code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCamelCase_ : List[Any] = logging.get_logger(__name__) lowerCamelCase_ : Tuple = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase_ : Dict = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _A ( lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" for attribute in key.split('''.''' ): a =getattr(lowercase , lowercase ) if weight_type is not None: a =getattr(lowercase , lowercase ).shape else: a =hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": a =value elif weight_type == "weight_g": a =value elif weight_type == "weight_v": a =value elif weight_type == "bias": a =value else: a =value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _A ( lowercase , lowercase ): """simple docstring""" a =[] a =fairseq_model.state_dict() a =hf_model.feature_extractor for name, value in fairseq_dict.items(): a =False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == '''group''' , ) a =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: a =True if "*" in mapped_key: a =name.split(lowercase )[0].split('''.''' )[-2] a =mapped_key.replace('''*''' , lowercase ) if "weight_g" in name: a ='''weight_g''' elif "weight_v" in name: a ='''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: a ='''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a ='''weight''' else: a =None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _A ( lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" a =full_name.split('''conv_layers.''' )[-1] a =name.split('''.''' ) a =int(items[0] ) a =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) a =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _A ( lowercase , lowercase , lowercase=None ): """simple docstring""" # load the pre-trained checkpoints a =torch.load(lowercase ) a =WavLMConfigOrig(checkpoint['''cfg'''] ) a =WavLMOrig(lowercase ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: a =WavLMConfig.from_pretrained(lowercase ) else: a =WavLMConfig() a =WavLMModel(lowercase ) recursively_load_weights(lowercase , lowercase ) hf_wavlm.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase_ : Tuple = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
81
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
0
def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = len(snake_case ) _lowerCAmelCase = sum(snake_case ) _lowerCAmelCase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _lowerCAmelCase = True for i in range(1 , s + 1 ): _lowerCAmelCase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _lowerCAmelCase = dp[i][j - 1] if arr[i - 1] <= j: _lowerCAmelCase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _lowerCAmelCase = s - 2 * j break return diff
82
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
0
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1_0_0 , ): _UpperCamelCase : Union[str, Any] = x_start _UpperCamelCase : List[Any] = fnc(UpperCAmelCase_ ) _UpperCamelCase : int = 0.0 for _ in range(UpperCAmelCase_ ): # Approximates curve as a sequence of linear lines and sums their length _UpperCamelCase : Union[str, Any] = (x_end - x_start) / steps + xa _UpperCamelCase : Any = fnc(UpperCAmelCase_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step _UpperCamelCase : Optional[int] = xa _UpperCamelCase : List[str] = fxa return length if __name__ == "__main__": def A__ ( UpperCAmelCase_ ): return math.sin(1_0 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') snake_case_ : List[Any] = 10 while i <= 100000: print(F"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
83
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
0
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _snake_case ( ) -> Generator[int, None, None]: '''simple docstring''' lowerCAmelCase_ :dict[int, int] = {} lowerCAmelCase_ :int = 2 while True: lowerCAmelCase_ :List[Any] = factor_map.pop(lowercase__ , lowercase__ ) if factor: lowerCAmelCase_ :Optional[int] = factor + prime while x in factor_map: x += factor lowerCAmelCase_ :List[str] = factor else: lowerCAmelCase_ :Optional[int] = prime yield prime prime += 1 def _snake_case ( lowercase__ : float = 1E10 ) -> int: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = sieve() lowerCAmelCase_ :str = 1 while True: lowerCAmelCase_ :int = next(lowercase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowercase__ ) n += 2 if __name__ == "__main__": print(solution())
84
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): @property def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = self.dummy_uncond_unet snake_case_ = KarrasVeScheduler() snake_case_ = KarrasVePipeline(unet=a__ , scheduler=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe(num_inference_steps=2 , generator=a__ , output_type="numpy" ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe(num_inference_steps=2 , generator=a__ , output_type="numpy" , return_dict=a__ )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = "google/ncsnpp-celebahq-256" snake_case_ = UNetaDModel.from_pretrained(a__ ) snake_case_ = KarrasVeScheduler() snake_case_ = KarrasVePipeline(unet=a__ , scheduler=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe(num_inference_steps=20 , generator=a__ , output_type="numpy" ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case_ = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
85
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , ): __lowerCAmelCase : Optional[int] = parent __lowerCAmelCase : int = batch_size __lowerCAmelCase : Dict = image_size __lowerCAmelCase : Union[str, Any] = num_channels __lowerCAmelCase : List[Any] = embeddings_size __lowerCAmelCase : Tuple = hidden_sizes __lowerCAmelCase : Dict = depths __lowerCAmelCase : int = is_training __lowerCAmelCase : Any = use_labels __lowerCAmelCase : Union[str, Any] = hidden_act __lowerCAmelCase : Any = num_labels __lowerCAmelCase : int = scope __lowerCAmelCase : List[Any] = len(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : List[Any] = None if self.use_labels: __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = TFResNetModel(config=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = self.num_labels __lowerCAmelCase : Tuple = TFResNetForImageClassification(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Dict = config_and_inputs __lowerCAmelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : List[str] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () A_ : Dict = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) A_ : Any = False A_ : int = False A_ : Optional[int] = False A_ : int = False A_ : str = False def __lowerCamelCase ( self ): __lowerCAmelCase : int = TFResNetModelTester(self ) __lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Dict = [*signature.parameters.keys()] __lowerCAmelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : int = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCAmelCase : Dict = layer_type __lowerCAmelCase : Dict = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : int = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Dict = TFResNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (): __lowerCAmelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A__ ( unittest.TestCase): @cached_property def __lowerCamelCase ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): __lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowerCAmelCase : Tuple = self.default_image_processor __lowerCAmelCase : int = prepare_img() __lowerCAmelCase : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='tf' ) # forward pass __lowerCAmelCase : Any = model(**_SCREAMING_SNAKE_CASE ) # verify the logits __lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
86
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
0
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCamelCase = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any): return (abs(source - target) / target) < 0.01 @pytest.mark.integration def lowercase_ ( _lowerCamelCase : Any): lowercase__ : Optional[int] = _TestCommandArgs(dataset=_lowerCamelCase , all_configs=_lowerCamelCase , save_infos=_lowerCamelCase) lowercase__ : int = TestCommand(*_lowerCamelCase) test_command.run() lowercase__ : Dict = os.path.join(_lowerCamelCase , "README.md") assert os.path.exists(_lowerCamelCase) lowercase__ : str = DatasetInfosDict.from_directory(_lowerCamelCase) lowercase__ : Dict = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string")), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"])), "langs": Sequence(Value("string")), "spans": Sequence(Value("string")), }) , splits=[ { "name": "train", "num_bytes": 235_1563, "num_examples": 1_0000, }, { "name": "validation", "num_bytes": 23_8418, "num_examples": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) }) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase__ , lowercase__ : Union[str, Any] = getattr(dataset_infos["default"] , _lowerCamelCase), getattr(expected_dataset_infos["default"] , _lowerCamelCase) if key == "num_bytes": assert is_apercent_close(_lowerCamelCase , _lowerCamelCase) elif key == "splits": assert list(_lowerCamelCase) == list(_lowerCamelCase) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes) else: result == expected
87
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
0
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCAmelCase_ ( _A , unittest.TestCase ): '''simple docstring''' a__ = MvpTokenizer a__ = MvpTokenizerFast a__ = True a__ = filter_roberta_detectors def _lowercase ( self : List[str] ) -> Optional[int]: """simple docstring""" super().setUp() __magic_name__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __magic_name__ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) __magic_name__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __magic_name__ = {"""unk_token""": """<unk>"""} __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase__ ) ) def _lowercase ( self : Union[str, Any] , **UpperCamelCase__ : str ) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self : Optional[int] , **UpperCamelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self : Any , UpperCamelCase__ : Any ) -> str: """simple docstring""" return "lower newer", "lower newer" @cached_property def _lowercase ( self : str ) -> Optional[Any]: """simple docstring""" return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def _lowercase ( self : Optional[Any] ) -> Dict: """simple docstring""" return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __magic_name__ = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __magic_name__ = tokenizer(UpperCamelCase__ , max_length=len(UpperCamelCase__ ) , padding=UpperCamelCase__ , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __magic_name__ = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # Test that special tokens are reset @require_torch def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __magic_name__ = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , UpperCamelCase__ ) self.assertIn("""attention_mask""" , UpperCamelCase__ ) self.assertNotIn("""labels""" , UpperCamelCase__ ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase__ ) @require_torch def _lowercase ( self : Dict ) -> int: """simple docstring""" __magic_name__ = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __magic_name__ = tokenizer(text_target=UpperCamelCase__ , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def _lowercase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __magic_name__ = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def _lowercase ( self : Optional[Any] ) -> str: """simple docstring""" __magic_name__ = ["""A long paragraph for summarization."""] __magic_name__ = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __magic_name__ = tokenizer(UpperCamelCase__ , text_target=UpperCamelCase__ , return_tensors="""pt""" ) __magic_name__ = inputs["""input_ids"""] __magic_name__ = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _lowercase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __magic_name__ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = """A, <mask> AllenNLP sentence.""" __magic_name__ = tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) __magic_name__ = tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __magic_name__ = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __magic_name__ = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCamelCase__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
88
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
0
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __magic_name__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple ,_UpperCAmelCase : float ,_UpperCAmelCase : Callable ,_UpperCAmelCase : int ,_UpperCAmelCase : float = 1.0 ,_UpperCAmelCase : str = None ,): super().__init__() _a : List[Any] = initial_learning_rate _a : Optional[int] = warmup_steps _a : List[str] = power _a : Dict = decay_schedule_fn _a : List[Any] = name def __call__( self : Optional[int] ,_UpperCAmelCase : Dict ): with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. _a : str = tf.cast(_UpperCAmelCase ,tf.floataa ) _a : List[str] = tf.cast(self.warmup_steps ,tf.floataa ) _a : Tuple = global_step_float / warmup_steps_float _a : Optional[int] = self.initial_learning_rate * tf.math.pow(_UpperCAmelCase ,self.power ) return tf.cond( global_step_float < warmup_steps_float ,lambda: warmup_learning_rate ,lambda: self.decay_schedule_fn(step - self.warmup_steps ) ,name=_UpperCAmelCase ,) def __lowercase ( self : Any ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 0.9 , lowerCAmelCase_ = 0.999 , lowerCAmelCase_ = 1E-8 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 1.0 , lowerCAmelCase_ = None , ) -> List[Any]: _a : int = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowerCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowerCAmelCase_ , ) if num_warmup_steps: _a : Optional[int] = WarmUp( initial_learning_rate=lowerCAmelCase_ , decay_schedule_fn=lowerCAmelCase_ , warmup_steps=lowerCAmelCase_ , ) if weight_decay_rate > 0.0: _a : Union[str, Any] = AdamWeightDecay( learning_rate=lowerCAmelCase_ , weight_decay_rate=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , epsilon=lowerCAmelCase_ , clipnorm=lowerCAmelCase_ , global_clipnorm=lowerCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=lowerCAmelCase_ , ) else: _a : List[str] = tf.keras.optimizers.Adam( learning_rate=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , epsilon=lowerCAmelCase_ , clipnorm=lowerCAmelCase_ , global_clipnorm=lowerCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __magic_name__ ( _UpperCamelCase ): def __init__( self : str ,_UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.0_01 ,_UpperCAmelCase : float = 0.9 ,_UpperCAmelCase : float = 0.9_99 ,_UpperCAmelCase : float = 1E-7 ,_UpperCAmelCase : bool = False ,_UpperCAmelCase : float = 0.0 ,_UpperCAmelCase : Optional[List[str]] = None ,_UpperCAmelCase : Optional[List[str]] = None ,_UpperCAmelCase : str = "AdamWeightDecay" ,**_UpperCAmelCase : int ,): super().__init__(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) _a : List[Any] = weight_decay_rate _a : int = include_in_weight_decay _a : str = exclude_from_weight_decay @classmethod def __lowercase ( cls : Any ,_UpperCAmelCase : int ): _a : int = {'WarmUp': WarmUp} return super(_UpperCAmelCase ,cls ).from_config(_UpperCAmelCase ,custom_objects=_UpperCAmelCase ) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Union[str, Any] ): super(_UpperCAmelCase ,self )._prepare_local(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) _a : str = tf.constant( self.weight_decay_rate ,name='adam_weight_decay_rate' ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[str] ): _a : Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] ,use_locking=self._use_locking ,) return tf.no_op() def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : List[str]=None ,**_UpperCAmelCase : Optional[int] ): _a , _a : int = list(zip(*_UpperCAmelCase ) ) return super(_UpperCAmelCase ,self ).apply_gradients(zip(_UpperCAmelCase ,_UpperCAmelCase ) ,name=_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Union[str, Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} _a : Union[str, Any] = apply_state or {} _a : Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: _a : Any = self._fallback_apply_state(_UpperCAmelCase ,_UpperCAmelCase ) _a : Any = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def __lowercase ( self : Any ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : int=None ): _a , _a : str = self._get_lr(var.device ,var.dtype.base_dtype ,_UpperCAmelCase ) _a : Any = self._decay_weights_op(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(_UpperCAmelCase ,self )._resource_apply_dense(_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : Tuple ,_UpperCAmelCase : int ,_UpperCAmelCase : str ,_UpperCAmelCase : Dict ,_UpperCAmelCase : List[Any]=None ): _a , _a : Tuple = self._get_lr(var.device ,var.dtype.base_dtype ,_UpperCAmelCase ) _a : Tuple = self._decay_weights_op(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(_UpperCAmelCase ,self )._resource_apply_sparse(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : Dict ): _a : List[Any] = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def __lowercase ( self : List[Any] ,_UpperCAmelCase : Dict ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_UpperCAmelCase ,_UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_UpperCAmelCase ,_UpperCAmelCase ) is not None: return False return True class __magic_name__ ( _UpperCamelCase ): def __init__( self : List[str] ): _a : Optional[Any] = [] _a : Any = None @property def __lowercase ( self : int ): if self._accum_steps is None: _a : List[str] = tf.Variable( tf.constant(0 ,dtype=tf.intaa ) ,trainable=_UpperCAmelCase ,synchronization=tf.VariableSynchronization.ON_READ ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ,) return self._accum_steps.value() @property def __lowercase ( self : str ): if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : int ,_UpperCAmelCase : Union[str, Any] ): if not self._gradients: _a : Dict = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_UpperCAmelCase ) ,trainable=_UpperCAmelCase ,synchronization=tf.VariableSynchronization.ON_READ ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ,) if gradient is not None else gradient for gradient in gradients ] ) if len(_UpperCAmelCase ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(_UpperCAmelCase )}""" ) for accum_gradient, gradient in zip(self._gradients ,_UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_UpperCAmelCase ) self._accum_steps.assign_add(1 ) def __lowercase ( self : List[str] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_UpperCAmelCase ) )
89
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=2 , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=10 , lowerCamelCase__=0.02 , lowerCamelCase__="divided_space_time" , lowerCamelCase__=None , ) -> Any: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = num_frames __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = attention_type __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __lowerCamelCase = (image_size // patch_size) ** 2 __lowerCamelCase = (num_frames) * self.num_patches_per_frame + 1 def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __lowerCamelCase = self.num_labels return config def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = TimesformerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify the logits shape __lowerCamelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () snake_case_ = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = TimesformerModelTester(self ) __lowerCamelCase = ConfigTester( self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> int: '''simple docstring''' __lowerCamelCase = copy.deepcopy(lowerCamelCase__ ) if return_labels: if model_class in get_values(lowerCamelCase__ ): __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ ) return inputs_dict def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCamelCase__ ) @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TimesformerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' if not self.has_attentions: pass else: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: __lowerCamelCase = self.model_tester.seq_length __lowerCamelCase = self.model_tester.num_frames __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __lowerCamelCase = len(lowerCamelCase__ ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCamelCase__ ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( ) -> Any: """simple docstring""" __lowerCamelCase = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) __lowerCamelCase = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_video() __lowerCamelCase = image_processor(video[:8] , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits __lowerCamelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
90
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
0
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCAmelCase_ : Union[str, Any] = """<<<<<<< This should probably be modified because it mentions: """ UpperCAmelCase_ : Optional[Any] = """======= >>>>>>> """ UpperCAmelCase_ : Union[str, Any] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] UpperCAmelCase_ : List[str] = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def _A (__a ) -> Optional[int]: """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( lowercase_ : ArgumentParser): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=lowercase_ , required=lowercase_ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=lowercase_ , required=lowercase_ , help='''Path to the HuggingFace Datasets folder.''') train_parser.set_defaults(func=lowercase_) def __init__( self : Union[str, Any] , lowercase_ : str , lowercase_ : str , *lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = get_logger('''datasets-cli/converting''') SCREAMING_SNAKE_CASE_ : Optional[Any] = tfds_path SCREAMING_SNAKE_CASE_ : Tuple = datasets_directory def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' if os.path.isdir(self._tfds_path): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): SCREAMING_SNAKE_CASE_ : List[str] = os.path.dirname(self._tfds_path) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''') SCREAMING_SNAKE_CASE_ : Any = os.path.abspath(self._datasets_directory) self._logger.info(F'Converting datasets from {abs_tfds_path} to {abs_datasets_path}') SCREAMING_SNAKE_CASE_ : Optional[int] = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} if os.path.isdir(self._tfds_path): SCREAMING_SNAKE_CASE_ : List[str] = os.listdir(lowercase_) else: SCREAMING_SNAKE_CASE_ : Any = [os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(F'Looking at file {f_name}') SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Any = os.path.join(lowercase_ , lowercase_) if not os.path.isfile(lowercase_) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''') continue with open(lowercase_ , encoding='''utf-8''') as f: SCREAMING_SNAKE_CASE_ : Any = f.readlines() SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : List[str] = [] for line in lines: SCREAMING_SNAKE_CASE_ : List[Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: SCREAMING_SNAKE_CASE_ : List[str] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''''' continue elif "from absl import logging" in out_line: SCREAMING_SNAKE_CASE_ : str = '''from datasets import logging\n''' elif "getLogger" in out_line: SCREAMING_SNAKE_CASE_ : List[str] = out_line.replace('''getLogger''' , '''get_logger''') elif any(expression in out_line for expression in TO_HIGHLIGHT): SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Dict = list(filter(lambda lowercase_: e in out_line , lowercase_)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowercase_) + '''\n''') out_lines.append(lowercase_) out_lines.append(lowercase_) continue else: for pattern, replacement in TO_CONVERT: SCREAMING_SNAKE_CASE_ : List[Any] = re.sub(lowercase_ , lowercase_ , lowercase_) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: SCREAMING_SNAKE_CASE_ : Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , lowercase_) tfds_imports.extend(imp.strip() for imp in match.group(1).split(''',''')) SCREAMING_SNAKE_CASE_ : str = '''from . import ''' + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'Error converting {out_line.strip()}') if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: SCREAMING_SNAKE_CASE_ : List[str] = True out_lines.append(lowercase_) if is_builder or "wmt" in f_name: # We create a new directory for each dataset SCREAMING_SNAKE_CASE_ : List[Any] = f_name.replace('''.py''' , '''''') SCREAMING_SNAKE_CASE_ : Any = os.path.join(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : str = os.path.join(lowercase_ , lowercase_) os.makedirs(lowercase_ , exist_ok=lowercase_) self._logger.info(F'Adding directory {output_dir}') imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(lowercase_) if needs_manual_update: with_manual_update.append(lowercase_) with open(lowercase_ , '''w''' , encoding='''utf-8''') as f: f.writelines(lowercase_) self._logger.info(F'Converted in {output_file}') for utils_file in utils_files: try: SCREAMING_SNAKE_CASE_ : Tuple = os.path.basename(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''')] self._logger.info(F'Moving {dest_folder} to {utils_file}') shutil.copy(lowercase_ , lowercase_) except KeyError: self._logger.error(F'Cannot find destination folder for {utils_file}. Please copy manually.') if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.')
