code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
# using dfs for finding eulerian path traversal def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): __lowerCAmelCase : Optional[int] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __lowerCAmelCase, __lowerCAmelCase : Any = True, True __lowerCAmelCase : int = dfs(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return path def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : Tuple = -1 for i in range(lowercase__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 __lowerCAmelCase : List[str] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] __lowerCAmelCase, __lowerCAmelCase : str = check_circuit_or_path(lowercase__ , lowercase__ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return __lowerCAmelCase : Union[str, Any] = 1 if check == 2: __lowerCAmelCase : Any = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) __lowerCAmelCase : Union[str, Any] = dfs(lowercase__ , lowercase__ , lowercase__ ) print(lowercase__ ) def _lowercase ( ): __lowerCAmelCase : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __lowerCAmelCase : Dict = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __lowerCAmelCase : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __lowerCAmelCase : List[str] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} __lowerCAmelCase : Tuple = { 1: [], 2: [] # all degree is zero } __lowerCAmelCase : int = 1_0 check_euler(lowercase__ , lowercase__ ) check_euler(lowercase__ , lowercase__ ) check_euler(lowercase__ , lowercase__ ) check_euler(lowercase__ , lowercase__ ) check_euler(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
275
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE_ : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): A__ = state_dict.pop(UpperCAmelCase_ ) A__ = val def _snake_case ( UpperCAmelCase_ : Tuple ): A__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A__ = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) A__ = value else: A__ = value return new_state_dict def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int=False ): A__ = """""" if is_panoptic: A__ = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A__ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) A__ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:256, :] A__ = in_proj_bias[:256] A__ = in_proj_weight[256:512, :] A__ = in_proj_bias[256:512] A__ = in_proj_weight[-256:, :] A__ = in_proj_bias[-256:] def _snake_case ( ): A__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def _snake_case ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] ): A__ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A__ = """resnet101""" if "dc5" in model_name: A__ = True A__ = """panoptic""" in model_name if is_panoptic: A__ = 250 else: A__ = 91 A__ = """huggingface/label-files""" A__ = """coco-detection-id2label.json""" A__ = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) A__ = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load image processor A__ = """coco_panoptic""" if is_panoptic else """coco_detection""" A__ = ConditionalDetrImageProcessor(format=UpperCAmelCase_ ) # prepare image A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) A__ = encoding["""pixel_values"""] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub A__ = torch.hub.load("""DeppMeng/ConditionalDETR""" , UpperCAmelCase_ , pretrained=UpperCAmelCase_ ).eval() A__ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A__ = """conditional_detr.""" + src rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) A__ = rename_backbone_keys(UpperCAmelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase_ , is_panoptic=UpperCAmelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A__ = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): A__ = state_dict.pop(UpperCAmelCase_ ) A__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A__ = state_dict.pop(UpperCAmelCase_ ) A__ = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: A__ = state_dict.pop(UpperCAmelCase_ ) A__ = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): A__ = state_dict.pop(UpperCAmelCase_ ) A__ = val # finally, create HuggingFace model and load state dict A__ = ConditionalDetrForSegmentation(UpperCAmelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) model.eval() model.push_to_hub(repo_id=UpperCAmelCase_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion A__ = conditional_detr(UpperCAmelCase_ ) A__ = model(UpperCAmelCase_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) image_processor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Dict = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) SCREAMING_SNAKE_CASE_ : str = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
335
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
0
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class __snake_case ( unittest.TestCase): def __init__( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=1_3 , __lowerCAmelCase : List[str]=7 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Dict=True , __lowerCAmelCase : str=True , __lowerCAmelCase : str=True , __lowerCAmelCase : Dict=9_9 , __lowerCAmelCase : Any=3_2 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : Union[str, Any]=4 , __lowerCAmelCase : str=3_7 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Dict=5_1_2 , __lowerCAmelCase : Optional[int]=1_6 , __lowerCAmelCase : str=2 , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : List[str]=4 , ): """simple docstring""" _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Optional[Any] = is_training _lowerCamelCase : Dict = use_attention_mask _lowerCamelCase : Dict = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : int = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : Any = type_sequence_label_size _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : Dict = num_choices def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Any = None if self.use_attention_mask: _lowerCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[Any] = None if self.use_token_type_ids: _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : Dict = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = config_and_inputs _lowerCamelCase : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __snake_case ( UpperCAmelCase__ , unittest.TestCase): snake_case__ : Any = True snake_case__ : Optional[Any] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Tuple = FlaxBertModelTester(self ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = FlaxBertModel.from_pretrained('''bert-base-cased''' ) _lowerCamelCase : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
72
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
235
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
0
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( _lowerCamelCase: str = "AAPL" ): __SCREAMING_SNAKE_CASE : Any = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" __SCREAMING_SNAKE_CASE : Tuple = BeautifulSoup(requests.get(_lowerCamelCase ).text , """html.parser""" ) __SCREAMING_SNAKE_CASE : List[str] = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
112
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _SCREAMING_SNAKE_CASE = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : Dict , _A : Union[str, Any] , _A : List[str]=7 , _A : Optional[Any]=3 , _A : List[Any]=18 , _A : Tuple=30 , _A : Optional[int]=400 , _A : Any=None , _A : str=True , _A : List[str]=True , _A : Any=None , ) -> int: """simple docstring""" snake_case_ : List[Any] = size if size is not None else {'height': 20, 'width': 20} snake_case_ : Tuple = parent snake_case_ : List[Any] = batch_size snake_case_ : str = num_channels snake_case_ : Dict = image_size snake_case_ : List[str] = min_resolution snake_case_ : List[str] = max_resolution snake_case_ : str = size snake_case_ : Optional[int] = do_normalize snake_case_ : Any = do_convert_rgb snake_case_ : str = [512, 1024, 2048, 4096] snake_case_ : List[Any] = patch_size if patch_size is not None else {'height': 16, 'width': 16} def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" snake_case_ : List[str] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' snake_case_ : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ , unittest.TestCase ): __magic_name__: str = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : Dict ) -> Tuple: """simple docstring""" snake_case_ : Dict = PixaStructImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: """simple docstring""" snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_convert_rgb' ) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : Optional[Any] = self.image_processor_tester.prepare_dummy_image() snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) snake_case_ : Tuple = 2048 snake_case_ : List[Any] = image_processor(_UpperCAmelCase , return_tensors='pt' , max_patches=_UpperCAmelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6 ) , atol=1E-3 , rtol=1E-3 ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input snake_case_ : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Optional[int] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Tuple = image_processor( _UpperCAmelCase , return_tensors='pt' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input snake_case_ : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 snake_case_ : int = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_UpperCAmelCase ): snake_case_ : int = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCAmelCase ).flattened_patches snake_case_ : Optional[Any] = 'Hello' snake_case_ : Dict = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCAmelCase , header_text=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Optional[Any] = image_processor( _UpperCAmelCase , return_tensors='pt' , max_patches=_UpperCAmelCase , header_text=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase_ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) snake_case_ : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Optional[Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : List[str] = image_processor( _UpperCAmelCase , return_tensors='pt' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input snake_case_ : Optional[int] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Any = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Dict = image_processor( _UpperCAmelCase , return_tensors='pt' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ , unittest.TestCase ): __magic_name__: Dict = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : str = PixaStructImageProcessingTester(self , num_channels=4 ) snake_case_ : Optional[Any] = 3 @property def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : List[str] ) -> int: """simple docstring""" snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_convert_rgb' ) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input snake_case_ : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Any = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Dict = image_processor( _UpperCAmelCase , return_tensors='pt' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
327
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowercase__ : int = logging.get_logger(__name__) def __lowercase ( _a ): if isinstance(_a , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_a , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_a ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class _UpperCAmelCase ( UpperCAmelCase__): _lowerCAmelCase : List[Any] = ["""pixel_values"""] def __init__( self : Optional[int] , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , **lowercase_ : Any , ): super().__init__(**_UpperCAmelCase ) snake_case_ : List[Any] = size if size is not None else {'''shortest_edge''': 256} snake_case_ : Optional[Any] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) snake_case_ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} snake_case_ : Tuple = get_size_dict(_UpperCAmelCase , param_name='''crop_size''' ) snake_case_ : Union[str, Any] = do_resize snake_case_ : Optional[int] = size snake_case_ : List[str] = do_center_crop snake_case_ : int = crop_size snake_case_ : Any = resample snake_case_ : Dict = do_rescale snake_case_ : Dict = rescale_factor snake_case_ : Any = offset snake_case_ : List[Any] = do_normalize snake_case_ : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[str] , ): snake_case_ : List[str] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(_UpperCAmelCase , size['''shortest_edge'''] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: snake_case_ : List[Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self : List[Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : str , ): snake_case_ : List[str] = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have \'height\' and \'width\' as keys. Got {size.keys()}" ) return center_crop(_UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self : Any , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : bool = True , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ): snake_case_ : Optional[int] = image.astype(np.floataa ) if offset: snake_case_ : int = image - (scale / 2) return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[Any] , ): return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self : Tuple , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. snake_case_ : str = to_numpy_array(_UpperCAmelCase ) if do_resize: snake_case_ : List[str] = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: snake_case_ : Optional[Any] = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: snake_case_ : Any = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase , offset=_UpperCAmelCase ) if do_normalize: snake_case_ : Optional[int] = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) snake_case_ : int = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def _snake_case ( self : Optional[Any] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : Optional[Any] , ): snake_case_ : Dict = do_resize if do_resize is not None else self.do_resize snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : Any = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Dict = offset if offset is not None else self.offset snake_case_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Optional[int] = image_mean if image_mean is not None else self.image_mean snake_case_ : List[str] = image_std if image_std is not None else self.image_std snake_case_ : Any = size if size is not None else self.size snake_case_ : int = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) snake_case_ : str = crop_size if crop_size is not None else self.crop_size snake_case_ : List[Any] = get_size_dict(_UpperCAmelCase , param_name='''crop_size''' ) if not valid_images(_UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) snake_case_ : str = make_batched(_UpperCAmelCase ) snake_case_ : List[str] = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , offset=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] snake_case_ : int = {'''pixel_values''': videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
264
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
0
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Any = logging.get_logger(__name__) a__ : List[Any] = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowercase_ ( UpperCAmelCase__ ): __UpperCAmelCase = 'data2vec-audio' def __init__( self , a=32 , a=7_68 , a=12 , a=12 , a=30_72 , a="gelu" , a=0.1 , a=0.1 , a=0.1 , a=0.0 , a=0.1 , a=0.1 , a=0.02 , a=1e-5 , a="gelu" , a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , a=(5, 2, 2, 2, 2, 2, 2) , a=(10, 3, 3, 3, 3, 2, 2) , a=False , a=16 , a=19 , a=5 , a=0.05 , a=10 , a=2 , a=0.0 , a=10 , a=0 , a="sum" , a=False , a=False , a=2_56 , a=(5_12, 5_12, 5_12, 5_12, 15_00) , a=(5, 3, 3, 1, 1) , a=(1, 2, 3, 1, 1) , a=5_12 , a=0 , a=1 , a=2 , a=False , a=3 , a=2 , a=3 , a=None , **a , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) UpperCamelCase__ = hidden_size UpperCamelCase__ = feat_extract_activation UpperCamelCase__ = list(_UpperCAmelCase ) UpperCamelCase__ = list(_UpperCAmelCase ) UpperCamelCase__ = list(_UpperCAmelCase ) UpperCamelCase__ = conv_bias UpperCamelCase__ = num_conv_pos_embeddings UpperCamelCase__ = num_conv_pos_embedding_groups UpperCamelCase__ = conv_pos_kernel_size UpperCamelCase__ = len(self.conv_dim ) UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = feat_proj_dropout UpperCamelCase__ = final_dropout UpperCamelCase__ = layerdrop UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = initializer_range UpperCamelCase__ = vocab_size UpperCamelCase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ = mask_time_prob UpperCamelCase__ = mask_time_length UpperCamelCase__ = mask_time_min_masks UpperCamelCase__ = mask_feature_prob UpperCamelCase__ = mask_feature_length UpperCamelCase__ = mask_feature_min_masks # ctc loss UpperCamelCase__ = ctc_loss_reduction UpperCamelCase__ = ctc_zero_infinity # adapter UpperCamelCase__ = add_adapter UpperCamelCase__ = adapter_kernel_size UpperCamelCase__ = adapter_stride UpperCamelCase__ = num_adapter_layers UpperCamelCase__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ = list(_UpperCAmelCase ) UpperCamelCase__ = list(_UpperCAmelCase ) UpperCamelCase__ = list(_UpperCAmelCase ) UpperCamelCase__ = xvector_output_dim @property def __a ( self ): return math.prod(self.conv_stride )
80
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
0
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=13 , __UpperCAmelCase : Tuple=30 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Any=32 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Union[str, Any]=4 , __UpperCAmelCase : Optional[Any]=37 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Optional[Any]=10 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : List[Any]=0.6 , __UpperCAmelCase : Dict=None , ): '''simple docstring''' _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = mask_ratio _A = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _A = (image_size // patch_size) ** 2 _A = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ): '''simple docstring''' _A = TFViTMAEModel(config=_UpperCAmelCase ) _A = model(_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ): '''simple docstring''' _A = TFViTMAEForPreTraining(_UpperCAmelCase ) _A = model(_UpperCAmelCase , training=_UpperCAmelCase ) # expected sequence length = num_patches _A = (self.image_size // self.patch_size) ** 2 _A = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _A = 1 _A = TFViTMAEForPreTraining(_UpperCAmelCase ) _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(_UpperCAmelCase , training=_UpperCAmelCase ) _A = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = self.prepare_config_and_inputs() ((_A) , (_A) , (_A)) = config_and_inputs _A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" snake_case = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () snake_case = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} snake_case = False snake_case = False snake_case = False snake_case = False def lowerCAmelCase ( self : str ): '''simple docstring''' _A = TFViTMAEModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass def lowerCAmelCase ( self : Any ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) _A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' np.random.seed(2 ) _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = int((config.image_size // config.patch_size) ** 2 ) _A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) _A = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , noise=_UpperCAmelCase ) _A = copy.deepcopy(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _A = model(**_UpperCAmelCase , noise=_UpperCAmelCase ) _A = outputs_dict[0].numpy() _A = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' np.random.seed(2 ) _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = int((config.image_size // config.patch_size) ** 2 ) _A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__UpperCAmelCase : Any ): _A = {} for k, v in inputs_dict.items(): if tf.is_tensor(_UpperCAmelCase ): _A = v.numpy() else: _A = np.array(_UpperCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) _A = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _A = prepare_numpy_arrays(_UpperCAmelCase ) _A = model(_UpperCAmelCase , noise=_UpperCAmelCase ) _A = model(**_UpperCAmelCase , noise=_UpperCAmelCase ) self.assert_outputs_same(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _A = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) _A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _A = tf.constant(_UpperCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _A = tf_noise super().check_pt_tf_models(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' np.random.seed(2 ) _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_UpperCAmelCase ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(_UpperCAmelCase , _UpperCAmelCase ),) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_UpperCAmelCase , "_keras_serializable" , _UpperCAmelCase ) } _A = int((config.image_size // config.patch_size) ** 2 ) _A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _A = tf.convert_to_tensor(_UpperCAmelCase ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: _A = main_layer_class(_UpperCAmelCase ) _A = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } _A = tf.keras.Model(_UpperCAmelCase , outputs=main_layer(_UpperCAmelCase ) ) _A = model(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(_UpperCAmelCase , "keras_model.h5" ) model.save(_UpperCAmelCase ) _A = tf.keras.models.load_model( _UpperCAmelCase , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_UpperCAmelCase , tf.keras.Model ) _A = model(_UpperCAmelCase ) self.assert_outputs_same(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' np.random.seed(2 ) _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = int((config.image_size // config.patch_size) ** 2 ) _A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) _A = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , noise=_UpperCAmelCase ) if model_class.__name__ == "TFViTMAEModel": _A = outputs.last_hidden_state.numpy() _A = 0 else: _A = outputs.logits.numpy() _A = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) _A = model_class.from_pretrained(_UpperCAmelCase ) _A = model(_UpperCAmelCase , noise=_UpperCAmelCase ) if model_class.__name__ == "TFViTMAEModel": _A = after_outputs["last_hidden_state"].numpy() _A = 0 else: _A = after_outputs["logits"].numpy() _A = 0 _A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_UpperCAmelCase , 1E-5 ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = int((config.image_size // config.patch_size) ** 2 ) _A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) _A = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , noise=_UpperCAmelCase ) _A = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_UpperCAmelCase ) _A = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config _A = model_class.from_config(model.config ) _A = new_model(_UpperCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) _A = new_model(_UpperCAmelCase , noise=_UpperCAmelCase ) self.assert_outputs_same(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass @slow def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_UpperCAmelCase ) def __lowercase ( ) -> int: '''simple docstring''' _A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : int ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Tuple ): '''simple docstring''' np.random.seed(2 ) _A = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=_UpperCAmelCase , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _A = ViTMAEConfig() _A = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _A = np.random.uniform(size=(1, num_patches) ) # forward pass _A = model(**_UpperCAmelCase , noise=_UpperCAmelCase ) # verify the logits _A = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _A = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 )
