAmelCase ) else: lowercase__ = AdamW( _UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) lowercase__ = optimizer lowercase__ = self.get_lr_scheduler() return [optimizer], [scheduler] def lowerCamelCase__ (self : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ) -> Dict: """simple docstring""" return self.validation_step(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" return self.validation_end(_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores lowercase__ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" if stage == "test": lowercase__ = len(self.test_dataloader().dataset ) else: lowercase__ = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=_UpperCAmelCase ) lowercase__ = len(self.train_dataloader().dataset ) def lowerCamelCase__ (self : int , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" raise NotImplementedError("""You must implement this for your task""" ) def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" return self.train_loader def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] ) -> int: """simple docstring""" return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( _UpperCAmelCase , list(filter(_UpperCAmelCase , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Dict[str, Any] ) -> None: """simple docstring""" lowercase__ = self.output_dir.joinpath("""best_tfmr""" ) lowercase__ = self.step_count self.model.save_pretrained(_UpperCAmelCase ) self.tokenizer.save_pretrained(_UpperCAmelCase ) @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Tuple: """simple docstring""" parser.add_argument( """--model_name_or_path""" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=_UpperCAmelCase , help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(_UpperCAmelCase ).parent / """test_run""" / """cache""" ) , type=_UpperCAmelCase , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=_UpperCAmelCase , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=_UpperCAmelCase , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=_UpperCAmelCase , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=_UpperCAmelCase , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5E-5 , type=_UpperCAmelCase , help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=_UpperCAmelCase , metavar=_UpperCAmelCase , type=_UpperCAmelCase , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=_UpperCAmelCase , help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=_UpperCAmelCase , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""" , default=0 , type=_UpperCAmelCase , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""" , default=4 , type=_UpperCAmelCase , help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=_UpperCAmelCase ) parser.add_argument("""--train_batch_size""" , default=32 , type=_UpperCAmelCase ) parser.add_argument("""--eval_batch_size""" , default=32 , type=_UpperCAmelCase ) parser.add_argument("""--adafactor""" , action="""store_true""" ) class A ( pl.Callback ): '''simple docstring''' def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class A ( pl.Callback ): '''simple docstring''' def lowerCamelCase__ (self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_UpperCAmelCase ) class A ( pl.Callback ): '''simple docstring''' def lowerCamelCase__ (self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = trainer.lr_schedulers[0]["""scheduler"""] lowercase__ = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_UpperCAmelCase ) def lowerCamelCase__ (self : str , _UpperCAmelCase : pl.Trainer , _UpperCAmelCase : pl.LightningModule ) -> Dict: """simple docstring""" rank_zero_info("""***** Validation results *****""" ) lowercase__ = trainer.callback_metrics # Log results for key in sorted(_UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(_UpperCAmelCase , str(metrics[key] ) ) ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : pl.Trainer , _UpperCAmelCase : pl.LightningModule ) -> List[str]: """simple docstring""" rank_zero_info("""***** Test results *****""" ) lowercase__ = trainer.callback_metrics # Log and save results to file lowercase__ = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" ) with open(_UpperCAmelCase , """w""" ) as writer: for key in sorted(_UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(_UpperCAmelCase , str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(_UpperCAmelCase , str(metrics[key] ) ) ) def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : Tuple ) -> None: """simple docstring""" parser.add_argument( """--output_dir""" , default=str(Path(__magic_name__ ).parent / """test_run""" / """model_checkpoints""" ) , type=__magic_name__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=__magic_name__ , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=__magic_name__ ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=__magic_name__ , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=__magic_name__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=__magic_name__ , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(__magic_name__ ).parent / """test_run""" / """dummy-train-data""" ) , type=__magic_name__ , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def UpperCamelCase ( __magic_name__ : BaseTransformer , __magic_name__ : argparse.Namespace , __magic_name__ : Any=None , __magic_name__ : str=True , __magic_name__ : int=[] , __magic_name__ : int=None , __magic_name__ : str=None , **__magic_name__ : int , ) -> Union[str, Any]: """simple docstring""" pl.seed_everything(args.seed ) # init model lowercase__ = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__magic_name__ ) # add custom checkpoints if checkpoint_callback is None: lowercase__ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__magic_name__ ) if logging_callback is None: lowercase__ = LoggingCallback() lowercase__ = {} if args.fpaa: lowercase__ = 16 if args.gpus > 1: lowercase__ = """auto""" lowercase__ = """ddp""" lowercase__ = args.accumulate_grad_batches lowercase__ = None lowercase__ = """auto""" lowercase__ = pl.Trainer.from_argparse_args( __magic_name__ , weights_summary=__magic_name__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__magic_name__ , val_check_interval=1 , num_sanity_val_steps=2 , **__magic_name__ , ) if args.do_train: trainer.fit(__magic_name__ ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
305
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Any = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''realm''' def __init__(self : Any , _UpperCAmelCase : Tuple=3_0522 , _UpperCAmelCase : Optional[Any]=768 , _UpperCAmelCase : Optional[Any]=128 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : List[str]=3072 , _UpperCAmelCase : Any="gelu_new" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=512 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=10 , _UpperCAmelCase : Union[str, Any]=1E-3 , _UpperCAmelCase : int=5 , _UpperCAmelCase : str=320 , _UpperCAmelCase : str=1335_3718 , _UpperCAmelCase : List[Any]=5000 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , **_UpperCAmelCase : List[Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) # Common config lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = retriever_proj_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_candidates lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Reader config lowercase__ = span_hidden_size lowercase__ = max_span_width lowercase__ = reader_layer_norm_eps lowercase__ = reader_beam_size lowercase__ = reader_seq_len # Retrieval config lowercase__ = num_block_records lowercase__ = searcher_beam_size
305
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
1
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A : Tuple = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Dict , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) self.check_model_type(_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Any=None , **_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = {}, {} if padding is not None: lowercase__ = padding if truncation is not None: lowercase__ = truncation if top_k is not None: lowercase__ = top_k return preprocess_params, {}, postprocess_params def __call__(self : Dict , _UpperCAmelCase : Union["Image.Image", str] , _UpperCAmelCase : str = None , **_UpperCAmelCase : Optional[Any] ) -> str: """simple docstring""" if isinstance(_UpperCAmelCase , (Image.Image, str) ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = {"""image""": image, """question""": question} else: lowercase__ = image lowercase__ = super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) return results def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False ) -> List[str]: """simple docstring""" lowercase__ = load_image(inputs["""image"""] ) lowercase__ = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=_UpperCAmelCase , truncation=_UpperCAmelCase ) lowercase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) model_inputs.update(_UpperCAmelCase ) return model_inputs def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = self.model(**_UpperCAmelCase ) return model_outputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple=5 ) -> Optional[int]: """simple docstring""" if top_k > self.model.config.num_labels: lowercase__ = self.model.config.num_labels if self.framework == "pt": lowercase__ = model_outputs.logits.sigmoid()[0] lowercase__ , lowercase__ = probs.topk(_UpperCAmelCase ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase__ = scores.tolist() lowercase__ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