91
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
0
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase__ = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : tuple , SCREAMING_SNAKE_CASE_ : Path , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str=False , ): output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE_ , output_names=SCREAMING_SNAKE_CASE_ , dynamic_axes=SCREAMING_SNAKE_CASE_ , do_constant_folding=SCREAMING_SNAKE_CASE_ , use_external_data_format=SCREAMING_SNAKE_CASE_ , enable_onnx_checker=SCREAMING_SNAKE_CASE_ , opset_version=SCREAMING_SNAKE_CASE_ , ) else: export( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE_ , output_names=SCREAMING_SNAKE_CASE_ , dynamic_axes=SCREAMING_SNAKE_CASE_ , do_constant_folding=SCREAMING_SNAKE_CASE_ , opset_version=SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool = False ): __lowerCAmelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: __lowerCAmelCase = "cpu" __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , torch_dtype=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = Path(SCREAMING_SNAKE_CASE_ ) # TEXT ENCODER __lowerCAmelCase = pipeline.text_encoder.config.max_position_embeddings __lowerCAmelCase = pipeline.text_encoder.config.hidden_size __lowerCAmelCase = pipeline.tokenizer( "A sample prompt" , padding="max_length" , max_length=pipeline.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="pt" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=SCREAMING_SNAKE_CASE_ , dtype=torch.intaa )) , output_path=output_path / "text_encoder" / "model.onnx" , ordered_input_names=["input_ids"] , output_names=["last_hidden_state", "pooler_output"] , dynamic_axes={ "input_ids": {0: "batch", 1: "sequence"}, } , opset=SCREAMING_SNAKE_CASE_ , ) del pipeline.text_encoder # UNET __lowerCAmelCase = pipeline.unet.config.in_channels __lowerCAmelCase = pipeline.unet.config.sample_size __lowerCAmelCase = output_path / "unet" / "model.onnx" onnx_export( pipeline.unet , model_args=( torch.randn(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ), torch.randn(2 ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ), torch.randn(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ), False, ) , output_path=SCREAMING_SNAKE_CASE_ , ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"] , output_names=["out_sample"] , dynamic_axes={ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, "timestep": {0: "batch"}, "encoder_hidden_states": {0: "batch", 1: "sequence"}, } , opset=SCREAMING_SNAKE_CASE_ , use_external_data_format=SCREAMING_SNAKE_CASE_ , ) __lowerCAmelCase = str(unet_path.absolute().as_posix() ) __lowerCAmelCase = os.path.dirname(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = onnx.load(SCREAMING_SNAKE_CASE_ ) # clean up existing tensor files shutil.rmtree(SCREAMING_SNAKE_CASE_ ) os.mkdir(SCREAMING_SNAKE_CASE_ ) # collate external tensor files into one onnx.save_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , save_as_external_data=SCREAMING_SNAKE_CASE_ , all_tensors_to_one_file=SCREAMING_SNAKE_CASE_ , location="weights.pb" , convert_attribute=SCREAMING_SNAKE_CASE_ , ) del pipeline.unet # VAE ENCODER __lowerCAmelCase = pipeline.vae __lowerCAmelCase = vae_encoder.config.in_channels __lowerCAmelCase = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder __lowerCAmelCase = lambda SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : vae_encoder.encode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[0].sample() onnx_export( SCREAMING_SNAKE_CASE_ , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ), False, ) , output_path=output_path / "vae_encoder" / "model.onnx" , ordered_input_names=["sample", "return_dict"] , output_names=["latent_sample"] , dynamic_axes={ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=SCREAMING_SNAKE_CASE_ , ) # VAE DECODER __lowerCAmelCase = pipeline.vae __lowerCAmelCase = vae_decoder.config.latent_channels __lowerCAmelCase = vae_decoder.config.out_channels # forward only through the decoder part __lowerCAmelCase = vae_encoder.decode onnx_export( SCREAMING_SNAKE_CASE_ , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=SCREAMING_SNAKE_CASE_ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: __lowerCAmelCase = pipeline.safety_checker __lowerCAmelCase = safety_checker.config.vision_config.num_channels __lowerCAmelCase = safety_checker.config.vision_config.image_size __lowerCAmelCase = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ), torch.randn(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ), ) , output_path=output_path / "safety_checker" / "model.onnx" , ordered_input_names=["clip_input", "images"] , output_names=["out_images", "has_nsfw_concepts"] , dynamic_axes={ "clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"}, "images": {0: "batch", 1: "height", 2: "width", 3: "channels"}, } , opset=SCREAMING_SNAKE_CASE_ , ) del pipeline.safety_checker __lowerCAmelCase = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker" ) __lowerCAmelCase = pipeline.feature_extractor else: __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / "unet" ) , scheduler=pipeline.scheduler , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(SCREAMING_SNAKE_CASE_ ) print("ONNX pipeline saved to" , SCREAMING_SNAKE_CASE_ ) del pipeline del onnx_pipeline __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , provider="CPUExecutionProvider" ) print("ONNX pipeline is loadable" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") UpperCamelCase__ = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
92
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
0
'''simple docstring''' import numpy as np class lowerCAmelCase__ : def __init__( self ): """simple docstring""" lowercase_ : Optional[int] = (0, 0) lowercase_ : Dict = None lowercase_ : Optional[int] = 0 lowercase_ : List[Any] = 0 lowercase_ : Dict = 0 def __eq__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.position == cell.position def _snake_case ( self ): """simple docstring""" print(self.position ) class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE=(5, 5) ): """simple docstring""" lowercase_ : Union[str, Any] = np.zeros(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = world_size[0] lowercase_ : Dict = world_size[1] def _snake_case ( self ): """simple docstring""" print(self.w ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[str] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] lowercase_ : str = cell.position[0] lowercase_ : int = cell.position[1] lowercase_ : Optional[int] = [] for n in neughbour_cord: lowercase_ : Optional[Any] = current_x + n[0] lowercase_ : List[str] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: lowercase_ : str = Cell() lowercase_ : List[str] = (x, y) lowercase_ : Any = cell neighbours.append(__SCREAMING_SNAKE_CASE ) return neighbours def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : Any = [] lowercase_ : int = [] _open.append(__SCREAMING_SNAKE_CASE ) while _open: lowercase_ : str = np.argmin([n.f for n in _open] ) lowercase_ : Any = _open[min_f] _closed.append(_open.pop(__SCREAMING_SNAKE_CASE ) ) if current == goal: break for n in world.get_neigbours(__SCREAMING_SNAKE_CASE ): for c in _closed: if c == n: continue lowercase_ : Optional[int] = current.g + 1 lowercase_ , lowercase_ : str = n.position lowercase_ , lowercase_ : int = goal.position lowercase_ : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 lowercase_ : Optional[Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = [] while current.parent is not None: path.append(current.position ) lowercase_ : Dict = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": _lowercase : Optional[int] = Gridworld() # Start position and goal _lowercase : List[str] = Cell() _lowercase : Optional[Any] = (0, 0) _lowercase : Union[str, Any] = Cell() _lowercase : Optional[Any] = (4, 4) print(f"""path from {start.position} to {goal.position}""") _lowercase : Any = astar(world, start, goal) # Just for visual reasons. for i in s: _lowercase : List[Any] = 1 print(world.w)
93
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case : Any = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case : Union[str, Any] = ''' Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") >>> pipe.to("cuda") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save("cat.png") ``` ''' def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str]=8 ): """simple docstring""" a :List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a :int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _snake_case ( _snake_case ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): super().__init__() self.register_modules( unet=_lowerCamelCase , scheduler=_lowerCamelCase , movq=_lowerCamelCase , ) a :Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if latents is None: a :str = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) a :Any = latents.to(_lowerCamelCase ) a :Dict = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a :int = torch.device(F'''cuda:{gpu_id}''' ) a :int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) a :Any = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a :Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: a , a :List[str] = cpu_offload_with_hook(_lowerCamelCase , _lowerCamelCase , prev_module_hook=_lowerCamelCase ) # We'll offload the last model manually. a :str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE__ ( self ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 100 , _lowerCamelCase = 4.0 , _lowerCamelCase = 1 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , ): a :int = self._execution_device a :Optional[Any] = guidance_scale > 1.0 if isinstance(_lowerCamelCase , _lowerCamelCase ): a :Union[str, Any] = torch.cat(_lowerCamelCase , dim=0 ) a :Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(_lowerCamelCase , _lowerCamelCase ): a :List[str] = torch.cat(_lowerCamelCase , dim=0 ) if do_classifier_free_guidance: a :Union[str, Any] = image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) a :Optional[int] = negative_image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) a :Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCamelCase ) self.scheduler.set_timesteps(_lowerCamelCase , device=_lowerCamelCase ) a :Optional[Any] = self.scheduler.timesteps a :List[str] = self.unet.config.in_channels a , a :str = downscale_height_and_width(_lowerCamelCase , _lowerCamelCase , self.movq_scale_factor ) # create initial latent a :int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance a :Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a :Union[str, Any] = {'''image_embeds''': image_embeds} a :Optional[Any] = self.unet( sample=_lowerCamelCase , timestep=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , added_cond_kwargs=_lowerCamelCase , return_dict=_lowerCamelCase , )[0] if do_classifier_free_guidance: a , a :Any = noise_pred.split(latents.shape[1] , dim=1 ) a , a :List[str] = noise_pred.chunk(2 ) a , a :int = variance_pred.chunk(2 ) a :List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a :Optional[int] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a , a :Tuple = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a :int = self.scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase , )[0] # post-processing a :int = self.movq.decode(_lowerCamelCase , force_not_quantize=_lowerCamelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: a :str = image * 0.5 + 0.5 a :List[Any] = image.clamp(0 , 1 ) a :str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a :str = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
94
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
0
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __lowerCAmelCase : _lowercase : Optional[int] = LEDConfig _lowercase : Optional[Any] = {} _lowercase : Optional[int] = """gelu""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=2_0 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=4 , ) -> int: '''simple docstring''' a__ : int =parent a__ : int =batch_size a__ : Dict =seq_length a__ : str =is_training a__ : Optional[int] =use_labels a__ : Optional[Any] =vocab_size a__ : List[str] =hidden_size a__ : Dict =num_hidden_layers a__ : str =num_attention_heads a__ : str =intermediate_size a__ : Dict =hidden_dropout_prob a__ : Tuple =attention_probs_dropout_prob a__ : List[str] =max_position_embeddings a__ : Dict =eos_token_id a__ : Tuple =pad_token_id a__ : Optional[Any] =bos_token_id a__ : int =attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after a__ : Union[str, Any] =self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests a__ : List[str] =( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : Any =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a__ : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a__ : List[Any] =tf.concat([input_ids, eos_tensor] , axis=1 ) a__ : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : Tuple =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) a__ : int =prepare_led_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : str =tf.concat( [tf.zeros_like(lowerCAmelCase__ )[:, :-1], tf.ones_like(lowerCAmelCase__ )[:, -1:]] , axis=-1 , ) a__ : Dict =global_attention_mask return config, inputs_dict def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : Any =TFLEDModel(config=lowerCAmelCase__ ).get_decoder() a__ : Tuple =inputs_dict["input_ids"] a__ : Any =input_ids[:1, :] a__ : List[str] =inputs_dict["attention_mask"][:1, :] a__ : List[Any] =1 # first forward pass a__ : Any =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) a__ , a__ : Optional[int] =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a__ : Optional[Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) a__ : str =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a__ : Optional[int] =tf.concat([input_ids, next_tokens] , axis=-1 ) a__ : List[str] =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a__ : List[Any] =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] a__ : Tuple =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a__ : Any =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a__ : Optional[Any] =output_from_no_past[:, -3:, random_slice_idx] a__ : int =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 ) def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): """simple docstring""" if attention_mask is None: a__ : Optional[int] =tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a__ : Any =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a__ : int =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a__ : Optional[int] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : int = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : Union[str, Any] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Optional[int] = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : Union[str, Any] = True _lowercase : List[str] = False _lowercase : List[str] = False _lowercase : Dict = False def _lowercase ( self ) -> int: '''simple docstring''' a__ : List[str] =TFLEDModelTester(self ) a__ : Any =ConfigTester(self , config_class=lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> str: '''simple docstring''' a__ : Any =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ , a__ : Any =self.model_tester.prepare_config_and_inputs_for_common() a__ : List[str] =tf.zeros_like(inputs_dict["attention_mask"] ) a__ : Tuple =2 a__ : int =tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) a__ : Dict =True a__ : List[Any] =self.model_tester.seq_length a__ : Dict =self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCAmelCase__ ): a__ : List[Any] =outputs.decoder_attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowerCAmelCase__ ): a__ : Optional[int] =[t.numpy() for t in outputs.encoder_attentions] a__ : Any =[t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: a__ : Optional[int] =True a__ : List[Any] =False a__ : Any =False a__ : List[str] =model_class(lowerCAmelCase__ ) a__ : Optional[Any] =model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) a__ : Optional[int] =len(lowerCAmelCase__ ) self.assertEqual(config.output_hidden_states , lowerCAmelCase__ ) check_encoder_attentions_output(lowerCAmelCase__ ) if self.is_encoder_decoder: a__ : Union[str, Any] =model_class(lowerCAmelCase__ ) a__ : Dict =model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase__ ) check_decoder_attentions_output(lowerCAmelCase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] a__ : str =True a__ : Union[str, Any] =model_class(lowerCAmelCase__ ) a__ : Optional[Any] =model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase__ ) check_encoder_attentions_output(lowerCAmelCase__ ) # Check attention is always last and order is fine a__ : int =True a__ : Tuple =True a__ : Tuple =model_class(lowerCAmelCase__ ) a__ : Optional[Any] =model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCAmelCase__ ) ) self.assertEqual(model.config.output_hidden_states , lowerCAmelCase__ ) check_encoder_attentions_output(lowerCAmelCase__ ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' pass def _lowercase ( self ) -> str: '''simple docstring''' pass def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" return tf.constant(SCREAMING_SNAKE_CASE , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Tuple =TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here a__ : Any =_long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : int =_long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : List[str] =prepare_led_inputs_dict(model.config , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple =model(**lowerCAmelCase__ )[0] a__ : Optional[int] =(1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , lowerCAmelCase__ ) # change to expected output here a__ : Optional[int] =tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-3 ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Tuple =TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here a__ : Union[str, Any] =_long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : Dict =_long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : int =prepare_led_inputs_dict(model.config , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Optional[int] =model(**lowerCAmelCase__ )[0] a__ : Any =(1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , lowerCAmelCase__ ) # change to expected output here a__ : Dict =tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-3 , rtol=1E-3 )
95
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
0
"""simple docstring""" import gc import threading import time import psutil import torch class lowerCAmelCase__ : '''simple docstring''' def __init__( self ): _lowerCamelCase : Tuple = psutil.Process() _lowerCamelCase : Optional[int] = False def A_ ( self ): _lowerCamelCase : Tuple = -1 while True: _lowerCamelCase : List[Any] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def A_ ( self ): _lowerCamelCase : List[str] = True _lowerCamelCase : Union[str, Any] = threading.Thread(target=self.peak_monitor ) _lowerCamelCase : Optional[Any] = True self.thread.start() def A_ ( self ): _lowerCamelCase : Optional[Any] = False self.thread.join() return self.cpu_memory_peak lowercase__ = PeakCPUMemory() def _snake_case ( ): # Time _lowerCamelCase : Dict = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCamelCase : str = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _lowerCamelCase : List[Any] = torch.cuda.memory_allocated(lowercase__ ) torch.cuda.reset_peak_memory_stats() return measures def _snake_case ( lowercase__ ): # Time _lowerCamelCase : Any = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCamelCase : Dict = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 _lowerCamelCase : str = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _lowerCamelCase : List[Any] = (torch.cuda.memory_allocated(lowercase__ ) - start_measures[str(lowercase__ )]) / 2**20 _lowerCamelCase : Union[str, Any] = (torch.cuda.max_memory_allocated(lowercase__ ) - start_measures[str(lowercase__ )]) / 2**20 return measures def _snake_case ( lowercase__ , lowercase__ ): print(f'''{description}:''' ) print(f'''- Time: {measures['time']:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(f'''- GPU {i} allocated: {measures[str(lowercase__ )]:.2f}MiB''' ) _lowerCamelCase : Any = measures[f'''{i}-peak'''] print(f'''- GPU {i} peak: {peak:.2f}MiB''' ) print(f'''- CPU RAM allocated: {measures['cpu']:.2f}MiB''' ) print(f'''- CPU RAM peak: {measures['cpu-peak']:.2f}MiB''' )
96
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
0
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __snake_case = input('''Enter image url: ''').strip() print(F"""Downloading image from {url} ...""") __snake_case = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image __snake_case = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] __snake_case = requests.get(image_url).content __snake_case = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, '''wb''') as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
97
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
0
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : List[str] = logging.get_logger(__name__) lowerCAmelCase__ : Dict = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = "align_text_model" def __init__( self : Tuple ,lowerCamelCase__ : str=30_522 ,lowerCamelCase__ : Tuple=768 ,lowerCamelCase__ : Optional[Any]=12 ,lowerCamelCase__ : int=12 ,lowerCamelCase__ : Union[str, Any]=3_072 ,lowerCamelCase__ : List[Any]="gelu" ,lowerCamelCase__ : str=0.1 ,lowerCamelCase__ : Dict=0.1 ,lowerCamelCase__ : Tuple=512 ,lowerCamelCase__ : int=2 ,lowerCamelCase__ : Optional[Any]=0.0_2 ,lowerCamelCase__ : Optional[Any]=1e-12 ,lowerCamelCase__ : Any=0 ,lowerCamelCase__ : Optional[int]="absolute" ,lowerCamelCase__ : Dict=True ,**lowerCamelCase__ : Dict ,): super().__init__(**lowerCamelCase__ ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache UpperCAmelCase__ = pad_token_id @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,lowerCamelCase__ : Union[str, os.PathLike] ,**lowerCamelCase__ : List[str] ): cls._set_token_in_kwargs(lowerCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(lowerCamelCase__ ,**lowerCamelCase__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": UpperCAmelCase__ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase__ ,**lowerCamelCase__ ) class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = "align_vision_model" def __init__( self : Any ,lowerCamelCase__ : int = 3 ,lowerCamelCase__ : int = 600 ,lowerCamelCase__ : float = 2.0 ,lowerCamelCase__ : float = 3.1 ,lowerCamelCase__ : int = 8 ,lowerCamelCase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] ,lowerCamelCase__ : List[int] = [32, 16, 24, 40, 80, 112, 192] ,lowerCamelCase__ : List[int] = [16, 24, 40, 80, 112, 192, 320] ,lowerCamelCase__ : List[int] = [] ,lowerCamelCase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] ,lowerCamelCase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] ,lowerCamelCase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] ,lowerCamelCase__ : float = 0.2_5 ,lowerCamelCase__ : str = "swish" ,lowerCamelCase__ : int = 2_560 ,lowerCamelCase__ : str = "mean" ,lowerCamelCase__ : float = 0.0_2 ,lowerCamelCase__ : float = 0.0_0_1 ,lowerCamelCase__ : float = 0.9_9 ,lowerCamelCase__ : float = 0.2 ,**lowerCamelCase__ : Tuple ,): super().__init__(**lowerCamelCase__ ) UpperCAmelCase__ = num_channels UpperCAmelCase__ = image_size UpperCAmelCase__ = width_coefficient UpperCAmelCase__ = depth_coefficient UpperCAmelCase__ = depth_divisor UpperCAmelCase__ = kernel_sizes UpperCAmelCase__ = in_channels UpperCAmelCase__ = out_channels UpperCAmelCase__ = depthwise_padding UpperCAmelCase__ = strides UpperCAmelCase__ = num_block_repeats UpperCAmelCase__ = expand_ratios UpperCAmelCase__ = squeeze_expansion_ratio UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dim UpperCAmelCase__ = pooling_type UpperCAmelCase__ = initializer_range UpperCAmelCase__ = batch_norm_eps UpperCAmelCase__ = batch_norm_momentum UpperCAmelCase__ = drop_connect_rate UpperCAmelCase__ = sum(lowerCamelCase__ ) * 4 @classmethod def __lowerCAmelCase ( cls : str ,lowerCamelCase__ : Union[str, os.PathLike] ,**lowerCamelCase__ : Optional[int] ): cls._set_token_in_kwargs(lowerCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(lowerCamelCase__ ,**lowerCamelCase__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": UpperCAmelCase__ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase__ ,**lowerCamelCase__ ) class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = "align" snake_case__ = True def __init__( self : Tuple ,lowerCamelCase__ : List[str]=None ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : int=640 ,lowerCamelCase__ : List[Any]=1.0 ,lowerCamelCase__ : Optional[Any]=0.0_2 ,**lowerCamelCase__ : str ,): super().__init__(**lowerCamelCase__ ) if text_config is None: UpperCAmelCase__ = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: UpperCAmelCase__ = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) UpperCAmelCase__ = AlignTextConfig(**lowerCamelCase__ ) UpperCAmelCase__ = AlignVisionConfig(**lowerCamelCase__ ) UpperCAmelCase__ = projection_dim UpperCAmelCase__ = temperature_init_value UpperCAmelCase__ = initializer_range @classmethod def __lowerCAmelCase ( cls : str ,lowerCamelCase__ : AlignTextConfig ,lowerCamelCase__ : AlignVisionConfig ,**lowerCamelCase__ : Optional[int] ): return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : str ): UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ = self.text_config.to_dict() UpperCAmelCase__ = self.vision_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
98
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
0
def A_ ( A__ ) -> bool: if not isinstance(A__ , A__ ): a__ : List[str] = F'Input value of [number={number}] must be an integer' raise TypeError(A__ ) if number < 0: return False a__ : int = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
99
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
0
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 100 ): __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = n + 1 # maximum limit for a in range(2 , UpperCamelCase_ ): for b in range(2 , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = a**b # calculates the current power collect_powers.add(UpperCamelCase_ ) # adds the result to the set return len(UpperCamelCase_ ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
100
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() def A__ ( self): lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') lowercase = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase , lowercase = FlaxStableDiffusionInpaintPipeline.from_pretrained(A__ ,safety_checker=A__) lowercase = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase = jax.random.PRNGKey(0) lowercase = 5_0 lowercase = jax.device_count() lowercase = num_samples * [prompt] lowercase = num_samples * [init_image] lowercase = num_samples * [mask_image] lowercase , lowercase , lowercase = pipeline.prepare_inputs(A__ ,A__ ,A__) # shard inputs and rng lowercase = replicate(A__) lowercase = jax.random.split(A__ ,jax.device_count()) lowercase = shard(A__) lowercase = shard(A__) lowercase = shard(A__) lowercase = pipeline( A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,jit=A__) lowercase = output.images.reshape(A__ ,5_1_2 ,5_1_2 ,3) lowercase = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase = jnp.asarray(jax.device_get(image_slice.flatten())) lowercase = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084]) print(f'output_slice: {output_slice}') assert jnp.abs(output_slice - expected_slice).max() < 1E-2
101
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
0
"""simple docstring""" def lowercase ( _snake_case : list[list[int]] , _snake_case : int , _snake_case : int , _snake_case : set ) ->int: """simple docstring""" __snake_case , __snake_case : Optional[Any] = len(_snake_case ), len(grid[0] ) if ( min(_snake_case , _snake_case ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __snake_case : Tuple = 0 count += depth_first_search(_snake_case , row + 1 , _snake_case , _snake_case ) count += depth_first_search(_snake_case , row - 1 , _snake_case , _snake_case ) count += depth_first_search(_snake_case , _snake_case , col + 1 , _snake_case ) count += depth_first_search(_snake_case , _snake_case , col - 1 , _snake_case ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
102
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
0
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 A__ : str = data_utils.TransfoXLTokenizer A__ : Any = data_utils.TransfoXLCorpus A__ : str = data_utils A__ : int = data_utils def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : List[Any] ,__UpperCamelCase : str ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__UpperCamelCase ,'''rb''' ) as fp: lowerCAmelCase_ : Union[str, Any] = pickle.load(__UpperCamelCase ,encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowerCAmelCase_ : List[str] = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" ) lowerCAmelCase_ : Union[str, Any] = corpus.vocab.__dict__ torch.save(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' ,__UpperCamelCase ) lowerCAmelCase_ : List[Any] = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(f"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(__UpperCamelCase ,__UpperCamelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowerCAmelCase_ : Optional[Any] = os.path.abspath(__UpperCamelCase ) lowerCAmelCase_ : Dict = os.path.abspath(__UpperCamelCase ) print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": lowerCAmelCase_ : str = TransfoXLConfig() else: lowerCAmelCase_ : int = TransfoXLConfig.from_json_file(__UpperCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase_ : Optional[int] = TransfoXLLMHeadModel(__UpperCamelCase ) lowerCAmelCase_ : List[Any] = load_tf_weights_in_transfo_xl(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Save pytorch-model lowerCAmelCase_ : str = os.path.join(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase_ : List[str] = os.path.join(__UpperCamelCase ,__UpperCamelCase ) print(f"""Save PyTorch model to {os.path.abspath(__UpperCamelCase )}""" ) torch.save(model.state_dict() ,__UpperCamelCase ) print(f"""Save configuration file to {os.path.abspath(__UpperCamelCase )}""" ) with open(__UpperCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) A__ : Union[str, Any] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
103
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
0
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] __lowercase = [2, 4, 6, 8, 1_0, 1_2] __lowercase = 1_0_0 self.assertEqual(kp.calc_profit(lowercase__ ,lowercase__ ,lowercase__ ) ,2_1_0 ) def SCREAMING_SNAKE_CASE ( self : List[str] ): self.assertRaisesRegex(lowercase__ ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE ( self : Any ): self.assertRaisesRegex(lowercase__ ,'''Weight can not be negative.''' ) def SCREAMING_SNAKE_CASE ( self : str ): self.assertRaisesRegex(lowercase__ ,'''Profit can not be negative.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.assertRaisesRegex(lowercase__ ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): self.assertRaisesRegex( lowercase__ ,'''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
104
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
0