79
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
0
"""simple docstring""" import torch from torch import nn class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __A , __A , __A , __A , __A=1 , __A=False ) -> List[Any]: super().__init__() lowerCAmelCase_ :Dict = n_token lowerCAmelCase_ :str = d_embed lowerCAmelCase_ :Any = d_proj lowerCAmelCase_ :Any = cutoffs + [n_token] lowerCAmelCase_ :List[Any] = [0] + self.cutoffs lowerCAmelCase_ :Optional[int] = div_val lowerCAmelCase_ :Optional[Any] = self.cutoffs[0] lowerCAmelCase_ :Dict = len(self.cutoffs ) - 1 lowerCAmelCase_ :Union[str, Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase_ :Union[str, Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase_ :Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase_ :Any = nn.ModuleList() lowerCAmelCase_ :Any = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_UpperCAmelCase , _UpperCAmelCase ) ) ) else: self.out_projs.append(_UpperCAmelCase ) self.out_layers.append(nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase_ , lowerCAmelCase_ :Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase_ :Optional[int] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_UpperCAmelCase , _UpperCAmelCase ) ) ) self.out_layers.append(nn.Linear(_UpperCAmelCase , r_idx - l_idx ) ) lowerCAmelCase_ :Optional[Any] = keep_order def __lowerCAmelCase ( self , __A , __A , __A , __A ) -> Tuple: if proj is None: lowerCAmelCase_ :int = nn.functional.linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase_ :Any = nn.functional.linear(_UpperCAmelCase , proj.t().contiguous() ) lowerCAmelCase_ :Dict = nn.functional.linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def __lowerCAmelCase ( self , __A , __A=None , __A=False ) -> Tuple: if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase_ :List[Any] = hidden[..., :-1, :].contiguous() lowerCAmelCase_ :Optional[Any] = labels[..., 1:].contiguous() lowerCAmelCase_ :int = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase_ :str = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: lowerCAmelCase_ :List[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase_ :List[str] = self._compute_logit(_UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase_ :str = labels != -100 lowerCAmelCase_ :Optional[Any] = torch.zeros_like(_UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase_ :int = ( -nn.functional.log_softmax(_UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase_ :Optional[int] = nn.functional.log_softmax(_UpperCAmelCase , dim=-1 ) else: # construct weights and biases lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase_ , lowerCAmelCase_ :Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase_ :Dict = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase_ :Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase_ :List[Any] = self.out_layers[i].weight lowerCAmelCase_ :Dict = self.out_layers[i].bias if i == 0: lowerCAmelCase_ :Optional[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase_ :List[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_UpperCAmelCase ) biases.append(_UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Tuple = weights[0], biases[0], self.out_projs[0] lowerCAmelCase_ :List[Any] = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase_ :Any = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) if labels is None: lowerCAmelCase_ :Any = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase_ :List[Any] = torch.zeros_like(_UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase_ :List[str] = 0 lowerCAmelCase_ :List[str] = [0] + self.cutoffs for i in range(len(_UpperCAmelCase ) - 1 ): lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase_ :List[Any] = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase_ :str = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase_ :Optional[Any] = labels.index_select(0 , _UpperCAmelCase ) - l_idx lowerCAmelCase_ :List[str] = head_logprob.index_select(0 , _UpperCAmelCase ) lowerCAmelCase_ :Union[str, Any] = hidden.index_select(0 , _UpperCAmelCase ) else: lowerCAmelCase_ :Tuple = hidden if i == 0: if labels is not None: lowerCAmelCase_ :Tuple = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase_ :Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase_ :Any = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase_ :str = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) lowerCAmelCase_ :Union[str, Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase_ :List[Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase_ :int = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase_ :Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , _UpperCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def __lowerCAmelCase ( self , __A ) -> str: if self.n_clusters == 0: lowerCAmelCase_ :List[Any] = self._compute_logit(_UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_UpperCAmelCase , dim=-1 ) else: # construct weights and biases lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase_ :Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase_ :str = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase_ :Any = self.out_layers[i].weight lowerCAmelCase_ :Dict = self.out_layers[i].bias if i == 0: lowerCAmelCase_ :List[str] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase_ :List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_UpperCAmelCase ) biases.append(_UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase_ :int = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase_ :Any = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase_ :List[str] = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) lowerCAmelCase_ :List[Any] = [0] + self.cutoffs for i in range(len(_UpperCAmelCase ) - 1 ): lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase_ :Optional[Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase_ :Optional[Any] = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase_ :Union[str, Any] = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) lowerCAmelCase_ :int = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase_ :str = logprob_i return out
84
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE__ : List[Any] = 256 class lowerCAmelCase__ ( UpperCAmelCase__ ): a__ : str = ["""melgan"""] def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : SpectrogramNotesEncoder , SCREAMING_SNAKE_CASE__ : SpectrogramContEncoder , SCREAMING_SNAKE_CASE__ : TaFilmDecoder , SCREAMING_SNAKE_CASE__ : DDPMScheduler , SCREAMING_SNAKE_CASE__ : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: super().__init__() # From MELGAN __lowerCamelCase = math.log(1e-5 ) # Matches MelGAN training. __lowerCamelCase = 4.0 # Largest value for most examples __lowerCamelCase = 1_28 self.register_modules( notes_encoder=_UpperCAmelCase , continuous_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase , scheduler=_UpperCAmelCase , melgan=_UpperCAmelCase , ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=(-1.0, 1.0) , SCREAMING_SNAKE_CASE__ : int=False ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = output_range if clip: __lowerCamelCase = torch.clip(_UpperCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. __lowerCamelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any]=(-1.0, 1.0) , SCREAMING_SNAKE_CASE__ : List[str]=False ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase = input_range __lowerCamelCase = torch.clip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip else outputs # Scale to [0, 1]. __lowerCamelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: __lowerCamelCase = input_tokens > 0 __lowerCamelCase , __lowerCamelCase = self.notes_encoder( encoder_input_tokens=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase = self.continuous_encoder( encoder_inputs=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: __lowerCamelCase = noise_time if not torch.is_tensor(_UpperCAmelCase ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.decoder( encodings_and_masks=_UpperCAmelCase , decoder_input_tokens=_UpperCAmelCase , decoder_noise_time=_UpperCAmelCase ) return logits @torch.no_grad() def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[List[int]] , SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE__ : int = 1_00 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : str = "numpy" , SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE__ : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_UpperCAmelCase )}.''' ) __lowerCamelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __lowerCamelCase = np.zeros([1, 0, self.n_dims] , np.floataa ) __lowerCamelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_UpperCAmelCase ): if i == 0: __lowerCamelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __lowerCamelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __lowerCamelCase = ones __lowerCamelCase = self.scale_features( _UpperCAmelCase , output_range=[-1.0, 1.0] , clip=_UpperCAmelCase ) __lowerCamelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_UpperCAmelCase , continuous_mask=_UpperCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __lowerCamelCase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_UpperCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __lowerCamelCase = self.decode( encodings_and_masks=_UpperCAmelCase , input_tokens=_UpperCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample __lowerCamelCase = self.scale_to_features(_UpperCAmelCase , input_range=[-1.0, 1.0] ) __lowerCamelCase = mel[:1] __lowerCamelCase = mel.cpu().float().numpy() __lowerCamelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase ) logger.info('''Generated segment''' , _UpperCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": __lowerCamelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __lowerCamelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_UpperCAmelCase )
270
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = TaConfig.from_json_file(lowercase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __lowerCAmelCase : Optional[Any] = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
275
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : Optional[Any] = logging.get_logger('transformers.models.speecht5') SCREAMING_SNAKE_CASE_ : List[Any] = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } SCREAMING_SNAKE_CASE_ : Tuple = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } SCREAMING_SNAKE_CASE_ : Optional[Any] = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } SCREAMING_SNAKE_CASE_ : Dict = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } SCREAMING_SNAKE_CASE_ : int = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } SCREAMING_SNAKE_CASE_ : List[str] = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } SCREAMING_SNAKE_CASE_ : Dict = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } SCREAMING_SNAKE_CASE_ : str = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } SCREAMING_SNAKE_CASE_ : List[str] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } SCREAMING_SNAKE_CASE_ : str = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } SCREAMING_SNAKE_CASE_ : Dict = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : int = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] SCREAMING_SNAKE_CASE_ : Tuple = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] SCREAMING_SNAKE_CASE_ : Optional[int] = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] SCREAMING_SNAKE_CASE_ : Optional[Any] = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def _snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str ): for attribute in key.split(""".""" ): A__ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: A__ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: A__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A__ = value elif weight_type == "weight_g": A__ = value elif weight_type == "weight_v": A__ = value elif weight_type == "bias": A__ = value elif weight_type == "running_mean": A__ = value elif weight_type == "running_var": A__ = value elif weight_type == "num_batches_tracked": A__ = value else: A__ = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def _snake_case ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple ): for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: A__ , A__ = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def _snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ): A__ = [] if task == "s2t": A__ = hf_model.speechta.encoder.prenet.feature_encoder A__ = MAPPING_S2T A__ = IGNORE_KEYS_S2T elif task == "t2s": A__ = None A__ = MAPPING_T2S A__ = IGNORE_KEYS_T2S elif task == "s2s": A__ = hf_model.speechta.encoder.prenet.feature_encoder A__ = MAPPING_S2S A__ = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(UpperCAmelCase_ , UpperCAmelCase_ ): logger.info(F"""{name} was ignored""" ) continue A__ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) A__ = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: A__ , A__ = key.split(""".*.""" ) if prefix in name and suffix in name: A__ = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: A__ = True if "*" in mapped_key: A__ = name.split(UpperCAmelCase_ )[0].split(""".""" )[-2] A__ = mapped_key.replace("""*""" , UpperCAmelCase_ ) if "weight_g" in name: A__ = """weight_g""" elif "weight_v" in name: A__ = """weight_v""" elif "bias" in name: A__ = """bias""" elif "weight" in name: A__ = """weight""" elif "running_mean" in name: A__ = """running_mean""" elif "running_var" in name: A__ = """running_var""" elif "num_batches_tracked" in name: A__ = """num_batches_tracked""" else: A__ = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): A__ = full_name.split("""conv_layers.""" )[-1] A__ = name.split(""".""" ) A__ = int(items[0] ) A__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) A__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) A__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase_ ) @torch.no_grad() def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=None , ): if config_path is not None: A__ = SpeechTaConfig.from_pretrained(UpperCAmelCase_ ) else: A__ = SpeechTaConfig() if task == "s2t": A__ = config.max_text_positions A__ = SpeechTaForSpeechToText(UpperCAmelCase_ ) elif task == "t2s": A__ = 1876 A__ = 600 A__ = config.max_speech_positions A__ = SpeechTaForTextToSpeech(UpperCAmelCase_ ) elif task == "s2s": A__ = 1876 A__ = config.max_speech_positions A__ = SpeechTaForSpeechToSpeech(UpperCAmelCase_ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: A__ = SpeechTaTokenizer(UpperCAmelCase_ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it A__ = AddedToken("""<mask>""" , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) A__ = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) A__ = SpeechTaFeatureExtractor() A__ = SpeechTaProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) A__ = torch.load(UpperCAmelCase_ ) recursively_load_weights(fairseq_checkpoint["""model"""] , UpperCAmelCase_ , UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(UpperCAmelCase_ ) model.push_to_hub(UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
335
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
0
"""simple docstring""" import re from filelock import FileLock try: import nltk lowerCAmelCase__ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def snake_case_ ( A_ : str ): '''simple docstring''' re.sub('''<n>''', '''''', A_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A_ ) )
72
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize('''path''' ,['''paws''', '''csv'''] ) def __UpperCAmelCase ( __a : str ,__a : Optional[int] ) -> Tuple: """simple docstring""" inspect_dataset(__a ,__a ) _a : Optional[Any] = path + '''.py''' assert script_name in os.listdir(__a ) assert "__pycache__" not in os.listdir(__a ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' ,['''accuracy'''] ) def __UpperCAmelCase ( __a : Any ,__a : Optional[int] ) -> Optional[Any]: """simple docstring""" inspect_metric(__a ,__a ) _a : Tuple = path + '''.py''' assert script_name in os.listdir(__a ) assert "__pycache__" not in os.listdir(__a ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' ,[ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] ,) def __UpperCAmelCase ( __a : Dict ,__a : Any ,__a : Dict ) -> List[str]: """simple docstring""" _a : List[Any] = get_dataset_config_info(__a ,config_name=__a ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' ,[ ('''paws''', None, ValueError), ] ,) def __UpperCAmelCase ( __a : Any ,__a : Dict ,__a : Optional[int] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__a ): get_dataset_config_info(__a ,config_name=__a ) @pytest.mark.parametrize( '''path, expected''' ,[ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] ,) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ) -> Union[str, Any]: """simple docstring""" _a : Any = get_dataset_config_names(__a ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' ,[ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] ,) def __UpperCAmelCase ( __a : int ,__a : int ,__a : Optional[int] ) -> str: """simple docstring""" _a : Union[str, Any] = get_dataset_infos(__a ) assert list(infos.keys() ) == expected_configs _a : Optional[Any] = expected_configs[0] assert expected_config in infos _a : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' ,[ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] ,) def __UpperCAmelCase ( __a : Dict ,__a : Optional[int] ,__a : Dict ) -> List[Any]: """simple docstring""" _a : str = get_dataset_infos(__a ) assert expected_config in infos _a : Union[str, Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' ,[ ('''paws''', None, ValueError), ] ,) def __UpperCAmelCase ( __a : Optional[int] ,__a : Dict ,__a : Tuple ) -> Tuple: """simple docstring""" with pytest.raises(__a ): get_dataset_split_names(__a ,config_name=__a )
235
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
0
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCamelCase ( UpperCAmelCase__ ): '''simple docstring''' def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , """num_attention_heads""" ) ) class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=1_3 , lowerCAmelCase__ : Dict=6_4 , lowerCAmelCase__ : Any=3 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : List[str]=1_6 , lowerCAmelCase__ : Tuple=[1_2_8, 2_5_6, 3_8_4] , lowerCAmelCase__ : int=[4, 6, 8] , lowerCAmelCase__ : List[str]=[2, 3, 4] , lowerCAmelCase__ : List[Any]=[1_6, 1_6, 1_6] , lowerCAmelCase__ : Any=0 , lowerCAmelCase__ : Optional[Any]=[2, 2, 2] , lowerCAmelCase__ : Optional[Any]=[2, 2, 2] , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Optional[Any]=2 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = parent __SCREAMING_SNAKE_CASE : Tuple = batch_size __SCREAMING_SNAKE_CASE : Any = image_size __SCREAMING_SNAKE_CASE : str = num_channels __SCREAMING_SNAKE_CASE : str = kernel_size __SCREAMING_SNAKE_CASE : Tuple = stride __SCREAMING_SNAKE_CASE : str = padding __SCREAMING_SNAKE_CASE : Optional[int] = hidden_sizes __SCREAMING_SNAKE_CASE : List[str] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = depths __SCREAMING_SNAKE_CASE : Tuple = key_dim __SCREAMING_SNAKE_CASE : int = drop_path_rate __SCREAMING_SNAKE_CASE : List[Any] = patch_size __SCREAMING_SNAKE_CASE : int = attention_ratio __SCREAMING_SNAKE_CASE : Tuple = mlp_ratio __SCREAMING_SNAKE_CASE : Optional[int] = initializer_range __SCREAMING_SNAKE_CASE : Dict = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __SCREAMING_SNAKE_CASE : Optional[int] = is_training __SCREAMING_SNAKE_CASE : int = use_labels __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : Tuple = initializer_range def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self : Any ): """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = LevitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = model(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Any = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = image_size[0], image_size[1] for _ in range(4 ): __SCREAMING_SNAKE_CASE : int = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __SCREAMING_SNAKE_CASE : Dict = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def UpperCamelCase__ ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = LevitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE : Optional[int] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = config_and_inputs __SCREAMING_SNAKE_CASE : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _A : str = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) _A : int = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) _A : Tuple = False _A : List[Any] = False _A : Dict = False _A : Dict = False _A : List[str] = False def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = LevitModelTester(self ) __SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=3_7 ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def UpperCamelCase__ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def UpperCamelCase__ ( self : str ): """simple docstring""" pass @unittest.skip(reason="""Levit does not output attentions""" ) def UpperCamelCase__ ( self : str ): """simple docstring""" pass def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Optional[int] = model_class(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str ): __SCREAMING_SNAKE_CASE : int = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Dict = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE : Any = outputs.hidden_states __SCREAMING_SNAKE_CASE : str = len(self.model_tester.depths ) + 1 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = (self.model_tester.image_size, self.model_tester.image_size) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size[0], image_size[1] for _ in range(4 ): __SCREAMING_SNAKE_CASE : Any = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" pass def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any]=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" if not self.model_tester.is_training: return __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Dict = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __SCREAMING_SNAKE_CASE : List[Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() __SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : List[str] = model(**_UpperCAmelCase ).loss loss.backward() def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() __SCREAMING_SNAKE_CASE : str = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : List[Any] = model(**_UpperCAmelCase ).loss loss.backward() def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Optional[int] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): __SCREAMING_SNAKE_CASE : List[str] = problem_type["""title"""] __SCREAMING_SNAKE_CASE : List[str] = problem_type["""num_labels"""] __SCREAMING_SNAKE_CASE : Any = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() __SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if problem_type["num_labels"] > 1: __SCREAMING_SNAKE_CASE : Union[str, Any] = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_UpperCAmelCase ) as warning_list: __SCREAMING_SNAKE_CASE : List[str] = model(**_UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Union[str, Any] = LevitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Dict = self.default_image_processor __SCREAMING_SNAKE_CASE : Any = prepare_img() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : List[Any] = model(**_UpperCAmelCase ) # verify the logits __SCREAMING_SNAKE_CASE : int = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1.04_48, -0.37_45, -1.83_17] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