305
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
1
from ... import PretrainedConfig A : int = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP A__ = '''nezha''' def __init__(self : str , _UpperCAmelCase : List[Any]=2_1128 , _UpperCAmelCase : int=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Tuple=3072 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Optional[Any]=512 , _UpperCAmelCase : str=64 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Union[str, Any]=1E-1_2 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : str=3 , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = max_relative_position lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = classifier_dropout lowercase__ = use_cache
305
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
1
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy A : List[Any] = logging.getLogger(__name__) A : Tuple = 'pytorch_model.bin' @dataclasses.dataclass class A : '''simple docstring''' A__ = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) A__ = dataclasses.field( default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class A : '''simple docstring''' A__ = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) A__ = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) A__ = dataclasses.field( default=UpperCAmelCase__ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) A__ = dataclasses.field( default=UpperCAmelCase__ , metadata={'''help''': '''The name of the task to train on.'''} , ) A__ = dataclasses.field( default=UpperCAmelCase__ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class A : '''simple docstring''' A__ = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) A__ = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) A__ = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) A__ = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) A__ = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) A__ = dataclasses.field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) A__ = dataclasses.field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) A__ = dataclasses.field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) A__ = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) A__ = dataclasses.field( default=1_00 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) A__ = dataclasses.field( default=UpperCAmelCase__ , metadata={'''help''': '''Random seed for initialization.'''} , ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: lowercase__ = dataset.filter(lambda __magic_name__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 lowercase__ = int(eval_result * len(__magic_name__ ) ) print(__magic_name__ ) lowercase__ = dataset.sort("""probability""" , reverse=__magic_name__ ) lowercase__ = dataset.select(range(__magic_name__ ) ) lowercase__ = dataset.remove_columns(["""label""", """probability"""] ) lowercase__ = dataset.rename_column("""prediction""" , """label""" ) lowercase__ = dataset.map(lambda __magic_name__ : {"label": idalabel[example["label"]]} ) lowercase__ = dataset.shuffle(seed=args.seed ) lowercase__ = os.path.join(__magic_name__ , f'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(__magic_name__ , index=__magic_name__ ) else: dataset.to_json(__magic_name__ ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : Any , **__magic_name__ : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() lowercase__ = STModelArguments(model_name_or_path=__magic_name__ ) lowercase__ = STDataArguments(train_file=__magic_name__ , infer_file=__magic_name__ ) lowercase__ = STTrainingArguments(output_dir=__magic_name__ ) lowercase__ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__magic_name__ ).items(): setattr(__magic_name__ , __magic_name__ , __magic_name__ ) for key, value in kwargs.items(): if hasattr(__magic_name__ , __magic_name__ ): setattr(__magic_name__ , __magic_name__ , __magic_name__ ) # Sanity checks lowercase__ = {} lowercase__ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None lowercase__ = args.train_file lowercase__ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None lowercase__ = args.eval_file for key in data_files: lowercase__ = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: lowercase__ = extension else: assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) lowercase__ = f'''{args.output_dir}/self-train_iter-{{}}'''.format lowercase__ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__magic_name__ ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) accelerator.wait_for_everyone() lowercase__ = None lowercase__ = None lowercase__ = 0 lowercase__ = False # Show the progress bar lowercase__ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): lowercase__ = data_dir_format(__magic_name__ ) assert os.path.exists(__magic_name__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 lowercase__ = os.path.join(__magic_name__ , """stage-1""" ) lowercase__ = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__magic_name__ , __magic_name__ ): arguments_dict.update({key: value} ) lowercase__ = os.path.join(__magic_name__ , """best-checkpoint""" , __magic_name__ ) if os.path.exists(__magic_name__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , __magic_name__ , __magic_name__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , __magic_name__ ) finetune(**__magic_name__ ) accelerator.wait_for_everyone() assert os.path.exists(__magic_name__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , __magic_name__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data lowercase__ = os.path.join(__magic_name__ , """best-checkpoint""" ) lowercase__ = os.path.join(__magic_name__ , """stage-2""" ) # Update arguments_dict lowercase__ = model_path lowercase__ = data_files["""train"""] lowercase__ = current_output_dir lowercase__ = os.path.join(__magic_name__ , """best-checkpoint""" , __magic_name__ ) if os.path.exists(__magic_name__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , __magic_name__ , __magic_name__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , __magic_name__ ) finetune(**__magic_name__ ) accelerator.wait_for_everyone() assert os.path.exists(__magic_name__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , __magic_name__ ) lowercase__ = iteration lowercase__ = data_dir_format(iteration + 1 ) lowercase__ = AutoConfig.from_pretrained(os.path.join(__magic_name__ , """best-checkpoint""" ) ) lowercase__ = config.idalabel lowercase__ = os.path.join(__magic_name__ , """eval_results_best-checkpoint.json""" ) lowercase__ = os.path.join(__magic_name__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(__magic_name__ ) with open(__magic_name__ , """r""" ) as f: lowercase__ = float(json.load(__magic_name__ )[args.eval_metric] ) lowercase__ = os.path.join(__magic_name__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(__magic_name__ ) # Loading the dataset from local csv or json files. lowercase__ = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] lowercase__ = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) shutil.copy(__magic_name__ , os.path.join(__magic_name__ , f'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(__magic_name__ ): shutil.copy(__magic_name__ , os.path.join(__magic_name__ , f'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) accelerator.wait_for_everyone() lowercase__ = os.path.join(__magic_name__ , f'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: lowercase__ = eval_result if best_iteration is None: lowercase__ = new_iteration lowercase__ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: lowercase__ = new_iteration lowercase__ = new_eval_result lowercase__ = 0 else: if new_eval_result == best_eval_result: lowercase__ = new_iteration lowercase__ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: lowercase__ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , __magic_name__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , __magic_name__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__magic_name__ , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(__magic_name__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , __magic_name__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__magic_name__ , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(__magic_name__ , """eval_results_best-iteration.json""" ) , )
305
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
1