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights a : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ) a : Dict = [t[-1] for t in os.walk(os.path.join(lowerCAmelCase__ , os.listdir(lowerCAmelCase__ )[0] , "snapshots" ) )] a : Any = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> int: a, a : Any = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowerCAmelCase__ ) a : List[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a : int = jax.random.PRNGKey(0 ) a : Dict = 4 a : List[str] = jax.device_count() a : Optional[Any] = num_samples * [prompt] a : str = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng a : Tuple = replicate(lowerCAmelCase__ ) a : Optional[Any] = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) a : Optional[int] = shard(lowerCAmelCase__ ) a : List[Any] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1E-3 assert np.abs(np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 49_947.875 ) < 5E-1 a : Optional[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCAmelCase__ ) == num_samples def __a ( self ) -> Optional[Any]: a, a : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowerCAmelCase__ ) a : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a : Dict = jax.random.PRNGKey(0 ) a : List[Any] = 50 a : Optional[int] = jax.device_count() a : List[str] = num_samples * [prompt] a : str = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng a : Tuple = replicate(lowerCAmelCase__ ) a : Optional[int] = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) a : int = shard(lowerCAmelCase__ ) a : int = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 2_383_808.2) ) < 5E-1 def __a ( self ) -> int: a, a : Tuple = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ ) a : str = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a : int = jax.random.PRNGKey(0 ) a : Union[str, Any] = 50 a : str = jax.device_count() a : str = num_samples * [prompt] a : Union[str, Any] = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng a : Any = replicate(lowerCAmelCase__ ) a : List[str] = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) a : Optional[int] = shard(lowerCAmelCase__ ) a : Tuple = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def __a ( self ) -> Optional[int]: a, a : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) a : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a : Optional[int] = jax.random.PRNGKey(0 ) a : Optional[Any] = 50 a : List[str] = jax.device_count() a : Optional[int] = num_samples * [prompt] a : int = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng a : Union[str, Any] = replicate(lowerCAmelCase__ ) a : Optional[int] = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) a : Tuple = shard(lowerCAmelCase__ ) a : List[Any] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def __a ( self ) -> Dict: a : List[str] = FlaxDDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , ) a, a : str = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) a : Union[str, Any] = scheduler.create_state() a : Tuple = scheduler_state a : List[str] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a : List[str] = jax.random.PRNGKey(0 ) a : List[str] = 50 a : Dict = jax.device_count() a : Tuple = num_samples * [prompt] a : Optional[int] = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng a : Optional[int] = replicate(lowerCAmelCase__ ) a : Optional[Any] = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) a : Union[str, Any] = shard(lowerCAmelCase__ ) a : Tuple = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 2_347_693.5) ) < 5E-1 def __a ( self ) -> str: a : Dict = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a : List[str] = jax.device_count() a : Any = num_samples * [prompt] a : Optional[int] = jax.random.split(jax.random.PRNGKey(0 ) , lowerCAmelCase__ ) a, a : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ , ) a : Optional[int] = replicate(lowerCAmelCase__ ) a : Dict = pipeline.prepare_inputs(lowerCAmelCase__ ) a : int = shard(lowerCAmelCase__ ) a : str = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) a : Any = images[2, 0, 256, 10:17, 1] # With memory efficient attention a, a : List[str] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ , use_memory_efficient_attention=lowerCAmelCase__ , ) a : Optional[int] = replicate(lowerCAmelCase__ ) a : Union[str, Any] = pipeline.prepare_inputs(lowerCAmelCase__ ) a : Any = shard(lowerCAmelCase__ ) a : List[str] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) a : Union[str, Any] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
105
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
0
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = FlaxAutoencoderKL @property def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Dict = 3 lowerCAmelCase__ : str = (3_2, 3_2) lowerCAmelCase__ : str = jax.random.PRNGKey(0 ) lowerCAmelCase__ : str = jax.random.uniform(lowercase_ ,((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Tuple = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } lowerCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict
106
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowerCAmelCase : str = Lock() def __magic_name__ ( A : Optional[Any], A : Any, A : Union[str, Any], A : List[str], A : int, A : Optional[int], A : Dict ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0, 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() a = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left a = min(A, A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() a = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right a = max(A, A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A : int ): '''simple docstring''' a = [] a = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop a = Pipe() a = Pipe() process_array_.append( Process( target=A, args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]), ) ) a = temp_rs a = temp_rr for i in range(1, len(A ) - 1 ): a = Pipe() a = Pipe() process_array_.append( Process( target=A, args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]), ) ) a = temp_rs a = temp_rr process_array_.append( Process( target=A, args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ), ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0, len(A ) ): a = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ): '''simple docstring''' a = list(range(10, 0, -1 ) ) print("Initial List" ) print(*A ) a = odd_even_transposition(A ) print("Sorted List\n" ) print(*A ) if __name__ == "__main__": main()
107
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
0
"""simple docstring""" from math import ceil def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = list(range(0 , SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : Union[str, Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowerCAmelCase : Optional[Any] = [] for i in device_map_blocks: if device_map_blocks.count(SCREAMING_SNAKE_CASE ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(SCREAMING_SNAKE_CASE ) # Missing blocks lowerCAmelCase : Any = [i for i in blocks if i not in device_map_blocks] lowerCAmelCase : Any = [i for i in device_map_blocks if i not in blocks] if len(SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : List[Any] = list(range(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : Union[str, Any] = int(ceil(n_layers / len(SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase : int = [layers[i : i + n_blocks] for i in range(0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )] return dict(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
108
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging A: Any = logging.get_logger(__name__) A: str = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Tuple = 'perceiver' def __init__( self , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=26 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="kv" , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=262 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=56 , _SCREAMING_SNAKE_CASE=[368, 496] , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=1920 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 16, 224, 224] , **_SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = num_latents UpperCAmelCase : Any = d_latents UpperCAmelCase : Any = d_model UpperCAmelCase : int = num_blocks UpperCAmelCase : Optional[Any] = num_self_attends_per_block UpperCAmelCase : Any = num_self_attention_heads UpperCAmelCase : Dict = num_cross_attention_heads UpperCAmelCase : Dict = qk_channels UpperCAmelCase : Union[str, Any] = v_channels UpperCAmelCase : Tuple = cross_attention_shape_for_attention UpperCAmelCase : Union[str, Any] = self_attention_widening_factor UpperCAmelCase : int = cross_attention_widening_factor UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : Tuple = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Union[str, Any] = layer_norm_eps UpperCAmelCase : Dict = use_query_residual # masked language modeling attributes UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[int] = max_position_embeddings # image classification attributes UpperCAmelCase : Optional[Any] = image_size # flow attributes UpperCAmelCase : str = train_size # multimodal autoencoding attributes UpperCAmelCase : Any = num_frames UpperCAmelCase : Optional[int] = audio_samples_per_frame UpperCAmelCase : Union[str, Any] = samples_per_patch UpperCAmelCase : List[Any] = output_shape class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def SCREAMING_SNAKE_CASE ( self ) -> float: '''simple docstring''' return 1E-4 def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 40 , _SCREAMING_SNAKE_CASE = 40 , ) -> Mapping[str, Any]: '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase : Optional[Any] = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase : Any = preprocessor.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase : List[str] = [""" """.join(["""a"""] ) * seq_length] * batch_size UpperCAmelCase : Optional[int] = dict(preprocessor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Optional[Any] = inputs.pop("""input_ids""" ) return inputs elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase : Union[str, Any] = compute_effective_axis_dimension(_SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase : List[Any] = self._generate_dummy_images(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = dict(preprocessor(images=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Optional[int] = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
109
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Optional[Any] ): snake_case_ : Union[str, Any] = tempfile.mkdtemp() # fmt: off snake_case_ : int = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on snake_case_ : Union[str, Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) snake_case_ : int = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] snake_case_ : Any = {'''unk_token''': '''<unk>'''} snake_case_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) snake_case_ : List[Any] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } snake_case_ : Dict = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self : List[Any] , **lowercase_ : Optional[int] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **_UpperCAmelCase ) def _snake_case ( self : str , **lowercase_ : Optional[int] ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **_UpperCAmelCase ) def _snake_case ( self : List[str] , **lowercase_ : int ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self : Dict ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Optional[Any] ): snake_case_ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ : str = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Optional[int] ): snake_case_ : Dict = self.get_tokenizer() snake_case_ : List[Any] = self.get_rust_tokenizer() snake_case_ : str = self.get_image_processor() snake_case_ : Tuple = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) snake_case_ : Tuple = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) snake_case_ : Tuple = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) snake_case_ : List[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def _snake_case ( self : int ): snake_case_ : List[str] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Tuple = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) snake_case_ : Optional[int] = self.get_image_processor(do_normalize=_UpperCAmelCase ) snake_case_ : Union[str, Any] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_UpperCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def _snake_case ( self : int ): snake_case_ : Optional[int] = self.get_image_processor() snake_case_ : Any = self.get_tokenizer() snake_case_ : Union[str, Any] = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) snake_case_ : int = self.prepare_image_inputs() snake_case_ : Any = image_processor(_UpperCAmelCase , return_tensors='''np''' ) snake_case_ : List[str] = processor(images=_UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self : Tuple ): snake_case_ : Union[str, Any] = self.get_image_processor() snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : str = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) snake_case_ : int = '''lower newer''' snake_case_ : Optional[Any] = processor(text=_UpperCAmelCase , return_tensors='''np''' ) snake_case_ : Tuple = tokenizer(_UpperCAmelCase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case ( self : Optional[Any] ): snake_case_ : str = self.get_image_processor() snake_case_ : Dict = self.get_tokenizer() snake_case_ : List[Any] = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) snake_case_ : Dict = '''lower newer''' snake_case_ : List[str] = self.prepare_image_inputs() snake_case_ : str = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def _snake_case ( self : Union[str, Any] ): snake_case_ : Dict = '''google/owlvit-base-patch32''' snake_case_ : List[str] = OwlViTProcessor.from_pretrained(_UpperCAmelCase ) snake_case_ : Any = ['''cat''', '''nasa badge'''] snake_case_ : Dict = processor(text=_UpperCAmelCase ) snake_case_ : Optional[int] = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def _snake_case ( self : int ): snake_case_ : List[Any] = '''google/owlvit-base-patch32''' snake_case_ : List[Any] = OwlViTProcessor.from_pretrained(_UpperCAmelCase ) snake_case_ : Tuple = [['''cat''', '''nasa badge'''], ['''person''']] snake_case_ : Dict = processor(text=_UpperCAmelCase ) snake_case_ : int = 16 snake_case_ : List[str] = len(_UpperCAmelCase ) snake_case_ : Optional[Any] = max([len(_UpperCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def _snake_case ( self : Any ): snake_case_ : Any = '''google/owlvit-base-patch32''' snake_case_ : Optional[int] = OwlViTProcessor.from_pretrained(_UpperCAmelCase ) snake_case_ : Dict = ['''cat''', '''nasa badge'''] snake_case_ : int = processor(text=_UpperCAmelCase ) snake_case_ : Optional[int] = 16 snake_case_ : Optional[Any] = inputs['''input_ids'''] snake_case_ : Any = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case ( self : Dict ): snake_case_ : Optional[Any] = self.get_image_processor() snake_case_ : Optional[Any] = self.get_tokenizer() snake_case_ : Optional[Any] = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) snake_case_ : Any = self.prepare_image_inputs() snake_case_ : List[Any] = self.prepare_image_inputs() snake_case_ : str = processor(images=_UpperCAmelCase , query_images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def _snake_case ( self : List[Any] ): snake_case_ : List[str] = self.get_image_processor() snake_case_ : Optional[Any] = self.get_tokenizer() snake_case_ : str = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) snake_case_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : str = processor.batch_decode(_UpperCAmelCase ) snake_case_ : List[str] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
264
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
0
'''simple docstring''' from ....utils import logging a__ : str = logging.get_logger(__name__) class lowercase_ ( UpperCAmelCase__ ): def __init__( self , a , a=None , a=20_48 ): UpperCamelCase__ = config.__dict__ UpperCamelCase__ = modal_hidden_size if num_labels: UpperCamelCase__ = num_labels
80
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __lowercase ( __lowercase , __lowercase , __lowercase=None , __lowercase=None ) -> Union[str, Any]: '''simple docstring''' if attention_mask is None: _A = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _UpperCAmelCase : """simple docstring""" snake_case = OPTConfig snake_case = {} snake_case = '''gelu''' def __init__( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any=13 , __UpperCAmelCase : Union[str, Any]=7 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[Any]=99 , __UpperCAmelCase : str=16 , __UpperCAmelCase : int=2 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : Tuple="gelu" , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Dict=20 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : Any=1 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Any=16 , __UpperCAmelCase : Tuple=16 , ): '''simple docstring''' _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = eos_token_id _A = pad_token_id _A = bos_token_id _A = embed_dim _A = word_embed_proj_dim _A = False def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A = tf.concat([input_ids, eos_tensor] , axis=1 ) _A = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_UpperCAmelCase , **self.config_updates , ) _A = prepare_opt_inputs_dict(_UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' _A = TFOPTModel(config=_UpperCAmelCase ) _A = inputs_dict["input_ids"] _A = input_ids[:1, :] _A = inputs_dict["attention_mask"][:1, :] _A = 1 # first forward pass _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) _A , _A = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _A = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _A = tf.concat([input_ids, next_tokens] , axis=-1 ) _A = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _A = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _A = output_from_no_past[:, -3:, random_slice_idx] _A = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-3 ) @require_tf class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" snake_case = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () snake_case = (TFOPTForCausalLM,) if is_tf_available() else () snake_case = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) snake_case = False snake_case = False snake_case = False snake_case = 10 def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = TFOPTModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__UpperCAmelCase : Optional[int] , __UpperCAmelCase : int ): if hasattr(_UpperCAmelCase , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_UpperCAmelCase , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _A = model_class(config=_UpperCAmelCase ) _A = _get_word_embedding_weight(_UpperCAmelCase , model.get_input_embeddings() ) _A = _get_word_embedding_weight(_UpperCAmelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_UpperCAmelCase ) _A = _get_word_embedding_weight(_UpperCAmelCase , model.get_input_embeddings() ) _A = _get_word_embedding_weight(_UpperCAmelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _A = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _UpperCAmelCase ) # check that weights remain the same after resizing _A = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _A = False self.assertTrue(_UpperCAmelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _UpperCAmelCase ) _A = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _A = False self.assertTrue(_UpperCAmelCase ) def __lowercase ( __lowercase ) -> List[str]: '''simple docstring''' return tf.constant(__lowercase , dtype=tf.intaa ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case = 99 def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _A = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _A = input_ids.shape[0] _A = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = TFOPTModel.from_pretrained("facebook/opt-350m" ) _A = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _A = tf.not_equal(_UpperCAmelCase , model.config.pad_token_id ) with tf.GradientTape(): _A = model(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ).last_hidden_state _A = (1, 11, 512) self.assertEqual(output.shape , _UpperCAmelCase ) _A = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=4E-3 ) ) _A = tf.function(_UpperCAmelCase , jit_compile=_UpperCAmelCase ) _A = xla_generate(_UpperCAmelCase , _UpperCAmelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=4E-2 ) ) @require_tf @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' super().setUp() _A = "facebook/opt-350m" def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = TFOPTForCausalLM.from_pretrained(self.path_model ) _A = GPTaTokenizer.from_pretrained(self.path_model ) _A = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _A = tokenizer(_UpperCAmelCase , return_tensors="tf" , padding=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _A = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _A = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-4 ) ) _A = tf.function(_UpperCAmelCase , jit_compile=_UpperCAmelCase ) _A = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-4 ) ) @require_tf @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = "facebook/opt-125m" _A = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _A = [] _A = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) _A = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) for prompt in self.prompts: _A = tokenizer(_UpperCAmelCase , return_tensors="tf" ).input_ids _A = model.generate(_UpperCAmelCase , max_length=10 ) _A = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = "facebook/opt-350m" _A = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) _A = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) _A = "left" # use different length sentences to test batching _A = [ "Hello, my dog is a little", "Today, I", ] _A = tokenizer(_UpperCAmelCase , return_tensors="tf" , padding=_UpperCAmelCase ) _A = inputs["input_ids"] _A = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs["attention_mask"] ) _A = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _A = model.generate(input_ids=_UpperCAmelCase ) _A = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) _A = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _A = model.generate(input_ids=_UpperCAmelCase , max_length=model.config.max_length - num_paddings ) _A = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) _A = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase ) _A = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase ) _A = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = "facebook/opt-350m" _A = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _A = [] _A = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) _A = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) for prompt in self.prompts: _A = tokenizer(_UpperCAmelCase , return_tensors="tf" ).input_ids _A = model.generate(_UpperCAmelCase , max_length=10 ) _A = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
79
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
0
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 1_0, """max_num_jobs""": 1}, [range(1_0 )]), ({"""num_shards""": 1_0, """max_num_jobs""": 1_0}, [range(lowercase__ , i + 1 ) for i in range(1_0 )]), ({"""num_shards""": 1, """max_num_jobs""": 1_0}, [range(1 )]), ({"""num_shards""": 1_0, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 1_0 )]), ({"""num_shards""": 3, """max_num_jobs""": 1_0}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _snake_case ( lowercase__ : Any , lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ :Dict = _distribute_shards(**lowercase__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 1_0, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def _snake_case ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Union[str, Any] ) -> int: '''simple docstring''' lowerCAmelCase_ :Any = _split_gen_kwargs(lowercase__ , lowercase__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def _snake_case ( lowercase__ : str , lowercase__ : Tuple ) -> List[Any]: '''simple docstring''' if expected is RuntimeError: with pytest.raises(lowercase__ ): _number_of_shards_in_gen_kwargs(lowercase__ ) else: lowerCAmelCase_ :List[str] = _number_of_shards_in_gen_kwargs(lowercase__ ) assert out == expected
84
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> int: __lowerCamelCase = 384 if "tiny" in model_name: __lowerCamelCase = [3, 3, 9, 3] __lowerCamelCase = [96, 192, 384, 768] if "small" in model_name: __lowerCamelCase = [3, 3, 27, 3] __lowerCamelCase = [96, 192, 384, 768] if "base" in model_name: __lowerCamelCase = [3, 3, 27, 3] __lowerCamelCase = [128, 256, 512, 1024] __lowerCamelCase = 512 if "large" in model_name: __lowerCamelCase = [3, 3, 27, 3] __lowerCamelCase = [192, 384, 768, 1536] __lowerCamelCase = 768 if "xlarge" in model_name: __lowerCamelCase = [3, 3, 27, 3] __lowerCamelCase = [256, 512, 1024, 2048] __lowerCamelCase = 1024 # set label information __lowerCamelCase = 150 __lowerCamelCase = '''huggingface/label-files''' __lowerCamelCase = '''ade20k-id2label.json''' __lowerCamelCase = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) __lowerCamelCase = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = ConvNextConfig( depths=__lowerCAmelCase , hidden_sizes=__lowerCAmelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __lowerCamelCase = UperNetConfig( backbone_config=__lowerCAmelCase , auxiliary_in_channels=__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase , ) return config def __magic_name__ ( __lowerCAmelCase : str ) -> Optional[Any]: __lowerCamelCase = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> Any: __lowerCamelCase = dct.pop(__lowerCAmelCase ) __lowerCamelCase = val def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ) -> int: __lowerCamelCase = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } __lowerCamelCase = model_name_to_url[model_name] __lowerCamelCase = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='''cpu''' )['''state_dict'''] __lowerCamelCase = get_upernet_config(__lowerCAmelCase ) __lowerCamelCase = UperNetForSemanticSegmentation(__lowerCAmelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(__lowerCAmelCase ) if "bn" in key: __lowerCamelCase = key.replace('''bn''' , '''batch_norm''' ) __lowerCamelCase = val # rename keys __lowerCamelCase = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) # verify on image __lowerCamelCase = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' __lowerCamelCase = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('''RGB''' ) __lowerCamelCase = SegformerImageProcessor() __lowerCamelCase = processor(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): __lowerCamelCase = model(__lowerCAmelCase ) if model_name == "upernet-convnext-tiny": __lowerCamelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __lowerCamelCase = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __lowerCamelCase = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __lowerCamelCase = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __lowerCamelCase = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[F'upernet-convnext-{size}' for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE__ : int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
270
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowercase (UpperCAmelCase__ ): _UpperCamelCase = ["""image_processor""", """tokenizer"""] _UpperCamelCase = """OwlViTImageProcessor""" _UpperCamelCase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , A_=None , A_=None , **A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : int = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _UpperCAmelCase , ) __lowerCAmelCase : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __lowerCAmelCase : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , A_=None , A_=None , A_=None , A_="max_length" , A_="np" , **A_ ) ->int: '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ) or (isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not isinstance(text[0] , _UpperCAmelCase )): __lowerCAmelCase : List[str] = [self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )] elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(text[0] , _UpperCAmelCase ): __lowerCAmelCase : str = [] # Maximum number of queries across batch __lowerCAmelCase : Dict = max([len(_UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_UpperCAmelCase ) != max_num_queries: __lowerCAmelCase : Tuple = t + [''' '''] * (max_num_queries - len(_UpperCAmelCase )) __lowerCAmelCase : Any = self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) encodings.append(_UpperCAmelCase ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": __lowerCAmelCase : Tuple = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __lowerCAmelCase : Dict = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __lowerCAmelCase : Optional[Any] = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __lowerCAmelCase : int = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __lowerCAmelCase : int = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) __lowerCAmelCase : Dict = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __lowerCAmelCase : Tuple = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __lowerCAmelCase : int = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) __lowerCAmelCase : Any = BatchEncoding() __lowerCAmelCase : Union[str, Any] = input_ids __lowerCAmelCase : Optional[Any] = attention_mask if query_images is not None: __lowerCAmelCase : List[Any] = BatchEncoding() __lowerCAmelCase : List[str] = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ).pixel_values __lowerCAmelCase : List[str] = query_pixel_values if images is not None: __lowerCAmelCase : Tuple = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: __lowerCAmelCase : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __lowerCAmelCase : Optional[int] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def UpperCamelCase__ ( self , *A_ , **A_ ) ->List[str]: '''simple docstring''' return self.image_processor.post_process(*_UpperCAmelCase , **_UpperCAmelCase ) def UpperCamelCase__ ( self , *A_ , **A_ ) ->Any: '''simple docstring''' return self.image_processor.post_process_object_detection(*_UpperCAmelCase , **_UpperCAmelCase ) def UpperCamelCase__ ( self , *A_ , **A_ ) ->str: '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*_UpperCAmelCase , **_UpperCAmelCase ) def UpperCamelCase__ ( self , *A_ , **A_ ) ->List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def UpperCamelCase__ ( self , *A_ , **A_ ) ->Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _UpperCAmelCase , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _UpperCAmelCase , ) return self.image_processor
275
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
0
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
335
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
0
"""simple docstring""" def snake_case_ ( A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Any = [0] * len(A_ ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Tuple = [1] * len(A_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(A_ ) ): if indegree[i] == 0: queue.append(A_ ) while queue: _lowerCamelCase : Union[str, Any] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _lowerCamelCase : Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(A_ ) print(max(A_ ) ) # Adjacency list of Graph lowerCAmelCase__ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
72