112
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _SCREAMING_SNAKE_CASE = sys.version_info >= (3, 10) def SCREAMING_SNAKE_CASE__ ( __a=None , __a=None ): return field(default_factory=lambda: default , metadata=__a ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Dict = 42 __magic_name__: Optional[Any] = 42 __magic_name__: List[str] = 42 __magic_name__: int = 42 @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = 42 __magic_name__: str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: List[str] = False __magic_name__: Optional[Any] = True __magic_name__: Optional[Any] = None class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ ): __magic_name__: List[str] = "titi" __magic_name__: Any = "toto" class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ ): __magic_name__: List[str] = "titi" __magic_name__: List[str] = "toto" __magic_name__: Tuple = 42 @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Any = "toto" def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[int] = BasicEnum(self.foo ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Union[str, Any] = "toto" def UpperCAmelCase_ ( self : List[str] ) -> Tuple: """simple docstring""" snake_case_ : str = MixedTypeEnum(self.foo ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Optional[Any] = None __magic_name__: Union[str, Any] = field(default=UpperCAmelCase__ , metadata={"help": "help message"} ) __magic_name__: Optional[Any] = None __magic_name__: Dict = list_field(default=[] ) __magic_name__: List[str] = list_field(default=[] ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: List[Any] = list_field(default=[] ) __magic_name__: Any = list_field(default=[1, 2, 3] ) __magic_name__: List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) __magic_name__: Union[str, Any] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field() __magic_name__: Dict = field() __magic_name__: int = field() def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: """simple docstring""" snake_case_ : Dict = BasicEnum(self.required_enum ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Optional[Any] = 42 __magic_name__: Optional[Any] = field() __magic_name__: Any = None __magic_name__: List[str] = field(default="toto" , metadata={"help": "help message"} ) __magic_name__: Optional[Any] = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Optional[Any] = False __magic_name__: List[str] = True __magic_name__: Tuple = None @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: List[Any] = None __magic_name__: Optional[int] = field(default=UpperCAmelCase__ , metadata={"help": "help message"} ) __magic_name__: str = None __magic_name__: str = list_field(default=[] ) __magic_name__: List[str] = list_field(default=[] ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict , _A : argparse.ArgumentParser , _A : argparse.ArgumentParser ) -> Union[str, Any]: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ : Tuple = {k: v for k, v in vars(_UpperCAmelCase ).items() if k != 'container'} snake_case_ : Any = {k: v for k, v in vars(_UpperCAmelCase ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , _UpperCAmelCase ) and yy.get('choices' , _UpperCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](_UpperCAmelCase ) , yy['type'](_UpperCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: """simple docstring""" snake_case_ : Optional[int] = HfArgumentParser(_UpperCAmelCase ) snake_case_ : List[str] = argparse.ArgumentParser() expected.add_argument('--foo' , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument('--bar' , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument('--baz' , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument('--flag' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='?' ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Union[str, Any] = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((snake_case_ ) , ) : Dict = parser.parse_args_into_dataclasses(_UpperCAmelCase , look_for_args_file=_UpperCAmelCase ) self.assertFalse(example.flag ) def UpperCAmelCase_ ( self : List[str] ) -> int: """simple docstring""" snake_case_ : Any = HfArgumentParser(_UpperCAmelCase ) snake_case_ : str = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=_UpperCAmelCase ) expected.add_argument('--baz' , default='toto' , type=_UpperCAmelCase , help='help message' ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: """simple docstring""" snake_case_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='?' ) expected.add_argument('--baz' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=_UpperCAmelCase , dest='baz' ) expected.add_argument('--opt' , type=_UpperCAmelCase , default=_UpperCAmelCase ) snake_case_ : str = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase ) for dataclass_type in dataclass_types: snake_case_ : int = HfArgumentParser(_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Optional[Any] = parser.parse_args([] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) snake_case_ : str = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) snake_case_ : int = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) snake_case_ : str = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) snake_case_ : int = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) def UpperCAmelCase_ ( self : int ) -> List[Any]: """simple docstring""" snake_case_ : int = HfArgumentParser(_UpperCAmelCase ) snake_case_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : List[str] = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) snake_case_ : Dict = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ : Dict = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) snake_case_ : Tuple = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ : List[Any] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) snake_case_ : Tuple = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Dict = "toto" snake_case_ : Optional[int] = HfArgumentParser(_UpperCAmelCase ) snake_case_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : int = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) snake_case_ : Optional[Any] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) snake_case_ : Optional[int] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def UpperCAmelCase_ ( self : int ) -> List[str]: """simple docstring""" snake_case_ : Union[str, Any] = HfArgumentParser(_UpperCAmelCase ) snake_case_ : str = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=_UpperCAmelCase ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=_UpperCAmelCase ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_UpperCAmelCase ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Tuple = parser.parse_args([] ) self.assertEqual( _UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ : List[Any] = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(_UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def UpperCAmelCase_ ( self : str ) -> int: """simple docstring""" snake_case_ : int = argparse.ArgumentParser() expected.add_argument('--foo' , default=_UpperCAmelCase , type=_UpperCAmelCase ) expected.add_argument('--bar' , default=_UpperCAmelCase , type=_UpperCAmelCase , help='help message' ) expected.add_argument('--baz' , default=_UpperCAmelCase , type=_UpperCAmelCase ) expected.add_argument('--ces' , nargs='+' , default=[] , type=_UpperCAmelCase ) expected.add_argument('--des' , nargs='+' , default=[] , type=_UpperCAmelCase ) snake_case_ : Any = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase ) for dataclass_type in dataclass_types: snake_case_ : Tuple = HfArgumentParser(_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , bar=_UpperCAmelCase , baz=_UpperCAmelCase , ces=[] , des=[] ) ) snake_case_ : Dict = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(_UpperCAmelCase , Namespace(foo=12 , bar=3.1_4 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def UpperCAmelCase_ ( self : str ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = HfArgumentParser(_UpperCAmelCase ) snake_case_ : Tuple = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument('--required_str' , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=_UpperCAmelCase , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: """simple docstring""" snake_case_ : List[Any] = HfArgumentParser(_UpperCAmelCase ) snake_case_ : Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo' , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=_UpperCAmelCase , ) expected.add_argument('--opt' , type=_UpperCAmelCase , default=_UpperCAmelCase ) expected.add_argument('--baz' , default='toto' , type=_UpperCAmelCase , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : Tuple ) -> int: """simple docstring""" snake_case_ : List[Any] = HfArgumentParser(_UpperCAmelCase ) snake_case_ : Tuple = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } snake_case_ : Any = parser.parse_dict(_UpperCAmelCase )[0] snake_case_ : List[Any] = BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ : Tuple = HfArgumentParser(_UpperCAmelCase ) snake_case_ : Optional[Any] = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(_UpperCAmelCase , parser.parse_dict , _UpperCAmelCase , allow_extra_keys=_UpperCAmelCase ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: """simple docstring""" snake_case_ : Optional[Any] = HfArgumentParser(_UpperCAmelCase ) snake_case_ : Any = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Tuple = os.path.join(_UpperCAmelCase , 'temp_json' ) os.mkdir(_UpperCAmelCase ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : List[Any] = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] snake_case_ : Tuple = BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : str ) -> Any: """simple docstring""" snake_case_ : str = HfArgumentParser(_UpperCAmelCase ) snake_case_ : int = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Optional[int] = os.path.join(_UpperCAmelCase , 'temp_yaml' ) os.mkdir(_UpperCAmelCase ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : int = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] snake_case_ : str = BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: """simple docstring""" snake_case_ : Any = HfArgumentParser(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase )
327
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = '▁' lowercase__ : Optional[int] = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } lowercase__ : str = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } lowercase__ : Any = { 'facebook/s2t-small-librispeech-asr': 10_24, } lowercase__ : Dict = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] lowercase__ : Union[str, Any] = {'mustc': MUSTC_LANGS} class _UpperCAmelCase ( UpperCAmelCase__): _lowerCAmelCase : int = VOCAB_FILES_NAMES _lowerCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : str = MAX_MODEL_INPUT_SIZES _lowerCAmelCase : Optional[Any] = ["""input_ids""", """attention_mask"""] _lowerCAmelCase : List[str] = [] def __init__( self : Dict , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Optional[int]="<s>" , lowercase_ : Optional[int]="</s>" , lowercase_ : Optional[Any]="<pad>" , lowercase_ : int="<unk>" , lowercase_ : Any=False , lowercase_ : Dict=False , lowercase_ : List[str]=None , lowercase_ : List[str]=None , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : List[Any] , ): snake_case_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) snake_case_ : str = do_upper_case snake_case_ : Dict = do_lower_case snake_case_ : str = load_json(_UpperCAmelCase ) snake_case_ : str = {v: k for k, v in self.encoder.items()} snake_case_ : Union[str, Any] = spm_file snake_case_ : Dict = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: snake_case_ : str = lang_codes snake_case_ : Optional[int] = LANGUAGES[lang_codes] snake_case_ : List[Any] = [f"<lang:{lang}>" for lang in self.langs] snake_case_ : Tuple = {lang: self.sp_model.PieceToId(f"<lang:{lang}>" ) for lang in self.langs} snake_case_ : Union[str, Any] = self.lang_tokens snake_case_ : Union[str, Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: snake_case_ : str = {} @property def _snake_case ( self : str ): return len(self.encoder ) @property def _snake_case ( self : List[Any] ): return self._tgt_lang @tgt_lang.setter def _snake_case ( self : Any , lowercase_ : int ): snake_case_ : Optional[int] = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def _snake_case ( self : str , lowercase_ : str ): snake_case_ : int = self.lang_code_to_id[tgt_lang] snake_case_ : str = [lang_code_id] def _snake_case ( self : Tuple , lowercase_ : str ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def _snake_case ( self : Tuple , lowercase_ : int ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def _snake_case ( self : Optional[int] , lowercase_ : int ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def _snake_case ( self : Optional[Any] , lowercase_ : List[str] ): snake_case_ : Any = [] snake_case_ : Tuple = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: snake_case_ : Any = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " snake_case_ : Dict = [] else: current_sub_tokens.append(_UpperCAmelCase ) snake_case_ : int = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _snake_case ( self : Dict , lowercase_ : List[Any] , lowercase_ : str=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self : List[str] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) snake_case_ : int = [1] * len(self.prefix_tokens ) snake_case_ : int = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def _snake_case ( self : List[str] ): snake_case_ : Any = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): snake_case_ : Optional[Any] = self.__dict__.copy() snake_case_ : Tuple = None return state def __setstate__( self : Optional[Any] , lowercase_ : Dict ): snake_case_ : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ : Optional[int] = {} snake_case_ : Dict = load_spm(self.spm_file , self.sp_model_kwargs ) def _snake_case ( self : Any , lowercase_ : str , lowercase_ : Optional[str] = None ): snake_case_ : Any = Path(_UpperCAmelCase ) assert save_dir.is_dir(), f"{save_directory} should be a directory" snake_case_ : Optional[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) snake_case_ : List[str] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , '''wb''' ) as fi: snake_case_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def __lowercase ( _a , _a ): snake_case_ : Any = sentencepiece.SentencePieceProcessor(**_a ) spm.Load(str(_a ) ) return spm def __lowercase ( _a ): with open(_a , '''r''' ) as f: return json.load(_a ) def __lowercase ( _a , _a ): with open(_a , '''w''' ) as f: json.dump(_a , _a , indent=2 )
264
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
0
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings a__ : List[str] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowercase_ ( UpperCAmelCase__ ): __UpperCAmelCase = field(default=UpperCAmelCase__ , metadata={'help': 'Whether to use SortishSampler or not.'} ) __UpperCAmelCase = field( default=UpperCAmelCase__ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) __UpperCAmelCase = field( default=UpperCAmelCase__ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) __UpperCAmelCase = field( default=UpperCAmelCase__ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) __UpperCAmelCase = field( default=UpperCAmelCase__ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def __a ( self ): UpperCamelCase__ = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase__ = v.to_dict() return d
80
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
0
'''simple docstring''' import torch def __lowercase ( ) -> List[Any]: '''simple docstring''' if torch.cuda.is_available(): _A = torch.cuda.device_count() else: _A = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
79
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ShapEImgaImgPipeline A__ = ['''image'''] A__ = ['''image'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return 32 @property def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" return 8 @property def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**_UpperCAmelCase ) return model def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = torch_device == """cpu""" lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__ = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
305
0
"""simple docstring""" from math import factorial __UpperCAmelCase = {str(digit): factorial(digit) for digit in range(10)} def _snake_case ( lowercase__ : int ) -> int: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase__ ) ) def _snake_case ( lowercase__ : int = 6_0 , lowercase__ : int = 1_0_0_0_0_0_0 ) -> int: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length lowerCAmelCase_ :Optional[Any] = 0 # the cached sizes of the previous chains lowerCAmelCase_ :List[str] = {} for start_chain_element in range(1 , lowercase__ ): # The temporary set will contain the elements of the chain lowerCAmelCase_ :Any = set() lowerCAmelCase_ :int = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCAmelCase_ :Optional[Any] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowercase__ ) chain_set_length += 1 lowerCAmelCase_ :Dict = digit_factorial_sum(lowercase__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCAmelCase_ :Dict = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
84
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> Dict: __lowerCamelCase = s.rsplit(__lowerCAmelCase , __lowerCAmelCase ) return new.join(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int ) -> int: return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Any: __lowerCamelCase = {} __lowerCamelCase = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowerCamelCase = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: __lowerCamelCase = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): __lowerCamelCase = rreplace(__lowerCAmelCase , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): __lowerCamelCase = rreplace(__lowerCAmelCase , '''.b''' , '''.bias''' , 1 ) __lowerCamelCase = value.float() return upgrade @torch.no_grad() def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : str=None , __lowerCAmelCase : Tuple=True ) -> Any: from dall_e import Encoder __lowerCamelCase = Encoder() if os.path.exists(__lowerCAmelCase ): __lowerCamelCase = torch.load(__lowerCAmelCase ) else: __lowerCamelCase = torch.hub.load_state_dict_from_url(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = ckpt.state_dict() encoder.load_state_dict(__lowerCAmelCase ) if config_path is not None: __lowerCamelCase = FlavaImageCodebookConfig.from_pretrained(__lowerCAmelCase ) else: __lowerCamelCase = FlavaImageCodebookConfig() __lowerCamelCase = FlavaImageCodebook(__lowerCAmelCase ).eval() __lowerCamelCase = encoder.state_dict() __lowerCamelCase = upgrade_state_dict(__lowerCAmelCase ) hf_model.load_state_dict(__lowerCAmelCase ) __lowerCamelCase = hf_model.state_dict() __lowerCamelCase = count_parameters(__lowerCAmelCase ) __lowerCamelCase = count_parameters(__lowerCAmelCase ) assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__lowerCAmelCase ) else: return hf_state_dict if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
270
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
0
from collections.abc import Callable class __lowercase : def __init__( self , A_ = None ) ->None: '''simple docstring''' __lowerCAmelCase : str = [] # Stores indexes of each item for supporting updates and deletion. __lowerCAmelCase : str = {} # Stores current size of heap. __lowerCAmelCase : List[str] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowerCAmelCase : Dict = key or (lambda A_ : x) def UpperCamelCase__ ( self , A_ ) ->int | None: '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def UpperCamelCase__ ( self , A_ ) ->int | None: '''simple docstring''' __lowerCAmelCase : Tuple = int(2 * i + 1 ) return left if 0 < left < self.size else None def UpperCamelCase__ ( self , A_ ) ->int | None: '''simple docstring''' __lowerCAmelCase : Optional[int] = int(2 * i + 2 ) return right if 0 < right < self.size else None def UpperCamelCase__ ( self , A_ , A_ ) ->None: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Union[str, Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowerCAmelCase, __lowerCAmelCase : Optional[Any] = self.arr[j], self.arr[i] def UpperCamelCase__ ( self , A_ , A_ ) ->bool: '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def UpperCamelCase__ ( self , A_ ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self._left(_UpperCAmelCase ) __lowerCAmelCase : Any = self._right(_UpperCAmelCase ) __lowerCAmelCase : Optional[Any] = i if left is not None and not self._cmp(_UpperCAmelCase , _UpperCAmelCase ): __lowerCAmelCase : Optional[int] = left if right is not None and not self._cmp(_UpperCAmelCase , _UpperCAmelCase ): __lowerCAmelCase : Tuple = right return valid_parent def UpperCamelCase__ ( self , A_ ) ->None: '''simple docstring''' __lowerCAmelCase : int = self._parent(_UpperCAmelCase ) while parent is not None and not self._cmp(_UpperCAmelCase , _UpperCAmelCase ): self._swap(_UpperCAmelCase , _UpperCAmelCase ) __lowerCAmelCase, __lowerCAmelCase : Union[str, Any] = parent, self._parent(_UpperCAmelCase ) def UpperCamelCase__ ( self , A_ ) ->None: '''simple docstring''' __lowerCAmelCase : Dict = self._get_valid_parent(_UpperCAmelCase ) while valid_parent != index: self._swap(_UpperCAmelCase , _UpperCAmelCase ) __lowerCAmelCase, __lowerCAmelCase : int = valid_parent, self._get_valid_parent(_UpperCAmelCase ) def UpperCamelCase__ ( self , A_ , A_ ) ->None: '''simple docstring''' if item not in self.pos_map: return __lowerCAmelCase : Tuple = self.pos_map[item] __lowerCAmelCase : Optional[Any] = [item, self.key(_UpperCAmelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_UpperCAmelCase ) self._heapify_down(_UpperCAmelCase ) def UpperCamelCase__ ( self , A_ ) ->None: '''simple docstring''' if item not in self.pos_map: return __lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] __lowerCAmelCase : List[Any] = self.arr[self.size - 1] __lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_UpperCAmelCase ) self._heapify_down(_UpperCAmelCase ) def UpperCamelCase__ ( self , A_ , A_ ) ->None: '''simple docstring''' __lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_UpperCAmelCase )] ) else: __lowerCAmelCase : Any = [item, self.key(_UpperCAmelCase )] __lowerCAmelCase : int = self.size self.size += 1 self._heapify_up(self.size - 1 ) def UpperCamelCase__ ( self ) ->tuple | None: '''simple docstring''' return self.arr[0] if self.size else None def UpperCamelCase__ ( self ) ->tuple | None: '''simple docstring''' __lowerCAmelCase : List[str] = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
275
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
0