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp A : List[str] = 5 A : int = 1_0 @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = SpeechaTextTokenizer A__ = False A__ = True def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" super().setUp() lowercase__ = sp.SentencePieceProcessor() spm_model.Load(_UpperCAmelCase ) lowercase__ = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )] lowercase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__ = Path(self.tmpdirname ) save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) lowercase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ (self : List[str] ) -> Any: """simple docstring""" lowercase__ = """<pad>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(_UpperCAmelCase ) , 1001 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowercase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [289, 50, 14, 174, 386] , ) lowercase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = {"""input_ids""": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class A ( unittest.TestCase ): '''simple docstring''' A__ = '''valhalla/s2t_mustc_multilinguial_medium''' A__ = '''C\'est trop cool''' A__ = '''Esto es genial''' @classmethod def lowerCamelCase__ (cls : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_0000 ) def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) lowercase__ = [ES_CODE, 4, 1601, 47, 7647, 2] lowercase__ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = """fr""" lowercase__ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _UpperCAmelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowercase__ = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
1
from collections import deque class A : '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: """simple docstring""" lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class A : '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : list[int] , _UpperCAmelCase : deque[Process] , _UpperCAmelCase : int , ) -> None: """simple docstring""" lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def lowerCamelCase__ (self : Optional[int] ) -> list[str]: """simple docstring""" lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCamelCase__ (self : Any , _UpperCAmelCase : list[Process] ) -> list[int]: """simple docstring""" lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : list[Process] ) -> list[int]: """simple docstring""" lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : list[Process] ) -> list[int]: """simple docstring""" lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCamelCase__ (self : int , _UpperCAmelCase : deque[Process] ) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Process ) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCamelCase__ (self : str , _UpperCAmelCase : deque[Process] ) -> deque[Process]: """simple docstring""" lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCamelCase__ (self : str , _UpperCAmelCase : deque[Process] , _UpperCAmelCase : int ) -> tuple[deque[Process], deque[Process]]: """simple docstring""" lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCamelCase__ (self : List[Any] ) -> deque[Process]: """simple docstring""" for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A : int = Process('P1', 0, 5_3) A : Any = Process('P2', 0, 1_7) A : Tuple = Process('P3', 0, 6_8) A : Optional[Any] = Process('P4', 0, 2_4) A : Tuple = 3 A : Optional[int] = [1_7, 2_5] A : List[str] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) A : Union[str, Any] = Process('P1', 0, 5_3) A : List[Any] = Process('P2', 0, 1_7) A : Union[str, Any] = Process('P3', 0, 6_8) A : Dict = Process('P4', 0, 2_4) A : List[str] = 3 A : str = [1_7, 2_5] A : Any = deque([Pa, Pa, Pa, Pa]) A : str = MLFQ(number_of_queues, time_slices, queue, 0) A : Union[str, Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
305
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Any = '▁' A : List[str] = {'vocab_file': 'sentencepiece.bpe.model'} A : Tuple = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } A : Union[str, Any] = { 'facebook/nllb-200-distilled-600M': 1_0_2_4, } # fmt: off A : List[Any] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = ['''input_ids''', '''attention_mask'''] A__ = [] A__ = [] def __init__(self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str]="<s>" , _UpperCAmelCase : str="</s>" , _UpperCAmelCase : Any="</s>" , _UpperCAmelCase : int="<s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : str="<pad>" , _UpperCAmelCase : Dict="<mask>" , _UpperCAmelCase : int=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[Dict[str, Any]] = None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[int]=False , **_UpperCAmelCase : Union[str, Any] , ) -> Any: """simple docstring""" lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowercase__ = legacy_behaviour super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) lowercase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ = 1 lowercase__ = len(self.sp_model ) lowercase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCAmelCase ) } lowercase__ = {v: k for k, v in self.lang_code_to_id.items()} lowercase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase__ = src_lang if src_lang is not None else """eng_Latn""" lowercase__ = self.lang_code_to_id[self._src_lang] lowercase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__(self : str , _UpperCAmelCase : Tuple ) -> int: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase__ (self : Optional[Any] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : str ) -> None: """simple docstring""" lowercase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) lowercase__ = [1] * len(self.prefix_tokens ) lowercase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ (self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] , _UpperCAmelCase : Optional[str] , **_UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowercase__ = src_lang lowercase__ = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = self.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tgt_lang_id return inputs def lowerCamelCase__ (self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ = self.sp_model.PieceToId(_UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip() return out_string def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , """wb""" ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def lowerCamelCase__ (self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : str = "eng_Latn" , _UpperCAmelCase : Optional[List[str]] = None , _UpperCAmelCase : str = "fra_Latn" , **_UpperCAmelCase : int , ) -> BatchEncoding: """simple docstring""" lowercase__ = src_lang lowercase__ = tgt_lang return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Dict ) -> None: """simple docstring""" lowercase__ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowercase__ = [] lowercase__ = [self.eos_token_id, self.cur_lang_code] else: lowercase__ = [self.cur_lang_code] lowercase__ = [self.eos_token_id] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : str ) -> None: """simple docstring""" lowercase__ = self.lang_code_to_id[lang] if self.legacy_behaviour: lowercase__ = [] lowercase__ = [self.eos_token_id, self.cur_lang_code] else: lowercase__ = [self.cur_lang_code] lowercase__ = [self.eos_token_id]
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
1
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) A : List[str] = logging.getLogger(__name__) @dataclass(frozen=UpperCAmelCase__ ) class A : '''simple docstring''' A__ = 42 A__ = 42 A__ = None A__ = None A__ = None @dataclass(frozen=UpperCAmelCase__ ) class A : '''simple docstring''' A__ = 42 A__ = None A__ = None A__ = None A__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = 42 def __init__(self : int , _UpperCAmelCase : str , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : bool = False , ) -> Optional[int]: """simple docstring""" lowercase__ = hans_processors[task]() lowercase__ = os.path.join( _UpperCAmelCase , """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(_UpperCAmelCase ) , _UpperCAmelCase , ) , ) lowercase__ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase__ , lowercase__ = label_list[2], label_list[1] lowercase__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase__ = cached_features_file + """.lock""" with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) lowercase__ = torch.load(_UpperCAmelCase ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) lowercase__ = ( processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) ) logger.info("""Training examples: %s""" , len(_UpperCAmelCase ) ) lowercase__ = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) logger.info("""Saving features into cached file %s""" , _UpperCAmelCase ) torch.save(self.features , _UpperCAmelCase ) def __len__(self : Optional[int] ) -> int: """simple docstring""" return len(self.features ) def __getitem__(self : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> InputFeatures: """simple docstring""" return self.features[i] def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class A : '''simple docstring''' A__ = 42 def __init__(self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] = 128 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : bool = False , ) -> Dict: """simple docstring""" lowercase__ = hans_processors[task]() lowercase__ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase__ , lowercase__ = label_list[2], label_list[1] lowercase__ = label_list lowercase__ = processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) lowercase__ = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ): if ex_index % 1_0000 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(_UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowercase__ = tf.data.Dataset.from_generator( _UpperCAmelCase , ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) , ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def lowerCamelCase__ (self : Any ) -> Optional[Any]: """simple docstring""" return self.dataset def __len__(self : Any ) -> Dict: """simple docstring""" return len(self.features ) def __getitem__(self : List[Any] , _UpperCAmelCase : int ) -> InputFeatures: """simple docstring""" return self.features[i] def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" return self.label_list class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , """heuristics_train_set.txt""" ) ) , """train""" ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , """heuristics_evaluation_set.txt""" ) ) , """dev""" ) def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" return ["contradiction", "entailment", "neutral"] def lowerCamelCase__ (self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [] for i, line in enumerate(_UpperCAmelCase ): if i == 0: continue lowercase__ = """%s-%s""" % (set_type, line[0]) lowercase__ = line[5] lowercase__ = line[6] lowercase__ = line[7][2:] if line[7].startswith("""ex""" ) else line[7] lowercase__ = line[0] examples.append(InputExample(guid=_UpperCAmelCase , text_a=_UpperCAmelCase , text_b=_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) return examples def UpperCamelCase ( __magic_name__ : List[InputExample] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : PreTrainedTokenizer , ) -> Any: """simple docstring""" lowercase__ = {label: i for i, label in enumerate(__magic_name__ )} lowercase__ = [] for ex_index, example in tqdm.tqdm(enumerate(__magic_name__ ) , desc="""convert examples to features""" ): if ex_index % 1_0000 == 0: logger.info("""Writing example %d""" % (ex_index) ) lowercase__ = tokenizer( example.text_a , example.text_b , add_special_tokens=__magic_name__ , max_length=__magic_name__ , padding="""max_length""" , truncation=__magic_name__ , return_overflowing_tokens=__magic_name__ , ) lowercase__ = label_map[example.label] if example.label in label_map else 0 lowercase__ = int(example.pairID ) features.append(InputFeatures(**__magic_name__ , label=__magic_name__ , pairID=__magic_name__ ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(f'''guid: {example}''' ) logger.info(f'''features: {features[i]}''' ) return features A : Any = { 'hans': 3, } A : str = { 'hans': HansProcessor, }
305
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
1
class A : '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : str = "" , _UpperCAmelCase : bool = False ) -> None: """simple docstring""" lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowerCamelCase__ (self : Dict , _UpperCAmelCase : str ) -> tuple[str, str, str]: """simple docstring""" lowercase__ = 0 for q, w in zip(self.prefix , _UpperCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : list[str] ) -> None: """simple docstring""" for word in words: self.insert(_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : str ) -> None: """simple docstring""" if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=_UpperCAmelCase , is_leaf=_UpperCAmelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( _UpperCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_UpperCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(_UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : str ) -> bool: """simple docstring""" lowercase__ = self.nodes.get(word[0] , _UpperCAmelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( _UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_UpperCAmelCase ) def lowerCamelCase__ (self : int , _UpperCAmelCase : str ) -> bool: """simple docstring""" lowercase__ = self.nodes.get(word[0] , _UpperCAmelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( _UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_UpperCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : int = 0 ) -> None: """simple docstring""" if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ) -> bool: """simple docstring""" lowercase__ = """banana bananas bandana band apple all beast""".split() lowercase__ = RadixNode() root.insert_many(__magic_name__ ) assert all(root.find(__magic_name__ ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def UpperCamelCase ( ) -> None: """simple docstring""" assert test_trie() def UpperCamelCase ( ) -> None: """simple docstring""" lowercase__ = RadixNode() lowercase__ = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(__magic_name__ ) print("""Words:""" , __magic_name__ ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
305
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = AltDiffusionPipeline A__ = TEXT_TO_IMAGE_PARAMS A__ = TEXT_TO_IMAGE_BATCH_PARAMS A__ = TEXT_TO_IMAGE_IMAGE_PARAMS A__ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowercase__ = 77 lowercase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=0 ) -> str: """simple docstring""" if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() torch.manual_seed(0 ) lowercase__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder lowercase__ = RobertaSeriesModelWithTransformation(_UpperCAmelCase ) lowercase__ = text_encoder lowercase__ = AltDiffusionPipeline(**_UpperCAmelCase ) lowercase__ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = """A photo of an astronaut""" lowercase__ = alt_pipe(**_UpperCAmelCase ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) lowercase__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder lowercase__ = RobertaSeriesModelWithTransformation(_UpperCAmelCase ) lowercase__ = text_encoder lowercase__ = AltDiffusionPipeline(**_UpperCAmelCase ) lowercase__ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = alt_pipe(**_UpperCAmelCase ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=_UpperCAmelCase ) lowercase__ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """A painting of a squirrel eating a burger""" lowercase__ = torch.manual_seed(0 ) lowercase__ = alt_pipe([prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) lowercase__ = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """A painting of a squirrel eating a burger""" lowercase__ = torch.manual_seed(0 ) lowercase__ = alt_pipe([prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="""numpy""" ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
305
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
1
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin A : List[str] = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = SpeechTaTokenizer A__ = False A__ = True def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = SpeechTaTokenizer(_UpperCAmelCase ) lowercase__ = AddedToken("""<mask>""" , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) lowercase__ = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = """this is a test""" lowercase__ = """this is a test""" return input_text, output_text def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=20 , _UpperCAmelCase : List[Any]=5 ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """<pad>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> Optional[Any]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-4] , """œ""" ) self.assertEqual(vocab_keys[-2] , """<mask>""" ) self.assertEqual(vocab_keys[-1] , """<ctc_blank>""" ) self.assertEqual(len(_UpperCAmelCase ) , 81 ) def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCamelCase__ (self : Union[str, Any] ) -> str: """simple docstring""" lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowercase__ = tokenizer.vocab_size lowercase__ = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowercase__ = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] lowercase__ = tokenizer.add_tokens(_UpperCAmelCase ) lowercase__ = tokenizer.vocab_size lowercase__ = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) ) lowercase__ = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowercase__ = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} lowercase__ = tokenizer.add_special_tokens(_UpperCAmelCase ) lowercase__ = tokenizer.vocab_size lowercase__ = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) ) lowercase__ = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCamelCase__ (self : Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" pass def lowerCamelCase__ (self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = tokenizer.tokenize("""This is a test""" ) # fmt: off self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, """T""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """a""", SPIECE_UNDERLINE, """t""", """e""", """s""", """t"""] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) lowercase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """92000""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) # fmt: off self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """<unk>""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) @slow def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = [ """Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """ """general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """ """Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """ """models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""", """BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """ """conditioning on both left and right context in all layers.""", """The quick brown fox jumps over the lazy dog.""", ] # fmt: off lowercase__ = { """input_ids""": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""microsoft/speecht5_asr""" , revision="""c5ef64c71905caeccde0e4462ef3f9077224c524""" , sequences=_UpperCAmelCase , )