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer a__ = ['bert-base-uncased', 'bert-base-cased'] a__ = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class UpperCAmelCase_ ( tf.keras.Model ): """simple docstring""" def __init__( self , _a ) -> Any: super().__init__() _a : Dict = tokenizer _a : List[str] = AutoConfig.from_pretrained(_UpperCAmelCase ) _a : Union[str, Any] = TFAutoModel.from_config(_UpperCAmelCase ) def __lowercase ( self , _a ) -> Union[str, Any]: _a : Union[str, Any] = self.tokenizer(_UpperCAmelCase ) _a : str = self.bert(**_UpperCAmelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Any: super().setUp() _a : Dict = [ BertTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _a : Tuple = [TFBertTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_UpperCAmelCase , use_fast_bert_tokenizer=_UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _a : str = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] _a : Dict = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __lowercase ( self ) -> List[str]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): _a : int = tokenizer(_UpperCAmelCase , return_tensors='''tf''' , padding='''longest''' ) _a : List[str] = tf_tokenizer(_UpperCAmelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def __lowercase ( self ) -> Tuple: for tf_tokenizer in self.tf_tokenizers: _a : Optional[Any] = tf_tokenizer(self.paired_sentences ) _a : str = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def __lowercase ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: _a : Union[str, Any] = tf.function(_UpperCAmelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): _a : Union[str, Any] = tf.constant(_UpperCAmelCase ) _a : List[str] = compiled_tokenizer(_UpperCAmelCase ) _a : Optional[int] = tf_tokenizer(_UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __lowercase ( self ) -> Tuple: for tf_tokenizer in self.tf_tokenizers: _a : Optional[Any] = ModelToSave(tokenizer=_UpperCAmelCase ) _a : Tuple = tf.convert_to_tensor(self.test_sentences ) _a : Any = model(_UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _a : Any = Path(_UpperCAmelCase ) / '''saved.model''' model.save(_UpperCAmelCase ) _a : Optional[int] = tf.keras.models.load_model(_UpperCAmelCase ) _a : Optional[int] = loaded_model(_UpperCAmelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
235
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ : Dict = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } UpperCamelCase__ : List[Any] = { 'camembert-base': 5_12, } UpperCamelCase__ : str = '▁' class _UpperCamelCase ( UpperCAmelCase__ ): '''simple docstring''' _A : Union[str, Any] = VOCAB_FILES_NAMES _A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _A : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Dict = ['''input_ids''', '''attention_mask'''] _A : Union[str, Any] = CamembertTokenizer def __init__( self : Union[str, Any] , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Dict="<s>" , lowerCAmelCase__ : Any="</s>" , lowerCAmelCase__ : List[Any]="</s>" , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : Optional[int]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Optional[Any]=["<s>NOTUSED", "</s>NOTUSED"] , **lowerCAmelCase__ : Any , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __SCREAMING_SNAKE_CASE : Dict = vocab_file __SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.cls_token_id] __SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __SCREAMING_SNAKE_CASE : Any = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
112
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ ): __magic_name__: Any = "realm" def __init__( self : Any , _A : Tuple=30522 , _A : Optional[Any]=768 , _A : Optional[Any]=128 , _A : Optional[int]=12 , _A : Any=12 , _A : List[Any]=8 , _A : List[str]=3072 , _A : Any="gelu_new" , _A : Union[str, Any]=0.1 , _A : Union[str, Any]=0.1 , _A : Optional[Any]=512 , _A : Union[str, Any]=2 , _A : Optional[Any]=0.0_2 , _A : Dict=1E-12 , _A : List[Any]=256 , _A : Optional[int]=10 , _A : Union[str, Any]=1E-3 , _A : int=5 , _A : str=320 , _A : str=13353718 , _A : List[Any]=5000 , _A : Optional[Any]=1 , _A : str=0 , _A : Tuple=2 , **_A : List[Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) # Common config snake_case_ : Union[str, Any] = vocab_size snake_case_ : Tuple = max_position_embeddings snake_case_ : List[Any] = hidden_size snake_case_ : Tuple = retriever_proj_size snake_case_ : str = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Optional[int] = num_candidates snake_case_ : int = intermediate_size snake_case_ : str = hidden_act snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Any = initializer_range snake_case_ : Dict = type_vocab_size snake_case_ : Any = layer_norm_eps # Reader config snake_case_ : str = span_hidden_size snake_case_ : Optional[int] = max_span_width snake_case_ : Optional[int] = reader_layer_norm_eps snake_case_ : List[Any] = reader_beam_size snake_case_ : Optional[int] = reader_seq_len # Retrieval config snake_case_ : List[str] = num_block_records snake_case_ : List[str] = searcher_beam_size
327
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase): _lowerCAmelCase : List[str] = KandinskyVaaInpaintPipeline _lowerCAmelCase : Optional[int] = ["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _lowerCAmelCase : Tuple = [ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _lowerCAmelCase : Dict = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCAmelCase : int = False @property def _snake_case ( self : Tuple ): return 32 @property def _snake_case ( self : List[str] ): return 32 @property def _snake_case ( self : Dict ): return self.time_input_dim @property def _snake_case ( self : List[str] ): return self.time_input_dim * 4 @property def _snake_case ( self : Optional[int] ): return 100 @property def _snake_case ( self : Dict ): torch.manual_seed(0 ) snake_case_ : str = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } snake_case_ : Tuple = UNetaDConditionModel(**_UpperCAmelCase ) return model @property def _snake_case ( self : int ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _snake_case ( self : Tuple ): torch.manual_seed(0 ) snake_case_ : Any = VQModel(**self.dummy_movq_kwargs ) return model def _snake_case ( self : int ): snake_case_ : Dict = self.dummy_unet snake_case_ : Any = self.dummy_movq snake_case_ : int = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_UpperCAmelCase , ) snake_case_ : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _snake_case ( self : Optional[int] , lowercase_ : int , lowercase_ : List[Any]=0 ): snake_case_ : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) snake_case_ : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCAmelCase ) # create init_image snake_case_ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) snake_case_ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ : Tuple = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create mask snake_case_ : Any = np.ones((64, 64) , dtype=np.floataa ) snake_case_ : Dict = 0 if str(_UpperCAmelCase ).startswith('''mps''' ): snake_case_ : List[Any] = torch.manual_seed(_UpperCAmelCase ) else: snake_case_ : Union[str, Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) snake_case_ : List[str] = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def _snake_case ( self : Optional[int] ): snake_case_ : Any = '''cpu''' snake_case_ : Union[str, Any] = self.get_dummy_components() snake_case_ : Any = self.pipeline_class(**_UpperCAmelCase ) snake_case_ : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ : int = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) snake_case_ : Tuple = output.images snake_case_ : Tuple = pipe( **self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) snake_case_ : Any = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def _snake_case ( self : int ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : int ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): snake_case_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) snake_case_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) snake_case_ : int = np.ones((768, 768) , dtype=np.floataa ) snake_case_ : Optional[int] = 0 snake_case_ : Optional[Any] = '''a hat''' snake_case_ : int = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCAmelCase ) snake_case_ : Tuple = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) snake_case_ : Tuple = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case_, snake_case_ : Tuple = pipe_prior( _UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() snake_case_ : Optional[int] = pipeline( image=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) snake_case_ : int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
264
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
0
'''simple docstring''' import argparse from collections import defaultdict import yaml a__ : int = 'docs/source/en/_toctree.yml' def _UpperCamelCase ( __A ) -> List[str]: '''simple docstring''' UpperCamelCase__ = defaultdict(__A ) for doc in model_doc: counts[doc["local"]] += 1 UpperCamelCase__ = [key for key, value in counts.items() if value > 1] UpperCamelCase__ = [] for duplicate_key in duplicates: UpperCamelCase__ = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(__A ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(__A , key=lambda __A : s["title"].lower() ) def _UpperCamelCase ( __A=False ) -> Tuple: '''simple docstring''' with open(__A , encoding="utf-8" ) as f: UpperCamelCase__ = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ = content[api_idx]["sections"] # Then to the model doc UpperCamelCase__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCamelCase__ = api_doc[model_idx]["sections"] UpperCamelCase__ = [(idx, section) for idx, section in enumerate(__A ) if "sections" in section] UpperCamelCase__ = False for idx, modality_doc in modalities_docs: UpperCamelCase__ = modality_doc["sections"] UpperCamelCase__ = clean_model_doc_toc(__A ) if old_modality_doc != new_modality_doc: UpperCamelCase__ = True if overwrite: UpperCamelCase__ = new_modality_doc if diff: if overwrite: UpperCamelCase__ = model_doc UpperCamelCase__ = api_doc with open(__A , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__A , allow_unicode=__A ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a__ : Any = parser.parse_args() check_model_doc(args.fix_and_overwrite)
80
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
0
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowerCamelCase_ = 10 def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase ) -> int: '''simple docstring''' for i in range(__lowercase , __lowercase ): if array[i] == target: return i return -1 def __lowercase ( __lowercase , __lowercase ) -> int: '''simple docstring''' _A = 0 _A = len(__lowercase ) while left <= right: if right - left < precision: return lin_search(__lowercase , __lowercase , __lowercase , __lowercase ) _A = (left + right) // 3 + 1 _A = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _A = one_third - 1 elif array[two_third] < target: _A = two_third + 1 else: _A = one_third + 1 _A = two_third - 1 else: return -1 def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(__lowercase , __lowercase , __lowercase , __lowercase ) _A = (left + right) // 3 + 1 _A = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__lowercase , one_third - 1 , __lowercase , __lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __lowercase , __lowercase , __lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __lowercase , __lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = input('''Enter numbers separated by comma:\n''').strip() lowerCamelCase_ = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowerCamelCase_ = int(input('''Enter the number to be found in the list:\n''').strip()) lowerCamelCase_ = ite_ternary_search(collection, target) lowerCamelCase_ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print('''Not found''')
79
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase = 16 __UpperCAmelCase = 32 def _snake_case ( lowercase__ : Accelerator , lowercase__ : int = 1_6 , lowercase__ : str = "bert-base-cased" ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :List[str] = AutoTokenizer.from_pretrained(lowercase__ ) lowerCAmelCase_ :Tuple = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ : Dict ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ :Tuple = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase_ :Union[str, Any] = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ :List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding="""max_length""" , max_length=1_2_8 , return_tensors="""pt""" ) return tokenizer.pad(lowercase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase_ :Any = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) lowerCAmelCase_ :int = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def _snake_case ( lowercase__ : str , lowercase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ :List[Any] = config["""lr"""] lowerCAmelCase_ :Optional[Any] = int(config["""num_epochs"""] ) lowerCAmelCase_ :str = int(config["""seed"""] ) lowerCAmelCase_ :Dict = int(config["""batch_size"""] ) lowerCAmelCase_ :Union[str, Any] = args.model_name_or_path set_seed(lowercase__ ) lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = get_dataloaders(lowercase__ , lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ :Optional[Any] = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer lowerCAmelCase_ :List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase_ :Optional[Any] = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase_ :List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowerCAmelCase_ :int = 1 lowerCAmelCase_ :str = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase_ :Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: lowerCAmelCase_ :Optional[Any] = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[str] = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase_ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase_ :Union[str, Any] = 0 # Now we train the model lowerCAmelCase_ :List[str] = evaluate.load("""glue""" , """mrpc""" ) lowerCAmelCase_ :List[str] = 0 lowerCAmelCase_ :Optional[Any] = {} for epoch in range(lowercase__ , lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): lowerCAmelCase_ :List[Any] = model(**lowercase__ ) lowerCAmelCase_ :Optional[int] = outputs.loss lowerCAmelCase_ :str = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowerCAmelCase_ :Tuple = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ :Union[str, Any] = model(**lowercase__ ) lowerCAmelCase_ :str = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase__ ) - 1: lowerCAmelCase_ :Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase_ :List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) lowerCAmelCase_ :List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase__ ) lowerCAmelCase_ :str = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: lowerCAmelCase_ :Dict = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def _snake_case ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :List[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase__ , ) parser.add_argument( """--output_dir""" , type=lowercase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=lowercase__ , default=lowercase__ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase__ , default=3 , help="""Number of train epochs.""" , ) lowerCAmelCase_ :Optional[Any] = parser.parse_args() lowerCAmelCase_ :Optional[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 4_2, """batch_size""": 1_6} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
84
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class lowerCAmelCase__ ( UpperCAmelCase__ ): a__ : List[str] = """table-transformer""" a__ : Tuple = ["""past_key_values"""] a__ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : str=1_00 , SCREAMING_SNAKE_CASE__ : List[Any]=6 , SCREAMING_SNAKE_CASE__ : Any=20_48 , SCREAMING_SNAKE_CASE__ : Optional[Any]=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6 , SCREAMING_SNAKE_CASE__ : Tuple=20_48 , SCREAMING_SNAKE_CASE__ : Optional[int]=8 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[str]="relu" , SCREAMING_SNAKE_CASE__ : Tuple=2_56 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : int=0.02 , SCREAMING_SNAKE_CASE__ : Dict=1.0 , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : str="sine" , SCREAMING_SNAKE_CASE__ : Optional[int]="resnet50" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE__ : Any=5 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , **SCREAMING_SNAKE_CASE__ : int , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __lowerCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowerCamelCase = backbone_config.get('''model_type''' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(_UpperCAmelCase ) # set timm attributes to None __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None, None, None __lowerCamelCase = use_timm_backbone __lowerCamelCase = backbone_config __lowerCamelCase = num_channels __lowerCamelCase = num_queries __lowerCamelCase = d_model __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = encoder_layers __lowerCamelCase = auxiliary_loss __lowerCamelCase = position_embedding_type __lowerCamelCase = backbone __lowerCamelCase = use_pretrained_backbone __lowerCamelCase = dilation # Hungarian matcher __lowerCamelCase = class_cost __lowerCamelCase = bbox_cost __lowerCamelCase = giou_cost # Loss coefficients __lowerCamelCase = mask_loss_coefficient __lowerCamelCase = dice_loss_coefficient __lowerCamelCase = bbox_loss_coefficient __lowerCamelCase = giou_loss_coefficient __lowerCamelCase = eos_coefficient super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def __A ( self : Union[str, Any] ) -> int: return self.encoder_attention_heads @property def __A ( self : List[str] ) -> int: return self.d_model class lowerCAmelCase__ ( UpperCAmelCase__ ): a__ : Dict = version.parse("""1.11""" ) @property def __A ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __A ( self : int ) -> float: return 1e-5 @property def __A ( self : Any ) -> int: return 12
270
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class __lowercase (UpperCAmelCase__ ): _UpperCamelCase = """informer""" _UpperCamelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , A_ = None , A_ = None , A_ = "student_t" , A_ = "nll" , A_ = 1 , A_ = None , A_ = "mean" , A_ = 0 , A_ = 0 , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 64 , A_ = 32 , A_ = 32 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = True , A_ = "gelu" , A_ = 0.05 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 100 , A_ = 0.02 , A_=True , A_ = "prob" , A_ = 5 , A_ = True , **A_ , ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[Any] = prediction_length __lowerCAmelCase : int = context_length or prediction_length __lowerCAmelCase : List[Any] = distribution_output __lowerCAmelCase : Optional[Any] = loss __lowerCAmelCase : str = input_size __lowerCAmelCase : str = num_time_features __lowerCAmelCase : Optional[Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __lowerCAmelCase : Optional[int] = scaling __lowerCAmelCase : str = num_dynamic_real_features __lowerCAmelCase : List[Any] = num_static_real_features __lowerCAmelCase : List[str] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __lowerCAmelCase : Optional[int] = cardinality else: __lowerCAmelCase : Dict = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __lowerCAmelCase : Dict = embedding_dimension else: __lowerCAmelCase : Any = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowerCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration __lowerCAmelCase : int = input_size * len(self.lags_sequence ) + self._number_of_features __lowerCAmelCase : Union[str, Any] = d_model __lowerCAmelCase : Tuple = encoder_attention_heads __lowerCAmelCase : Union[str, Any] = decoder_attention_heads __lowerCAmelCase : Union[str, Any] = encoder_ffn_dim __lowerCAmelCase : int = decoder_ffn_dim __lowerCAmelCase : List[Any] = encoder_layers __lowerCAmelCase : Union[str, Any] = decoder_layers __lowerCAmelCase : List[Any] = dropout __lowerCAmelCase : Dict = attention_dropout __lowerCAmelCase : List[Any] = activation_dropout __lowerCAmelCase : int = encoder_layerdrop __lowerCAmelCase : List[str] = decoder_layerdrop __lowerCAmelCase : int = activation_function __lowerCAmelCase : List[Any] = init_std __lowerCAmelCase : Dict = use_cache # Informer __lowerCAmelCase : Dict = attention_type __lowerCAmelCase : List[Any] = sampling_factor __lowerCAmelCase : Tuple = distil super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
275
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
0
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed SCREAMING_SNAKE_CASE_ : Tuple = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _snake_case ( UpperCAmelCase_ : Tuple ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ): if args.student_type == "roberta": A__ = False elif args.student_type == "gpt2": A__ = False def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if args.student_type == "roberta": A__ = False def _snake_case ( ): A__ = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=UpperCAmelCase_ , choices=["""distilbert""", """roberta""", """gpt2"""] , required=UpperCAmelCase_ , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=UpperCAmelCase_ , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=UpperCAmelCase_ , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=UpperCAmelCase_ , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=UpperCAmelCase_ , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=UpperCAmelCase_ , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=UpperCAmelCase_ , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=UpperCAmelCase_ , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=UpperCAmelCase_ , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=UpperCAmelCase_ , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=UpperCAmelCase_ , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=UpperCAmelCase_ , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=UpperCAmelCase_ , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=UpperCAmelCase_ , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=UpperCAmelCase_ , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=UpperCAmelCase_ , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=UpperCAmelCase_ , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=UpperCAmelCase_ , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=UpperCAmelCase_ , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5e-4 , type=UpperCAmelCase_ , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=UpperCAmelCase_ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=UpperCAmelCase_ , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=UpperCAmelCase_ , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=UpperCAmelCase_ , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=UpperCAmelCase_ , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=UpperCAmelCase_ , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=UpperCAmelCase_ , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=UpperCAmelCase_ , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=UpperCAmelCase_ , default=4000 , help="""Checkpoint interval.""" ) A__ = parser.parse_args() sanity_checks(UpperCAmelCase_ ) # ARGS # init_gpu_params(UpperCAmelCase_ ) set_seed(UpperCAmelCase_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(UpperCAmelCase_ ) , UpperCAmelCase_ , indent=4 ) git_log(args.dump_path ) A__ , A__ , A__ = MODEL_CLASSES[args.student_type] A__ , A__ , A__ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # A__ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) A__ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): A__ = tokenizer.all_special_tokens.index(UpperCAmelCase_ ) A__ = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) A__ = special_tok_ids A__ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , """rb""" ) as fp: A__ = pickle.load(UpperCAmelCase_ ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , """rb""" ) as fp: A__ = pickle.load(UpperCAmelCase_ ) A__ = np.maximum(UpperCAmelCase_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): A__ = 0.0 # do not predict special tokens A__ = torch.from_numpy(UpperCAmelCase_ ) else: A__ = None A__ = LmSeqsDataset(params=UpperCAmelCase_ , data=UpperCAmelCase_ ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) A__ = student_config_class.from_pretrained(args.student_config ) A__ = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) A__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=UpperCAmelCase_ ) else: A__ = student_model_class(UpperCAmelCase_ ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info("""Student loaded.""" ) # TEACHER # A__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=UpperCAmelCase_ ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(UpperCAmelCase_ , UpperCAmelCase_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(UpperCAmelCase_ , UpperCAmelCase_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() A__ = Distiller( params=UpperCAmelCase_ , dataset=UpperCAmelCase_ , token_probs=UpperCAmelCase_ , student=UpperCAmelCase_ , teacher=UpperCAmelCase_ ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
335
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') lowerCAmelCase__ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) lowerCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __snake_case : snake_case__ : Any = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"}) snake_case__ : Optional[Any] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}) snake_case__ : Optional[int] = field( default=UpperCAmelCase__ , metadata={"help": "The column name of the images in the files. If not set, will try to use \'image\' or \'img\'."} , ) snake_case__ : Optional[int] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."}) snake_case__ : int = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."}) snake_case__ : int = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."}) snake_case__ : Union[str, Any] = field(default=3_2 , metadata={"help": "The size of the square patches to use for masking."}) snake_case__ : Optional[int] = field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) snake_case__ : str = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case__ : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Dict = {} if self.train_dir is not None: _lowerCamelCase : Any = self.train_dir if self.validation_dir is not None: _lowerCamelCase : Optional[int] = self.validation_dir _lowerCamelCase : str = data_files if data_files else None @dataclass class __snake_case : snake_case__ : Tuple = field( default=UpperCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don\'t set if you want to train a model from scratch." ) } , ) snake_case__ : str = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__)} , ) snake_case__ : Tuple = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"}) snake_case__ : str = field( default=UpperCAmelCase__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) snake_case__ : Dict = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) snake_case__ : List[Any] = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case__ : Tuple = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."}) snake_case__ : List[Any] = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) snake_case__ : Dict = field( default=UpperCAmelCase__ , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) snake_case__ : List[str] = field( default=UpperCAmelCase__ , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) snake_case__ : Optional[Any] = field( default=UpperCAmelCase__ , metadata={"help": "Stride to use for the encoder."} , ) class __snake_case : def __init__( self : List[Any] , __lowerCAmelCase : Dict=1_9_2 , __lowerCAmelCase : Any=3_2 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : str=0.6 ): """simple docstring""" _lowerCamelCase : List[str] = input_size _lowerCamelCase : Optional[int] = mask_patch_size _lowerCamelCase : str = model_patch_size _lowerCamelCase : List[Any] = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) _lowerCamelCase : Tuple = self.input_size // self.mask_patch_size _lowerCamelCase : Optional[int] = self.mask_patch_size // self.model_patch_size _lowerCamelCase : List[str] = self.rand_size**2 _lowerCamelCase : str = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ): """simple docstring""" _lowerCamelCase : List[str] = np.random.permutation(self.token_count )[: self.mask_count] _lowerCamelCase : int = np.zeros(self.token_count , dtype=_UpperCAmelCase ) _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : Tuple = mask.reshape((self.rand_size, self.rand_size) ) _lowerCamelCase : Optional[Any] = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def snake_case_ ( A_ : List[str] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = torch.stack([example['''pixel_values'''] for example in examples] ) _lowerCamelCase : List[Any] = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''', A_, A_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCamelCase : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(A_ ) transformers.utils.logging.set_verbosity(A_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _lowerCamelCase : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. _lowerCamelCase : Tuple = load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # If we don't have a validation split, split off a percentage of train as validation. _lowerCamelCase : Tuple = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, A_ ) and data_args.train_val_split > 0.0: _lowerCamelCase : Any = ds['''train'''].train_test_split(data_args.train_val_split ) _lowerCamelCase : List[str] = split['''train'''] _lowerCamelCase : Any = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : int = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: _lowerCamelCase : int = AutoConfig.from_pretrained(model_args.config_name_or_path, **A_ ) elif model_args.model_name_or_path: _lowerCamelCase : Tuple = AutoConfig.from_pretrained(model_args.model_name_or_path, **A_ ) else: _lowerCamelCase : str = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(A_, '''decoder_type''' ): _lowerCamelCase : Optional[Any] = '''simmim''' # adapt config _lowerCamelCase : Optional[int] = model_args.image_size if model_args.image_size is not None else config.image_size _lowerCamelCase : List[Any] = model_args.patch_size if model_args.patch_size is not None else config.patch_size _lowerCamelCase : Any = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: _lowerCamelCase : List[str] = AutoImageProcessor.from_pretrained(model_args.image_processor_name, **A_ ) elif model_args.model_name_or_path: _lowerCamelCase : Optional[Any] = AutoImageProcessor.from_pretrained(model_args.model_name_or_path, **A_ ) else: _lowerCamelCase : List[Any] = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } _lowerCamelCase : Union[str, Any] = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: _lowerCamelCase : int = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=A_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('''Training new model from scratch''' ) _lowerCamelCase : Dict = AutoModelForMaskedImageModeling.from_config(A_ ) if training_args.do_train: _lowerCamelCase : List[Any] = ds['''train'''].column_names else: _lowerCamelCase : int = ds['''validation'''].column_names if data_args.image_column_name is not None: _lowerCamelCase : List[str] = data_args.image_column_name elif "image" in column_names: _lowerCamelCase : Union[str, Any] = '''image''' elif "img" in column_names: _lowerCamelCase : int = '''img''' else: _lowerCamelCase : Dict = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py _lowerCamelCase : str = Compose( [ Lambda(lambda A_ : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size, scale=(0.67, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std ), ] ) # create mask generator _lowerCamelCase : Optional[Any] = MaskGenerator( input_size=model_args.image_size, mask_patch_size=data_args.mask_patch_size, model_patch_size=model_args.patch_size, mask_ratio=data_args.mask_ratio, ) def preprocess_images(A_ : Any ): _lowerCamelCase : Dict = [transforms(A_ ) for image in examples[image_column_name]] _lowerCamelCase : Optional[int] = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: _lowerCamelCase : int = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(A_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: _lowerCamelCase : Tuple = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(A_ ) # Initialize our trainer _lowerCamelCase : Dict = Trainer( model=A_, args=A_, train_dataset=ds['''train'''] if training_args.do_train else None, eval_dataset=ds['''validation'''] if training_args.do_eval else None, tokenizer=A_, data_collator=A_, ) # Training if training_args.do_train: _lowerCamelCase : List[str] = None if training_args.resume_from_checkpoint is not None: _lowerCamelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase : str = last_checkpoint _lowerCamelCase : Optional[Any] = trainer.train(resume_from_checkpoint=A_ ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCamelCase : int = trainer.evaluate() trainer.log_metrics('''eval''', A_ ) trainer.save_metrics('''eval''', A_ ) # Write model card and (optionally) push to hub _lowerCamelCase : Any = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**A_ ) else: trainer.create_model_card(**A_ ) if __name__ == "__main__": main()