"""simple docstring""" import random class a : """simple docstring""" @staticmethod def UpperCamelCase ( UpperCamelCase: str ): """simple docstring""" A__ = [ord(_UpperCAmelCase ) for i in text] A__ = [] A__ = [] for i in plain: A__ = random.randint(1 , 3_00 ) A__ = (i + k) * k cipher.append(_UpperCAmelCase ) key.append(_UpperCAmelCase ) return cipher, key @staticmethod def UpperCamelCase ( UpperCamelCase: list[int] , UpperCamelCase: list[int] ): """simple docstring""" A__ = [] for i in range(len(_UpperCAmelCase ) ): A__ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_UpperCAmelCase ) ) return "".join(_UpperCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : List[str] = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
335
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __snake_case ( UpperCAmelCase__): snake_case__ : Any = "trocr" snake_case__ : List[str] = ["past_key_values"] snake_case__ : Any = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : Tuple , __lowerCAmelCase : Dict=5_0_2_6_5 , __lowerCAmelCase : int=1_0_2_4 , __lowerCAmelCase : Optional[int]=1_2 , __lowerCAmelCase : List[str]=1_6 , __lowerCAmelCase : List[Any]=4_0_9_6 , __lowerCAmelCase : Optional[Any]="gelu" , __lowerCAmelCase : str=5_1_2 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : str=0.0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : List[str]=0.0 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Dict=True , __lowerCAmelCase : int=1 , __lowerCAmelCase : str=0 , __lowerCAmelCase : List[Any]=2 , **__lowerCAmelCase : str , ): """simple docstring""" _lowerCamelCase : Any = vocab_size _lowerCamelCase : Union[str, Any] = d_model _lowerCamelCase : str = decoder_layers _lowerCamelCase : str = decoder_attention_heads _lowerCamelCase : List[Any] = decoder_ffn_dim _lowerCamelCase : Dict = activation_function _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : str = dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : Dict = activation_dropout _lowerCamelCase : List[str] = init_std _lowerCamelCase : Tuple = decoder_layerdrop _lowerCamelCase : int = use_cache _lowerCamelCase : Optional[Any] = scale_embedding _lowerCamelCase : Dict = use_learned_position_embeddings _lowerCamelCase : str = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
72
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
0
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = inspect.getfile(accelerate.test_utils ) UpperCAmelCase__ : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) UpperCAmelCase__ : List[Any] = ["accelerate", "launch"] UpperCAmelCase__ : Union[str, Any] = Path.home() / ".cache/huggingface/accelerate" UpperCAmelCase__ : Optional[int] = "default_config.yaml" UpperCAmelCase__ : List[str] = config_folder / config_file UpperCAmelCase__ : Optional[int] = config_folder / "_default_config.yaml" UpperCAmelCase__ : Tuple = Path("tests/test_configs" ) @classmethod def __lowercase ( cls ) -> int: if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def __lowercase ( cls ) -> List[str]: if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def __lowercase ( self ) -> Optional[Any]: _a : List[Any] = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def __lowercase ( self ) -> Any: for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_UpperCAmelCase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() ) def __lowercase ( self ) -> Any: execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = "test-tpu" UpperCAmelCase__ : Dict = "us-central1-a" UpperCAmelCase__ : Optional[int] = "ls" UpperCAmelCase__ : int = ["accelerate", "tpu-config"] UpperCAmelCase__ : int = "cd /usr/share" UpperCAmelCase__ : Optional[Any] = "tests/test_samples/test_command_file.sh" UpperCAmelCase__ : Optional[int] = "Running gcloud compute tpus tpu-vm ssh" def __lowercase ( self ) -> int: _a : str = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _UpperCAmelCase , ) def __lowercase ( self ) -> List[str]: _a : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _UpperCAmelCase , ) def __lowercase ( self ) -> int: _a : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_UpperCAmelCase ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _UpperCAmelCase , ) def __lowercase ( self ) -> Tuple: _a : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo \"Hello World\"''', '''--debug''', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _UpperCAmelCase , ) def __lowercase ( self ) -> Optional[int]: _a : Dict = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def __lowercase ( self ) -> Tuple: _a : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def __lowercase ( self ) -> Union[str, Any]: _a : Union[str, Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def __lowercase ( self ) -> str: _a : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , )
235
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : List[str] = BlipImageProcessor() __SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) __SCREAMING_SNAKE_CASE : int = BlipaProcessor(_UpperCAmelCase , _UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self : Optional[int] , **lowerCAmelCase__ : str ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).tokenizer def UpperCamelCase__ ( self : Dict , **lowerCAmelCase__ : List[Any] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def UpperCamelCase__ ( self : Dict ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE : Any = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Union[str, Any] = BlipaProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : List[str] = image_processor(_UpperCAmelCase , return_tensors="""np""" ) __SCREAMING_SNAKE_CASE : Any = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = BlipaProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Any = """lower newer""" __SCREAMING_SNAKE_CASE : Optional[Any] = processor(text=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer(_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.get_image_processor() __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : int = BlipaProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = """lower newer""" __SCREAMING_SNAKE_CASE : Tuple = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Tuple = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : int = BlipaProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE : List[str] = processor.batch_decode(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = BlipaProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = """lower newer""" __SCREAMING_SNAKE_CASE : int = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
112
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ ): __magic_name__: Dict = "vision-encoder-decoder" __magic_name__: Tuple = True def __init__( self : int , **_A : Tuple ) -> Optional[int]: """simple docstring""" super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) snake_case_ : int = kwargs.pop('encoder' ) snake_case_ : Optional[int] = encoder_config.pop('model_type' ) snake_case_ : str = kwargs.pop('decoder' ) snake_case_ : Tuple = decoder_config.pop('model_type' ) snake_case_ : Optional[Any] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) snake_case_ : List[str] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) snake_case_ : Union[str, Any] = True @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , _A : PretrainedConfig , _A : PretrainedConfig , **_A : Dict ) -> PretrainedConfig: """simple docstring""" logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) snake_case_ : Any = True snake_case_ : Any = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: """simple docstring""" snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : int = self.encoder.to_dict() snake_case_ : Tuple = self.decoder.to_dict() snake_case_ : Dict = self.__class__.model_type return output class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ ): __magic_name__: List[Any] = version.parse("1.11" ) @property def UpperCAmelCase_ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase_ ( self : Dict ) -> float: """simple docstring""" return 1E-4 @property def UpperCAmelCase_ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ ): @property def UpperCAmelCase_ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" snake_case_ : Any = OrderedDict() snake_case_ : Any = {0: 'batch', 1: 'past_decoder_sequence + sequence'} snake_case_ : List[str] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} snake_case_ : int = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def UpperCAmelCase_ ( self : List[Any] , _A : "PreTrainedTokenizerBase" , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional["TensorType"] = None , ) -> Mapping[str, Any]: """simple docstring""" import torch snake_case_ : Tuple = OrderedDict() snake_case_ : List[str] = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) snake_case_ ,snake_case_ : Union[str, Any] = dummy_input['input_ids'].shape snake_case_ : List[Any] = (batch, encoder_sequence, self._config.encoder_hidden_size) snake_case_ : str = dummy_input.pop('input_ids' ) snake_case_ : List[str] = dummy_input.pop('attention_mask' ) snake_case_ : Optional[Any] = torch.zeros(_UpperCAmelCase ) return common_inputs class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ ): @property def UpperCAmelCase_ ( self : Any ) -> None: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple , _A : PretrainedConfig ) -> OnnxConfig: """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def UpperCAmelCase_ ( self : Union[str, Any] , _A : PretrainedConfig , _A : PretrainedConfig , _A : str = "default" ) -> OnnxConfig: """simple docstring""" snake_case_ : int = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
327
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
0
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def __lowercase ( _a , _a , _a ): snake_case_ : Union[str, Any] = OmegaConf.load(_a ) snake_case_ : Dict = torch.load(_a , map_location='''cpu''' )['''model'''] snake_case_ : str = list(state_dict.keys() ) # extract state_dict for VQVAE snake_case_ : int = {} snake_case_ : List[Any] = '''first_stage_model.''' for key in keys: if key.startswith(_a ): snake_case_ : Tuple = state_dict[key] # extract state_dict for UNetLDM snake_case_ : List[str] = {} snake_case_ : Tuple = '''model.diffusion_model.''' for key in keys: if key.startswith(_a ): snake_case_ : List[str] = state_dict[key] snake_case_ : Optional[int] = config.model.params.first_stage_config.params snake_case_ : str = config.model.params.unet_config.params snake_case_ : Tuple = VQModel(**_a ).eval() vqvae.load_state_dict(_a ) snake_case_ : Optional[Any] = UNetLDMModel(**_a ).eval() unet.load_state_dict(_a ) snake_case_ : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_a , ) snake_case_ : str = LDMPipeline(_a , _a , _a ) pipeline.save_pretrained(_a ) if __name__ == "__main__": lowercase__ : Any = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowercase__ : Dict = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
264
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
0
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _UpperCamelCase ( __A , __A , __A = "x" , __A = 10**-10 , __A = 1 , ) -> complex: '''simple docstring''' UpperCamelCase__ = symbols(__A ) UpperCamelCase__ = lambdify(__A , __A ) UpperCamelCase__ = lambdify(__A , diff(__A , __A ) ) UpperCamelCase__ = starting_point while True: if diff_function(__A ) != 0: UpperCamelCase__ = prev_guess - multiplicity * func(__A ) / diff_function( __A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( 'The root of log(y) - 1 = 0 is ', F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', F"""{newton_raphson('exp(x) - 1', 1_0, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
80
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0] * len(__magic_name__ ) lowercase__ = [] lowercase__ = [1] * len(__magic_name__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__magic_name__ ) print(max(__magic_name__ ) ) # Adjacency list of Graph A : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
0
'''simple docstring''' import math lowerCamelCase_ = 10 lowerCamelCase_ = 7 lowerCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def __lowercase ( __lowercase = 20 ) -> str: '''simple docstring''' _A = math.comb(__lowercase , __lowercase ) _A = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __lowercase ) _A = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
79
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
0
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __UpperCAmelCase = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( ) -> Any: '''simple docstring''' lowerCAmelCase_ :str = """https://pypi.org/pypi/diffusers/json""" lowerCAmelCase_ :List[Any] = json.loads(request.urlopen(lowercase__ ).read() )["""releases"""].keys() return sorted(lowercase__ , key=lambda lowercase__ : version.Version(lowercase__ ) ) def _snake_case ( ) -> Optional[int]: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(lowercase__ ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) lowerCAmelCase_ :List[str] = Path(lowercase__ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def _snake_case ( lowercase__ : Union[str, os.PathLike] ) -> List[str]: '''simple docstring''' init_hf_modules() lowerCAmelCase_ :int = Path(lowercase__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) lowerCAmelCase_ :Tuple = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def _snake_case ( lowercase__ : Union[str, Any] ) -> Dict: '''simple docstring''' with open(lowercase__ , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ :str = f.read() # Imports of the form `import .xxx` lowerCAmelCase_ :int = re.findall("""^\s*import\s+\.(\S+)\s*$""" , lowercase__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , lowercase__ , flags=re.MULTILINE ) # Unique-ify return list(set(lowercase__ ) ) def _snake_case ( lowercase__ : str ) -> Any: '''simple docstring''' lowerCAmelCase_ :str = False lowerCAmelCase_ :List[str] = [module_file] lowerCAmelCase_ :Any = [] # Let's recurse through all relative imports while not no_change: lowerCAmelCase_ :Optional[int] = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowercase__ ) ) lowerCAmelCase_ :int = Path(lowercase__ ).parent lowerCAmelCase_ :Tuple = [str(module_path / m ) for m in new_imports] lowerCAmelCase_ :Tuple = [f for f in new_import_files if f not in all_relative_imports] lowerCAmelCase_ :str = [f"""{f}.py""" for f in new_import_files] lowerCAmelCase_ :Union[str, Any] = len(lowercase__ ) == 0 all_relative_imports.extend(lowercase__ ) return all_relative_imports def _snake_case ( lowercase__ : int ) -> Dict: '''simple docstring''' with open(lowercase__ , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ :int = f.read() # Imports of the form `import xxx` lowerCAmelCase_ :Tuple = re.findall("""^\s*import\s+(\S+)\s*$""" , lowercase__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , lowercase__ , flags=re.MULTILINE ) # Only keep the top-level module lowerCAmelCase_ :Union[str, Any] = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all lowerCAmelCase_ :Union[str, Any] = list(set(lowercase__ ) ) lowerCAmelCase_ :Optional[int] = [] for imp in imports: try: importlib.import_module(lowercase__ ) except ImportError: missing_packages.append(lowercase__ ) if len(lowercase__ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ f"""{", ".join(lowercase__ )}. Run `pip install {" ".join(lowercase__ )}`""" ) return get_relative_imports(lowercase__ ) def _snake_case ( lowercase__ : List[str] , lowercase__ : Tuple ) -> str: '''simple docstring''' lowerCAmelCase_ :Optional[int] = module_path.replace(os.path.sep , """.""" ) lowerCAmelCase_ :List[str] = importlib.import_module(lowercase__ ) if class_name is None: return find_pipeline_class(lowercase__ ) return getattr(lowercase__ , lowercase__ ) def _snake_case ( lowercase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' from ..pipelines import DiffusionPipeline lowerCAmelCase_ :Optional[int] = dict(inspect.getmembers(lowercase__ , inspect.isclass ) ) lowerCAmelCase_ :str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowercase__ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) lowerCAmelCase_ :Dict = cls return pipeline_class def _snake_case ( lowercase__ : Union[str, os.PathLike] , lowercase__ : str , lowercase__ : Optional[Union[str, os.PathLike]] = None , lowercase__ : bool = False , lowercase__ : bool = False , lowercase__ : Optional[Dict[str, str]] = None , lowercase__ : Optional[Union[bool, str]] = None , lowercase__ : Optional[str] = None , lowercase__ : bool = False , ) -> Dict: '''simple docstring''' lowerCAmelCase_ :Dict = str(lowercase__ ) lowerCAmelCase_ :List[str] = os.path.join(lowercase__ , lowercase__ ) if os.path.isfile(lowercase__ ): lowerCAmelCase_ :List[Any] = module_file_or_url lowerCAmelCase_ :Union[str, Any] = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: lowerCAmelCase_ :Tuple = get_diffusers_versions() # cut ".dev0" lowerCAmelCase_ :Any = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: lowerCAmelCase_ :Dict = latest_version if latest_version[1:] in available_versions else """main""" logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: lowerCAmelCase_ :List[Any] = f"""v{revision}""" elif revision == "main": lowerCAmelCase_ :Tuple = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {", ".join(available_versions + ["main"] )}.""" ) # community pipeline on GitHub lowerCAmelCase_ :Any = COMMUNITY_PIPELINES_URL.format(revision=lowercase__ , pipeline=lowercase__ ) try: lowerCAmelCase_ :Any = cached_download( lowercase__ , cache_dir=lowercase__ , force_download=lowercase__ , proxies=lowercase__ , resume_download=lowercase__ , local_files_only=lowercase__ , use_auth_token=lowercase__ , ) lowerCAmelCase_ :Any = """git""" lowerCAmelCase_ :str = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached lowerCAmelCase_ :Optional[Any] = hf_hub_download( lowercase__ , lowercase__ , cache_dir=lowercase__ , force_download=lowercase__ , proxies=lowercase__ , resume_download=lowercase__ , local_files_only=lowercase__ , use_auth_token=lowercase__ , ) lowerCAmelCase_ :Any = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment lowerCAmelCase_ :str = check_imports(lowercase__ ) # Now we move the module inside our cached dynamic modules. lowerCAmelCase_ :Tuple = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowercase__ ) lowerCAmelCase_ :Optional[Any] = Path(lowercase__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowercase__ , submodule_path / module_file ) for module_needed in modules_needed: lowerCAmelCase_ :Tuple = f"""{module_needed}.py""" shutil.copy(os.path.join(lowercase__ , lowercase__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowercase__ , lowercase__ ): lowerCAmelCase_ :Union[str, Any] = use_auth_token elif use_auth_token is True: lowerCAmelCase_ :Any = HfFolder.get_token() else: lowerCAmelCase_ :List[str] = None lowerCAmelCase_ :Dict = model_info(lowercase__ , revision=lowercase__ , token=lowercase__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. lowerCAmelCase_ :Optional[int] = submodule_path / commit_hash lowerCAmelCase_ :Any = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowercase__ ) if not (submodule_path / module_file).exists(): shutil.copy(lowercase__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowercase__ , f"""{module_needed}.py""" , cache_dir=lowercase__ , force_download=lowercase__ , resume_download=lowercase__ , proxies=lowercase__ , use_auth_token=lowercase__ , revision=lowercase__ , local_files_only=lowercase__ , ) return os.path.join(lowercase__ , lowercase__ ) def _snake_case ( lowercase__ : Union[str, os.PathLike] , lowercase__ : str , lowercase__ : Optional[str] = None , lowercase__ : Optional[Union[str, os.PathLike]] = None , lowercase__ : bool = False , lowercase__ : bool = False , lowercase__ : Optional[Dict[str, str]] = None , lowercase__ : Optional[Union[bool, str]] = None , lowercase__ : Optional[str] = None , lowercase__ : bool = False , **lowercase__ : str , ) -> Dict: '''simple docstring''' lowerCAmelCase_ :Optional[int] = get_cached_module_file( lowercase__ , lowercase__ , cache_dir=lowercase__ , force_download=lowercase__ , resume_download=lowercase__ , proxies=lowercase__ , use_auth_token=lowercase__ , revision=lowercase__ , local_files_only=lowercase__ , ) return get_class_in_module(lowercase__ , final_module.replace(""".py""" , """""" ) )
84
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent SCREAMING_SNAKE_CASE__ : Tuple = {'UserAgent': UserAgent().random} def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> dict: __lowerCamelCase = script.contents[0] __lowerCamelCase = json.loads(data[data.find('''{\"config\"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCAmelCase__ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: __lowerCamelCase = f'''https://www.instagram.com/{username}/''' __lowerCamelCase = self.get_json() def __A ( self : Optional[Any] ) -> dict: __lowerCamelCase = requests.get(self.url , headers=_UpperCAmelCase ).text __lowerCamelCase = BeautifulSoup(_UpperCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : str ) -> str: return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : Optional[Any] ) -> str: return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def __A ( self : Optional[Any] ) -> str: return self.user_data["username"] @property def __A ( self : Union[str, Any] ) -> str: return self.user_data["full_name"] @property def __A ( self : str ) -> str: return self.user_data["biography"] @property def __A ( self : str ) -> str: return self.user_data["business_email"] @property def __A ( self : List[str] ) -> str: return self.user_data["external_url"] @property def __A ( self : Tuple ) -> int: return self.user_data["edge_followed_by"]["count"] @property def __A ( self : Any ) -> int: return self.user_data["edge_follow"]["count"] @property def __A ( self : str ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __A ( self : Optional[int] ) -> str: return self.user_data["profile_pic_url_hd"] @property def __A ( self : List[str] ) -> bool: return self.user_data["is_verified"] @property def __A ( self : Optional[int] ) -> bool: return self.user_data["is_private"] def __magic_name__ ( __lowerCAmelCase : str = "github" ) -> None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions __lowerCamelCase = InstagramUser(__lowerCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __lowerCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ : Optional[int] = InstagramUser("github") print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
270
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class __lowercase (UpperCAmelCase__ ): _UpperCamelCase = field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _UpperCamelCase = Features({"""text""": Value("""string""" )} ) _UpperCamelCase = Features({"""summary""": Value("""string""" )} ) _UpperCamelCase = """text""" _UpperCamelCase = """summary""" @property def UpperCamelCase__ ( self ) ->Dict[str, str]: '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
275
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
0
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase_ , int(b / 2 ) ) * actual_power(UpperCAmelCase_ , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase_ , int(b / 2 ) ) * actual_power(UpperCAmelCase_ , int(b / 2 ) ) def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if b < 0: return 1 / actual_power(UpperCAmelCase_ , UpperCAmelCase_ ) return actual_power(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": print(power(-2, -3))
335
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
0