305
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
1
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = GPTSanJapaneseTokenizer A__ = False A__ = {'''do_clean_text''': False, '''add_prefix_space''': False} def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().setUp() # fmt: off lowercase__ = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase__ = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase__ = {"""unk_token""": """<unk>"""} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(_UpperCAmelCase ) ) def lowerCamelCase__ (self : List[Any] , **_UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Dict ) -> str: """simple docstring""" lowercase__ = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase__ = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" pass # TODO add if relevant def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" pass # TODO add if relevant def lowerCamelCase__ (self : Tuple ) -> List[Any]: """simple docstring""" pass # TODO add if relevant def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_tokenizer() # Testing tokenization lowercase__ = """こんにちは、世界。 こんばんは、㔺界。""" lowercase__ = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids without special tokens lowercase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids with special tokens lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = self.get_tokenizer() # Testing tokenization lowercase__ = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase__ = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase__ = tokenizer.encode(_UpperCAmelCase ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowerCamelCase__ (self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase__ = """こんにちは、世界。""" lowercase__ = """こんばんは、㔺界。😀""" lowercase__ = """こんにちは、世界。こんばんは、世界。😀""" lowercase__ = tokenizer.encode(prefix_text + input_text ) lowercase__ = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase__ = tokenizer.encode(_UpperCAmelCase , prefix_text=_UpperCAmelCase ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowerCamelCase__ (self : List[str] ) -> Any: """simple docstring""" lowercase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase__ = """こんにちは、世界。""" lowercase__ = """こんばんは、㔺界。😀""" lowercase__ = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 lowercase__ = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 lowercase__ = [1] + [0] * (len_prefix + len_text + 1) lowercase__ = [1] * (len_prefix + len_text + 1) + [0] lowercase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase__ = tokenizer(prefix_text + input_text ).token_type_ids lowercase__ = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase__ = tokenizer(_UpperCAmelCase , prefix_text=_UpperCAmelCase ).token_type_ids self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase__ = tokenizer.encode("""あンいワ""" ) lowercase__ = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase__ = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase__ (self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase__ = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase__ = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase ) lowercase__ = tokenizer.batch_encode_plus(_UpperCAmelCase , padding=_UpperCAmelCase ) # fmt: off lowercase__ = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token.attention_mask , _UpperCAmelCase ) self.assertListEqual(x_token_a.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.attention_mask , _UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" pass def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" pass
305
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
1
from PIL import Image def UpperCamelCase ( __magic_name__ : Image , __magic_name__ : int ) -> Image: """simple docstring""" lowercase__ = (259 * (level + 255)) / (255 * (259 - level)) def contrast(__magic_name__ : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(__magic_name__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 A : List[str] = change_contrast(img, 1_7_0) cont_img.save('image_data/lena_high_contrast.png', format='png')
305
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) A__ = Features({'''audio''': Audio()} ) A__ = Features({'''transcription''': Value('''string''' )} ) A__ = "audio" A__ = "transcription" def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , _UpperCAmelCase ): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' ) lowercase__ = copy.deepcopy(self ) lowercase__ = self.input_schema.copy() lowercase__ = features[self.audio_column] lowercase__ = input_schema return task_template @property def lowerCamelCase__ (self : Optional[Any] ) -> Dict[str, str]: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
305
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
1
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) lowercase__ = str(bin(__magic_name__ ) ) binary_number += "0" * shift_amount return binary_number def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) lowercase__ = str(bin(__magic_name__ ) )[2:] if shift_amount >= len(__magic_name__ ): return "0b0" lowercase__ = binary_number[: len(__magic_name__ ) - shift_amount] return "0b" + shifted_binary_number def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase__ = """0""" + str(bin(__magic_name__ ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number lowercase__ = len(bin(__magic_name__ )[3:] ) # Find 2's complement of number lowercase__ = bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:] lowercase__ = ( """1""" + """0""" * (binary_number_length - len(__magic_name__ )) + binary_number ) if shift_amount >= len(__magic_name__ ): return "0b" + binary_number[0] * len(__magic_name__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__magic_name__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
305
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = (IPNDMScheduler,) A__ = (('''num_inference_steps''', 50),) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = {"""num_train_timesteps""": 1000} config.update(**_UpperCAmelCase ) return config def lowerCamelCase__ (self : Any , _UpperCAmelCase : int=0 , **_UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" pass def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : Tuple ) -> Any: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase__ (self : str ) -> str: """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase , time_step=_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Dict: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase , time_step=_UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> int: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
305
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
1
A : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def UpperCamelCase ( __magic_name__ : dict , __magic_name__ : List[str] , __magic_name__ : Tuple ) -> list[str]: """simple docstring""" lowercase__ = set() # keep track of all the paths to be checked lowercase__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowercase__ = queue.pop(0 ) # get the last node from the path lowercase__ = path[-1] if node not in explored: lowercase__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowercase__ = list(__magic_name__ ) new_path.append(__magic_name__ ) queue.append(__magic_name__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__magic_name__ ) # in case there's no path between the 2 nodes return [] def UpperCamelCase ( __magic_name__ : dict , __magic_name__ : Any , __magic_name__ : Tuple ) -> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowercase__ = [start] lowercase__ = set(__magic_name__ ) # Keep tab on distances from `start` node. lowercase__ = {start: 0, target: -1} while queue: lowercase__ = queue.pop(0 ) if node == target: lowercase__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__magic_name__ ) queue.append(__magic_name__ ) lowercase__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent A : Tuple = {'UserAgent': UserAgent().random} def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> dict: """simple docstring""" lowercase__ = script.contents[0] lowercase__ = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A : '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : List[Any] ) -> str: """simple docstring""" lowercase__ = f'''https://www.instagram.com/{username}/''' lowercase__ = self.get_json() def lowerCamelCase__ (self : Optional[Any] ) -> dict: """simple docstring""" lowercase__ = requests.get(self.url , headers=_UpperCAmelCase ).text lowercase__ = BeautifulSoup(_UpperCAmelCase , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self : str ) -> str: """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__(self : Optional[Any] ) -> str: """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowerCamelCase__ (self : Optional[Any] ) -> str: """simple docstring""" return self.user_data["username"] @property def lowerCamelCase__ (self : Union[str, Any] ) -> str: """simple docstring""" return self.user_data["full_name"] @property def lowerCamelCase__ (self : str ) -> str: """simple docstring""" return self.user_data["biography"] @property def lowerCamelCase__ (self : str ) -> str: """simple docstring""" return self.user_data["business_email"] @property def lowerCamelCase__ (self : List[str] ) -> str: """simple docstring""" return self.user_data["external_url"] @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowerCamelCase__ (self : str ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowerCamelCase__ (self : List[str] ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def lowerCamelCase__ (self : Optional[int] ) -> bool: """simple docstring""" return self.user_data["is_private"] def UpperCamelCase ( __magic_name__ : str = "github" ) -> None: """simple docstring""" import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions lowercase__ = InstagramUser(__magic_name__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __magic_name__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() A : Optional[int] = InstagramUser('github') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