72
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=1_3 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=9_9 , _a=3_2 , _a=5 , _a=4 , _a=3_7 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=1_6 , _a=2 , _a=0.02 , _a=4 , ) -> Dict: _a : int = parent _a : List[str] = batch_size _a : Optional[int] = seq_length _a : Any = is_training _a : Tuple = use_attention_mask _a : Any = use_token_type_ids _a : Tuple = use_labels _a : Optional[int] = vocab_size _a : str = hidden_size _a : Optional[int] = num_hidden_layers _a : List[str] = num_attention_heads _a : List[str] = intermediate_size _a : Optional[int] = hidden_act _a : List[Any] = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : str = max_position_embeddings _a : Union[str, Any] = type_vocab_size _a : Any = type_sequence_label_size _a : Any = initializer_range _a : Tuple = num_choices def __lowercase ( self ) -> Optional[Any]: _a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : List[str] = None if self.use_attention_mask: _a : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _a : Any = None if self.use_token_type_ids: _a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowercase ( self ) -> Optional[Any]: _a : Optional[int] = self.prepare_config_and_inputs() _a , _a , _a , _a : List[Any] = config_and_inputs _a : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Optional[int] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = FlaxRoFormerModelTester(self ) @slow def __lowercase ( self ) -> int: for model_class_name in self.all_model_classes: _a : int = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=_UpperCAmelCase ) _a : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ) -> Dict: _a : Dict = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) _a : Optional[int] = jnp.array([[0, 1, 2, 3, 4, 5]] ) _a : Tuple = model(_UpperCAmelCase )[0] _a : Tuple = 5_0_0_0_0 _a : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _UpperCAmelCase ) _a : List[str] = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
235
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
0
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _UpperCamelCase : '''simple docstring''' _A : Tuple = None def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) __SCREAMING_SNAKE_CASE : Optional[int] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , _UpperCAmelCase ) def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : List[Any] = os.path.join(_UpperCAmelCase , """feat_extract.json""" ) feat_extract_first.to_json_file(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : List[Any] = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Dict = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extraction_class() self.assertIsNotNone(_UpperCAmelCase )
112
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def SCREAMING_SNAKE_CASE__ ( __a , __a ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer snake_case_ : int = flax_key_tuple[:-1] + ('weight',) snake_case_ : List[str] = torch.permute(__a , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__a ): # linear layer snake_case_ : Dict = flax_key_tuple[:-1] + ('weight',) snake_case_ : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: snake_case_ : List[Any] = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): if "metadata" in layer: snake_case_ : Optional[int] = layer.split('metadata' ) snake_case_ : str = ''.join(split_layer[0] )[:-1] snake_case_ : Optional[int] = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: snake_case_ : Union[str, Any] = layer.split('kvstore' ) snake_case_ : Any = ''.join(split_layer[0] )[:-1] snake_case_ : int = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: snake_case_ : str = layer.split('/' ) snake_case_ : str = '/'.join(split_layer[:-1] ) snake_case_ : Dict = (split_layer[-1],) if "kvstore/path" in layer: snake_case_ : Tuple = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: snake_case_ : Dict = 'file' else: snake_case_ : List[str] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Tuple = rename_keys(__a ) snake_case_ : Dict = {} for k, v in current_block.items(): snake_case_ : Any = v snake_case_ : Dict = new_current_block torch.save(__a , __a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a = WEIGHTS_NAME ): snake_case_ : List[str] = convert_file_size_to_int(__a ) snake_case_ : Any = [] snake_case_ : Optional[Any] = {} snake_case_ : str = 0 snake_case_ : Dict = 0 os.makedirs(__a , exist_ok=__a ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: snake_case_ : str = serialization.msgpack_restore(fp.read() )['optimizer']['target'] snake_case_ : int = flatten_dict(__a , sep='/' ) snake_case_ : Dict = {} for layer in checkpoint_info.keys(): snake_case_ ,snake_case_ ,snake_case_ : int = get_key_and_tensorstore_dict( __a , __a , __a ) if curr_real_layer_name in all_layers: snake_case_ : Any = content else: snake_case_ : Optional[Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file snake_case_ : Optional[int] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() snake_case_ : Tuple = torch.tensor(__a ) snake_case_ : Tuple = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts snake_case_ ,snake_case_ : Union[str, Any] = rename_base_flax_keys(tuple(key.split('/' ) ) , __a ) snake_case_ : Union[str, Any] = '/'.join(__a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: snake_case_ : Tuple = os.path.join( __a , weights_name.replace('.bin' , f"""-{len(__a )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__a , __a ) sharded_state_dicts.append(current_block.keys() ) del current_block snake_case_ : int = {} snake_case_ : Tuple = 0 snake_case_ : Optional[int] = raw_weights.to(getattr(__a , __a ) ) current_block_size += weight_size total_size += weight_size # Add the last block snake_case_ : Optional[int] = os.path.join(__a , weights_name.replace('.bin' , f"""-{len(__a )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__a , __a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index snake_case_ : Optional[int] = {} snake_case_ : Optional[Any] = {} for idx, shard in enumerate(__a ): snake_case_ : Optional[Any] = weights_name.replace( '.bin' , f"""-{idx+1:05d}-of-{len(__a ):05d}.bin""" ) # len(sharded_state_dicts):05d} snake_case_ : Tuple = os.path.join(__a , weights_name.replace('.bin' , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__a , os.path.join(__a , __a ) ) snake_case_ : Optional[Any] = shard for key in shard: snake_case_ : int = shard_file # Add the metadata snake_case_ : Dict = {'total_size': total_size} snake_case_ : Dict = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__a , __a ) , 'w' , encoding='utf-8' ) as f: snake_case_ : Tuple = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) return metadata, index if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) _SCREAMING_SNAKE_CASE = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def SCREAMING_SNAKE_CASE__ ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer snake_case_ : str = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) snake_case_ : Any = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) snake_case_ : Dict = TaTokenizer.from_pretrained('t5-small' ) snake_case_ : Tuple = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' snake_case_ : Union[str, Any] = tokenizer(__a , return_tensors='pt' ).input_ids snake_case_ : Optional[Any] = model.generate(__a , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
327
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
0
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase__ : int = logging.get_logger(__name__) class _UpperCAmelCase ( enum.Enum): _lowerCAmelCase : Any = 0 _lowerCAmelCase : Optional[int] = 1 @add_end_docstrings(UpperCAmelCase__) class _UpperCAmelCase ( UpperCAmelCase__): _lowerCAmelCase : str = """generated""" def __init__( self : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Optional[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _snake_case ( self : str , lowercase_ : Optional[int]=None , lowercase_ : List[Any]=None , lowercase_ : List[str]=None , lowercase_ : List[str]=None , lowercase_ : Dict=None , lowercase_ : Tuple=None , **lowercase_ : Dict , ): snake_case_ : Union[str, Any] = {} if truncation is not None: snake_case_ : Dict = truncation snake_case_ : List[str] = generate_kwargs snake_case_ : Optional[Any] = {} if return_tensors is not None and return_type is None: snake_case_ : Dict = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case_ : Dict = return_type if clean_up_tokenization_spaces is not None: snake_case_ : Optional[int] = clean_up_tokenization_spaces if stop_sequence is not None: snake_case_ : Union[str, Any] = self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) snake_case_ : Tuple = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _snake_case ( self : Any , lowercase_ : int , lowercase_ : int , lowercase_ : int ): return True def _snake_case ( self : Union[str, Any] , *lowercase_ : Optional[Any] , lowercase_ : Tuple ): snake_case_ : Optional[int] = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _UpperCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) snake_case_ : Any = ([prefix + arg for arg in args[0]],) snake_case_ : str = True elif isinstance(args[0] , _UpperCAmelCase ): snake_case_ : List[str] = (prefix + args[0],) snake_case_ : Optional[int] = False else: raise ValueError( f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`" ) snake_case_ : str = self.tokenizer(*_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Optional[int] , *lowercase_ : Dict , **lowercase_ : Optional[int] ): snake_case_ : List[str] = super().__call__(*_UpperCAmelCase , **_UpperCAmelCase ) if ( isinstance(args[0] , _UpperCAmelCase ) and all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for el in args[0] ) and all(len(_UpperCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def _snake_case ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **lowercase_ : Any ): snake_case_ : Tuple = self._parse_and_tokenize(_UpperCAmelCase , truncation=_UpperCAmelCase , **_UpperCAmelCase ) return inputs def _snake_case ( self : Optional[int] , lowercase_ : str , **lowercase_ : Any ): if self.framework == "pt": snake_case_, snake_case_ : str = model_inputs['''input_ids'''].shape elif self.framework == "tf": snake_case_, snake_case_ : Dict = tf.shape(model_inputs['''input_ids'''] ).numpy() snake_case_ : Dict = generate_kwargs.get('''min_length''' , self.model.config.min_length ) snake_case_ : int = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_UpperCAmelCase , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) snake_case_ : List[str] = self.model.generate(**_UpperCAmelCase , **_UpperCAmelCase ) snake_case_ : Tuple = output_ids.shape[0] if self.framework == "pt": snake_case_ : List[str] = output_ids.reshape(_UpperCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case_ : Union[str, Any] = tf.reshape(_UpperCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _snake_case ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : int=ReturnType.TEXT , lowercase_ : Any=False ): snake_case_ : Optional[int] = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case_ : Any = {f"{self.return_name}_token_ids": output_ids} elif return_type == ReturnType.TEXT: snake_case_ : Any = { f"{self.return_name}_text": self.tokenizer.decode( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , ) } records.append(_UpperCAmelCase ) return records @add_end_docstrings(UpperCAmelCase__) class _UpperCAmelCase ( UpperCAmelCase__): _lowerCAmelCase : Dict = """summary""" def __call__( self : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : str ): return super().__call__(*_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self : List[str] , lowercase_ : int , lowercase_ : int , lowercase_ : int ): if max_length < min_length: logger.warning(f"Your min_length={min_length} must be inferior than your max_length={max_length}." ) if input_length < max_length: logger.warning( f"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is " '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})" ) @add_end_docstrings(UpperCAmelCase__) class _UpperCAmelCase ( UpperCAmelCase__): _lowerCAmelCase : List[str] = """translation""" def _snake_case ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : int ): if input_length > 0.9 * max_length: logger.warning( f"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider " '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def _snake_case ( self : List[str] , *lowercase_ : Any , lowercase_ : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , lowercase_ : Union[str, Any]=None , lowercase_ : List[str]=None ): if getattr(self.tokenizer , '''_build_translation_inputs''' , _UpperCAmelCase ): return self.tokenizer._build_translation_inputs( *_UpperCAmelCase , return_tensors=self.framework , truncation=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase ) else: return super()._parse_and_tokenize(*_UpperCAmelCase , truncation=_UpperCAmelCase ) def _snake_case ( self : str , lowercase_ : Any=None , lowercase_ : str=None , **lowercase_ : Any ): snake_case_, snake_case_, snake_case_ : int = super()._sanitize_parameters(**_UpperCAmelCase ) if src_lang is not None: snake_case_ : Optional[Any] = src_lang if tgt_lang is not None: snake_case_ : Optional[int] = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case_ : str = kwargs.get('''task''' , self.task ) snake_case_ : Optional[Any] = task.split('''_''' ) if task and len(_UpperCAmelCase ) == 4: # translation, XX, to YY snake_case_ : str = items[1] snake_case_ : str = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Union[str, Any] , *lowercase_ : Union[str, Any] , **lowercase_ : List[Any] ): return super().__call__(*_UpperCAmelCase , **_UpperCAmelCase )
264
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
0
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Optional[Any] = TypeVar('T') def _UpperCamelCase ( __A ) -> int: '''simple docstring''' return (position - 1) // 2 def _UpperCamelCase ( __A ) -> int: '''simple docstring''' return (2 * position) + 1 def _UpperCamelCase ( __A ) -> int: '''simple docstring''' return (2 * position) + 2 class lowercase_ ( Generic[T] ): def __init__( self ): UpperCamelCase__ = [] UpperCamelCase__ = {} UpperCamelCase__ = 0 def __len__( self ): return self.elements def __repr__( self ): return str(self.heap ) def __a ( self ): return self.elements == 0 def __a ( self , a , a ): self.heap.append((elem, weight) ) UpperCamelCase__ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def __a ( self ): if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase__ , UpperCamelCase__ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase__ , UpperCamelCase__ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def __a ( self , a , a ): UpperCamelCase__ = self.position_map[elem] UpperCamelCase__ = (elem, weight) if position > 0: UpperCamelCase__ = get_parent_position(_UpperCAmelCase ) UpperCamelCase__ , UpperCamelCase__ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def __a ( self , a ): UpperCamelCase__ = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase__ = get_parent_position(_UpperCAmelCase ) UpperCamelCase__ , UpperCamelCase__ = self.heap[curr_pos] UpperCamelCase__ , UpperCamelCase__ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def __a ( self , a ): UpperCamelCase__ = self.position_map[elem] UpperCamelCase__ , UpperCamelCase__ = self.heap[curr_pos] UpperCamelCase__ = get_child_left_position(_UpperCAmelCase ) UpperCamelCase__ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase__ , UpperCamelCase__ = self.heap[child_left_position] UpperCamelCase__ , UpperCamelCase__ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCamelCase__ , UpperCamelCase__ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCamelCase__ , UpperCamelCase__ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def __a ( self , a , a ): UpperCamelCase__ = self.heap[nodea_pos][0] UpperCamelCase__ = self.heap[nodea_pos][0] UpperCamelCase__ , UpperCamelCase__ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase__ = nodea_pos UpperCamelCase__ = nodea_pos class lowercase_ ( Generic[T] ): def __init__( self ): UpperCamelCase__ = {} UpperCamelCase__ = 0 def __repr__( self ): return str(self.connections ) def __len__( self ): return self.nodes def __a ( self , a ): if node not in self.connections: UpperCamelCase__ = {} self.nodes += 1 def __a ( self , a , a , a ): self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCamelCase__ = weight UpperCamelCase__ = weight def _UpperCamelCase ( __A , ) -> tuple[dict[T, int], dict[T, T | None]]: '''simple docstring''' UpperCamelCase__ = {node: maxsize for node in graph.connections} UpperCamelCase__ = {node: None for node in graph.connections} UpperCamelCase__ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__A , __A ) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase__ = priority_queue.extract_min() UpperCamelCase__ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__A , dist[neighbour] ) UpperCamelCase__ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase__ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__A , dist[neighbour] ) UpperCamelCase__ = node return dist, parent
80
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
0
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( UpperCAmelCase__ ): """simple docstring""" snake_case = (IPNDMScheduler,) snake_case = (('''num_inference_steps''', 50),) def lowerCAmelCase ( self : str , **__UpperCAmelCase : Optional[Any] ): '''simple docstring''' _A = {"num_train_timesteps": 1000} config.update(**_UpperCAmelCase ) return config def lowerCAmelCase ( self : Any , __UpperCAmelCase : int=0 , **__UpperCAmelCase : str ): '''simple docstring''' _A = dict(self.forward_default_kwargs ) _A = kwargs.pop("num_inference_steps" , _UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config(**_UpperCAmelCase ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _A = dummy_past_residuals[:] if time_step is None: _A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _A = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _A = dummy_past_residuals[:] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase ( self : int ): '''simple docstring''' pass def lowerCAmelCase ( self : Dict , __UpperCAmelCase : Tuple=0 , **__UpperCAmelCase : List[str] ): '''simple docstring''' _A = dict(self.forward_default_kwargs ) _A = kwargs.pop("num_inference_steps" , _UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _A = dummy_past_residuals[:] if time_step is None: _A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _A = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _A = dummy_past_residuals[:] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase ( self : Tuple , **__UpperCAmelCase : Tuple ): '''simple docstring''' _A = self.scheduler_classes[0] _A = self.get_scheduler_config(**_UpperCAmelCase ) _A = scheduler_class(**_UpperCAmelCase ) _A = 10 _A = self.dummy_model() _A = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = dict(self.forward_default_kwargs ) _A = kwargs.pop("num_inference_steps" , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , "set_timesteps" ): _A = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _A = dummy_past_residuals[:] _A = scheduler.timesteps[5] _A = scheduler.timesteps[6] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase ( self : str ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase , time_step=_UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase , time_step=_UpperCAmelCase ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = self.full_loop() _A = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 2540529 ) < 10
79
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
0
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _snake_case ( lowercase__ : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ :List[Any] = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ :Optional[int] = flatten_dict(lowercase__ ) return flax_params def _snake_case ( lowercase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ :Tuple = {} lowerCAmelCase_ :Optional[int] = { """token_embedder""": """embeddings""", """encoder_norm""": """layernorm""", """kernel""": """weight""", """.out""": """.output""", """scale""": """weight""", """embedders_0.pos_embedding""": """row_embedder.weight""", """embedders_1.pos_embedding""": """column_embedder.weight""", } lowerCAmelCase_ :int = { """query""": """attention.query""", """key""": """attention.key""", """value""": """attention.value""", """output.dense""": """output""", """encoder_decoder_attention.o""": """encoder_decoder_attention.attention.o""", """pre_self_attention_layer_norm""": """self_attention.layer_norm""", """pre_cross_attention_layer_norm""": """encoder_decoder_attention.layer_norm""", """mlp.""": """mlp.DenseReluDense.""", """pre_mlp_layer_norm""": """mlp.layer_norm""", """self_attention.o""": """self_attention.attention.o""", """decoder.embeddings.embedding""": """decoder.embed_tokens.weight""", """decoder.relpos_bias.rel_embedding""": """decoder.layer.0.self_attention.attention.relative_attention_bias.weight""", """decoder.decoder_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.logits_dense.weight""": """decoder.lm_head.weight""", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowerCAmelCase_ :Optional[int] = """.""".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowerCAmelCase_ :Union[str, Any] = new_key.replace(lowercase__ , lowercase__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowerCAmelCase_ :str = new_key.replace(lowercase__ , lowercase__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowerCAmelCase_ :Any = re.sub(r"""layers_(\d+)""" , r"""layer.\1""" , lowercase__ ) lowerCAmelCase_ :List[Any] = new_key.replace("""encoder""" , """encoder.encoder""" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowerCAmelCase_ :Optional[Any] = re.sub(r"""layers_(\d+)""" , r"""layer.\1""" , lowercase__ ) lowerCAmelCase_ :Any = flax_dict[key] lowerCAmelCase_ :int = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowerCAmelCase_ :Optional[int] = torch.from_numpy(converted_dict[key].T ) else: lowerCAmelCase_ :List[str] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _snake_case ( lowercase__ : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : Optional[Any]=False , lowercase__ : List[Any]=False ) -> int: '''simple docstring''' lowerCAmelCase_ :List[Any] = get_flax_param(lowercase__ ) if not use_large: lowerCAmelCase_ :Dict = PixaStructVisionConfig() lowerCAmelCase_ :Any = PixaStructTextConfig() else: lowerCAmelCase_ :Dict = PixaStructVisionConfig( hidden_size=1_5_3_6 , d_ff=3_9_6_8 , num_attention_heads=2_4 , num_hidden_layers=1_8 ) lowerCAmelCase_ :Union[str, Any] = PixaStructTextConfig(hidden_size=1_5_3_6 , d_ff=3_9_6_8 , num_heads=2_4 , num_layers=1_8 ) lowerCAmelCase_ :Tuple = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=lowercase__ ) lowerCAmelCase_ :Optional[Any] = PixaStructForConditionalGeneration(lowercase__ ) lowerCAmelCase_ :Optional[int] = rename_and_convert_flax_params(lowercase__ ) model.load_state_dict(lowercase__ ) lowerCAmelCase_ :Dict = AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" ) lowerCAmelCase_ :Optional[Any] = PixaStructImageProcessor() lowerCAmelCase_ :Any = PixaStructProcessor(image_processor=lowercase__ , tokenizer=lowercase__ ) if use_large: lowerCAmelCase_ :str = 4_0_9_6 lowerCAmelCase_ :Tuple = True # mkdir if needed os.makedirs(lowercase__ , exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) print("""Model saved in {}""".format(lowercase__ ) ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') __UpperCAmelCase = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
84
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): a__ : List[str] = GPTSanJapaneseTokenizer a__ : Optional[int] = False a__ : Tuple = {"""do_clean_text""": False, """add_prefix_space""": False} def __A ( self : Any ) -> Any: super().setUp() # fmt: off __lowerCamelCase = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on __lowerCamelCase = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 __lowerCamelCase = {'''unk_token''': '''<unk>'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(_UpperCAmelCase ) ) def __A ( self : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict ) -> str: __lowerCamelCase = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' __lowerCamelCase = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: __lowerCamelCase , __lowerCamelCase = self.get_input_output_texts(_UpperCAmelCase ) __lowerCamelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __lowerCamelCase = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def __A ( self : str ) -> Any: pass # TODO add if relevant def __A ( self : Tuple ) -> Any: pass # TODO add if relevant def __A ( self : Tuple ) -> List[Any]: pass # TODO add if relevant def __A ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCamelCase = self.get_tokenizer() # Testing tokenization __lowerCamelCase = '''こんにちは、世界。 こんばんは、㔺界。''' __lowerCamelCase = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] __lowerCamelCase = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids without special tokens __lowerCamelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __lowerCamelCase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids with special tokens __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __lowerCamelCase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def __A ( self : Optional[int] ) -> Any: __lowerCamelCase = self.get_tokenizer() # Testing tokenization __lowerCamelCase = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' __lowerCamelCase = '''こんにちは、、、、世界。こんばんは、、、、世界。''' __lowerCamelCase = tokenizer.encode(_UpperCAmelCase ) __lowerCamelCase = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def __A ( self : Tuple ) -> Optional[int]: __lowerCamelCase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization __lowerCamelCase = '''こんにちは、世界。''' __lowerCamelCase = '''こんばんは、㔺界。😀''' __lowerCamelCase = '''こんにちは、世界。こんばんは、世界。😀''' __lowerCamelCase = tokenizer.encode(prefix_text + input_text ) __lowerCamelCase = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) __lowerCamelCase = tokenizer.encode(_UpperCAmelCase , prefix_text=_UpperCAmelCase ) __lowerCamelCase = tokenizer.decode(_UpperCAmelCase ) __lowerCamelCase = tokenizer.decode(_UpperCAmelCase ) __lowerCamelCase = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def __A ( self : List[str] ) -> Any: __lowerCamelCase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization __lowerCamelCase = '''こんにちは、世界。''' __lowerCamelCase = '''こんばんは、㔺界。😀''' __lowerCamelCase = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 __lowerCamelCase = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 __lowerCamelCase = [1] + [0] * (len_prefix + len_text + 1) __lowerCamelCase = [1] * (len_prefix + len_text + 1) + [0] __lowerCamelCase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __lowerCamelCase = tokenizer(prefix_text + input_text ).token_type_ids __lowerCamelCase = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids __lowerCamelCase = tokenizer(_UpperCAmelCase , prefix_text=_UpperCAmelCase ).token_type_ids self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def __A ( self : Tuple ) -> str: __lowerCamelCase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) __lowerCamelCase = tokenizer.encode('''あンいワ''' ) __lowerCamelCase = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) __lowerCamelCase = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __A ( self : Union[str, Any] ) -> Dict: __lowerCamelCase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) __lowerCamelCase = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] __lowerCamelCase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase ) __lowerCamelCase = tokenizer.batch_encode_plus(_UpperCAmelCase , padding=_UpperCAmelCase ) # fmt: off __lowerCamelCase = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] __lowerCamelCase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __lowerCamelCase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token.attention_mask , _UpperCAmelCase ) self.assertListEqual(x_token_a.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.attention_mask , _UpperCAmelCase ) def __A ( self : str ) -> Tuple: pass def __A ( self : int ) -> Optional[int]: pass
270
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
0
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class __lowercase (UpperCAmelCase__ , unittest.TestCase ): _UpperCamelCase = SpeechTaTokenizer _UpperCamelCase = False _UpperCamelCase = True def UpperCamelCase__ ( self ) ->int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : Optional[Any] = SpeechTaTokenizer(_UpperCAmelCase ) __lowerCAmelCase : List[str] = AddedToken('''<mask>''' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) __lowerCAmelCase : Optional[Any] = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self , A_ ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : str = '''this is a test''' __lowerCAmelCase : Union[str, Any] = '''this is a test''' return input_text, output_text def UpperCamelCase__ ( self , A_ , A_=False , A_=20 , A_=5 ) ->List[str]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : int = self.get_input_output_texts(_UpperCAmelCase ) __lowerCAmelCase : List[str] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __lowerCAmelCase : List[str] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = '''<pad>''' __lowerCAmelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(_UpperCAmelCase ) , 81 ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Dict = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase : List[Any] = tokenizer.vocab_size __lowerCAmelCase : str = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __lowerCAmelCase : int = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] __lowerCAmelCase : Optional[int] = tokenizer.add_tokens(_UpperCAmelCase ) __lowerCAmelCase : str = tokenizer.vocab_size __lowerCAmelCase : List[Any] = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) ) __lowerCAmelCase : List[Any] = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __lowerCAmelCase : List[str] = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} __lowerCAmelCase : Optional[int] = tokenizer.add_special_tokens(_UpperCAmelCase ) __lowerCAmelCase : Tuple = tokenizer.vocab_size __lowerCAmelCase : Any = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) ) __lowerCAmelCase : int = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' pass def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' pass def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : int = self.get_tokenizer() __lowerCAmelCase : List[str] = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) __lowerCAmelCase : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) __lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) # fmt: off self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on __lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off __lowerCAmelCase : Optional[Any] = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=_UpperCAmelCase , )
275
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
0