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def snake_case_ ( A_ : Tuple, A_ : str, A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = UniSpeechSatForSequenceClassification.from_pretrained(A_, config=A_ ) _lowerCamelCase : List[Any] = downstream_dict['''projector.weight'''] _lowerCamelCase : int = downstream_dict['''projector.bias'''] _lowerCamelCase : Optional[int] = downstream_dict['''model.post_net.linear.weight'''] _lowerCamelCase : Dict = downstream_dict['''model.post_net.linear.bias'''] return model def snake_case_ ( A_ : Optional[int], A_ : Dict, A_ : Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = UniSpeechSatForAudioFrameClassification.from_pretrained(A_, config=A_ ) _lowerCamelCase : Union[str, Any] = downstream_dict['''model.linear.weight'''] _lowerCamelCase : Any = downstream_dict['''model.linear.bias'''] return model def snake_case_ ( A_ : int, A_ : List[Any], A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = UniSpeechSatForXVector.from_pretrained(A_, config=A_ ) _lowerCamelCase : Any = downstream_dict['''connector.weight'''] _lowerCamelCase : Union[str, Any] = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _lowerCamelCase : List[Any] = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] _lowerCamelCase : Union[str, Any] = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] _lowerCamelCase : Optional[int] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] _lowerCamelCase : Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] _lowerCamelCase : str = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] _lowerCamelCase : List[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] _lowerCamelCase : Optional[int] = downstream_dict['''objective.W'''] return model @torch.no_grad() def snake_case_ ( A_ : Optional[int], A_ : Any, A_ : Optional[int], A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Any = torch.load(A_, map_location='''cpu''' ) _lowerCamelCase : int = checkpoint['''Downstream'''] _lowerCamelCase : Dict = UniSpeechSatConfig.from_pretrained(A_ ) _lowerCamelCase : List[str] = WavaVecaFeatureExtractor.from_pretrained( A_, return_attention_mask=A_, do_normalize=A_ ) _lowerCamelCase : Any = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): _lowerCamelCase : Optional[Any] = convert_classification(A_, A_, A_ ) elif arch.endswith('''ForAudioFrameClassification''' ): _lowerCamelCase : Tuple = convert_diarization(A_, A_, A_ ) elif arch.endswith('''ForXVector''' ): _lowerCamelCase : int = convert_xvector(A_, A_, A_ ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: _lowerCamelCase : Union[str, Any] = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(A_ ) hf_model.save_pretrained(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') lowerCAmelCase__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
72
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[float] , __magic_name__ : list[float] ) -> float: """simple docstring""" lowercase__ = sorted(numsa + numsa ) lowercase__ , lowercase__ = divmod(len(__magic_name__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Any = [float(x) for x in input('Enter the elements of first array: ').split()] A : Union[str, Any] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
305
0
class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> Tuple: _a : Any = 0 _a : List[Any] = 0 _a : str = {} def __lowercase ( self , _a ) -> Optional[int]: if vertex not in self.adjacency: _a : Optional[int] = {} self.num_vertices += 1 def __lowercase ( self , _a , _a , _a ) -> Tuple: self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return _a : List[str] = weight _a : List[Any] = weight def __lowercase ( self ) -> Optional[int]: _a : Tuple = self.get_edges() for edge in edges: _a , _a , _a : Dict = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): _a : Union[str, Any] = list(edges[i] ) edges.sort(key=lambda _a : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a : List[Any] = edges[i][2] + 1 for edge in edges: _a , _a , _a : List[str] = edge _a : str = weight _a : Dict = weight def __str__( self ) -> Union[str, Any]: _a : List[Any] = '''''' for tail in self.adjacency: for head in self.adjacency[tail]: _a : str = self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip('''\n''' ) def __lowercase ( self ) -> str: _a : Tuple = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowercase ( self ) -> Optional[int]: return self.adjacency.keys() @staticmethod def __lowercase ( _a=None , _a=None ) -> Union[str, Any]: _a : Union[str, Any] = Graph() if vertices is None: _a : Optional[Any] = [] if edges is None: _a : int = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> str: _a : Dict = {} _a : str = {} def __len__( self ) -> Dict: return len(self.parent ) def __lowercase ( self , _a ) -> Any: if item in self.parent: return self.find(_UpperCAmelCase ) _a : Union[str, Any] = item _a : Optional[int] = 0 return item def __lowercase ( self , _a ) -> Any: if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: _a : Optional[Any] = self.find(self.parent[item] ) return self.parent[item] def __lowercase ( self , _a , _a ) -> Optional[int]: _a : int = self.find(_UpperCAmelCase ) _a : Optional[int] = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a : Dict = roota return roota if self.rank[roota] < self.rank[roota]: _a : Optional[int] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a : Optional[Any] = roota return roota return None @staticmethod def __lowercase ( _a ) -> Optional[int]: _a : List[str] = graph.num_vertices _a : int = Graph.UnionFind() _a : int = [] while num_components > 1: _a : Dict = {} for vertex in graph.get_vertices(): _a : Optional[Any] = -1 _a : List[str] = graph.get_edges() for edge in edges: _a , _a , _a : str = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a : Tuple = edge _a : Any = union_find.find(_UpperCAmelCase ) _a : Union[str, Any] = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a : List[str] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a : Any = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) _a : Tuple = num_components - 1 _a : Dict = Graph.build(edges=_UpperCAmelCase ) return mst
235
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
0
'''simple docstring''' import math def lowerCAmelCase_ ( _lowerCamelCase: list , _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Any = len(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = int(math.floor(math.sqrt(_lowerCamelCase ) ) ) __SCREAMING_SNAKE_CASE : str = 0 while arr[min(_lowerCamelCase , _lowerCamelCase ) - 1] < x: __SCREAMING_SNAKE_CASE : Tuple = step step += int(math.floor(math.sqrt(_lowerCamelCase ) ) ) if prev >= n: return -1 while arr[prev] < x: __SCREAMING_SNAKE_CASE : Tuple = prev + 1 if prev == min(_lowerCamelCase , _lowerCamelCase ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": UpperCamelCase__ : int = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ : Tuple = [int(item) for item in user_input.split(''',''')] UpperCamelCase__ : Union[str, Any] = int(input('''Enter the number to be searched:\n''')) UpperCamelCase__ : Optional[Any] = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f"Number {x} is at index {res}")
112
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionDiffEditPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(_UpperCAmelCase ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase__ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe_loaded(**_UpperCAmelCase )[0] lowercase__ = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase__ = pipe.generate_mask(**_UpperCAmelCase ) lowercase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ = np.array([0] * 9 ) lowercase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase__ = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase__ = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase__ = pipe.invert(**_UpperCAmelCase ).images lowercase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[int]: """simple docstring""" lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase__ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase__ = raw_image def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = """a bowl of fruit""" lowercase__ = """a bowl of pears""" lowercase__ = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase__ = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase__ = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase__ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
305
0
from __future__ import annotations from random import random from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE = TypeVar("""KT""") _SCREAMING_SNAKE_CASE = TypeVar("""VT""") class SCREAMING_SNAKE_CASE_ ( Generic[KT, VT] ): def __init__( self : List[Any] , _A : KT | str = "root" , _A : VT | None = None ) -> List[str]: """simple docstring""" snake_case_ : Optional[int] = key snake_case_ : Union[str, Any] = value snake_case_ : Tuple = [] def __repr__( self : List[Any] ) -> str: """simple docstring""" return F"""Node({self.key}: {self.value})""" @property def UpperCAmelCase_ ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.forward ) class SCREAMING_SNAKE_CASE_ ( Generic[KT, VT] ): def __init__( self : Tuple , _A : float = 0.5 , _A : int = 16 ) -> int: """simple docstring""" snake_case_ : Any = Node[KT, VT]() snake_case_ : List[str] = 0 snake_case_ : Union[str, Any] = p snake_case_ : Dict = max_level def __str__( self : Optional[int] ) -> str: """simple docstring""" snake_case_ : Optional[int] = list(self ) if len(_UpperCAmelCase ) == 0: return F"""SkipList(level={self.level})""" snake_case_ : Optional[int] = max((len(str(_UpperCAmelCase ) ) for item in items) , default=4 ) snake_case_ : List[Any] = max(_UpperCAmelCase , 4 ) + 4 snake_case_ : int = self.head snake_case_ : List[Any] = [] snake_case_ : Tuple = node.forward.copy() lines.append(F"""[{node.key}]""".ljust(_UpperCAmelCase , '-' ) + '* ' * len(_UpperCAmelCase ) ) lines.append(' ' * label_size + '| ' * len(_UpperCAmelCase ) ) while len(node.forward ) != 0: snake_case_ : int = node.forward[0] lines.append( F"""[{node.key}]""".ljust(_UpperCAmelCase , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(_UpperCAmelCase ) ) snake_case_ : str = node.forward lines.append('None'.ljust(_UpperCAmelCase ) + '* ' * len(_UpperCAmelCase ) ) return F"""SkipList(level={self.level})\n""" + "\n".join(_UpperCAmelCase ) def __iter__( self : Any ) -> Any: """simple docstring""" snake_case_ : List[Any] = self.head while len(node.forward ) != 0: yield node.forward[0].key snake_case_ : List[str] = node.forward[0] def UpperCAmelCase_ ( self : Any ) -> int: """simple docstring""" snake_case_ : Any = 1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCAmelCase_ ( self : Optional[Any] , _A : Union[str, Any] ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: """simple docstring""" snake_case_ : List[Any] = [] snake_case_ : Tuple = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: snake_case_ : str = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(_UpperCAmelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCAmelCase_ ( self : List[str] , _A : KT ) -> Optional[Any]: """simple docstring""" snake_case_ ,snake_case_ : Any = self._locate_node(_UpperCAmelCase ) if node is not None: for i, update_node in enumerate(_UpperCAmelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: snake_case_ : List[str] = node.forward[i] else: snake_case_ : Dict = update_node.forward[:i] def UpperCAmelCase_ ( self : Optional[Any] , _A : KT , _A : VT ) -> str: """simple docstring""" snake_case_ ,snake_case_ : int = self._locate_node(_UpperCAmelCase ) if node is not None: snake_case_ : Optional[Any] = value else: snake_case_ : Tuple = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , _UpperCAmelCase ): update_vector.append(self.head ) snake_case_ : Tuple = level snake_case_ : Optional[Any] = Node(_UpperCAmelCase , _UpperCAmelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(_UpperCAmelCase ) else: snake_case_ : Union[str, Any] = new_node def UpperCAmelCase_ ( self : Any , _A : VT ) -> VT | None: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self._locate_node(_UpperCAmelCase ) if node is not None: return node.value return None def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) snake_case_ : List[Any] = skip_list.head snake_case_ : str = {} while node.level != 0: snake_case_ : str = node.forward[0] snake_case_ : int = node.value assert len(__a ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : int = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) snake_case_ : Tuple = skip_list.head snake_case_ : str = {} while node.level != 0: snake_case_ : Union[str, Any] = node.forward[0] snake_case_ : Optional[int] = node.value if len(__a ) != 4: print() assert len(__a ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : str = SkipList() assert skip_list.find('Some key' ) is None def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : List[str] = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Union[str, Any] = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : int = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Union[str, Any] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Any = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 1_42 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(__a ): yield node.key for forward_node in node.forward: yield from traverse_keys(__a ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def SCREAMING_SNAKE_CASE__ ( ): def is_sorted(__a ): return all(next_item >= item for item, next_item in zip(__a , lst[1:] ) ) snake_case_ : Optional[int] = SkipList() for i in range(10 ): skip_list.insert(__a , __a ) assert is_sorted(list(__a ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(__a ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(__a ) ) def SCREAMING_SNAKE_CASE__ ( ): for _ in range(1_00 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Union[str, Any] = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(__a ) if __name__ == "__main__": import doctest doctest.testmod() main()
327
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
0
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
1
import sys from collections import defaultdict class __UpperCAmelCase : def __init__( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] ): '''simple docstring''' return self.node_position[vertex] def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = pos def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Tuple , UpperCAmelCase_: List[str] ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _SCREAMING_SNAKE_CASE = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _SCREAMING_SNAKE_CASE = 2 * start + 1 else: _SCREAMING_SNAKE_CASE = 2 * start + 2 if heap[smallest_child] < heap[start]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = heap[smallest_child], positions[smallest_child] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( heap[start], positions[start], ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = temp, tempa _SCREAMING_SNAKE_CASE = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , UpperCAmelCase_ ) self.top_to_bottom(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = position[index] while index != 0: _SCREAMING_SNAKE_CASE = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _SCREAMING_SNAKE_CASE = heap[parent] _SCREAMING_SNAKE_CASE = position[parent] self.set_position(position[parent] , UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = val _SCREAMING_SNAKE_CASE = temp self.set_position(UpperCAmelCase_ , UpperCAmelCase_ ) break _SCREAMING_SNAKE_CASE = parent else: _SCREAMING_SNAKE_CASE = val _SCREAMING_SNAKE_CASE = temp self.set_position(UpperCAmelCase_ , 0 ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = len(UpperCAmelCase_ ) // 2 - 1 for i in range(UpperCAmelCase_ , -1 , -1 ): self.top_to_bottom(UpperCAmelCase_ , UpperCAmelCase_ , len(UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = positions[0] _SCREAMING_SNAKE_CASE = sys.maxsize self.top_to_bottom(UpperCAmelCase_ , 0 , len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return temp def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = Heap() _SCREAMING_SNAKE_CASE = [0] * len(snake_case__ ) _SCREAMING_SNAKE_CASE = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _SCREAMING_SNAKE_CASE = [] # Heap of Distance of vertices from their neighboring vertex _SCREAMING_SNAKE_CASE = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = sys.maxsize for neighbor, distance in adjacency_list[0]: _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = distance heap.heapify(snake_case__ ,snake_case__ ) for _ in range(1 ,len(snake_case__ ) ): _SCREAMING_SNAKE_CASE = heap.delete_minimum(snake_case__ ,snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _SCREAMING_SNAKE_CASE = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): _SCREAMING_SNAKE_CASE = distance heap.bottom_to_top( snake_case__ ,heap.get_position(snake_case__ ) ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCamelCase = int(input('''Enter number of edges: ''').strip()) UpperCamelCase = defaultdict(list) for _ in range(edges_number): UpperCamelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
306
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: int , *UpperCAmelCase_: int , **UpperCAmelCase_: Tuple ): '''simple docstring''' warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
306
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = XLMRobertaTokenizer __snake_case : Optional[Any] = XLMRobertaTokenizerFast __snake_case : Optional[Any] = True __snake_case : int = True def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """<pad>""" _SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase_ ) , 1_002 ) def UpperCamelCase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCamelCase ( self: str ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) _SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way _SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=True _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way _SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=False _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) @cached_property def UpperCamelCase ( self: Any ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCAmelCase_ , f.name ) _SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pickle.dumps(UpperCAmelCase_ ) pickle.loads(UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """Hello World!""" _SCREAMING_SNAKE_CASE = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _SCREAMING_SNAKE_CASE = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @slow def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {"""input_ids""": [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
306
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] UpperCamelCase = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks _SCREAMING_SNAKE_CASE = int(re.match(r""".*layer_(\d*).*""" ,snake_case__ )[1] ) layer_number -= 3 return F'h.{layer_number}.' + key def __lowerCamelCase ( snake_case__ ) -> Optional[int]: """simple docstring""" if dtype == torch.bool: return 1 / 8 _SCREAMING_SNAKE_CASE = re.search(r"""[^\d](\d+)$""" ,str(snake_case__ ) ) if bit_search is None: raise ValueError(F'`dtype` is not a valid dtype: {dtype}.' ) _SCREAMING_SNAKE_CASE = int(bit_search.groups()[0] ) return bit_size // 8 def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" if bloom_config_file == "": _SCREAMING_SNAKE_CASE = BloomConfig() else: _SCREAMING_SNAKE_CASE = BloomConfig.from_json_file(snake_case__ ) if shard_model: _SCREAMING_SNAKE_CASE = os.listdir(snake_case__ ) _SCREAMING_SNAKE_CASE = sorted(filter(lambda snake_case__ : s.startswith("""layer""" ) and "model_00" in s ,snake_case__ ) ) _SCREAMING_SNAKE_CASE = {"""weight_map""": {}, """metadata""": {}} _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = BloomConfig() for j, file in enumerate(snake_case__ ): print("""Processing file: {}""".format(snake_case__ ) ) _SCREAMING_SNAKE_CASE = None for i in range(snake_case__ ): # load all TP files _SCREAMING_SNAKE_CASE = file.replace("""model_00""" ,F'model_0{i}' ) _SCREAMING_SNAKE_CASE = torch.load(os.path.join(snake_case__ ,snake_case__ ) ,map_location="""cpu""" ) # Rename keys in the transformers names _SCREAMING_SNAKE_CASE = list(temp.keys() ) for key in keys: _SCREAMING_SNAKE_CASE = temp.pop(snake_case__ ) if tensors is None: _SCREAMING_SNAKE_CASE = temp else: for key in tensors.keys(): if any(key.endswith(snake_case__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _SCREAMING_SNAKE_CASE = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _SCREAMING_SNAKE_CASE = torch.cat([tensors[key], temp[key]] ,dim=snake_case__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(snake_case__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _SCREAMING_SNAKE_CASE = tensors[key] / pretraining_tp torch.save( snake_case__ ,os.path.join( snake_case__ ,"""pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) ,str(len(snake_case__ ) ).zfill(5 ) ) ,) ,) for key in tensors.keys(): _SCREAMING_SNAKE_CASE = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: _SCREAMING_SNAKE_CASE = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) ,str(len(snake_case__ ) ).zfill(5 ) ) _SCREAMING_SNAKE_CASE = BloomConfig() _SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + """/""" + CONFIG_NAME _SCREAMING_SNAKE_CASE = total_size with open(snake_case__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(snake_case__ ,WEIGHTS_NAME + """.index.json""" ) ,"""w""" ,encoding="""utf-8""" ) as f: _SCREAMING_SNAKE_CASE = json.dumps(snake_case__ ,indent=2 ,sort_keys=snake_case__ ) + """\n""" f.write(snake_case__ ) else: _SCREAMING_SNAKE_CASE = BloomModel(snake_case__ ) _SCREAMING_SNAKE_CASE = os.listdir(snake_case__ ) _SCREAMING_SNAKE_CASE = sorted(filter(lambda snake_case__ : s.startswith("""layer""" ) and "model_00" in s ,snake_case__ ) ) _SCREAMING_SNAKE_CASE = None for i, file in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = None for i in range(snake_case__ ): # load all TP files _SCREAMING_SNAKE_CASE = file.replace("""model_00""" ,F'model_0{i}' ) _SCREAMING_SNAKE_CASE = torch.load(os.path.join(snake_case__ ,snake_case__ ) ,map_location="""cpu""" ) # Rename keys in the transformers names _SCREAMING_SNAKE_CASE = list(temp.keys() ) for key in keys: _SCREAMING_SNAKE_CASE = temp.pop(snake_case__ ) if tensors is None: _SCREAMING_SNAKE_CASE = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(snake_case__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _SCREAMING_SNAKE_CASE = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _SCREAMING_SNAKE_CASE = torch.cat([tensors[key], temp[key]] ,dim=snake_case__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(snake_case__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _SCREAMING_SNAKE_CASE = tensors[key] / pretraining_tp _SCREAMING_SNAKE_CASE = model.load_state_dict(snake_case__ ,strict=snake_case__ ) assert not other_keys.unexpected_keys, F'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: _SCREAMING_SNAKE_CASE = set(other_keys.missing_keys ) else: _SCREAMING_SNAKE_CASE = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(snake_case__ ,exist_ok=snake_case__ ) _SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: _SCREAMING_SNAKE_CASE = model.to(config.torch_dtype ) torch.save(model.state_dict() ,snake_case__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(snake_case__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) UpperCamelCase = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
306
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
1