305
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
305
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
1
A : Tuple = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] A : List[Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
305
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowercase__ = {"""unk_token""": """<unk>"""} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_UpperCAmelCase ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , **_UpperCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **_UpperCAmelCase ) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , **_UpperCAmelCase : int ) -> Dict: """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Dict ) -> Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase ) lowercase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = tokenizer(_UpperCAmelCase , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """google/owlvit-base-patch32""" lowercase__ = OwlViTProcessor.from_pretrained(_UpperCAmelCase ) lowercase__ = ["""cat""", """nasa badge"""] lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" lowercase__ = """google/owlvit-base-patch32""" lowercase__ = OwlViTProcessor.from_pretrained(_UpperCAmelCase ) lowercase__ = [["""cat""", """nasa badge"""], ["""person"""]] lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = 16 lowercase__ = len(_UpperCAmelCase ) lowercase__ = max([len(_UpperCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """google/owlvit-base-patch32""" lowercase__ = OwlViTProcessor.from_pretrained(_UpperCAmelCase ) lowercase__ = ["""cat""", """nasa badge"""] lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = 16 lowercase__ = inputs["""input_ids"""] lowercase__ = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = self.prepare_image_inputs() lowercase__ = processor(images=_UpperCAmelCase , query_images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
305
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[Any] = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
305
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch A : Dict = logging.get_logger(__name__) @add_end_docstrings( UpperCAmelCase__ , r''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : Any , _UpperCAmelCase : GenericTensor ) -> np.ndarray: """simple docstring""" if self.framework == "tf": lowercase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_UpperCAmelCase ) else: raise ValueError("""Unsupported framework""" ) return masked_index def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : GenericTensor ) -> np.ndarray: """simple docstring""" lowercase__ = self.get_masked_index(_UpperCAmelCase ) lowercase__ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : GenericTensor ) -> Tuple: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_UpperCAmelCase ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ) -> Dict[str, GenericTensor]: """simple docstring""" if return_tensors is None: lowercase__ = self.framework lowercase__ = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.ensure_exactly_one_mask_token(_UpperCAmelCase ) return model_inputs def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] ) -> int: """simple docstring""" lowercase__ = self.model(**_UpperCAmelCase ) lowercase__ = model_inputs["""input_ids"""] return model_outputs def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : List[Any]=None ) -> Optional[int]: """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: lowercase__ = target_ids.shape[0] lowercase__ = model_outputs["""input_ids"""][0] lowercase__ = model_outputs["""logits"""] if self.framework == "tf": lowercase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase__ = outputs.numpy() lowercase__ = outputs[0, masked_index, :] lowercase__ = stable_softmax(_UpperCAmelCase , axis=-1 ) if target_ids is not None: lowercase__ = tf.gather_nd(tf.squeeze(_UpperCAmelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) lowercase__ = tf.expand_dims(_UpperCAmelCase , 0 ) lowercase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase ) lowercase__ , lowercase__ = topk.values.numpy(), topk.indices.numpy() else: lowercase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_UpperCAmelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase__ = outputs[0, masked_index, :] lowercase__ = logits.softmax(dim=-1 ) if target_ids is not None: lowercase__ = probs[..., target_ids] lowercase__ , lowercase__ = probs.topk(_UpperCAmelCase ) lowercase__ = [] lowercase__ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): lowercase__ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place lowercase__ = input_ids.numpy().copy() if target_ids is not None: lowercase__ = target_ids[p].tolist() lowercase__ = p # Filter padding out: lowercase__ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase__ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) if single_mask: return result[0] return result def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=None ) -> Union[str, Any]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [targets] try: lowercase__ = self.tokenizer.get_vocab() except Exception: lowercase__ = {} lowercase__ = [] for target in targets: lowercase__ = vocab.get(_UpperCAmelCase , _UpperCAmelCase ) if id_ is None: lowercase__ = self.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , max_length=1 , truncation=_UpperCAmelCase , )["""input_ids"""] if len(_UpperCAmelCase ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' """We cannot replace it with anything meaningful, ignoring it""" ) continue lowercase__ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) lowercase__ = list(set(_UpperCAmelCase ) ) if len(_UpperCAmelCase ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) lowercase__ = np.array(_UpperCAmelCase ) return target_ids def lowerCamelCase__ (self : Any , _UpperCAmelCase : str=None , _UpperCAmelCase : Any=None ) -> Optional[int]: """simple docstring""" lowercase__ = {} if targets is not None: lowercase__ = self.get_target_ids(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = target_ids if top_k is not None: lowercase__ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__(self : Optional[Any] , _UpperCAmelCase : Any , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) == 1: return outputs[0] return outputs
305
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : Tuple = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''cvt''' def __init__(self : Any , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : List[str]=[7, 3, 3] , _UpperCAmelCase : int=[4, 2, 2] , _UpperCAmelCase : List[Any]=[2, 1, 1] , _UpperCAmelCase : Tuple=[64, 192, 384] , _UpperCAmelCase : Any=[1, 3, 6] , _UpperCAmelCase : Union[str, Any]=[1, 2, 10] , _UpperCAmelCase : Optional[Any]=[4.0, 4.0, 4.0] , _UpperCAmelCase : Tuple=[0.0, 0.0, 0.0] , _UpperCAmelCase : Union[str, Any]=[0.0, 0.0, 0.0] , _UpperCAmelCase : Any=[0.0, 0.0, 0.1] , _UpperCAmelCase : List[Any]=[True, True, True] , _UpperCAmelCase : str=[False, False, True] , _UpperCAmelCase : Any=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase : Optional[int]=[3, 3, 3] , _UpperCAmelCase : Tuple=[1, 1, 1] , _UpperCAmelCase : List[str]=[2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[1, 1, 1] , _UpperCAmelCase : Optional[Any]=[1, 1, 1] , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , **_UpperCAmelCase : Tuple , ) -> int: """simple docstring""" super().__init__(**_UpperCAmelCase ) lowercase__ = num_channels lowercase__ = patch_sizes lowercase__ = patch_stride lowercase__ = patch_padding lowercase__ = embed_dim lowercase__ = num_heads lowercase__ = depth lowercase__ = mlp_ratio lowercase__ = attention_drop_rate lowercase__ = drop_rate lowercase__ = drop_path_rate lowercase__ = qkv_bias lowercase__ = cls_token lowercase__ = qkv_projection_method lowercase__ = kernel_qkv lowercase__ = padding_kv lowercase__ = stride_kv lowercase__ = padding_q lowercase__ = stride_q lowercase__ = initializer_range lowercase__ = layer_norm_eps
305