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging SCREAMING_SNAKE_CASE_ : Any = logging.get_logger(__name__) logging.set_verbosity_info() def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: A__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCAmelCase_ ) A__ , A__ = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCAmelCase_ , output_loading_info=UpperCAmelCase_ ) else: A__ = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCAmelCase_ ) A__ , A__ = ProphetNetForConditionalGeneration.from_pretrained( UpperCAmelCase_ , output_loading_info=UpperCAmelCase_ ) A__ = ["""key_proj""", """value_proj""", """query_proj"""] A__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: A__ = key.split(""".""" ) if attributes[0] == "lm_head": A__ = prophet A__ = prophet_old else: A__ = prophet.prophetnet A__ = prophet_old.model A__ = False for attribute in attributes: if attribute in mapping: A__ = mapping[attribute] if not hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) and len(UpperCAmelCase_ ) > 0: A__ = attribute elif hasattr(UpperCAmelCase_ , UpperCAmelCase_ ): A__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" A__ = old_model.weight logger.info(F"""{attribute} is initialized.""" ) A__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" A__ = old_model.bias logger.info(F"""{attribute} is initialized""" ) A__ = True break elif attribute in special_keys and hasattr(UpperCAmelCase_ , """in_proj_weight""" ): A__ = old_model.in_proj_weight.shape[0] // 3 A__ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": A__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) A__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": A__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) A__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": A__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) A__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) A__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." A__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) A__ = True break if attribute.isdigit(): A__ = model[int(UpperCAmelCase_ )] A__ = old_model[int(UpperCAmelCase_ )] else: A__ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if old_attribute == "": A__ = old_model else: if not hasattr(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError(F"""{old_model} does not have {old_attribute}""" ) A__ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if not is_key_init: raise ValueError(F"""{key} was not correctly initialized!""" ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE_ : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
335
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
0
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __snake_case ( UpperCAmelCase__): def __init__( self : Tuple , __lowerCAmelCase : Distribution , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=0 ): """simple docstring""" _lowerCamelCase : List[Any] = 1.0 if scale is None else scale _lowerCamelCase : int = 0.0 if loc is None else loc super().__init__(_UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_UpperCAmelCase )] ) @property def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return self.base_dist.variance * self.scale**2 @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return self.variance.sqrt() class __snake_case ( nn.Module): def __init__( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : Callable[..., Tuple[torch.Tensor]] , **__lowerCAmelCase : Optional[Any] ): """simple docstring""" super().__init__(**_UpperCAmelCase ) _lowerCamelCase : Union[str, Any] = args_dim _lowerCamelCase : Dict = nn.ModuleList([nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) for dim in args_dim.values()] ) _lowerCamelCase : Optional[Any] = domain_map def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : torch.Tensor ): """simple docstring""" _lowerCamelCase : Any = [proj(_UpperCAmelCase ) for proj in self.proj] return self.domain_map(*_UpperCAmelCase ) class __snake_case ( nn.Module): def __init__( self : str , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" super().__init__() _lowerCamelCase : str = function def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : int , *__lowerCAmelCase : List[str] ): """simple docstring""" return self.function(_UpperCAmelCase , *_UpperCAmelCase ) class __snake_case : snake_case__ : Dict = 4_2 snake_case__ : List[Any] = 4_2 snake_case__ : Union[str, Any] = 4_2 def __init__( self : str , __lowerCAmelCase : int = 1 ): """simple docstring""" _lowerCamelCase : Optional[int] = dim _lowerCamelCase : Optional[Any] = {k: dim * self.args_dim[k] for k in self.args_dim} def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : List[str] ): """simple docstring""" if self.dim == 1: return self.distribution_class(*_UpperCAmelCase ) else: return Independent(self.distribution_class(*_UpperCAmelCase ) , 1 ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None , ): """simple docstring""" _lowerCamelCase : List[Any] = self._base_distribution(_UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(_UpperCAmelCase , loc=_UpperCAmelCase , scale=_UpperCAmelCase , event_dim=self.event_dim ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return len(self.event_shape ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return 0.0 def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : int ): """simple docstring""" return ParameterProjection( in_features=_UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def SCREAMING_SNAKE_CASE ( self : Any , *__lowerCAmelCase : torch.Tensor ): """simple docstring""" raise NotImplementedError() @staticmethod def SCREAMING_SNAKE_CASE ( __lowerCAmelCase : torch.Tensor ): """simple docstring""" return (x + torch.sqrt(torch.square(_UpperCAmelCase ) + 4.0 )) / 2.0 class __snake_case ( UpperCAmelCase__): snake_case__ : Optional[Any] = {"df": 1, "loc": 1, "scale": 1} snake_case__ : Union[str, Any] = StudentT @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor ): """simple docstring""" _lowerCamelCase : List[str] = cls.squareplus(_UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) _lowerCamelCase : Tuple = 2.0 + cls.squareplus(_UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __snake_case ( UpperCAmelCase__): snake_case__ : List[Any] = {"loc": 1, "scale": 1} snake_case__ : Tuple = Normal @classmethod def SCREAMING_SNAKE_CASE ( cls : int , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor ): """simple docstring""" _lowerCamelCase : List[Any] = cls.squareplus(_UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __snake_case ( UpperCAmelCase__): snake_case__ : str = {"total_count": 1, "logits": 1} snake_case__ : Any = NegativeBinomial @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor ): """simple docstring""" _lowerCamelCase : str = cls.squareplus(_UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[Any] = distr_args if self.dim == 1: return self.distribution_class(total_count=_UpperCAmelCase , logits=_UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=_UpperCAmelCase , logits=_UpperCAmelCase ) , 1 ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Tuple = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
72
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class UpperCAmelCase_ ( UpperCAmelCase__ ): """simple docstring""" UpperCAmelCase__ : Dict = "falcon" UpperCAmelCase__ : Optional[int] = ["past_key_values"] def __init__( self , _a=6_5_0_2_4 , _a=4_5_4_4 , _a=3_2 , _a=7_1 , _a=1e-5 , _a=0.02 , _a=True , _a=0.0 , _a=0.0 , _a=None , _a=False , _a=False , _a=True , _a=True , _a=False , _a=1_1 , _a=1_1 , **_a , ) -> List[str]: _a : Tuple = vocab_size # Backward compatibility with n_embed kwarg _a : int = kwargs.pop('''n_embed''' , _UpperCAmelCase ) _a : Dict = hidden_size if n_embed is None else n_embed _a : Optional[Any] = num_hidden_layers _a : Optional[Any] = num_attention_heads _a : int = layer_norm_epsilon _a : Dict = initializer_range _a : int = use_cache _a : Optional[Any] = hidden_dropout _a : Tuple = attention_dropout _a : Tuple = bos_token_id _a : Dict = eos_token_id _a : Dict = num_attention_heads if num_kv_heads is None else num_kv_heads _a : Dict = alibi _a : List[Any] = new_decoder_architecture _a : str = multi_query # Ignored when new_decoder_architecture is True _a : Dict = parallel_attn _a : Union[str, Any] = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def __lowercase ( self ) -> int: return self.hidden_size // self.num_attention_heads @property def __lowercase ( self ) -> Tuple: return not self.alibi
235
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): __SCREAMING_SNAKE_CASE : Optional[int] = tmp_path / """file.csv""" __SCREAMING_SNAKE_CASE : Union[str, Any] = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(_lowerCamelCase , """w""" ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Dict = tmp_path / """malformed_file.csv""" __SCREAMING_SNAKE_CASE : Union[str, Any] = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(_lowerCamelCase , """w""" ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def lowerCAmelCase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: List[str] ): __SCREAMING_SNAKE_CASE : Optional[int] = tmp_path / """csv_with_image.csv""" __SCREAMING_SNAKE_CASE : List[str] = textwrap.dedent( F"\\n image\n {image_file}\n " ) with open(_lowerCamelCase , """w""" ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / """csv_with_label.csv""" __SCREAMING_SNAKE_CASE : List[Any] = textwrap.dedent( """\ label good bad good """ ) with open(_lowerCamelCase , """w""" ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def lowerCAmelCase_ ( _lowerCamelCase: Dict ): __SCREAMING_SNAKE_CASE : int = tmp_path / """csv_with_int_list.csv""" __SCREAMING_SNAKE_CASE : Union[str, Any] = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(_lowerCamelCase , """w""" ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Tuple , _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : Optional[int] = Csv() __SCREAMING_SNAKE_CASE : Optional[int] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCamelCase , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(_lowerCamelCase ) in record.message for record in caplog.records ) @require_pil def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): with open(_lowerCamelCase , encoding="""utf-8""" ) as f: __SCREAMING_SNAKE_CASE : Optional[int] = f.read().splitlines()[1] __SCREAMING_SNAKE_CASE : List[Any] = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = csv._generate_tables([[csv_file_with_image]] ) __SCREAMING_SNAKE_CASE : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() __SCREAMING_SNAKE_CASE : str = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): with open(_lowerCamelCase , encoding="""utf-8""" ) as f: __SCREAMING_SNAKE_CASE : str = f.read().splitlines()[1:] __SCREAMING_SNAKE_CASE : Any = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) __SCREAMING_SNAKE_CASE : str = csv._generate_tables([[csv_file_with_label]] ) __SCREAMING_SNAKE_CASE : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() __SCREAMING_SNAKE_CASE : Any = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(_lowerCamelCase ) for label in labels] def lowerCAmelCase_ ( _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : str = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda _lowerCamelCase : [int(_lowerCamelCase ) for i in x.split()]} ) __SCREAMING_SNAKE_CASE : str = csv._generate_tables([[csv_file_with_int_list]] ) __SCREAMING_SNAKE_CASE : Dict = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) __SCREAMING_SNAKE_CASE : Dict = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
112
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : Tuple = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class _UpperCAmelCase ( UpperCAmelCase__): _lowerCAmelCase : Optional[Any] = """cvt""" def __init__( self : Any , lowercase_ : Optional[int]=3 , lowercase_ : List[str]=[7, 3, 3] , lowercase_ : int=[4, 2, 2] , lowercase_ : List[Any]=[2, 1, 1] , lowercase_ : Tuple=[64, 192, 384] , lowercase_ : Any=[1, 3, 6] , lowercase_ : Union[str, Any]=[1, 2, 10] , lowercase_ : Optional[Any]=[4.0, 4.0, 4.0] , lowercase_ : Tuple=[0.0, 0.0, 0.0] , lowercase_ : Union[str, Any]=[0.0, 0.0, 0.0] , lowercase_ : Any=[0.0, 0.0, 0.1] , lowercase_ : List[Any]=[True, True, True] , lowercase_ : str=[False, False, True] , lowercase_ : Any=["dw_bn", "dw_bn", "dw_bn"] , lowercase_ : Optional[int]=[3, 3, 3] , lowercase_ : Tuple=[1, 1, 1] , lowercase_ : List[str]=[2, 2, 2] , lowercase_ : Union[str, Any]=[1, 1, 1] , lowercase_ : Optional[Any]=[1, 1, 1] , lowercase_ : Optional[Any]=0.02 , lowercase_ : Dict=1E-12 , **lowercase_ : Tuple , ): super().__init__(**_UpperCAmelCase ) snake_case_ : int = num_channels snake_case_ : Union[str, Any] = patch_sizes snake_case_ : List[str] = patch_stride snake_case_ : Optional[int] = patch_padding snake_case_ : int = embed_dim snake_case_ : int = num_heads snake_case_ : List[Any] = depth snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Tuple = attention_drop_rate snake_case_ : Any = drop_rate snake_case_ : str = drop_path_rate snake_case_ : Union[str, Any] = qkv_bias snake_case_ : int = cls_token snake_case_ : Dict = qkv_projection_method snake_case_ : List[str] = kernel_qkv snake_case_ : Optional[int] = padding_kv snake_case_ : Optional[int] = stride_kv snake_case_ : str = padding_q snake_case_ : Optional[int] = stride_q snake_case_ : List[Any] = initializer_range snake_case_ : Optional[Any] = layer_norm_eps
264
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
0
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel a__ : List[Any] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class lowercase_ ( unittest.TestCase ): @classmethod def __a ( cls ): UpperCamelCase__ = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def __a ( cls ): try: delete_repo(token=cls._token , repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def __a ( self ): UpperCamelCase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase__ = FlaxBertModel(_UpperCAmelCase ) model.push_to_hub("test-model-flax" , use_auth_token=self._token ) UpperCamelCase__ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) UpperCamelCase__ = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCAmelCase , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_UpperCAmelCase , repo_id="test-model-flax" , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) UpperCamelCase__ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) UpperCamelCase__ = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCAmelCase , 1e-3 , msg=f'''{key} not identical''' ) def __a ( self ): UpperCamelCase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase__ = FlaxBertModel(_UpperCAmelCase ) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token ) UpperCamelCase__ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) UpperCamelCase__ = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCAmelCase , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _UpperCAmelCase , repo_id="valid_org/test-model-flax-org" , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) UpperCamelCase__ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) UpperCamelCase__ = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCAmelCase , 1e-3 , msg=f'''{key} not identical''' ) def _UpperCamelCase ( __A , __A ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = True UpperCamelCase__ = flatten_dict(modela.params ) UpperCamelCase__ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCamelCase__ = False return models_are_equal @require_flax class lowercase_ ( unittest.TestCase ): def __a ( self ): UpperCamelCase__ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) UpperCamelCase__ = FlaxBertModel(_UpperCAmelCase ) UpperCamelCase__ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) UpperCamelCase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.assertTrue(check_models_equal(_UpperCAmelCase , _UpperCAmelCase ) ) def __a ( self ): UpperCamelCase__ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) UpperCamelCase__ = FlaxBertModel(_UpperCAmelCase ) UpperCamelCase__ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , max_shard_size="10KB" ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) UpperCamelCase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.assertTrue(check_models_equal(_UpperCAmelCase , _UpperCAmelCase ) ) def __a ( self ): UpperCamelCase__ = "bert" UpperCamelCase__ = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(_UpperCAmelCase ): UpperCamelCase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) UpperCamelCase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __a ( self ): UpperCamelCase__ = "bert" UpperCamelCase__ = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(_UpperCAmelCase ): UpperCamelCase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) UpperCamelCase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase )
80
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
0
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( UpperCAmelCase__ ): """simple docstring""" def __init__( self : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any=13 , __UpperCAmelCase : Dict=7 , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : Any=False , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : Optional[int]=99 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Optional[Any]=5 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : List[str]=512 , __UpperCAmelCase : List[str]=12 , __UpperCAmelCase : List[Any]=2 , __UpperCAmelCase : Any=0.02 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : str="last" , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : List[str]=None , ): '''simple docstring''' _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_lengths _A = use_token_type_ids _A = use_labels _A = gelu_activation _A = sinusoidal_embeddings _A = causal _A = asm _A = n_langs _A = vocab_size _A = n_special _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = summary_type _A = use_proj _A = scope def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_input_lengths: _A = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , 2 ).float() _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCAmelCase ( self : int , __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , ): '''simple docstring''' _A = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) _A = model(_UpperCAmelCase , langs=_UpperCAmelCase ) _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , ): '''simple docstring''' _A = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , ): '''simple docstring''' _A = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) _A = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , ): '''simple docstring''' _A = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) _A = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) _A = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((_A ) , ) = result_with_labels.to_tuple() _A = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((_A ) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , ): '''simple docstring''' _A = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) _A = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , ): '''simple docstring''' _A = self.num_labels _A = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , ): '''simple docstring''' _A = self.num_choices _A = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" snake_case = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) snake_case = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int=False ): '''simple docstring''' _A = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) _A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = FlaubertModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCAmelCase ( self : Any ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _A = True _A = model_class(config=_UpperCAmelCase ) _A = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _A = torch.jit.trace( _UpperCAmelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , "traced_model.pt" ) ) _A = torch.jit.load(os.path.join(_UpperCAmelCase , "traced_model.pt" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["input_ids"].to(_UpperCAmelCase ) , inputs_dict["attention_mask"].to(_UpperCAmelCase ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) _A = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _A = model(_UpperCAmelCase )[0] _A = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) _A = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
79
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
0
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil __UpperCAmelCase = 1_00 __UpperCAmelCase = set(range(3, NUM_PRIMES, 2)) primes.add(2) __UpperCAmelCase = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _snake_case ( lowercase__ : int ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase_ :Dict = set() lowerCAmelCase_ :List[str] = 4_2 lowerCAmelCase_ :int = 4_2 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _snake_case ( lowercase__ : int = 5_0_0_0 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
84
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
0
SCREAMING_SNAKE_CASE__ : Tuple = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' SCREAMING_SNAKE_CASE__ : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE__ : List[Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
270
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
0
def _lowercase ( lowercase__ ): if n_term == "": return [] __lowerCAmelCase : List[str] = [] for temp in range(int(lowercase__ ) ): series.append(f"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": _UpperCamelCase = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
275
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
0
"""simple docstring""" from collections.abc import Generator from math import sin def _snake_case ( UpperCAmelCase_ : bytes ): if len(UpperCAmelCase_ ) != 32: raise ValueError("""Input must be of length 32""" ) A__ = b"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _snake_case ( UpperCAmelCase_ : int ): if i < 0: raise ValueError("""Input must be non-negative""" ) A__ = format(UpperCAmelCase_ , """08x""" )[-8:] A__ = b"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def _snake_case ( UpperCAmelCase_ : bytes ): A__ = b"""""" for char in message: bit_string += format(UpperCAmelCase_ , """08b""" ).encode("""utf-8""" ) A__ = format(len(UpperCAmelCase_ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCAmelCase_ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _snake_case ( UpperCAmelCase_ : bytes ): if len(UpperCAmelCase_ ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(UpperCAmelCase_ ) , 512 ): A__ = bit_string[pos : pos + 512] A__ = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _snake_case ( UpperCAmelCase_ : int ): if i < 0: raise ValueError("""Input must be non-negative""" ) A__ = format(UpperCAmelCase_ , """032b""" ) A__ = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCAmelCase_ , 2 ) def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): return (a + b) % 2**32 def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _snake_case ( UpperCAmelCase_ : bytes ): A__ = preprocess(UpperCAmelCase_ ) A__ = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states A__ = 0x67_452_301 A__ = 0xEF_CDA_B89 A__ = 0x98_BAD_CFE A__ = 0x10_325_476 A__ = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCAmelCase_ ): A__ = aa A__ = ba A__ = ca A__ = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f A__ = d ^ (b & (c ^ d)) A__ = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f A__ = c ^ (d & (b ^ c)) A__ = (5 * i + 1) % 16 elif i <= 47: A__ = b ^ c ^ d A__ = (3 * i + 5) % 16 else: A__ = c ^ (b | not_aa(UpperCAmelCase_ )) A__ = (7 * i) % 16 A__ = (f + a + added_consts[i] + block_words[g]) % 2**32 A__ = d A__ = c A__ = b A__ = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total A__ = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
335
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
0
"""simple docstring""" from __future__ import annotations import numpy as np def snake_case_ ( A_ : np.ndarray ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : int = np.shape(A_ ) if rows != columns: _lowerCamelCase : int = ( '''\'table\' has to be of square shaped array but got a ''' F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(A_ ) _lowerCamelCase : Any = np.zeros((rows, columns) ) _lowerCamelCase : List[Any] = np.zeros((rows, columns) ) for i in range(A_ ): for j in range(A_ ): _lowerCamelCase : Any = sum(lower[i][k] * upper[k][j] for k in range(A_ ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _lowerCamelCase : int = (table[i][j] - total) / upper[j][j] _lowerCamelCase : List[str] = 1 for j in range(A_, A_ ): _lowerCamelCase : List[str] = sum(lower[i][k] * upper[k][j] for k in range(A_ ) ) _lowerCamelCase : Tuple = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
72
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch a__ = logging.get_logger(__name__) class UpperCAmelCase_ ( UpperCAmelCase__ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = None , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , **_a , ) -> None: super().__init__(**_UpperCAmelCase ) _a : List[Any] = size if size is not None else {'''shortest_edge''': 2_5_6} _a : str = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) _a : Tuple = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Tuple = get_size_dict(_UpperCAmelCase , param_name='''crop_size''' ) _a : Tuple = do_resize _a : Optional[Any] = size _a : Optional[Any] = resample _a : Union[str, Any] = do_center_crop _a : Optional[Any] = crop_size _a : str = do_rescale _a : Tuple = rescale_factor _a : Dict = do_normalize _a : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowercase ( self , _a , _a , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: _a : Dict = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _a : List[Any] = get_resize_output_image_size(_UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCAmelCase ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: _a : Tuple = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def __lowercase ( self , _a , _a , _a = None , **_a ) -> np.ndarray: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def __lowercase ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> int: _a : str = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Optional[Any] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_center_crop if do_center_crop is not None else self.do_center_crop _a : List[str] = crop_size if crop_size is not None else self.crop_size _a : Any = get_size_dict(_UpperCAmelCase , param_name='''crop_size''' ) _a : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _a : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : str = do_normalize if do_normalize is not None else self.do_normalize _a : Optional[int] = image_mean if image_mean is not None else self.image_mean _a : List[str] = image_std if image_std is not None else self.image_std _a : Dict = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _a : int = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: _a : Any = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: _a : Dict = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: _a : int = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: _a : int = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] _a : str = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] _a : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) def __lowercase ( self , _a , _a = None ) -> Optional[Any]: _a : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_UpperCAmelCase ): _a : List[Any] = target_sizes.numpy() _a : int = [] for idx in range(len(_UpperCAmelCase ) ): _a : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_UpperCAmelCase ) _a : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_UpperCAmelCase ) else: _a : Any = logits.argmax(dim=1 ) _a : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
235
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowerCAmelCase_ ( _lowerCamelCase: Any ): return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Optional[int] = create_tensor(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = gather(_lowerCamelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [state.process_index] __SCREAMING_SNAKE_CASE : Optional[Any] = gather_object(_lowerCamelCase ) assert len(_lowerCamelCase ) == state.num_processes, F"{gathered_obj}, {len(_lowerCamelCase )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), F"{gathered_obj} != {list(range(state.num_processes ) )}" def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Optional[Any] = create_tensor(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = broadcast(_lowerCamelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowerCAmelCase_ ( _lowerCamelCase: str ): if state.is_main_process: __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(state.num_processes + 1 ).to(state.device ) else: __SCREAMING_SNAKE_CASE : Dict = torch.arange(state.num_processes ).to(state.device ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pad_across_processes(_lowerCamelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowerCAmelCase_ ( _lowerCamelCase: List[Any] ): if state.num_processes != 2: return __SCREAMING_SNAKE_CASE : Optional[int] = create_tensor(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = reduce(_lowerCamelCase , """sum""" ) __SCREAMING_SNAKE_CASE : Dict = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase ), F"{reduced_tensor} != {truth_tensor}" def lowerCAmelCase_ ( _lowerCamelCase: Dict ): if state.num_processes != 2: return __SCREAMING_SNAKE_CASE : str = create_tensor(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = reduce(_lowerCamelCase , """mean""" ) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase ), F"{reduced_tensor} != {truth_tensor}" def lowerCAmelCase_ ( _lowerCamelCase: str ): main() def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Optional[int] = PartialState() state.print(F"State: {state}" ) state.print("""testing gather""" ) test_gather(_lowerCamelCase ) state.print("""testing gather_object""" ) test_gather_object(_lowerCamelCase ) state.print("""testing broadcast""" ) test_broadcast(_lowerCamelCase ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(_lowerCamelCase ) state.print("""testing reduce_sum""" ) test_reduce_sum(_lowerCamelCase ) state.print("""testing reduce_mean""" ) test_reduce_mean(_lowerCamelCase ) if __name__ == "__main__": main()
112
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
0
import itertools import math def SCREAMING_SNAKE_CASE__ ( __a ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Union[str, Any] = 2 while True: if is_prime(__a ): yield num num += 1 def SCREAMING_SNAKE_CASE__ ( __a = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(F'''{solution() = }''')
327