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE = 10_00 _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = json.load(open(cached_download(hf_hub_url(snake_case__ ,snake_case__ ,repo_type="""dataset""" ) ) ,"""r""" ) ) _SCREAMING_SNAKE_CASE = {int(snake_case__ ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = CvtConfig(num_labels=snake_case__ ,idalabel=snake_case__ ,labelaid=snake_case__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" ,1 )[-1][4:6] == "13": _SCREAMING_SNAKE_CASE = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" ,1 )[-1][4:6] == "21": _SCREAMING_SNAKE_CASE = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: _SCREAMING_SNAKE_CASE = [2, 2, 20] _SCREAMING_SNAKE_CASE = [3, 12, 16] _SCREAMING_SNAKE_CASE = [1_92, 7_68, 10_24] _SCREAMING_SNAKE_CASE = CvtForImageClassification(snake_case__ ) _SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = torch.load(snake_case__ ,map_location=torch.device("""cpu""" ) ) _SCREAMING_SNAKE_CASE = OrderedDict() _SCREAMING_SNAKE_CASE = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: _SCREAMING_SNAKE_CASE = list_of_state_dict + cls_token(snake_case__ ) _SCREAMING_SNAKE_CASE = list_of_state_dict + embeddings(snake_case__ ) for cnt in range(config.depth[idx] ): _SCREAMING_SNAKE_CASE = list_of_state_dict + attention(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = list_of_state_dict + final() for gg in list_of_state_dict: print(snake_case__ ) for i in range(len(snake_case__ ) ): _SCREAMING_SNAKE_CASE = original_weights[list_of_state_dict[i][1]] model.load_state_dict(snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
306
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int]=99 , UpperCAmelCase_: Tuple=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: int=9 , UpperCAmelCase_: str=True , UpperCAmelCase_: int=True , UpperCAmelCase_: int=False , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Union[str, Any]=5 , UpperCAmelCase_: Dict=4 , UpperCAmelCase_: str=37 , UpperCAmelCase_: List[str]=8 , UpperCAmelCase_: str=0.1 , UpperCAmelCase_: Dict=0.0_02 , UpperCAmelCase_: Union[str, Any]=1 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: Optional[int]=0 , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: int=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = encoder_seq_length _SCREAMING_SNAKE_CASE = decoder_seq_length # For common tests _SCREAMING_SNAKE_CASE = self.decoder_seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = d_ff _SCREAMING_SNAKE_CASE = relative_attention_num_buckets _SCREAMING_SNAKE_CASE = dropout_rate _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = decoder_start_token_id _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = decoder_layers def UpperCamelCase ( self: List[str] ): '''simple docstring''' return TaConfig.from_pretrained("""google/umt5-base""" ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Dict=None , UpperCAmelCase_: str=None , UpperCAmelCase_: str=None , ): '''simple docstring''' if attention_mask is None: _SCREAMING_SNAKE_CASE = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _SCREAMING_SNAKE_CASE = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase_ ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase_ ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _SCREAMING_SNAKE_CASE = input_ids.clamp(self.pad_token_id + 1 ) _SCREAMING_SNAKE_CASE = decoder_input_ids.clamp(self.pad_token_id + 1 ) _SCREAMING_SNAKE_CASE = self.get_config() _SCREAMING_SNAKE_CASE = config.num_attention_heads _SCREAMING_SNAKE_CASE = self.prepare_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, input_dict def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase ( self: int ): '''simple docstring''' return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Dict , UpperCAmelCase_: str , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = UMTaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model( input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = result.last_hidden_state _SCREAMING_SNAKE_CASE = result.past_key_values _SCREAMING_SNAKE_CASE = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase_ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: int , UpperCAmelCase_: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = UMTaModel(config=UpperCAmelCase_ ).get_decoder().to(UpperCAmelCase_ ).eval() # first forward pass _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) self.parent.assertTrue(len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) ) self.parent.assertTrue(len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) + 1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )["""last_hidden_state"""] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )["""last_hidden_state"""] # select random slice _SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() _SCREAMING_SNAKE_CASE = output_from_no_past[:, -1, random_slice_idx].detach() _SCREAMING_SNAKE_CASE = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Optional[int] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = UMTaModel(config=UpperCAmelCase_ ).to(UpperCAmelCase_ ).half().eval() _SCREAMING_SNAKE_CASE = model(**UpperCAmelCase_ )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(UpperCAmelCase_ ).any().item() ) @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : Dict = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __snake_case : List[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () __snake_case : Optional[int] = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) __snake_case : Dict = True __snake_case : Optional[Any] = False __snake_case : str = False __snake_case : Optional[int] = True __snake_case : str = True # The small UMT5 model needs higher percentages for CPU/MP tests __snake_case : str = [0.8, 0.9] def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=UpperCAmelCase_ , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = config_and_inputs[0] _SCREAMING_SNAKE_CASE = UMTaForConditionalGeneration(UpperCAmelCase_ ).eval() model.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase_ ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase_ ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase_ ), } for attn_name, (name, mask) in zip(UpperCAmelCase_ , head_masking.items() ): _SCREAMING_SNAKE_CASE = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _SCREAMING_SNAKE_CASE = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase_ , return_dict_in_generate=UpperCAmelCase_ , **UpperCAmelCase_ , ) # We check the state of decoder_attentions and cross_attentions just from the last step _SCREAMING_SNAKE_CASE = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase (unittest.TestCase ): @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=UpperCAmelCase_ ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=UpperCAmelCase_ , legacy=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] _SCREAMING_SNAKE_CASE = tokenizer(UpperCAmelCase_ , return_tensors="""pt""" , padding=UpperCAmelCase_ ).input_ids # fmt: off _SCREAMING_SNAKE_CASE = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model.generate(input_ids.to(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] _SCREAMING_SNAKE_CASE = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ )
306
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
1
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
306
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
1
import json import sys def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> List[Any]: """simple docstring""" with open(snake_case__ ,encoding="""utf-8""" ) as f: _SCREAMING_SNAKE_CASE = json.load(snake_case__ ) _SCREAMING_SNAKE_CASE = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(snake_case__ ): _SCREAMING_SNAKE_CASE = results[benchmark_name] _SCREAMING_SNAKE_CASE = benchmark_name.split("""/""" )[-1] output_md.append(F'### Benchmark: {benchmark_file_name}' ) _SCREAMING_SNAKE_CASE = """| metric |""" _SCREAMING_SNAKE_CASE = """|--------|""" _SCREAMING_SNAKE_CASE = """| new / old (diff) |""" for metric_name in sorted(snake_case__ ): _SCREAMING_SNAKE_CASE = benchmark_res[metric_name] _SCREAMING_SNAKE_CASE = metric_vals["""new"""] _SCREAMING_SNAKE_CASE = metric_vals.get("""old""" ,snake_case__ ) _SCREAMING_SNAKE_CASE = metric_vals.get("""diff""" ,snake_case__ ) _SCREAMING_SNAKE_CASE = F' {new_val:f}' if isinstance(snake_case__ ,(int, float) ) else """None""" if old_val is not None: val_str += F' / {old_val:f}' if isinstance(snake_case__ ,(int, float) ) else "None" if dif_val is not None: val_str += F' ({dif_val:f})' if isinstance(snake_case__ ,(int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(snake_case__ ,"""w""" ,encoding="""utf-8""" ) as f: f.writelines("""\n""".join(snake_case__ ) ) if __name__ == "__main__": UpperCamelCase = sys.argv[1] UpperCamelCase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu UpperCamelCase = False class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return 12 @property def UpperCamelCase ( self: str ): '''simple docstring''' return 12 @property def UpperCamelCase ( self: str ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_ ) @property def UpperCamelCase ( self: List[str] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = { """attention_bias""": True, """cross_attention_dim""": 32, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 32, """sample_size""": width, """activation_fn""": """geglu-approximate""", } _SCREAMING_SNAKE_CASE = TransformeraDModel(**UpperCAmelCase_ ) return model def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" _SCREAMING_SNAKE_CASE = self.dummy_vqvae _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = self.dummy_tokenizer _SCREAMING_SNAKE_CASE = self.dummy_transformer _SCREAMING_SNAKE_CASE = VQDiffusionScheduler(self.num_embed ) _SCREAMING_SNAKE_CASE = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """teddy bear playing in the pool""" _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""np""" ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe( [prompt] , generator=UpperCAmelCase_ , output_type="""np""" , return_dict=UpperCAmelCase_ , num_inference_steps=2 )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _SCREAMING_SNAKE_CASE = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" _SCREAMING_SNAKE_CASE = self.dummy_vqvae _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = self.dummy_tokenizer _SCREAMING_SNAKE_CASE = self.dummy_transformer _SCREAMING_SNAKE_CASE = VQDiffusionScheduler(self.num_embed ) _SCREAMING_SNAKE_CASE = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) _SCREAMING_SNAKE_CASE = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """teddy bear playing in the pool""" _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""np""" ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe( [prompt] , generator=UpperCAmelCase_ , output_type="""np""" , return_dict=UpperCAmelCase_ , num_inference_steps=2 )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _SCREAMING_SNAKE_CASE = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) _SCREAMING_SNAKE_CASE = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) _SCREAMING_SNAKE_CASE = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type="""np""" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
306
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = "vit_mae" def __init__( self: str , UpperCAmelCase_: Tuple=768 , UpperCAmelCase_: Dict=12 , UpperCAmelCase_: Dict=12 , UpperCAmelCase_: Dict=3_072 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: str=0.0 , UpperCAmelCase_: Dict=0.0 , UpperCAmelCase_: List[Any]=0.02 , UpperCAmelCase_: Tuple=1E-12 , UpperCAmelCase_: Dict=224 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: Tuple=16 , UpperCAmelCase_: int=512 , UpperCAmelCase_: Tuple=8 , UpperCAmelCase_: str=2_048 , UpperCAmelCase_: Union[str, Any]=0.75 , UpperCAmelCase_: Union[str, Any]=False , **UpperCAmelCase_: int , ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = qkv_bias _SCREAMING_SNAKE_CASE = decoder_num_attention_heads _SCREAMING_SNAKE_CASE = decoder_hidden_size _SCREAMING_SNAKE_CASE = decoder_num_hidden_layers _SCREAMING_SNAKE_CASE = decoder_intermediate_size _SCREAMING_SNAKE_CASE = mask_ratio _SCREAMING_SNAKE_CASE = norm_pix_loss
306
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __UpperCAmelCase : __snake_case : int __snake_case : Node | None = None __snake_case : Node | None = None def __lowerCamelCase ( ) -> Node | None: """simple docstring""" _SCREAMING_SNAKE_CASE = Node(1 ) _SCREAMING_SNAKE_CASE = Node(2 ) _SCREAMING_SNAKE_CASE = Node(3 ) _SCREAMING_SNAKE_CASE = Node(4 ) _SCREAMING_SNAKE_CASE = Node(5 ) return tree def __lowerCamelCase ( snake_case__ ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def __lowerCamelCase ( snake_case__ ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def __lowerCamelCase ( snake_case__ ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def __lowerCamelCase ( snake_case__ ) -> Sequence[Node | None]: """simple docstring""" _SCREAMING_SNAKE_CASE = [] if root is None: return output _SCREAMING_SNAKE_CASE = deque([root] ) while process_queue: _SCREAMING_SNAKE_CASE = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Sequence[Node | None]: """simple docstring""" _SCREAMING_SNAKE_CASE = [] def populate_output(snake_case__ ,snake_case__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(snake_case__ ,snake_case__ ) return output def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Sequence[Node | None]: """simple docstring""" _SCREAMING_SNAKE_CASE = [] def populate_output(snake_case__ ,snake_case__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(snake_case__ ,snake_case__ ) return output def __lowerCamelCase ( snake_case__ ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = height(snake_case__ ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case__ ,snake_case__ ) ) _SCREAMING_SNAKE_CASE = 1 else: output.append(get_nodes_from_right_to_left(snake_case__ ,snake_case__ ) ) _SCREAMING_SNAKE_CASE = 0 return output def __lowerCamelCase ( ) -> None: # Main function for testing. """simple docstring""" _SCREAMING_SNAKE_CASE = make_tree() print(F'In-order Traversal: {inorder(snake_case__ )}' ) print(F'Pre-order Traversal: {preorder(snake_case__ )}' ) print(F'Post-order Traversal: {postorder(snake_case__ )}' ,"""\n""" ) print(F'Height of Tree: {height(snake_case__ )}' ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(snake_case__ ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(snake_case__ ) + 1 ): print(F'Level {level}:' ,get_nodes_from_left_to_right(snake_case__ ,level=snake_case__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
306
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = VOCAB_FILES_NAMES __snake_case : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __snake_case : Any = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : int = VOCAB_FILES_NAMES __snake_case : Dict = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) UpperCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) UpperCamelCase = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_UpperCAmelCase ) class __UpperCAmelCase : def __call__( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[str] = None , UpperCAmelCase_: Optional[str] = None , UpperCAmelCase_: Union[bool, str] = False , UpperCAmelCase_: Union[bool, str] = False , UpperCAmelCase_: Optional[int] = None , UpperCAmelCase_: Optional[Union[str, TensorType]] = None , UpperCAmelCase_: Optional[bool] = None , **UpperCAmelCase_: int , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) elif titles is None or texts is None: _SCREAMING_SNAKE_CASE = titles if texts is None else texts return super().__call__( UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = titles if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else [titles] _SCREAMING_SNAKE_CASE = texts if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else [texts] _SCREAMING_SNAKE_CASE = len(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = questions if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else [questions] * n_passages if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( F'There should be as many titles than texts but got {len(UpperCAmelCase_ )} titles and {len(UpperCAmelCase_ )} texts.' ) _SCREAMING_SNAKE_CASE = super().__call__(UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )["""input_ids"""] _SCREAMING_SNAKE_CASE = super().__call__(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )["""input_ids"""] _SCREAMING_SNAKE_CASE = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ] } if return_attention_mask is not False: _SCREAMING_SNAKE_CASE = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _SCREAMING_SNAKE_CASE = attention_mask return self.pad(UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: BatchEncoding , UpperCAmelCase_: DPRReaderOutput , UpperCAmelCase_: int = 16 , UpperCAmelCase_: int = 64 , UpperCAmelCase_: int = 4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = reader_input["""input_ids"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = reader_output[:3] _SCREAMING_SNAKE_CASE = len(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sorted(range(UpperCAmelCase_ ) , reverse=UpperCAmelCase_ , key=relevance_logits.__getitem__ ) _SCREAMING_SNAKE_CASE = [] for doc_id in sorted_docs: _SCREAMING_SNAKE_CASE = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _SCREAMING_SNAKE_CASE = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _SCREAMING_SNAKE_CASE = sequence_ids.index(self.pad_token_id ) else: _SCREAMING_SNAKE_CASE = len(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase_ , top_spans=UpperCAmelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase_ , start_index=UpperCAmelCase_ , end_index=UpperCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(UpperCAmelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self: int , UpperCAmelCase_: List[int] , UpperCAmelCase_: List[int] , UpperCAmelCase_: int , UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for start_index, start_score in enumerate(UpperCAmelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _SCREAMING_SNAKE_CASE = sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : x[1] , reverse=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'Wrong span indices: [{start_index}:{end_index}]' ) _SCREAMING_SNAKE_CASE = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCAmelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ): __snake_case : str = VOCAB_FILES_NAMES __snake_case : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP __snake_case : Any = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : int = READER_PRETRAINED_INIT_CONFIGURATION __snake_case : Optional[int] = ["input_ids", "attention_mask"]
306
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
1
from __future__ import annotations from collections.abc import Callable UpperCamelCase = list[list[float | int]] def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Matrix: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(snake_case__ )] _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 for row in range(snake_case__ ): for col in range(snake_case__ ): _SCREAMING_SNAKE_CASE = matrix[row][col] _SCREAMING_SNAKE_CASE = vector[row][0] _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting _SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case__ ,snake_case__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 ,snake_case__ ): _SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] _SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 ,size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 ,snake_case__ ): for row in range(snake_case__ ): _SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(snake_case__ ,size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] ,10 )] for row in range(snake_case__ ) ] def __lowerCamelCase ( snake_case__ ) -> Callable[[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0 for _ in range(snake_case__ )] for _ in range(snake_case__ )] _SCREAMING_SNAKE_CASE = [[0] for _ in range(snake_case__ )] _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(snake_case__ ): for col in range(snake_case__ ): _SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) _SCREAMING_SNAKE_CASE = y_val _SCREAMING_SNAKE_CASE = solve(snake_case__ ,snake_case__ ) def interpolated_func(snake_case__ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case__ ) ) return interpolated_func def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCamelCase ( snake_case__ = question_function ,snake_case__ = 10 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = [func(snake_case__ ) for x_val in range(1 ,order + 1 )] _SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 ,order + 1 ) ] _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 for poly in polynomials: _SCREAMING_SNAKE_CASE = 1 while func(snake_case__ ) == poly(snake_case__ ): x_val += 1 ret += poly(snake_case__ ) return ret if __name__ == "__main__": print(f"{solution() = }")
306
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Any = DebertaTokenizer __snake_case : Tuple = True __snake_case : List[str] = DebertaTokenizerFast def UpperCamelCase ( self: List[str] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _SCREAMING_SNAKE_CASE = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] _SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) _SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _SCREAMING_SNAKE_CASE = {"""unk_token""": """[UNK]"""} _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def UpperCamelCase ( self: int , **UpperCAmelCase_: int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """lower newer""" _SCREAMING_SNAKE_CASE = """lower newer""" return input_text, output_text def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = """lower newer""" _SCREAMING_SNAKE_CASE = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] _SCREAMING_SNAKE_CASE = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer("""Hello""" , """World""" ) _SCREAMING_SNAKE_CASE = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , UpperCAmelCase_ ) @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.encode( """sequence builders""" , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) _SCREAMING_SNAKE_CASE = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] _SCREAMING_SNAKE_CASE = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) for seq in encoding["""input_ids"""]] # fmt: off _SCREAMING_SNAKE_CASE = { """input_ids""": [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _SCREAMING_SNAKE_CASE = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , UpperCAmelCase_ ) for expected, decoded in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ )
306
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
1
from __future__ import annotations def __lowerCamelCase ( snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(snake_case__ ) if n > 1: factors.append(snake_case__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
def __lowerCamelCase ( snake_case__ ,snake_case__ = False ) -> str: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = F'Expected string as input, found {type(snake_case__ )}' raise ValueError(snake_case__ ) if not isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = F'Expected boolean as use_pascal parameter, found {type(snake_case__ )}' raise ValueError(snake_case__ ) _SCREAMING_SNAKE_CASE = input_str.split("""_""" ) _SCREAMING_SNAKE_CASE = 0 if use_pascal else 1 _SCREAMING_SNAKE_CASE = words[start_index:] _SCREAMING_SNAKE_CASE = [word[0].upper() + word[1:] for word in words_to_capitalize] _SCREAMING_SNAKE_CASE = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
306
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
1