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : Tuple = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''align_text_model''' def __init__(self : Optional[Any] , _UpperCAmelCase : List[str]=3_0522 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : List[Any]="absolute" , _UpperCAmelCase : Dict=True , **_UpperCAmelCase : Optional[Any] , ) -> Tuple: """simple docstring""" super().__init__(**_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = pad_token_id @classmethod def lowerCamelCase__ (cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) lowercase__ , lowercase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": lowercase__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''align_vision_model''' def __init__(self : List[str] , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 600 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 3.1 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , _UpperCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , _UpperCAmelCase : List[int] = [] , _UpperCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase : float = 0.25 , _UpperCAmelCase : str = "swish" , _UpperCAmelCase : int = 2560 , _UpperCAmelCase : str = "mean" , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 0.001 , _UpperCAmelCase : float = 0.99 , _UpperCAmelCase : float = 0.2 , **_UpperCAmelCase : Dict , ) -> Optional[Any]: """simple docstring""" super().__init__(**_UpperCAmelCase ) lowercase__ = num_channels lowercase__ = image_size lowercase__ = width_coefficient lowercase__ = depth_coefficient lowercase__ = depth_divisor lowercase__ = kernel_sizes lowercase__ = in_channels lowercase__ = out_channels lowercase__ = depthwise_padding lowercase__ = strides lowercase__ = num_block_repeats lowercase__ = expand_ratios lowercase__ = squeeze_expansion_ratio lowercase__ = hidden_act lowercase__ = hidden_dim lowercase__ = pooling_type lowercase__ = initializer_range lowercase__ = batch_norm_eps lowercase__ = batch_norm_momentum lowercase__ = drop_connect_rate lowercase__ = sum(_UpperCAmelCase ) * 4 @classmethod def lowerCamelCase__ (cls : Tuple , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Optional[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) lowercase__ , lowercase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": lowercase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''align''' A__ = True def __init__(self : Optional[int] , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[int]=640 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**_UpperCAmelCase ) if text_config is None: lowercase__ = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: lowercase__ = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) lowercase__ = AlignTextConfig(**_UpperCAmelCase ) lowercase__ = AlignVisionConfig(**_UpperCAmelCase ) lowercase__ = projection_dim lowercase__ = temperature_init_value lowercase__ = initializer_range @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : AlignTextConfig , _UpperCAmelCase : AlignVisionConfig , **_UpperCAmelCase : List[Any] ) -> int: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> int: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.text_config.to_dict() lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output
305
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : Dict=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str="last" , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[str]=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , 2 ).float() lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , ) -> int: """simple docstring""" lowercase__ = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , ) -> List[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , ) -> Any: """simple docstring""" lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> List[str]: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) ) lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
1
import numpy as np A : Dict = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class A : '''simple docstring''' def __init__(self : List[Any] ) -> None: """simple docstring""" lowercase__ = np.array(_UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : str ) -> np.ndarray: """simple docstring""" lowercase__ , lowercase__ = np.where(letter == self.SQUARE ) lowercase__ = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowerCamelCase__ (self : str , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: """simple docstring""" lowercase__ = self.SQUARE[indexa - 1, indexa - 1] return letter def lowerCamelCase__ (self : int , _UpperCAmelCase : str ) -> str: """simple docstring""" lowercase__ = message.lower() lowercase__ = message.replace(""" """ , """""" ) lowercase__ = message.replace("""j""" , """i""" ) lowercase__ = np.empty((2, len(_UpperCAmelCase )) ) for letter_index in range(len(_UpperCAmelCase ) ): lowercase__ = self.letter_to_numbers(message[letter_index] ) lowercase__ = numbers[0] lowercase__ = numbers[1] lowercase__ = first_step.reshape(2 * len(_UpperCAmelCase ) ) lowercase__ = """""" for numbers_index in range(len(_UpperCAmelCase ) ): lowercase__ = int(second_step[numbers_index * 2] ) lowercase__ = int(second_step[(numbers_index * 2) + 1] ) lowercase__ = self.numbers_to_letter(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = encoded_message + letter return encoded_message def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : str ) -> str: """simple docstring""" lowercase__ = message.lower() message.replace(""" """ , """""" ) lowercase__ = np.empty(2 * len(_UpperCAmelCase ) ) for letter_index in range(len(_UpperCAmelCase ) ): lowercase__ = self.letter_to_numbers(message[letter_index] ) lowercase__ = numbers[0] lowercase__ = numbers[1] lowercase__ = first_step.reshape((2, len(_UpperCAmelCase )) ) lowercase__ = """""" for numbers_index in range(len(_UpperCAmelCase ) ): lowercase__ = int(second_step[0, numbers_index] ) lowercase__ = int(second_step[1, numbers_index] ) lowercase__ = self.numbers_to_letter(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = decoded_message + letter return decoded_message
305
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = None A__ = BloomTokenizerFast A__ = BloomTokenizerFast A__ = True A__ = False A__ = '''tokenizer_file''' A__ = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def lowerCamelCase__ (self : str ) -> int: """simple docstring""" super().setUp() lowercase__ = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ (self : List[str] , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.get_rust_tokenizer() lowercase__ = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] lowercase__ = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] lowercase__ = tokenizer.batch_encode_plus(_UpperCAmelCase )["""input_ids"""] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=6 ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase__ = """This is a simple input""" lowercase__ = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase__ = ("""This is a simple input""", """This is a pair""") lowercase__ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) lowercase__ = None # Hotfixing padding = None self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" , ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" , ) def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.get_rust_tokenizer() lowercase__ = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=_UpperCAmelCase ) lowercase__ = next(iter(_UpperCAmelCase ) )["""premise"""] # pick up one data lowercase__ = list(sample_data.values() ) lowercase__ = list(map(tokenizer.encode , _UpperCAmelCase ) ) lowercase__ = [tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) for x in output_tokens] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType A : Dict = logging.get_logger(__name__) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''vision-encoder-decoder''' A__ = True def __init__(self : int , **_UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) lowercase__ = kwargs.pop("""encoder""" ) lowercase__ = encoder_config.pop("""model_type""" ) lowercase__ = kwargs.pop("""decoder""" ) lowercase__ = decoder_config.pop("""model_type""" ) lowercase__ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = True @classmethod def lowerCamelCase__ (cls : Optional[Any] , _UpperCAmelCase : PretrainedConfig , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Dict ) -> PretrainedConfig: """simple docstring""" logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) lowercase__ = True lowercase__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.encoder.to_dict() lowercase__ = self.decoder.to_dict() lowercase__ = self.__class__.model_type return output class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : Dict ) -> float: """simple docstring""" return 1E-4 @property def lowerCamelCase__ (self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = OrderedDict() lowercase__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} lowercase__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} lowercase__ = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : "PreTrainedTokenizerBase" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: """simple docstring""" import torch lowercase__ = OrderedDict() lowercase__ = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) lowercase__ , lowercase__ = dummy_input["""input_ids"""].shape lowercase__ = (batch, encoder_sequence, self._config.encoder_hidden_size) lowercase__ = dummy_input.pop("""input_ids""" ) lowercase__ = dummy_input.pop("""attention_mask""" ) lowercase__ = torch.zeros(_UpperCAmelCase ) return common_inputs class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Any ) -> None: """simple docstring""" pass def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : PretrainedConfig ) -> OnnxConfig: """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , _UpperCAmelCase : PretrainedConfig , _UpperCAmelCase : str = "default" ) -> OnnxConfig: """simple docstring""" lowercase__ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