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase): _lowerCAmelCase : Any = StableDiffusionDiffEditPipeline _lowerCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} _lowerCAmelCase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} _lowerCAmelCase : Optional[int] = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCAmelCase : str = frozenset([]) def _snake_case ( self : List[str] ): torch.manual_seed(0 ) snake_case_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) snake_case_ : List[Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) snake_case_ : Optional[int] = DDIMInverseScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) snake_case_ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) snake_case_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) snake_case_ : Any = CLIPTextModel(_UpperCAmelCase ) snake_case_ : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case_ : Any = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : Tuple=0 ): snake_case_ : Any = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) snake_case_ : str = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith('''mps''' ): snake_case_ : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: snake_case_ : Optional[int] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) snake_case_ : List[Any] = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self : List[Any] , lowercase_ : Dict , lowercase_ : Tuple=0 ): snake_case_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) snake_case_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ : Union[str, Any] = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('''RGB''' ) if str(_UpperCAmelCase ).startswith('''mps''' ): snake_case_ : Optional[int] = torch.manual_seed(_UpperCAmelCase ) else: snake_case_ : List[str] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) snake_case_ : Any = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Dict=0 ): snake_case_ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) snake_case_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ : str = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('''RGB''' ) if str(_UpperCAmelCase ).startswith('''mps''' ): snake_case_ : int = torch.manual_seed(_UpperCAmelCase ) else: snake_case_ : List[str] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) snake_case_ : str = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def _snake_case ( self : int ): if not hasattr(self.pipeline_class , '''_optional_components''' ): return snake_case_ : List[Any] = self.get_dummy_components() snake_case_ : int = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) snake_case_ : Tuple = self.get_dummy_inputs(_UpperCAmelCase ) snake_case_ : Optional[Any] = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) snake_case_ : Any = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f"`{optional_component}` did not stay set to None after loading." , ) snake_case_ : Tuple = self.get_dummy_inputs(_UpperCAmelCase ) snake_case_ : List[Any] = pipe_loaded(**_UpperCAmelCase )[0] snake_case_ : Dict = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def _snake_case ( self : List[str] ): snake_case_ : Tuple = '''cpu''' snake_case_ : Tuple = self.get_dummy_components() snake_case_ : Union[str, Any] = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ : Union[str, Any] = self.get_dummy_mask_inputs(_UpperCAmelCase ) snake_case_ : int = pipe.generate_mask(**_UpperCAmelCase ) snake_case_ : Optional[Any] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) snake_case_ : Dict = np.array([0] * 9 ) snake_case_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _snake_case ( self : List[Any] ): snake_case_ : Dict = '''cpu''' snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : List[str] = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ : Any = self.get_dummy_inversion_inputs(_UpperCAmelCase ) snake_case_ : Union[str, Any] = pipe.invert(**_UpperCAmelCase ).images snake_case_ : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) snake_case_ : List[str] = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) snake_case_ : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def _snake_case ( self : Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def _snake_case ( self : str ): snake_case_ : List[str] = '''cpu''' snake_case_ : List[Any] = self.get_dummy_components() snake_case_ : Dict = {'''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''beta_schedule''': '''scaled_linear'''} snake_case_ : Any = DPMSolverMultistepScheduler(**_UpperCAmelCase ) snake_case_ : int = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) snake_case_ : Union[str, Any] = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ : Tuple = self.get_dummy_inversion_inputs(_UpperCAmelCase ) snake_case_ : str = pipe.invert(**_UpperCAmelCase ).images snake_case_ : str = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) snake_case_ : Union[str, Any] = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) snake_case_ : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _snake_case ( cls : str ): snake_case_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) snake_case_ : List[str] = raw_image.convert('''RGB''' ).resize((768, 768) ) snake_case_ : Optional[Any] = raw_image def _snake_case ( self : Optional[int] ): snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Dict = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) snake_case_ : Optional[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) snake_case_ : str = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ : Any = '''a bowl of fruit''' snake_case_ : Tuple = '''a bowl of pears''' snake_case_ : str = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) snake_case_ : Union[str, Any] = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents snake_case_ : str = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] snake_case_ : List[str] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def _snake_case ( self : int ): snake_case_ : Dict = torch.manual_seed(0 ) snake_case_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) snake_case_ : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) snake_case_ : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ : Any = '''a bowl of fruit''' snake_case_ : int = '''a bowl of pears''' snake_case_ : str = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) snake_case_ : Optional[Any] = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents snake_case_ : List[Any] = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] snake_case_ : Optional[int] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
264
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase_ ( UpperCAmelCase__ ): __UpperCAmelCase = ['image_processor', 'tokenizer'] __UpperCAmelCase = 'LayoutLMv2ImageProcessor' __UpperCAmelCase = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self , a=None , a=None , **a ): if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCAmelCase , ) UpperCamelCase__ = kwargs.pop("feature_extractor" ) UpperCamelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , a , a = None , a = None , a = None , a = None , a = True , a = False , a = None , a = None , a = 0 , a = None , a = None , a = None , a = False , a = False , a = False , a = False , a = True , a = None , **a , ): if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor UpperCamelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase__ = features["words"] UpperCamelCase__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values UpperCamelCase__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: UpperCamelCase__ = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) UpperCamelCase__ = images return encoded_inputs def __a ( self , a , a ): UpperCamelCase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f''' {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}''' ) return images_with_overflow def __a ( self , *a , **a ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def __a ( self , *a , **a ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def __a ( self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def __a ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _UpperCAmelCase , ) return self.image_processor_class @property def __a ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _UpperCAmelCase , ) return self.image_processor
80
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
0
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> np.array: '''simple docstring''' _A = int(np.ceil((x_end - xa) / step_size ) ) _A = np.zeros((n + 1,) ) _A = ya _A = xa for k in range(__lowercase ): _A = y[k] + step_size * ode_func(__lowercase , y[k] ) _A = y[k] + ( (step_size / 2) * (ode_func(__lowercase , y[k] ) + ode_func(x + step_size , __lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
79
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
0
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __UpperCAmelCase = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def _snake_case ( lowercase__ : Tuple=True ) -> List[Any]: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=UpperCAmelCase__ ) ) class _SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): UpperCAmelCase_ :Optional[Any] = None UpperCAmelCase_ :List[Any] = None def __lowerCAmelCase ( self , __A , __A ) -> Optional[Any]: with TemporaryDirectory() as tmp_dir: lowerCAmelCase_ :Tuple = dataset_module_factory(_UpperCAmelCase , cache_dir=_UpperCAmelCase ) lowerCAmelCase_ :List[Any] = import_main_class(dataset_module.module_path , dataset=_UpperCAmelCase ) lowerCAmelCase_ :Tuple = builder_cls( cache_dir=_UpperCAmelCase , config_name=_UpperCAmelCase , hash=dataset_module.hash , ) lowerCAmelCase_ :Tuple = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_UpperCAmelCase ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) lowerCAmelCase_ :Any = cached_path(_UpperCAmelCase , cache_dir=_UpperCAmelCase ) self.assertTrue(os.path.exists(_UpperCAmelCase ) ) @pytest.mark.integration def _snake_case ( lowercase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ :Tuple = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" lowerCAmelCase_ :Tuple = dataset_module_factory("""wikipedia""" , cache_dir=lowercase__ ) lowerCAmelCase_ :List[Any] = import_main_class(dataset_module.module_path ) lowerCAmelCase_ :Dict = builder_cls( cache_dir=lowercase__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowerCAmelCase_ :str = None builder_instance.download_and_prepare() lowerCAmelCase_ :Dict = builder_instance.as_dataset() assert ds @pytest.mark.integration def _snake_case ( lowercase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = dataset_module_factory("""wikipedia""" , cache_dir=lowercase__ ) lowerCAmelCase_ :List[Any] = import_main_class(dataset_module.module_path , dataset=lowercase__ ) lowerCAmelCase_ :int = builder_cls( cache_dir=lowercase__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) lowerCAmelCase_ :Union[str, Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowercase__ , lowercase__ ) assert "train" in ds assert isinstance(ds["""train"""] , lowercase__ ) assert next(iter(ds["""train"""] ) )
84
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple=1024 ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = [], [] __lowerCamelCase = list(zip(__lowerCAmelCase , __lowerCAmelCase ) ) __lowerCamelCase , __lowerCamelCase = sorted_examples[0] def is_too_big(__lowerCAmelCase : Union[str, Any] ): return tok(__lowerCAmelCase , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __lowerCamelCase = new_src + ''' ''' + src __lowerCamelCase = new_tgt + ''' ''' + tgt if is_too_big(__lowerCAmelCase ) or is_too_big(__lowerCAmelCase ): # cant fit, finalize example finished_src.append(__lowerCAmelCase ) finished_tgt.append(__lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = src, tgt else: # can fit, keep adding __lowerCamelCase , __lowerCamelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__lowerCAmelCase ) finished_tgt.append(__lowerCAmelCase ) return finished_src, finished_tgt def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Path , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any ) -> List[str]: __lowerCamelCase = Path(__lowerCAmelCase ) save_path.mkdir(exist_ok=__lowerCAmelCase ) for split in ["train"]: __lowerCamelCase , __lowerCamelCase = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' __lowerCamelCase = [x.rstrip() for x in Path(__lowerCAmelCase ).open().readlines()] __lowerCamelCase = [x.rstrip() for x in Path(__lowerCAmelCase ).open().readlines()] __lowerCamelCase , __lowerCamelCase = pack_examples(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) print(f'''packed {split} split from {len(__lowerCAmelCase )} examples -> {len(__lowerCAmelCase )}.''' ) Path(save_path / f'''{split}.source''' ).open('''w''' ).write('''\n'''.join(__lowerCAmelCase ) ) Path(save_path / f'''{split}.target''' ).open('''w''' ).write('''\n'''.join(__lowerCAmelCase ) ) for split in ["val", "test"]: __lowerCamelCase , __lowerCamelCase = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(__lowerCAmelCase , save_path / f'''{split}.source''' ) shutil.copyfile(__lowerCAmelCase , save_path / f'''{split}.target''' ) def __magic_name__ ( ) -> str: __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=__lowerCAmelCase , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=__lowerCAmelCase , default=128 ) parser.add_argument('''--data_dir''' , type=__lowerCAmelCase ) parser.add_argument('''--save_path''' , type=__lowerCAmelCase ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__lowerCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
270
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
0
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCamelCase = logging.getLogger(__name__) @dataclass(frozen=UpperCAmelCase__ ) class __lowercase : _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None @dataclass(frozen=UpperCAmelCase__ ) class __lowercase : _UpperCamelCase = 42 _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class __lowercase (UpperCAmelCase__ ): _UpperCamelCase = 42 def __init__( self , A_ , A_ , A_ , A_ = None , A_=False , A_ = False , ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Tuple = hans_processors[task]() __lowerCAmelCase : Tuple = os.path.join( _UpperCAmelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_UpperCAmelCase ) , _UpperCAmelCase , ) , ) __lowerCAmelCase : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCAmelCase, __lowerCAmelCase : str = label_list[2], label_list[1] __lowerCAmelCase : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase : Optional[int] = cached_features_file + '''.lock''' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __lowerCAmelCase : Optional[int] = torch.load(_UpperCAmelCase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __lowerCAmelCase : Optional[Any] = ( processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) ) logger.info('''Training examples: %s''' , len(_UpperCAmelCase ) ) __lowerCAmelCase : List[Any] = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) logger.info('''Saving features into cached file %s''' , _UpperCAmelCase ) torch.save(self.features , _UpperCAmelCase ) def __len__( self ) ->int: '''simple docstring''' return len(self.features ) def __getitem__( self , A_ ) ->InputFeatures: '''simple docstring''' return self.features[i] def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class __lowercase : _UpperCamelCase = 42 def __init__( self , A_ , A_ , A_ , A_ = 128 , A_=False , A_ = False , ) ->Dict: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = hans_processors[task]() __lowerCAmelCase : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCAmelCase, __lowerCAmelCase : str = label_list[2], label_list[1] __lowerCAmelCase : int = label_list __lowerCAmelCase : Optional[Any] = processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) __lowerCAmelCase : Dict = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __lowerCAmelCase : Optional[int] = tf.data.Dataset.from_generator( _UpperCAmelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' return self.dataset def __len__( self ) ->Dict: '''simple docstring''' return len(self.features ) def __getitem__( self , A_ ) ->InputFeatures: '''simple docstring''' return self.features[i] def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' return self.label_list class __lowercase (UpperCAmelCase__ ): def UpperCamelCase__ ( self , A_ ) ->Optional[Any]: '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' return ["contradiction", "entailment", "neutral"] def UpperCamelCase__ ( self , A_ , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = [] for i, line in enumerate(_UpperCAmelCase ): if i == 0: continue __lowerCAmelCase : Union[str, Any] = '''%s-%s''' % (set_type, line[0]) __lowerCAmelCase : Any = line[5] __lowerCAmelCase : Dict = line[6] __lowerCAmelCase : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __lowerCAmelCase : Dict = line[0] examples.append(InputExample(guid=_UpperCAmelCase , text_a=_UpperCAmelCase , text_b=_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) return examples def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __lowerCAmelCase : int = {label: i for i, label in enumerate(lowercase__ )} __lowerCAmelCase : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(lowercase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) __lowerCAmelCase : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowercase__ , max_length=lowercase__ , padding='''max_length''' , truncation=lowercase__ , return_overflowing_tokens=lowercase__ , ) __lowerCAmelCase : Tuple = label_map[example.label] if example.label in label_map else 0 __lowerCAmelCase : List[str] = int(example.pairID ) features.append(InputFeatures(**lowercase__ , label=lowercase__ , pairID=lowercase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features _UpperCamelCase = { 'hans': 3, } _UpperCamelCase = { 'hans': HansProcessor, }
275
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging SCREAMING_SNAKE_CASE_ : Tuple = logging.get_logger(__name__) def _snake_case ( UpperCAmelCase_ : Union[tf.Tensor, np.ndarray] ): if isinstance(UpperCAmelCase_ , np.ndarray ): return list(tensor.shape ) A__ = tf.shape(UpperCAmelCase_ ) if tensor.shape == tf.TensorShape(UpperCAmelCase_ ): return dynamic A__ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase_ )] def _snake_case ( UpperCAmelCase_ : tf.Tensor , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[str] = None ): return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase_ , name=UpperCAmelCase_ ) def _snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=1e-5 , UpperCAmelCase_ : Any=-1 ): if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized A__ , A__ = tf.nn.moments(UpperCAmelCase_ , axes=[axis] , keepdims=UpperCAmelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis A__ = [1] * inputs.shape.rank A__ = shape_list(UpperCAmelCase_ )[axis] A__ = tf.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = tf.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) # Compute layer normalization using the batch_normalization # function. A__ = tf.nn.batch_normalization( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , offset=UpperCAmelCase_ , scale=UpperCAmelCase_ , variance_epsilon=UpperCAmelCase_ , ) return outputs def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : Optional[Any]=-1 ): if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input A__ = tf.shape(UpperCAmelCase_ ) A__ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) A__ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) def _snake_case ( UpperCAmelCase_ : tf.Tensor ): if not isinstance(UpperCAmelCase_ , tf.Tensor ): A__ = tf.convert_to_tensor(UpperCAmelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: A__ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: A__ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) A__ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _snake_case ( UpperCAmelCase_ : tf.Tensor , UpperCAmelCase_ : int , UpperCAmelCase_ : str = "input_ids" ): tf.debugging.assert_less( UpperCAmelCase_ , tf.cast(UpperCAmelCase_ , dtype=tensor.dtype ) , message=( F"""The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase_ )}) must be smaller than the embedding """ F"""layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def _snake_case ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ): A__ = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. A__ = [x for x in data if len(UpperCAmelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ F"""bytes: {bad_attributes}""" ) A__ = np.asarray(UpperCAmelCase_ ) A__ = 1 A__ = np.array_split(UpperCAmelCase_ , UpperCAmelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 A__ = np.array_split(UpperCAmelCase_ , UpperCAmelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase_ ): A__ = chunk_data else: A__ = data def _snake_case ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple ): if name in group.attrs: A__ = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase_ , """decode""" ) else n for n in group.attrs[name]] else: A__ = [] A__ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase_ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def _snake_case ( UpperCAmelCase_ : Optional[Any] ): def _expand_single_ad_tensor(UpperCAmelCase_ : List[Any] ): if isinstance(UpperCAmelCase_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase_ )
335
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
0
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''', [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ], ) def snake_case_ ( A_ : Union[str, Any], A_ : Any, A_ : str, A_ : List[str], A_ : List[Any], A_ : int, A_ : List[Any], A_ : Any, A_ : int, A_ : List[Any], A_ : int, A_ : Any, ): '''simple docstring''' _lowerCamelCase : str = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } _lowerCamelCase , _lowerCamelCase : Optional[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: _lowerCamelCase : List[Any] = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(A_ ) assert base_extractor.is_extractable(A_ ) _lowerCamelCase : Union[str, Any] = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(A_, A_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _lowerCamelCase : List[str] = file_path.read_text(encoding='''utf-8''' ) else: _lowerCamelCase : int = output_path.read_text(encoding='''utf-8''' ) _lowerCamelCase : Union[str, Any] = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''', [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ], ) def snake_case_ ( A_ : Union[str, Any], A_ : List[str], A_ : List[str], A_ : List[Any], A_ : int, A_ : List[str], A_ : Optional[Any], A_ : str, A_ : int, A_ : Optional[int], A_ : int, A_ : int, ): '''simple docstring''' _lowerCamelCase : str = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } _lowerCamelCase : Dict = input_paths[compression_format] if input_path is None: _lowerCamelCase : Union[str, Any] = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(A_ ) _lowerCamelCase : Optional[Any] = Extractor.infer_extractor_format(A_ ) assert extractor_format is not None _lowerCamelCase : int = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(A_, A_, A_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _lowerCamelCase : List[str] = file_path.read_text(encoding='''utf-8''' ) else: _lowerCamelCase : Optional[Any] = output_path.read_text(encoding='''utf-8''' ) _lowerCamelCase : List[Any] = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def snake_case_ ( A_ : List[Any], A_ : Optional[Any] ): '''simple docstring''' import tarfile _lowerCamelCase : str = tmp_path / '''data_dot_dot''' directory.mkdir() _lowerCamelCase : List[str] = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(A_, '''w''' ) as f: f.add(A_, arcname=os.path.join('''..''', text_file.name ) ) return path @pytest.fixture def snake_case_ ( A_ : List[Any] ): '''simple docstring''' import tarfile _lowerCamelCase : List[str] = tmp_path / '''data_sym_link''' directory.mkdir() _lowerCamelCase : str = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''', directory / '''subdir''', target_is_directory=A_ ) with tarfile.TarFile(A_, '''w''' ) as f: f.add(str(directory / '''subdir''' ), arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''', [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')], ) def snake_case_ ( A_ : List[str], A_ : Optional[Any], A_ : Tuple, A_ : Optional[int], A_ : Tuple, A_ : int ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } _lowerCamelCase : Optional[Any] = insecure_tar_files[insecure_tar_file] _lowerCamelCase : str = tmp_path / '''extracted''' TarExtractor.extract(A_, A_ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def snake_case_ ( A_ : Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 _lowerCamelCase : Union[str, Any] = ( b'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' b'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' b'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' b'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(A_ ) assert zipfile.is_zipfile(str(A_ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(A_ ) # but we're right
72
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification a__ = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co a__ = 'main' # Default branch name a__ = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) a__ = 'aaaaaaa' # This commit does not exist, so we should 404. a__ = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes a__ = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def __UpperCAmelCase ( ) -> Dict: """simple docstring""" print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def __UpperCAmelCase ( ) -> Dict: """simple docstring""" print('''Bonjour!''' ) yield print('''Au revoir!''' ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __lowercase ( self , _a ) -> int: with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __lowercase ( self , _a ) -> Optional[Any]: with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __lowercase ( self , _a ) -> List[Any]: with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def __lowercase ( self ) -> List[str]: self.assertEqual(find_labels(_UpperCAmelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_UpperCAmelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_UpperCAmelCase ) , ['''start_positions''', '''end_positions'''] ) class UpperCAmelCase_ ( UpperCAmelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(_UpperCAmelCase ) , ['''labels'''] ) @require_tf def __lowercase ( self ) -> str: self.assertEqual(find_labels(_UpperCAmelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_UpperCAmelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_UpperCAmelCase ) , ['''start_positions''', '''end_positions'''] ) class UpperCAmelCase_ ( UpperCAmelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(_UpperCAmelCase ) , ['''labels'''] ) @require_flax def __lowercase ( self ) -> List[Any]: self.assertEqual(find_labels(_UpperCAmelCase ) , [] ) self.assertEqual(find_labels(_UpperCAmelCase ) , [] ) self.assertEqual(find_labels(_UpperCAmelCase ) , [] ) class UpperCAmelCase_ ( UpperCAmelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(_UpperCAmelCase ) , [] )
235
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
0
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Optional[int] = [1] for i in range(2 , _lowerCamelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : List[str] = list(range(_lowerCamelCase ) ) # Find permutation while factorials: __SCREAMING_SNAKE_CASE : Dict = factorials.pop() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = divmod(_lowerCamelCase , _lowerCamelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
112
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Union[str, Any] , _A : int , _A : int ) -> List[Any]: """simple docstring""" snake_case_ : Optional[int] = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase_ ( self : int ) -> List[Any]: """simple docstring""" snake_case_ : Any = None snake_case_ : str = 20 snake_case_ : Optional[int] = self._get_uniform_logits(batch_size=2 , length=_UpperCAmelCase ) # tweak scores to not be uniform anymore snake_case_ : Tuple = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch snake_case_ : Optional[int] = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax snake_case_ : Optional[Any] = jax.nn.softmax(_UpperCAmelCase , axis=-1 ) snake_case_ : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) snake_case_ : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=1.3 ) snake_case_ : List[Any] = jax.nn.softmax(temp_dist_warper_sharper(_UpperCAmelCase , scores.copy() , cur_len=_UpperCAmelCase ) , axis=-1 ) snake_case_ : str = jax.nn.softmax(temp_dist_warper_smoother(_UpperCAmelCase , scores.copy() , cur_len=_UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase_ ( self : List[str] ) -> int: """simple docstring""" snake_case_ : Union[str, Any] = None snake_case_ : Optional[int] = 10 snake_case_ : Tuple = 2 # create ramp distribution snake_case_ : str = np.broadcast_to(np.arange(_UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() snake_case_ : Union[str, Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size snake_case_ : int = FlaxTopKLogitsWarper(3 ) snake_case_ : List[str] = top_k_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case snake_case_ : List[str] = 5 snake_case_ : Optional[int] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) snake_case_ : Optional[Any] = np.broadcast_to(np.arange(_UpperCAmelCase )[None, :] , (batch_size, length) ).copy() snake_case_ : Union[str, Any] = top_k_warp_safety_check(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : List[Any] = None snake_case_ : List[Any] = 10 snake_case_ : Any = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) snake_case_ : str = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) snake_case_ : Optional[Any] = FlaxTopPLogitsWarper(0.8 ) snake_case_ : List[Any] = np.exp(top_p_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 snake_case_ : int = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # check edge cases with negative and extreme logits snake_case_ : Tuple = np.broadcast_to(np.arange(_UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme snake_case_ : Optional[Any] = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept snake_case_ : Tuple = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) snake_case_ : Union[str, Any] = top_p_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" snake_case_ : Any = 20 snake_case_ : str = 4 snake_case_ : Tuple = 0 snake_case_ : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_UpperCAmelCase ) # check that min length is applied at length 5 snake_case_ : List[str] = ids_tensor((batch_size, 20) , vocab_size=20 ) snake_case_ : str = 5 snake_case_ : Optional[int] = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : int = min_dist_processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 snake_case_ : List[Any] = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Optional[int] = 15 snake_case_ : List[Any] = min_dist_processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) self.assertFalse(jnp.isinf(_UpperCAmelCase ).any() ) def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = 20 snake_case_ : Dict = 4 snake_case_ : int = 0 snake_case_ : Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score snake_case_ : Union[str, Any] = ids_tensor((batch_size, 1) , vocab_size=20 ) snake_case_ : Tuple = 1 snake_case_ : Union[str, Any] = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Any = logits_processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 snake_case_ : str = 3 snake_case_ : Optional[int] = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Optional[int] = logits_processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) self.assertFalse(jnp.isinf(_UpperCAmelCase ).any() ) def UpperCAmelCase_ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ : Optional[int] = 20 snake_case_ : List[str] = 4 snake_case_ : Tuple = 0 snake_case_ : Optional[Any] = 5 snake_case_ : Optional[int] = FlaxForcedEOSTokenLogitsProcessor(max_length=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached snake_case_ : Optional[Any] = ids_tensor((batch_size, 4) , vocab_size=20 ) snake_case_ : str = 4 snake_case_ : str = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Dict = logits_processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached snake_case_ : int = 3 snake_case_ : str = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : List[Any] = logits_processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) self.assertFalse(jnp.isinf(_UpperCAmelCase ).any() ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" snake_case_ : List[str] = 4 snake_case_ : Union[str, Any] = 10 snake_case_ : Optional[Any] = 15 snake_case_ : str = 2 snake_case_ : int = 1 snake_case_ : List[str] = 15 # dummy input_ids and scores snake_case_ : List[Any] = ids_tensor((batch_size, sequence_length) , _UpperCAmelCase ) snake_case_ : List[str] = input_ids.copy() snake_case_ : Any = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : int = scores.copy() # instantiate all dist processors snake_case_ : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) snake_case_ : Union[str, Any] = FlaxTopKLogitsWarper(3 ) snake_case_ : Tuple = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors snake_case_ : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_UpperCAmelCase ) snake_case_ : Union[str, Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_UpperCAmelCase ) snake_case_ : Tuple = FlaxForcedEOSTokenLogitsProcessor(max_length=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) snake_case_ : int = 10 # no processor list snake_case_ : Dict = temp_dist_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) snake_case_ : Any = top_k_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) snake_case_ : Union[str, Any] = top_p_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) snake_case_ : Union[str, Any] = min_dist_proc(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) snake_case_ : str = bos_dist_proc(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) snake_case_ : Dict = eos_dist_proc(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) # with processor list snake_case_ : int = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) snake_case_ : str = processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = 4 snake_case_ : Dict = 10 snake_case_ : Optional[int] = 15 snake_case_ : List[Any] = 2 snake_case_ : Dict = 1 snake_case_ : Tuple = 15 # dummy input_ids and scores snake_case_ : Tuple = ids_tensor((batch_size, sequence_length) , _UpperCAmelCase ) snake_case_ : str = input_ids.copy() snake_case_ : List[str] = self._get_uniform_logits(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Union[str, Any] = scores.copy() # instantiate all dist processors snake_case_ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) snake_case_ : Optional[Any] = FlaxTopKLogitsWarper(3 ) snake_case_ : Dict = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors snake_case_ : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_UpperCAmelCase ) snake_case_ : Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_UpperCAmelCase ) snake_case_ : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) snake_case_ : List[str] = 10 # no processor list def run_no_processor_list(_A : Optional[Any] , _A : Dict , _A : Dict ): snake_case_ : Optional[int] = temp_dist_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) snake_case_ : Optional[int] = top_k_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) snake_case_ : Dict = top_p_warp(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) snake_case_ : Tuple = min_dist_proc(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) snake_case_ : int = bos_dist_proc(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) snake_case_ : Dict = eos_dist_proc(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) return scores # with processor list def run_processor_list(_A : Optional[int] , _A : Any , _A : Optional[Any] ): snake_case_ : Tuple = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) snake_case_ : Any = processor(_UpperCAmelCase , _UpperCAmelCase , cur_len=_UpperCAmelCase ) return scores snake_case_ : Union[str, Any] = jax.jit(_UpperCAmelCase ) snake_case_ : str = jax.jit(_UpperCAmelCase ) snake_case_ : int = jitted_run_no_processor_list(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ : List[str] = jitted_run_processor_list(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