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __UpperCAmelCase (_UpperCAmelCase ): @require_torch def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _SCREAMING_SNAKE_CASE = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _SCREAMING_SNAKE_CASE = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(UpperCAmelCase_ ) BertModel.from_pretrained(UpperCAmelCase_ ) BertTokenizer.from_pretrained(UpperCAmelCase_ ) pipeline(task="""fill-mask""" , model=UpperCAmelCase_ ) # baseline - just load from_pretrained with normal network _SCREAMING_SNAKE_CASE = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed _SCREAMING_SNAKE_CASE = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _SCREAMING_SNAKE_CASE = """1""" _SCREAMING_SNAKE_CASE = subprocess.run(UpperCAmelCase_ , env=UpperCAmelCase_ , check=UpperCAmelCase_ , capture_output=UpperCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _SCREAMING_SNAKE_CASE = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _SCREAMING_SNAKE_CASE = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(UpperCAmelCase_ ) BertModel.from_pretrained(UpperCAmelCase_ ) BertTokenizer.from_pretrained(UpperCAmelCase_ ) pipeline(task="""fill-mask""" , model=UpperCAmelCase_ ) # baseline - just load from_pretrained with normal network _SCREAMING_SNAKE_CASE = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed _SCREAMING_SNAKE_CASE = self.get_env() _SCREAMING_SNAKE_CASE = subprocess.run(UpperCAmelCase_ , env=UpperCAmelCase_ , check=UpperCAmelCase_ , capture_output=UpperCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """ from transformers import BertConfig, BertModel, BertTokenizer """ _SCREAMING_SNAKE_CASE = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _SCREAMING_SNAKE_CASE = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _SCREAMING_SNAKE_CASE = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed _SCREAMING_SNAKE_CASE = self.get_env() _SCREAMING_SNAKE_CASE = subprocess.run(UpperCAmelCase_ , env=UpperCAmelCase_ , check=UpperCAmelCase_ , capture_output=UpperCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network _SCREAMING_SNAKE_CASE = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _SCREAMING_SNAKE_CASE = """1""" _SCREAMING_SNAKE_CASE = subprocess.run(UpperCAmelCase_ , env=UpperCAmelCase_ , check=UpperCAmelCase_ , capture_output=UpperCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """ from transformers import pipeline """ _SCREAMING_SNAKE_CASE = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _SCREAMING_SNAKE_CASE = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _SCREAMING_SNAKE_CASE = self.get_env() _SCREAMING_SNAKE_CASE = """1""" _SCREAMING_SNAKE_CASE = [sys.executable, """-c""", """\n""".join([load, mock, run] )] _SCREAMING_SNAKE_CASE = subprocess.run(UpperCAmelCase_ , env=UpperCAmelCase_ , check=UpperCAmelCase_ , capture_output=UpperCAmelCase_ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """ from transformers import AutoModel """ _SCREAMING_SNAKE_CASE = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _SCREAMING_SNAKE_CASE = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed _SCREAMING_SNAKE_CASE = self.get_env() _SCREAMING_SNAKE_CASE = subprocess.run(UpperCAmelCase_ , env=UpperCAmelCase_ , check=UpperCAmelCase_ , capture_output=UpperCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _SCREAMING_SNAKE_CASE = """1""" _SCREAMING_SNAKE_CASE = subprocess.run(UpperCAmelCase_ , env=UpperCAmelCase_ , check=UpperCAmelCase_ , capture_output=UpperCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
306
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not numbers: return 0 if not isinstance(snake_case__ ,(list, tuple) ) or not all( isinstance(snake_case__ ,snake_case__ ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = numbers[0] for i in range(1 ,len(snake_case__ ) ): # update the maximum and minimum subarray products _SCREAMING_SNAKE_CASE = numbers[i] if number < 0: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = min_till_now, max_till_now _SCREAMING_SNAKE_CASE = max(snake_case__ ,max_till_now * number ) _SCREAMING_SNAKE_CASE = min(snake_case__ ,min_till_now * number ) # update the maximum product found till now _SCREAMING_SNAKE_CASE = max(snake_case__ ,snake_case__ ) return max_prod
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = "trajectory_transformer" __snake_case : Union[str, Any] = ["past_key_values"] __snake_case : Dict = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self: Optional[int] , UpperCAmelCase_: Optional[Any]=100 , UpperCAmelCase_: Optional[Any]=5 , UpperCAmelCase_: List[str]=1 , UpperCAmelCase_: Optional[Any]=1 , UpperCAmelCase_: Tuple=249 , UpperCAmelCase_: int=6 , UpperCAmelCase_: Optional[Any]=17 , UpperCAmelCase_: Tuple=25 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: int=4 , UpperCAmelCase_: str=128 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[str]=0.00_06 , UpperCAmelCase_: Optional[int]=512 , UpperCAmelCase_: int=0.02 , UpperCAmelCase_: List[str]=1E-12 , UpperCAmelCase_: Optional[int]=1 , UpperCAmelCase_: Optional[int]=True , UpperCAmelCase_: Any=1 , UpperCAmelCase_: Union[str, Any]=50_256 , UpperCAmelCase_: Dict=50_256 , **UpperCAmelCase_: Dict , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = action_weight _SCREAMING_SNAKE_CASE = reward_weight _SCREAMING_SNAKE_CASE = value_weight _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = block_size _SCREAMING_SNAKE_CASE = action_dim _SCREAMING_SNAKE_CASE = observation_dim _SCREAMING_SNAKE_CASE = transition_dim _SCREAMING_SNAKE_CASE = learning_rate _SCREAMING_SNAKE_CASE = n_layer _SCREAMING_SNAKE_CASE = n_head _SCREAMING_SNAKE_CASE = n_embd _SCREAMING_SNAKE_CASE = embd_pdrop _SCREAMING_SNAKE_CASE = attn_pdrop _SCREAMING_SNAKE_CASE = resid_pdrop _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = kaiming_initializer_range _SCREAMING_SNAKE_CASE = use_cache super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
306
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase = 16 UpperCamelCase = 32 def __lowerCamelCase ( snake_case__ ,snake_case__ = 16 ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _SCREAMING_SNAKE_CASE = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(snake_case__ ): # max_length=None => use the model max length (it's actually the default) _SCREAMING_SNAKE_CASE = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case__ ,max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _SCREAMING_SNAKE_CASE = datasets.map( snake_case__ ,batched=snake_case__ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(snake_case__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _SCREAMING_SNAKE_CASE = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _SCREAMING_SNAKE_CASE = 16 elif accelerator.mixed_precision != "no": _SCREAMING_SNAKE_CASE = 8 else: _SCREAMING_SNAKE_CASE = None return tokenizer.pad( snake_case__ ,padding="""longest""" ,max_length=snake_case__ ,pad_to_multiple_of=snake_case__ ,return_tensors="""pt""" ,) # Instantiate dataloaders. _SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["""train"""] ,shuffle=snake_case__ ,collate_fn=snake_case__ ,batch_size=snake_case__ ) _SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["""validation"""] ,shuffle=snake_case__ ,collate_fn=snake_case__ ,batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,snake_case__ ) == "1": _SCREAMING_SNAKE_CASE = 2 # Initialize accelerator _SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _SCREAMING_SNAKE_CASE = config["""lr"""] _SCREAMING_SNAKE_CASE = int(config["""num_epochs"""] ) _SCREAMING_SNAKE_CASE = int(config["""seed"""] ) _SCREAMING_SNAKE_CASE = int(config["""batch_size"""] ) _SCREAMING_SNAKE_CASE = evaluate.load("""glue""" ,"""mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=snake_case__ ) def inner_training_loop(snake_case__ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Instantiate optimizer _SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() ,lr=snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = get_dataloaders(snake_case__ ,snake_case__ ) # Instantiate scheduler _SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=snake_case__ ,num_warmup_steps=1_00 ,num_training_steps=(len(snake_case__ ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _SCREAMING_SNAKE_CASE = model(**snake_case__ ) _SCREAMING_SNAKE_CASE = outputs.loss accelerator.backward(snake_case__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**snake_case__ ) _SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=snake_case__ ,references=snake_case__ ,) _SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' ,snake_case__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __lowerCamelCase ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=snake_case__ ,default=snake_case__ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(snake_case__ ,snake_case__ ) if __name__ == "__main__": main()
306
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
1
import qiskit def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> qiskit.result.counts.Counts: """simple docstring""" _SCREAMING_SNAKE_CASE = qiskit.Aer.get_backend("""aer_simulator""" ) _SCREAMING_SNAKE_CASE = qiskit.QuantumCircuit(4 ,2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 ,2 ) qc_ha.cx(1 ,2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 ,1 ,3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 ,0 ) # extract XOR value qc_ha.measure(3 ,1 ) # extract AND value # Execute the circuit on the qasm simulator _SCREAMING_SNAKE_CASE = qiskit.execute(snake_case__ ,snake_case__ ,shots=10_00 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case__ ) if __name__ == "__main__": UpperCamelCase = half_adder(1, 1) print(f"Half Adder Output Qubit Counts: {counts}")
306
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
import argparse from collections import defaultdict import yaml UpperCamelCase = '''docs/source/en/_toctree.yml''' def __lowerCamelCase ( snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = defaultdict(snake_case__ ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(snake_case__ ) _SCREAMING_SNAKE_CASE = new_doc_list _SCREAMING_SNAKE_CASE = [key for key, value in counts.items() if value > 1] _SCREAMING_SNAKE_CASE = [] for duplicate_key in duplicates: _SCREAMING_SNAKE_CASE = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(snake_case__ ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) _SCREAMING_SNAKE_CASE = sorted(snake_case__ ,key=lambda snake_case__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(snake_case__ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(snake_case__ ) # Sort return overview_doc def __lowerCamelCase ( snake_case__=False ) -> List[Any]: """simple docstring""" with open(snake_case__ ,encoding="""utf-8""" ) as f: _SCREAMING_SNAKE_CASE = yaml.safe_load(f.read() ) # Get to the API doc _SCREAMING_SNAKE_CASE = 0 while content[api_idx]["title"] != "API": api_idx += 1 _SCREAMING_SNAKE_CASE = content[api_idx]["""sections"""] # Then to the model doc _SCREAMING_SNAKE_CASE = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _SCREAMING_SNAKE_CASE = api_doc[scheduler_idx]["""sections"""] _SCREAMING_SNAKE_CASE = clean_doc_toc(snake_case__ ) _SCREAMING_SNAKE_CASE = False if new_scheduler_doc != scheduler_doc: _SCREAMING_SNAKE_CASE = True if overwrite: _SCREAMING_SNAKE_CASE = new_scheduler_doc if diff: if overwrite: _SCREAMING_SNAKE_CASE = api_doc with open(snake_case__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(yaml.dump(snake_case__ ,allow_unicode=snake_case__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def __lowerCamelCase ( snake_case__=False ) -> Optional[int]: """simple docstring""" with open(snake_case__ ,encoding="""utf-8""" ) as f: _SCREAMING_SNAKE_CASE = yaml.safe_load(f.read() ) # Get to the API doc _SCREAMING_SNAKE_CASE = 0 while content[api_idx]["title"] != "API": api_idx += 1 _SCREAMING_SNAKE_CASE = content[api_idx]["""sections"""] # Then to the model doc _SCREAMING_SNAKE_CASE = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = api_doc[pipeline_idx]["""sections"""] _SCREAMING_SNAKE_CASE = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _SCREAMING_SNAKE_CASE = pipeline_doc["""section"""] _SCREAMING_SNAKE_CASE = clean_doc_toc(snake_case__ ) if overwrite: _SCREAMING_SNAKE_CASE = new_sub_pipeline_doc new_pipeline_docs.append(snake_case__ ) # sort overall pipeline doc _SCREAMING_SNAKE_CASE = clean_doc_toc(snake_case__ ) if new_pipeline_docs != pipeline_docs: _SCREAMING_SNAKE_CASE = True if overwrite: _SCREAMING_SNAKE_CASE = new_pipeline_docs if diff: if overwrite: _SCREAMING_SNAKE_CASE = api_doc with open(snake_case__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(yaml.dump(snake_case__ ,allow_unicode=snake_case__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCamelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
306
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
1
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: str , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self: Optional[int] , UpperCAmelCase_: Union[str, List[str], "Image", List["Image"]] , **UpperCAmelCase_: str ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCamelCase ( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: List[Any]="This is a photo of {}." ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework ) _SCREAMING_SNAKE_CASE = candidate_labels _SCREAMING_SNAKE_CASE = [hypothesis_template.format(UpperCAmelCase_ ) for x in candidate_labels] _SCREAMING_SNAKE_CASE = self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework , padding=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [text_inputs] return inputs def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. _SCREAMING_SNAKE_CASE = text_inputs[0][0] _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def UpperCamelCase ( self: Any , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" ) _SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0] if self.framework == "pt": _SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": _SCREAMING_SNAKE_CASE = stable_softmax(UpperCAmelCase_ , axis=-1 ) _SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) _SCREAMING_SNAKE_CASE = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(UpperCAmelCase_ , UpperCAmelCase_ ) , key=lambda UpperCAmelCase_ : -x[0] ) ] return result
306
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
import os # Precomputes a list of the 100 first triangular numbers UpperCamelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(snake_case__ ) ) _SCREAMING_SNAKE_CASE = os.path.join(snake_case__ ,"""words.txt""" ) _SCREAMING_SNAKE_CASE = """""" with open(snake_case__ ) as f: _SCREAMING_SNAKE_CASE = f.readline() _SCREAMING_SNAKE_CASE = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] _SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(snake_case__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(snake_case__ ) if __name__ == "__main__": print(solution())
306
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
1
def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> str: """simple docstring""" assert x is not None assert y is not None _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = len(snake_case__ ) # declaring the array for storing the dp values _SCREAMING_SNAKE_CASE = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 ,m + 1 ): for j in range(1 ,n + 1 ): _SCREAMING_SNAKE_CASE = 1 if x[i - 1] == y[j - 1] else 0 _SCREAMING_SNAKE_CASE = max(l[i - 1][j] ,l[i][j - 1] ,l[i - 1][j - 1] + match ) _SCREAMING_SNAKE_CASE = """""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = m, n while i > 0 and j > 0: _SCREAMING_SNAKE_CASE = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _SCREAMING_SNAKE_CASE = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": UpperCamelCase = '''AGGTAB''' UpperCamelCase = '''GXTXAYB''' UpperCamelCase = 4 UpperCamelCase = '''GTAB''' UpperCamelCase , UpperCamelCase = longest_common_subsequence(a, b) print('''len =''', ln, ''', sub-sequence =''', subseq) import doctest doctest.testmod()
306
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
1
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
1
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCAmelCase : __snake_case : str = field( default=_UpperCAmelCase ,metadata={"help": "Model type selected in the list: " + ", ".join(_UpperCAmelCase )} ) __snake_case : str = field( default=_UpperCAmelCase ,metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) __snake_case : int = field( default=128 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) __snake_case : int = field( default=128 ,metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} ,) __snake_case : int = field( default=64 ,metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } ,) __snake_case : int = field( default=30 ,metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } ,) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) __snake_case : float = field( default=0.0 ,metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) __snake_case : int = field( default=20 ,metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) __snake_case : int = field( default=0 ,metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } ,) __snake_case : int = field(default=1 ,metadata={"help": "multiple threads for converting example to features"} ) class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = "train" __snake_case : Union[str, Any] = "dev" class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : SquadDataTrainingArguments __snake_case : List[SquadFeatures] __snake_case : Split __snake_case : bool def __init__( self: Tuple , UpperCAmelCase_: SquadDataTrainingArguments , UpperCAmelCase_: PreTrainedTokenizer , UpperCAmelCase_: Optional[int] = None , UpperCAmelCase_: Union[str, Split] = Split.train , UpperCAmelCase_: Optional[bool] = False , UpperCAmelCase_: Optional[str] = None , UpperCAmelCase_: Optional[str] = "pt" , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = args _SCREAMING_SNAKE_CASE = is_language_sensitive _SCREAMING_SNAKE_CASE = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): try: _SCREAMING_SNAKE_CASE = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _SCREAMING_SNAKE_CASE = mode # Load data features from cache or dataset file _SCREAMING_SNAKE_CASE = """v2""" if args.version_2_with_negative else """v1""" _SCREAMING_SNAKE_CASE = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _SCREAMING_SNAKE_CASE = cached_features_file + """.lock""" with FileLock(UpperCAmelCase_ ): if os.path.exists(UpperCAmelCase_ ) and not args.overwrite_cache: _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _SCREAMING_SNAKE_CASE = self.old_features["""features"""] _SCREAMING_SNAKE_CASE = self.old_features.get("""dataset""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.old_features.get("""examples""" , UpperCAmelCase_ ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _SCREAMING_SNAKE_CASE = self.processor.get_dev_examples(args.data_dir ) else: _SCREAMING_SNAKE_CASE = self.processor.get_train_examples(args.data_dir ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = squad_convert_examples_to_features( examples=self.examples , tokenizer=UpperCAmelCase_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , UpperCAmelCase_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self: Tuple ): '''simple docstring''' return len(self.features ) def __getitem__( self: Union[str, Any] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.features[i] _SCREAMING_SNAKE_CASE = torch.tensor(feature.input_ids , dtype=torch.long ) _SCREAMING_SNAKE_CASE = torch.tensor(feature.attention_mask , dtype=torch.long ) _SCREAMING_SNAKE_CASE = torch.tensor(feature.token_type_ids , dtype=torch.long ) _SCREAMING_SNAKE_CASE = torch.tensor(feature.cls_index , dtype=torch.long ) _SCREAMING_SNAKE_CASE = torch.tensor(feature.p_mask , dtype=torch.float ) _SCREAMING_SNAKE_CASE = torch.tensor(feature.is_impossible , dtype=torch.float ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _SCREAMING_SNAKE_CASE = torch.tensor(feature.start_position , dtype=torch.long ) _SCREAMING_SNAKE_CASE = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
306
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
1
def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" if number > 0: raise ValueError("""input must be a negative integer""" ) _SCREAMING_SNAKE_CASE = len(bin(snake_case__ )[3:] ) _SCREAMING_SNAKE_CASE = bin(abs(snake_case__ ) - (1 << binary_number_length) )[3:] _SCREAMING_SNAKE_CASE = ( ( """1""" + """0""" * (binary_number_length - len(snake_case__ )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
306
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _SCREAMING_SNAKE_CASE = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , x.transpose() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , transpose(UpperCAmelCase_ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , transpose(UpperCAmelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , transpose(UpperCAmelCase_ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , transpose(UpperCAmelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , np.asarray(transpose(UpperCAmelCase_ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , np.asarray(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) ) ) ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , np.reshape(UpperCAmelCase_ , (4, 3) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , np.reshape(UpperCAmelCase_ , (12, 5) ) ) ) @require_torch def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , reshape(UpperCAmelCase_ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , reshape(UpperCAmelCase_ , (12, 5) ).numpy() ) ) @require_tf def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , reshape(UpperCAmelCase_ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , reshape(UpperCAmelCase_ , (12, 5) ).numpy() ) ) @require_flax def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , np.asarray(reshape(UpperCAmelCase_ , (4, 3) ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , np.asarray(reshape(UpperCAmelCase_ , (12, 5) ) ) ) ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , np.squeeze(UpperCAmelCase_ ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , np.squeeze(UpperCAmelCase_ , axis=2 ) ) ) @require_torch def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , squeeze(UpperCAmelCase_ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , squeeze(UpperCAmelCase_ , axis=2 ).numpy() ) ) @require_tf def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , squeeze(UpperCAmelCase_ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , squeeze(UpperCAmelCase_ , axis=2 ).numpy() ) ) @require_flax def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , np.asarray(squeeze(UpperCAmelCase_ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , np.asarray(squeeze(UpperCAmelCase_ , axis=2 ) ) ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , np.expand_dims(UpperCAmelCase_ , axis=1 ) ) ) @require_torch def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , expand_dims(UpperCAmelCase_ , axis=1 ).numpy() ) ) @require_tf def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , expand_dims(UpperCAmelCase_ , axis=1 ).numpy() ) ) @require_flax def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , np.asarray(expand_dims(UpperCAmelCase_ , axis=1 ) ) ) )
306