305
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : int = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''roberta''' def __init__(self : Optional[Any] , _UpperCAmelCase : Any=5_0265 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str=None , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
305
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[Any] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : List[str] = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''funnel''' A__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__(self : List[Any] , _UpperCAmelCase : Dict=3_0522 , _UpperCAmelCase : List[Any]=[4, 4, 4] , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : int=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : int=3072 , _UpperCAmelCase : Tuple="gelu_new" , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : int=None , _UpperCAmelCase : List[Any]=1E-9 , _UpperCAmelCase : List[Any]="mean" , _UpperCAmelCase : int="relative_shift" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : str=True , **_UpperCAmelCase : List[str] , ) -> Tuple: """simple docstring""" lowercase__ = vocab_size lowercase__ = block_sizes lowercase__ = [1] * len(_UpperCAmelCase ) if block_repeats is None else block_repeats assert len(_UpperCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." lowercase__ = num_decoder_layers lowercase__ = d_model lowercase__ = n_head lowercase__ = d_head lowercase__ = d_inner lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = initializer_range lowercase__ = initializer_std lowercase__ = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' lowercase__ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' lowercase__ = attention_type lowercase__ = separate_cls lowercase__ = truncate_seq lowercase__ = pool_q_only super().__init__(**_UpperCAmelCase ) @property def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
305
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
1
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder A : Any = logging.get_logger(__name__) # pylint: disable=invalid-name A : List[Any] = 2_5_6 class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = ['''melgan'''] def __init__(self : Tuple , _UpperCAmelCase : SpectrogramNotesEncoder , _UpperCAmelCase : SpectrogramContEncoder , _UpperCAmelCase : TaFilmDecoder , _UpperCAmelCase : DDPMScheduler , _UpperCAmelCase : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: """simple docstring""" super().__init__() # From MELGAN lowercase__ = math.log(1E-5 ) # Matches MelGAN training. lowercase__ = 4.0 # Largest value for most examples lowercase__ = 128 self.register_modules( notes_encoder=_UpperCAmelCase , continuous_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase , scheduler=_UpperCAmelCase , melgan=_UpperCAmelCase , ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=(-1.0, 1.0) , _UpperCAmelCase : int=False ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = output_range if clip: lowercase__ = torch.clip(_UpperCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any]=(-1.0, 1.0) , _UpperCAmelCase : List[str]=False ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = input_range lowercase__ = torch.clip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip else outputs # Scale to [0, 1]. lowercase__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = input_tokens > 0 lowercase__ , lowercase__ = self.notes_encoder( encoder_input_tokens=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) lowercase__ , lowercase__ = self.continuous_encoder( encoder_inputs=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = noise_time if not torch.is_tensor(_UpperCAmelCase ): lowercase__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: lowercase__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__ = self.decoder( encodings_and_masks=_UpperCAmelCase , decoder_input_tokens=_UpperCAmelCase , decoder_noise_time=_UpperCAmelCase ) return logits @torch.no_grad() def __call__(self : List[str] , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : int = 100 , _UpperCAmelCase : bool = True , _UpperCAmelCase : str = "numpy" , _UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCAmelCase : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_UpperCAmelCase )}.''' ) lowercase__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__ = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_UpperCAmelCase ): if i == 0: lowercase__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__ = ones lowercase__ = self.scale_features( _UpperCAmelCase , output_range=[-1.0, 1.0] , clip=_UpperCAmelCase ) lowercase__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_UpperCAmelCase , continuous_mask=_UpperCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_UpperCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ = self.decode( encodings_and_masks=_UpperCAmelCase , input_tokens=_UpperCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__ = self.scale_to_features(_UpperCAmelCase , input_range=[-1.0, 1.0] ) lowercase__ = mel[:1] lowercase__ = mel.cpu().float().numpy() lowercase__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase ) logger.info("""Generated segment""" , _UpperCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": lowercase__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_UpperCAmelCase )
305
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : TransformeraDModel , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : KarrasDiffusionSchedulers , _UpperCAmelCase : Optional[Dict[int, str]] = None , ) -> str: """simple docstring""" super().__init__() self.register_modules(transformer=_UpperCAmelCase , vae=_UpperCAmelCase , scheduler=_UpperCAmelCase ) # create a imagenet -> id dictionary for easier use lowercase__ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): lowercase__ = int(_UpperCAmelCase ) lowercase__ = dict(sorted(self.labels.items() ) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Union[str, List[str]] ) -> List[int]: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = list(_UpperCAmelCase ) for l in label: if l not in self.labels: raise ValueError( f'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__(self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : float = 4.0 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ = len(_UpperCAmelCase ) lowercase__ = self.transformer.config.sample_size lowercase__ = self.transformer.config.in_channels lowercase__ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_UpperCAmelCase , device=self.device , dtype=self.transformer.dtype , ) lowercase__ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowercase__ = torch.tensor(_UpperCAmelCase , device=self.device ).reshape(-1 ) lowercase__ = torch.tensor([1000] * batch_size , device=self.device ) lowercase__ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowercase__ = latent_model_input[: len(_UpperCAmelCase ) // 2] lowercase__ = torch.cat([half, half] , dim=0 ) lowercase__ = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = t if not torch.is_tensor(_UpperCAmelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowercase__ = latent_model_input.device.type == """mps""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = torch.floataa if is_mps else torch.floataa else: lowercase__ = torch.intaa if is_mps else torch.intaa lowercase__ = torch.tensor([timesteps] , dtype=_UpperCAmelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowercase__ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowercase__ = self.transformer( _UpperCAmelCase , timestep=_UpperCAmelCase , class_labels=_UpperCAmelCase ).sample # perform guidance if guidance_scale > 1: lowercase__ , lowercase__ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowercase__ , lowercase__ = torch.split(_UpperCAmelCase , len(_UpperCAmelCase ) // 2 , dim=0 ) lowercase__ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowercase__ = torch.cat([half_eps, half_eps] , dim=0 ) lowercase__ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowercase__ , lowercase__ = torch.split(_UpperCAmelCase , _UpperCAmelCase , dim=1 ) else: lowercase__ = noise_pred # compute previous image: x_t -> x_t-1 lowercase__ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample if guidance_scale > 1: lowercase__ , lowercase__ = latent_model_input.chunk(2 , dim=0 ) else: lowercase__ = latent_model_input lowercase__ = 1 / self.vae.config.scaling_factor * latents lowercase__ = self.vae.decode(_UpperCAmelCase ).sample lowercase__ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_UpperCAmelCase )
305
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
1