327
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
0
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _UpperCAmelCase ( tf.keras.layers.Layer): def __init__( self : Any , lowercase_ : Dict[str, int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = None ): super().__init__() snake_case_ : Optional[Any] = pad_token_id snake_case_ : Optional[Any] = max_length snake_case_ : List[str] = vocab snake_case_ : Dict = merges snake_case_ : str = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def _snake_case ( cls : Optional[int] , lowercase_ : GPTaTokenizer , *lowercase_ : List[Any] , **lowercase_ : List[Any] ): snake_case_ : Tuple = [''' '''.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] snake_case_ : Any = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowercase_ : Union[str, os.PathLike] , *lowercase_ : str , **lowercase_ : List[Any] ): snake_case_ : Any = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def _snake_case ( cls : Any , lowercase_ : Tuple ): return cls(**_UpperCAmelCase ) def _snake_case ( self : Union[str, Any] ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _snake_case ( self : str , lowercase_ : Optional[Any] , lowercase_ : int = None ): snake_case_ : Optional[int] = self.tf_tokenizer(_UpperCAmelCase ) snake_case_ : str = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length snake_case_ : Optional[Any] = max_length if max_length is not None else self.max_length if max_length is not None: snake_case_, snake_case_ : Optional[int] = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
264
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : List[str] = logging.get_logger(__name__) a__ : int = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class lowercase_ ( UpperCAmelCase__ ): __UpperCAmelCase = 'roberta' def __init__( self , a=5_02_65 , a=7_68 , a=12 , a=12 , a=30_72 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=2 , a=0.02 , a=1e-12 , a=1 , a=0 , a=2 , a="absolute" , a=True , a=None , **a , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = use_cache UpperCamelCase__ = classifier_dropout class lowercase_ ( UpperCAmelCase__ ): @property def __a ( self ): if self.task == "multiple-choice": UpperCamelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
80
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
0
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowerCamelCase_ = logging.get_logger(__name__) @dataclass class _UpperCAmelCase : """simple docstring""" snake_case = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) snake_case = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) snake_case = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case = field( default=UpperCAmelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.task_name.lower() class _UpperCAmelCase ( UpperCAmelCase__ ): """simple docstring""" snake_case = '''train''' snake_case = '''dev''' snake_case = '''test''' class _UpperCAmelCase ( UpperCAmelCase__ ): """simple docstring""" snake_case = 42 snake_case = 42 snake_case = 42 def __init__( self : Dict , __UpperCAmelCase : GlueDataTrainingArguments , __UpperCAmelCase : PreTrainedTokenizerBase , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Union[str, Split] = Split.train , __UpperCAmelCase : Optional[str] = None , ): '''simple docstring''' warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , _UpperCAmelCase , ) _A = args _A = glue_processors[args.task_name]() _A = glue_output_modes[args.task_name] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: _A = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) # Load data features from cache or dataset file _A = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) _A = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _A , _A = label_list[2], label_list[1] _A = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _A = cached_features_file + ".lock" with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not args.overwrite_cache: _A = time.time() _A = torch.load(_UpperCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: _A = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _A = self.processor.get_test_examples(args.data_dir ) else: _A = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _A = examples[:limit_length] _A = glue_convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , max_length=args.max_seq_length , label_list=_UpperCAmelCase , output_mode=self.output_mode , ) _A = time.time() torch.save(self.features , _UpperCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Optional[int] , __UpperCAmelCase : Tuple ): '''simple docstring''' return self.features[i] def lowerCAmelCase ( self : int ): '''simple docstring''' return self.label_list
79
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BeitFeatureExtractor'] __UpperCAmelCase = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
84
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
0
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __magic_name__ ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
270
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
0
def _lowercase ( lowercase__ ): __lowerCAmelCase : List[str] = [] __lowerCAmelCase : str = set({'''(''', '''[''', '''{'''} ) __lowerCAmelCase : Optional[int] = set({''')''', ''']''', '''}'''} ) __lowerCAmelCase : str = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(lowercase__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowercase__ ) == 0 or (len(lowercase__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowercase__ ) == 0 def _lowercase ( ): __lowerCAmelCase : Union[str, Any] = input('''Enter sequence of brackets: ''' ) if is_balanced(lowercase__ ): print(lowercase__ , '''is balanced''' ) else: print(lowercase__ , '''is not balanced''' ) if __name__ == "__main__": main()
275
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
0
"""simple docstring""" from ... import PretrainedConfig SCREAMING_SNAKE_CASE_ : int = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class a ( UpperCAmelCase__ ): """simple docstring""" UpperCAmelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCAmelCase = "nezha" def __init__( self: str , UpperCamelCase: List[Any]=2_11_28 , UpperCamelCase: int=7_68 , UpperCamelCase: Optional[int]=12 , UpperCamelCase: int=12 , UpperCamelCase: Tuple=30_72 , UpperCamelCase: Optional[int]="gelu" , UpperCamelCase: List[Any]=0.1 , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Optional[Any]=5_12 , UpperCamelCase: str=64 , UpperCamelCase: Dict=2 , UpperCamelCase: int=0.02 , UpperCamelCase: Union[str, Any]=1e-1_2 , UpperCamelCase: Dict=0.1 , UpperCamelCase: List[str]=0 , UpperCamelCase: str=2 , UpperCamelCase: str=3 , UpperCamelCase: List[str]=True , **UpperCamelCase: Optional[int] , ): """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = max_relative_position A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = classifier_dropout A__ = use_cache
335
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
0
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __snake_case ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__): snake_case__ : List[Any] = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 5_0_2_5_7 , __lowerCAmelCase : int = 1_0_2_4 , __lowerCAmelCase : int = 7_6_8 , __lowerCAmelCase : int = 1_2 , __lowerCAmelCase : int = 1_2 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : str = "gelu_new" , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 1E-5 , __lowerCAmelCase : float = 0.02 , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , ): """simple docstring""" super().__init__() _lowerCamelCase : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) _lowerCamelCase : Union[str, Any] = prefix_inner_dim _lowerCamelCase : Union[str, Any] = prefix_hidden_dim _lowerCamelCase : Union[str, Any] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowerCamelCase : str = ( nn.Linear(self.prefix_hidden_dim , _UpperCAmelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowerCamelCase : str = GPTaConfig( vocab_size=_UpperCAmelCase , n_positions=_UpperCAmelCase , n_embd=_UpperCAmelCase , n_layer=_UpperCAmelCase , n_head=_UpperCAmelCase , n_inner=_UpperCAmelCase , activation_function=_UpperCAmelCase , resid_pdrop=_UpperCAmelCase , embd_pdrop=_UpperCAmelCase , attn_pdrop=_UpperCAmelCase , layer_norm_epsilon=_UpperCAmelCase , initializer_range=_UpperCAmelCase , scale_attn_weights=_UpperCAmelCase , use_cache=_UpperCAmelCase , scale_attn_by_inverse_layer_idx=_UpperCAmelCase , reorder_and_upcast_attn=_UpperCAmelCase , ) _lowerCamelCase : Optional[int] = GPTaLMHeadModel(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None , ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.transformer.transformer.wte(_UpperCAmelCase ) _lowerCamelCase : Union[str, Any] = self.encode_prefix(_UpperCAmelCase ) _lowerCamelCase : Union[str, Any] = self.decode_prefix(_UpperCAmelCase ) _lowerCamelCase : str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: _lowerCamelCase : str = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) _lowerCamelCase : int = torch.cat((dummy_token, input_ids) , dim=1 ) _lowerCamelCase : Any = self.transformer(inputs_embeds=_UpperCAmelCase , labels=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : int , __lowerCAmelCase : torch.device ): """simple docstring""" return torch.zeros(_UpperCAmelCase , self.prefix_length , dtype=torch.intaa , device=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] ): """simple docstring""" return self.encode_prefix(_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = torch.split(_UpperCAmelCase , 1 , dim=0 ) _lowerCamelCase : Any = [] _lowerCamelCase : List[str] = [] for feature in features: _lowerCamelCase : Union[str, Any] = self.decode_prefix(feature.to(_UpperCAmelCase ) ) # back to the clip feature # Only support beam search for now _lowerCamelCase , _lowerCamelCase : str = self.generate_beam( input_embeds=_UpperCAmelCase , device=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _lowerCamelCase : List[Any] = torch.stack(_UpperCAmelCase ) _lowerCamelCase : int = torch.stack(_UpperCAmelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : int=None , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : int = 5 , __lowerCAmelCase : int = 6_7 , __lowerCAmelCase : float = 1.0 , __lowerCAmelCase : Optional[int] = None , ): """simple docstring""" _lowerCamelCase : int = eos_token_id _lowerCamelCase : Dict = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase , dtype=torch.int ) _lowerCamelCase : Union[str, Any] = torch.zeros(_UpperCAmelCase , device=_UpperCAmelCase , dtype=torch.bool ) if input_embeds is not None: _lowerCamelCase : Any = input_embeds else: _lowerCamelCase : List[str] = self.transformer.transformer.wte(_UpperCAmelCase ) for i in range(_UpperCAmelCase ): _lowerCamelCase : str = self.transformer(inputs_embeds=_UpperCAmelCase ) _lowerCamelCase : Dict = outputs.logits _lowerCamelCase : int = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _lowerCamelCase : Union[str, Any] = logits.softmax(-1 ).log() if scores is None: _lowerCamelCase , _lowerCamelCase : Any = logits.topk(_UpperCAmelCase , -1 ) _lowerCamelCase : Any = generated.expand(_UpperCAmelCase , *generated.shape[1:] ) _lowerCamelCase , _lowerCamelCase : Tuple = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: _lowerCamelCase : Optional[Any] = next_tokens else: _lowerCamelCase : Optional[int] = tokens.expand(_UpperCAmelCase , *tokens.shape[1:] ) _lowerCamelCase : Tuple = torch.cat((tokens, next_tokens) , dim=1 ) else: _lowerCamelCase : Any = -float(np.inf ) _lowerCamelCase : int = 0 _lowerCamelCase : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _lowerCamelCase : str = scores_sum / seq_lengths[:, None] _lowerCamelCase , _lowerCamelCase : Optional[int] = scores_sum_average.view(-1 ).topk(_UpperCAmelCase , -1 ) _lowerCamelCase : List[str] = next_tokens // scores_sum.shape[1] _lowerCamelCase : Tuple = seq_lengths[next_tokens_source] _lowerCamelCase : Union[str, Any] = next_tokens % scores_sum.shape[1] _lowerCamelCase : Any = next_tokens.unsqueeze(1 ) _lowerCamelCase : Tuple = tokens[next_tokens_source] _lowerCamelCase : Dict = torch.cat((tokens, next_tokens) , dim=1 ) _lowerCamelCase : str = generated[next_tokens_source] _lowerCamelCase : Optional[int] = scores_sum_average * seq_lengths _lowerCamelCase : Dict = is_stopped[next_tokens_source] _lowerCamelCase : Any = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) _lowerCamelCase : Union[str, Any] = torch.cat((generated, next_token_embed) , dim=1 ) _lowerCamelCase : Optional[int] = is_stopped + next_tokens.eq(_UpperCAmelCase ).squeeze() if is_stopped.all(): break _lowerCamelCase : Union[str, Any] = scores / seq_lengths _lowerCamelCase : Tuple = scores.argsort(descending=_UpperCAmelCase ) # tokens tensors are already padded to max_seq_length _lowerCamelCase : List[Any] = [tokens[i] for i in order] _lowerCamelCase : Any = torch.stack(_UpperCAmelCase , dim=0 ) _lowerCamelCase : Tuple = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
72
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING a__ = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class UpperCAmelCase_ ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , *_a , **_a ) -> Optional[int]: super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) self.check_model_type(_UpperCAmelCase ) def __lowercase ( self , _a=None , _a=None , _a=None , **_a ) -> List[str]: _a , _a : str = {}, {} if padding is not None: _a : List[str] = padding if truncation is not None: _a : str = truncation if top_k is not None: _a : Dict = top_k return preprocess_params, {}, postprocess_params def __call__( self , _a , _a = None , **_a ) -> str: if isinstance(_UpperCAmelCase , (Image.Image, str) ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): _a : Tuple = {'''image''': image, '''question''': question} else: _a : Optional[int] = image _a : str = super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) return results def __lowercase ( self , _a , _a=False , _a=False ) -> List[str]: _a : List[Any] = load_image(inputs['''image'''] ) _a : int = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_UpperCAmelCase , truncation=_UpperCAmelCase ) _a : Tuple = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) model_inputs.update(_UpperCAmelCase ) return model_inputs def __lowercase ( self , _a ) -> Dict: _a : Union[str, Any] = self.model(**_UpperCAmelCase ) return model_outputs def __lowercase ( self , _a , _a=5 ) -> Optional[int]: if top_k > self.model.config.num_labels: _a : Dict = self.model.config.num_labels if self.framework == "pt": _a : Dict = model_outputs.logits.sigmoid()[0] _a , _a : List[str] = probs.topk(_UpperCAmelCase ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) _a : List[Any] = scores.tolist() _a : Tuple = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
235
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _UpperCamelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = params __SCREAMING_SNAKE_CASE : Tuple = np.array(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Tuple = np.array([len(_UpperCAmelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : str ): """simple docstring""" return len(self.lengths ) def UpperCamelCase__ ( self : Dict ): """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.params.max_model_input_size __SCREAMING_SNAKE_CASE : str = self.lengths > max_len logger.info(F"Splitting {sum(_UpperCAmelCase )} too long sequences." ) def divide_chunks(lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ): return [l[i : i + n] for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase )] __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : Dict = [] if self.params.mlm: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __SCREAMING_SNAKE_CASE : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __SCREAMING_SNAKE_CASE : str = np.insert(_UpperCAmelCase , 0 , _UpperCAmelCase ) if sub_s[-1] != sep_id: __SCREAMING_SNAKE_CASE : List[str] = np.insert(_UpperCAmelCase , len(_UpperCAmelCase ) , _UpperCAmelCase ) assert len(_UpperCAmelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_UpperCAmelCase ) new_tok_ids.extend(_UpperCAmelCase ) new_lengths.extend([len(_UpperCAmelCase ) for l in sub_seqs] ) __SCREAMING_SNAKE_CASE : Any = np.array(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : List[Any] = np.array(_UpperCAmelCase ) def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = len(self ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.lengths > 1_1 __SCREAMING_SNAKE_CASE : Optional[Any] = self.token_ids[indices] __SCREAMING_SNAKE_CASE : Optional[int] = self.lengths[indices] __SCREAMING_SNAKE_CASE : Dict = len(self ) logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: __SCREAMING_SNAKE_CASE : Optional[int] = self.params.special_tok_ids["""unk_token"""] __SCREAMING_SNAKE_CASE : Dict = len(self ) __SCREAMING_SNAKE_CASE : Optional[int] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __SCREAMING_SNAKE_CASE : Tuple = (unk_occs / self.lengths) < 0.5 __SCREAMING_SNAKE_CASE : List[Any] = self.token_ids[indices] __SCREAMING_SNAKE_CASE : Optional[int] = self.lengths[indices] __SCREAMING_SNAKE_CASE : Any = len(self ) logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" if not self.params.is_master: return logger.info(F"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [t[0] for t in batch] __SCREAMING_SNAKE_CASE : List[Any] = [t[1] for t in batch] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) # Max for paddings __SCREAMING_SNAKE_CASE : Union[str, Any] = max(_UpperCAmelCase ) # Pad token ids if self.params.mlm: __SCREAMING_SNAKE_CASE : List[str] = self.params.special_tok_ids["""pad_token"""] else: __SCREAMING_SNAKE_CASE : int = self.params.special_tok_ids["""unk_token"""] __SCREAMING_SNAKE_CASE : str = [list(t.astype(_UpperCAmelCase ) ) + [pad_idx] * (max_seq_len_ - len(_UpperCAmelCase )) for t in token_ids] assert len(tk_ ) == len(_UpperCAmelCase ) assert all(len(_UpperCAmelCase ) == max_seq_len_ for t in tk_ ) __SCREAMING_SNAKE_CASE : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(_UpperCAmelCase ) # (bs) return tk_t, lg_t
112
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _SCREAMING_SNAKE_CASE = [ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: List[str] = True __magic_name__: Optional[int] = None # Automatically constructed __magic_name__: Any = "PIL.Image.Image" __magic_name__: int = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) __magic_name__: Union[str, Any] = field(default="Image" , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__( self : Union[str, Any] ) -> int: """simple docstring""" return self.pa_type def UpperCAmelCase_ ( self : Any , _A : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): snake_case_ : Optional[Any] = np.array(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return {"path": value, "bytes": None} elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return {"path": None, "bytes": value} elif isinstance(_UpperCAmelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_UpperCAmelCase ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F"""An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.""" ) def UpperCAmelCase_ ( self : str , _A : dict , _A : Tuple=None ) -> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: snake_case_ : Tuple = {} snake_case_ ,snake_case_ : int = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of \'path\' or \'bytes\' but both are None in {value}.""" ) else: if is_local_path(_UpperCAmelCase ): snake_case_ : str = PIL.Image.open(_UpperCAmelCase ) else: snake_case_ : Any = path.split('::' )[-1] try: snake_case_ : Tuple = string_to_dict(_UpperCAmelCase , config.HUB_DATASETS_URL )['repo_id'] snake_case_ : int = token_per_repo_id.get(_UpperCAmelCase ) except ValueError: snake_case_ : List[Any] = None with xopen(_UpperCAmelCase , 'rb' , use_auth_token=_UpperCAmelCase ) as f: snake_case_ : Any = BytesIO(f.read() ) snake_case_ : Dict = PIL.Image.open(bytes_ ) else: snake_case_ : List[str] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def UpperCAmelCase_ ( self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def UpperCAmelCase_ ( self : List[str] , _A : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): snake_case_ : Optional[Any] = pa.array([None] * len(_UpperCAmelCase ) , type=pa.binary() ) snake_case_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): snake_case_ : Tuple = pa.array([None] * len(_UpperCAmelCase ) , type=pa.string() ) snake_case_ : Union[str, Any] = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: snake_case_ : Optional[int] = storage.field('bytes' ) else: snake_case_ : Optional[int] = pa.array([None] * len(_UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: snake_case_ : Optional[Any] = storage.field('path' ) else: snake_case_ : Dict = pa.array([None] * len(_UpperCAmelCase ) , type=pa.string() ) snake_case_ : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): snake_case_ : Union[str, Any] = pa.array( [encode_np_array(np.array(_UpperCAmelCase ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) snake_case_ : Dict = pa.array([None] * len(_UpperCAmelCase ) , type=pa.string() ) snake_case_ : Optional[Any] = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_UpperCAmelCase , self.pa_type ) def UpperCAmelCase_ ( self : Optional[int] , _A : pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_A : Any ): with xopen(_UpperCAmelCase , 'rb' ) as f: snake_case_ : Tuple = f.read() return bytes_ snake_case_ : Optional[int] = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) snake_case_ : List[str] = pa.array( [os.path.basename(_UpperCAmelCase ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) snake_case_ : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_UpperCAmelCase , self.pa_type ) def SCREAMING_SNAKE_CASE__ ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() snake_case_ : Union[str, Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): snake_case_ : Any = image.format else: snake_case_ : Dict = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(__a , format=__a ) return buffer.getvalue() def SCREAMING_SNAKE_CASE__ ( __a ): if hasattr(__a , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__a )} def SCREAMING_SNAKE_CASE__ ( __a ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) snake_case_ : Tuple = array.dtype snake_case_ : Optional[Any] = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER snake_case_ : List[str] = dtype.kind snake_case_ : Optional[Any] = dtype.itemsize snake_case_ : Optional[Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: snake_case_ : Any = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: snake_case_ : Optional[int] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: snake_case_ : Union[str, Any] = dtype_byteorder + dtype_kind + str(__a ) snake_case_ : Union[str, Any] = np.dtype(__a ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) snake_case_ : Any = PIL.Image.fromarray(array.astype(__a ) ) return {"path": None, "bytes": image_to_bytes(__a )} def SCREAMING_SNAKE_CASE__ ( __a ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: snake_case_ ,snake_case_ : List[str] = first_non_null_value(__a ) if isinstance(__a , __a ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__a , np.ndarray ): snake_case_ : Any = no_op_if_value_is_null(__a ) return [obj_to_image_dict_func(__a ) for obj in objs] elif isinstance(__a , PIL.Image.Image ): snake_case_ : str = no_op_if_value_is_null(__a ) return [obj_to_image_dict_func(__a ) for obj in objs] else: return objs else: return objs
327
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
0
"""simple docstring""" def __lowercase ( _a , _a , _a , _a ): snake_case_ : Optional[Any] = [False] * len(_a ) snake_case_ : Tuple = [] queue.append(_a ) snake_case_ : List[Any] = True while queue: snake_case_ : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_a ) snake_case_ : List[Any] = True snake_case_ : int = u return visited[t] def __lowercase ( _a , _a , _a ): snake_case_ : str = [-1] * (len(_a )) snake_case_ : Union[str, Any] = 0 while bfs(_a , _a , _a , _a ): snake_case_ : Dict = float('''Inf''' ) snake_case_ : str = sink while s != source: # Find the minimum value in select path snake_case_ : Any = min(_a , graph[parent[s]][s] ) snake_case_ : Any = parent[s] max_flow += path_flow snake_case_ : str = sink while v != source: snake_case_ : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow snake_case_ : str = parent[v] return max_flow lowercase__ : Optional[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowercase__ : str = 0, 5 print(ford_fulkerson(graph, source, sink))
264
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a__ : int = logging.get_logger(__name__) class lowercase_ ( UpperCAmelCase__ ): __UpperCAmelCase = ['pixel_values'] def __init__( self , a = True , a = None , a = PILImageResampling.BILINEAR , a = True , a = None , a = True , a = 1 / 2_55 , a = True , a = None , a = None , **a , ): super().__init__(**_UpperCAmelCase ) UpperCamelCase__ = size if size is not None else {"shortest_edge": 2_56} UpperCamelCase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase__ = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCamelCase__ = get_size_dict(_UpperCAmelCase ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ): UpperCamelCase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCamelCase__ = get_resize_output_image_size(_UpperCAmelCase , size=size["shortest_edge"] , default_to_square=_UpperCAmelCase ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def __a ( self , a , a , a = None , **a , ): UpperCamelCase__ = get_size_dict(_UpperCAmelCase ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def __a ( self , a , a , a = None , **a ): return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def __a ( self , a , a , a , a = None , **a , ): return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def __a ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ): UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(_UpperCAmelCase ) UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
80
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
0
'''simple docstring''' def __lowercase ( __lowercase , __lowercase ) -> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) _A = str(bin(__lowercase ) ) binary_number += "0" * shift_amount return binary_number def __lowercase ( __lowercase , __lowercase ) -> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) _A = str(bin(__lowercase ) )[2:] if shift_amount >= len(__lowercase ): return "0b0" _A = binary_number[: len(__lowercase ) - shift_amount] return "0b" + shifted_binary_number def __lowercase ( __lowercase , __lowercase ) -> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number _A = "0" + str(bin(__lowercase ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number _A = len(bin(__lowercase )[3:] ) # Find 2's complement of number _A = bin(abs(__lowercase ) - (1 << binary_number_length) )[3:] _A = ( "1" + "0" * (binary_number_length - len(__lowercase )) + binary_number ) if shift_amount >= len(__lowercase ): return "0b" + binary_number[0] * len(__lowercase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__lowercase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
79
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
0
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def _snake_case ( lowercase__ : str ) -> str: '''simple docstring''' return "".join(sorted(lowercase__ ) ) def _snake_case ( lowercase__ : str ) -> list[str]: '''simple docstring''' return word_by_signature[signature(lowercase__ )] __UpperCAmelCase = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') __UpperCAmelCase = sorted({word.strip().lower() for word in data.splitlines()}) __UpperCAmelCase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __UpperCAmelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
84
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
0
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset SCREAMING_SNAKE_CASE__ : List[Any] = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = dataset.iloc[:, 1:2].values SCREAMING_SNAKE_CASE__ : Tuple = dataset.iloc[:, 2].values SCREAMING_SNAKE_CASE__ : Any = train_test_split(X, y, test_size=0.2, random_state=0) SCREAMING_SNAKE_CASE__ : int = PolynomialFeatures(degree=4) SCREAMING_SNAKE_CASE__ : List[Any] = poly_reg.fit_transform(X) SCREAMING_SNAKE_CASE__ : Optional[int] = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> List[Any]: plt.scatter(__lowerCAmelCase , __lowerCAmelCase , color='''red''' ) plt.plot(__lowerCAmelCase , pol_reg.predict(poly_reg.fit_transform(__lowerCAmelCase ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
270
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
0