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )["""last_hidden_state"""] _SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , UpperCAmelCase_ ) # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) UpperCamelCase = logging.getLogger() def __lowerCamelCase ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""-f""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() return args.f class __UpperCAmelCase (_UpperCAmelCase ): def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(UpperCAmelCase_ , """argv""" , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(UpperCAmelCase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(UpperCAmelCase_ )
306
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: List[str] , UpperCAmelCase_: WhisperForConditionalGeneration , UpperCAmelCase_: WhisperProcessor , UpperCAmelCase_: AutoencoderKL , UpperCAmelCase_: CLIPTextModel , UpperCAmelCase_: CLIPTokenizer , UpperCAmelCase_: UNetaDConditionModel , UpperCAmelCase_: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase_: StableDiffusionSafetyChecker , UpperCAmelCase_: CLIPImageProcessor , ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=UpperCAmelCase_ , speech_processor=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": _SCREAMING_SNAKE_CASE = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' self.enable_attention_slicing(UpperCAmelCase_ ) @torch.no_grad() def __call__( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: List[Any]=16_000 , UpperCAmelCase_: int = 512 , UpperCAmelCase_: int = 512 , UpperCAmelCase_: int = 50 , UpperCAmelCase_: float = 7.5 , UpperCAmelCase_: Optional[Union[str, List[str]]] = None , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: float = 0.0 , UpperCAmelCase_: Optional[torch.Generator] = None , UpperCAmelCase_: Optional[torch.FloatTensor] = None , UpperCAmelCase_: Optional[str] = "pil" , UpperCAmelCase_: bool = True , UpperCAmelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_: int = 1 , **UpperCAmelCase_: List[Any] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.speech_processor.feature_extractor( UpperCAmelCase_ , return_tensors="""pt""" , sampling_rate=UpperCAmelCase_ ).input_features.to(self.device ) _SCREAMING_SNAKE_CASE = self.speech_model.generate(UpperCAmelCase_ , max_length=480_000 ) _SCREAMING_SNAKE_CASE = self.speech_processor.tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , normalize=UpperCAmelCase_ )[ 0 ] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = 1 elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = len(UpperCAmelCase_ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase_ )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(UpperCAmelCase_ )}.' ) # get prompt text embeddings _SCREAMING_SNAKE_CASE = self.tokenizer( UpperCAmelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) _SCREAMING_SNAKE_CASE = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _SCREAMING_SNAKE_CASE = text_input_ids[:, : self.tokenizer.model_max_length] _SCREAMING_SNAKE_CASE = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = text_embeddings.shape _SCREAMING_SNAKE_CASE = text_embeddings.repeat(1 , UpperCAmelCase_ , 1 ) _SCREAMING_SNAKE_CASE = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCAmelCase_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _SCREAMING_SNAKE_CASE = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE = 42 if negative_prompt is None: _SCREAMING_SNAKE_CASE = [""""""] * batch_size elif type(UpperCAmelCase_ ) is not type(UpperCAmelCase_ ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(UpperCAmelCase_ )} !=' F' {type(UpperCAmelCase_ )}.' ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = [negative_prompt] elif batch_size != len(UpperCAmelCase_ ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(UpperCAmelCase_ )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: _SCREAMING_SNAKE_CASE = negative_prompt _SCREAMING_SNAKE_CASE = text_input_ids.shape[-1] _SCREAMING_SNAKE_CASE = self.tokenizer( UpperCAmelCase_ , padding="""max_length""" , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="""pt""" , ) _SCREAMING_SNAKE_CASE = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _SCREAMING_SNAKE_CASE = uncond_embeddings.shape[1] _SCREAMING_SNAKE_CASE = uncond_embeddings.repeat(1 , UpperCAmelCase_ , 1 ) _SCREAMING_SNAKE_CASE = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCAmelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _SCREAMING_SNAKE_CASE = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _SCREAMING_SNAKE_CASE = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _SCREAMING_SNAKE_CASE = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _SCREAMING_SNAKE_CASE = torch.randn(UpperCAmelCase_ , generator=UpperCAmelCase_ , device="""cpu""" , dtype=UpperCAmelCase_ ).to( self.device ) else: _SCREAMING_SNAKE_CASE = torch.randn(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=UpperCAmelCase_ ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) _SCREAMING_SNAKE_CASE = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCAmelCase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _SCREAMING_SNAKE_CASE = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _SCREAMING_SNAKE_CASE = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _SCREAMING_SNAKE_CASE = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _SCREAMING_SNAKE_CASE = {} if accepts_eta: _SCREAMING_SNAKE_CASE = eta for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance _SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # predict the noise residual _SCREAMING_SNAKE_CASE = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ ).sample # perform guidance if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) _SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = 1 / 0.1_82_15 * latents _SCREAMING_SNAKE_CASE = self.vae.decode(UpperCAmelCase_ ).sample _SCREAMING_SNAKE_CASE = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=UpperCAmelCase_ , nsfw_content_detected=UpperCAmelCase_ )
306
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
1
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = PriorTransformer __snake_case : Optional[int] = "hidden_states" @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 8 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Dict=0 ): '''simple docstring''' torch.manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 8 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return (4, 8) @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return (4, 8) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = { """num_attention_heads""": 2, """attention_head_dim""": 4, """num_layers""": 2, """embedding_dim""": 8, """num_embeddings""": 7, """additional_embeddings""": 4, } _SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PriorTransformer.from_pretrained( """hf-internal-testing/prior-dummy""" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prepare_init_args_and_inputs_for_common() _SCREAMING_SNAKE_CASE = self.model_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE = ["""hidden_states""", """timestep"""] self.assertListEqual(arg_names[:2] , UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" ) _SCREAMING_SNAKE_CASE = model.to(UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , """set_default_attn_processor""" ): model.set_default_attn_processor() _SCREAMING_SNAKE_CASE = self.get_dummy_seed_input() with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = output[0, :5].flatten().cpu() print(UpperCAmelCase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. _SCREAMING_SNAKE_CASE = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-2 ) ) @slow class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: str , UpperCAmelCase_: List[str]=1 , UpperCAmelCase_: int=768 , UpperCAmelCase_: List[Any]=77 , UpperCAmelCase_: str=0 ): '''simple docstring''' torch.manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = embedding_dim _SCREAMING_SNAKE_CASE = num_embeddings _SCREAMING_SNAKE_CASE = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCamelCase ( self: Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Dict , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" ) model.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_seed_input(seed=UpperCAmelCase_ ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**UpperCAmelCase_ )[0] assert list(sample.shape ) == [1, 768] _SCREAMING_SNAKE_CASE = sample[0, :8].flatten().cpu() print(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase_ ) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 )
306
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
1
from __future__ import annotations def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = str(snake_case__ ) return n == n[::-1] def __lowerCamelCase ( snake_case__ = 1_00_00_00 ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 for i in range(1 ,snake_case__ ): if is_palindrome(snake_case__ ) and is_palindrome(bin(snake_case__ ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
306
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
1
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Union[str, Any] = CustomTokenizer pass
306
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
1
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase = logging.get_logger(__name__) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: str , *UpperCAmelCase_: int , **UpperCAmelCase_: List[str] ): '''simple docstring''' warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
306
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
1
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" return EnvironmentCommand() def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class __UpperCAmelCase (_UpperCAmelCase ): @staticmethod def UpperCamelCase ( UpperCAmelCase_: ArgumentParser ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCAmelCase_ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCAmelCase_ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCAmelCase_ ) def __init__( self: List[str] , UpperCAmelCase_: List[str] , *UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = accelerate_config_file def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """not installed""" if is_safetensors_available(): import safetensors _SCREAMING_SNAKE_CASE = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors _SCREAMING_SNAKE_CASE = F'{safetensors.__version__} but is ignored because of PyTorch version too old.' _SCREAMING_SNAKE_CASE = """not installed""" _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _SCREAMING_SNAKE_CASE = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = load_config_from_file(self._accelerate_config_file ).to_dict() _SCREAMING_SNAKE_CASE = ( """\n""".join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else F'\t{accelerate_config}' ) _SCREAMING_SNAKE_CASE = """not installed""" _SCREAMING_SNAKE_CASE = """NA""" if is_torch_available(): import torch _SCREAMING_SNAKE_CASE = torch.__version__ _SCREAMING_SNAKE_CASE = torch.cuda.is_available() _SCREAMING_SNAKE_CASE = """not installed""" _SCREAMING_SNAKE_CASE = """NA""" if is_tf_available(): import tensorflow as tf _SCREAMING_SNAKE_CASE = tf.__version__ try: # deprecated in v2.1 _SCREAMING_SNAKE_CASE = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _SCREAMING_SNAKE_CASE = bool(tf.config.list_physical_devices("""GPU""" ) ) _SCREAMING_SNAKE_CASE = """not installed""" _SCREAMING_SNAKE_CASE = """not installed""" _SCREAMING_SNAKE_CASE = """not installed""" _SCREAMING_SNAKE_CASE = """NA""" if is_flax_available(): import flax import jax import jaxlib _SCREAMING_SNAKE_CASE = flax.__version__ _SCREAMING_SNAKE_CASE = jax.__version__ _SCREAMING_SNAKE_CASE = jaxlib.__version__ _SCREAMING_SNAKE_CASE = jax.lib.xla_bridge.get_backend().platform _SCREAMING_SNAKE_CASE = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F'{safetensors_version}', """Accelerate version""": F'{accelerate_version}', """Accelerate config""": F'{accelerate_config_str}', """PyTorch version (GPU?)""": F'{pt_version} ({pt_cuda_available})', """Tensorflow version (GPU?)""": F'{tf_version} ({tf_cuda_available})', """Flax version (CPU?/GPU?/TPU?)""": F'{flax_version} ({jax_backend})', """Jax version""": F'{jax_version}', """JaxLib version""": F'{jaxlib_version}', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCAmelCase_ ) ) return info @staticmethod def UpperCamelCase ( UpperCAmelCase_: Tuple ): '''simple docstring''' return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = [], [] while len(snake_case__ ) > 1: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = min(snake_case__ ), max(snake_case__ ) start.append(snake_case__ ) end.append(snake_case__ ) collection.remove(snake_case__ ) collection.remove(snake_case__ ) end.reverse() return start + collection + end if __name__ == "__main__": UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
1
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> List[Any]: """simple docstring""" if index == r: for j in range(snake_case__ ): print(data[j] ,end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _SCREAMING_SNAKE_CASE = arr[i] combination_util(snake_case__ ,snake_case__ ,snake_case__ ,index + 1 ,snake_case__ ,i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [0] * r # Print all combination using temporary array 'data[]' combination_util(snake_case__ ,snake_case__ ,snake_case__ ,0 ,snake_case__ ,0 ) if __name__ == "__main__": # Driver code to check the function above UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
306
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
from math import ceil def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = list(range(0 ,snake_case__ ) ) _SCREAMING_SNAKE_CASE = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _SCREAMING_SNAKE_CASE = [] for i in device_map_blocks: if device_map_blocks.count(snake_case__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(snake_case__ ) # Missing blocks _SCREAMING_SNAKE_CASE = [i for i in blocks if i not in device_map_blocks] _SCREAMING_SNAKE_CASE = [i for i in device_map_blocks if i not in blocks] if len(snake_case__ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(snake_case__ ) ) if len(snake_case__ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(snake_case__ ) ) if len(snake_case__ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(snake_case__ ) ) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = list(range(snake_case__ ) ) _SCREAMING_SNAKE_CASE = int(ceil(n_layers / len(snake_case__ ) ) ) _SCREAMING_SNAKE_CASE = [layers[i : i + n_blocks] for i in range(0 ,snake_case__ ,snake_case__ )] return dict(zip(snake_case__ ,snake_case__ ) )
306
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
1
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Optional[Any] , *UpperCAmelCase_: Optional[Any] , **UpperCAmelCase_: str ): '''simple docstring''' super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) requires_backends(self , """vision""" ) self.check_model_type(UpperCAmelCase_ ) def __call__( self: List[str] , UpperCAmelCase_: Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase_: List[Any] ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , **UpperCAmelCase_: int ): '''simple docstring''' return {}, {}, {} def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image.size _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework ) return model_inputs def UpperCamelCase ( self: List[str] , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) return model_outputs def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_outputs.predicted_depth _SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = prediction.squeeze().cpu().numpy() _SCREAMING_SNAKE_CASE = (output * 255 / np.max(UpperCAmelCase_ )).astype("""uint8""" ) _SCREAMING_SNAKE_CASE = Image.fromarray(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = predicted_depth _SCREAMING_SNAKE_CASE = depth return output_dict
306
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
1
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate UpperCamelCase = trt.Logger(trt.Logger.WARNING) UpperCamelCase = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) UpperCamelCase = parser.parse_args() if args.tokenizer_name: UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) UpperCamelCase = args.per_device_eval_batch_size UpperCamelCase = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties UpperCamelCase = True UpperCamelCase = '''temp_engine/bert-fp32.engine''' if args.fpaa: UpperCamelCase = '''temp_engine/bert-fp16.engine''' if args.inta: UpperCamelCase = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') UpperCamelCase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network UpperCamelCase = [network.get_input(i) for i in range(network.num_inputs)] UpperCamelCase = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: UpperCamelCase = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) UpperCamelCase = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) UpperCamelCase = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(inputs["""input_ids"""] ,dtype=np.intaa ) _SCREAMING_SNAKE_CASE = np.asarray(inputs["""attention_mask"""] ,dtype=np.intaa ) _SCREAMING_SNAKE_CASE = np.asarray(inputs["""token_type_ids"""] ,dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] ,input_ids.ravel() ,snake_case__ ) cuda.memcpy_htod_async(d_inputs[1] ,attention_mask.ravel() ,snake_case__ ) cuda.memcpy_htod_async(d_inputs[2] ,token_type_ids.ravel() ,snake_case__ ) # start time _SCREAMING_SNAKE_CASE = time.time() # Run inference context.execute_async( bindings=[int(snake_case__ ) for d_inp in d_inputs] + [int(snake_case__ ), int(snake_case__ )] ,stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(snake_case__ ,snake_case__ ,snake_case__ ) cuda.memcpy_dtoh_async(snake_case__ ,snake_case__ ,snake_case__ ) # Synchronize the stream and take time stream.synchronize() # end time _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = end_time - start_time _SCREAMING_SNAKE_CASE = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. UpperCamelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCamelCase = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. UpperCamelCase = raw_datasets['''validation'''].column_names UpperCamelCase = '''question''' if '''question''' in column_names else column_names[0] UpperCamelCase = '''context''' if '''context''' in column_names else column_names[1] UpperCamelCase = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). UpperCamelCase = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) UpperCamelCase = min(args.max_seq_length, tokenizer.model_max_length) def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _SCREAMING_SNAKE_CASE = tokenizer( examples[question_column_name if pad_on_right else context_column_name] ,examples[context_column_name if pad_on_right else question_column_name] ,truncation="""only_second""" if pad_on_right else """only_first""" ,max_length=snake_case__ ,stride=args.doc_stride ,return_overflowing_tokens=snake_case__ ,return_offsets_mapping=snake_case__ ,padding="""max_length""" ,) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _SCREAMING_SNAKE_CASE = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _SCREAMING_SNAKE_CASE = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _SCREAMING_SNAKE_CASE = tokenized_examples.sequence_ids(snake_case__ ) _SCREAMING_SNAKE_CASE = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _SCREAMING_SNAKE_CASE = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _SCREAMING_SNAKE_CASE = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples UpperCamelCase = raw_datasets['''validation'''] # Validation Feature Creation UpperCamelCase = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) UpperCamelCase = default_data_collator UpperCamelCase = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) UpperCamelCase = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__="eval" ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = postprocess_qa_predictions( examples=snake_case__ ,features=snake_case__ ,predictions=snake_case__ ,version_2_with_negative=args.version_2_with_negative ,n_best_size=args.n_best_size ,max_answer_length=args.max_answer_length ,null_score_diff_threshold=args.null_score_diff_threshold ,output_dir=args.output_dir ,prefix=snake_case__ ,) # Format the result to the format the metric expects. if args.version_2_with_negative: _SCREAMING_SNAKE_CASE = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: _SCREAMING_SNAKE_CASE = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] _SCREAMING_SNAKE_CASE = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=snake_case__ ,label_ids=snake_case__ ) UpperCamelCase = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def __lowerCamelCase ( snake_case__ ) -> List[str]: """simple docstring""" return trt.volume(engine.get_binding_shape(snake_case__ ) ) * engine.get_binding_dtype(snake_case__ ).itemsize # Allocate device memory for inputs and outputs. UpperCamelCase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer UpperCamelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) UpperCamelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) UpperCamelCase = cuda.mem_alloc(h_outputa.nbytes) UpperCamelCase = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. UpperCamelCase = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f" Num examples = {len(eval_dataset)}") logger.info(f" Batch size = {args.per_device_eval_batch_size}") UpperCamelCase = 0.0 UpperCamelCase = 0 UpperCamelCase = timeit.default_timer() UpperCamelCase = None for step, batch in enumerate(eval_dataloader): UpperCamelCase , UpperCamelCase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 UpperCamelCase , UpperCamelCase = outputs UpperCamelCase = torch.tensor(start_logits) UpperCamelCase = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered UpperCamelCase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) UpperCamelCase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) UpperCamelCase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) UpperCamelCase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: UpperCamelCase = nested_truncate(all_preds, len(eval_dataset)) UpperCamelCase = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1_000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1_000)) logger.info('''Total Number of Inference = %d''', niter) UpperCamelCase = post_processing_function(eval_examples, eval_dataset, all_preds) UpperCamelCase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"Evaluation metrics: {eval_metric}")
306
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCAmelCase (_UpperCAmelCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase_ , """embed_dim""" ) ) self.parent.assertTrue(hasattr(UpperCAmelCase_ , """num_heads""" ) ) class __UpperCAmelCase : def __init__( self: str , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any]=13 , UpperCAmelCase_: List[str]=64 , UpperCAmelCase_: Any=3 , UpperCAmelCase_: Optional[Any]=[16, 48, 96] , UpperCAmelCase_: Union[str, Any]=[1, 3, 6] , UpperCAmelCase_: str=[1, 2, 10] , UpperCAmelCase_: int=[7, 3, 3] , UpperCAmelCase_: Optional[int]=[4, 2, 2] , UpperCAmelCase_: str=[2, 1, 1] , UpperCAmelCase_: List[str]=[2, 2, 2] , UpperCAmelCase_: Tuple=[False, False, True] , UpperCAmelCase_: Optional[int]=[0.0, 0.0, 0.0] , UpperCAmelCase_: List[Any]=0.02 , UpperCAmelCase_: Tuple=1E-12 , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=True , UpperCAmelCase_: Optional[Any]=2 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = patch_sizes _SCREAMING_SNAKE_CASE = patch_stride _SCREAMING_SNAKE_CASE = patch_padding _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = embed_dim _SCREAMING_SNAKE_CASE = num_heads _SCREAMING_SNAKE_CASE = stride_kv _SCREAMING_SNAKE_CASE = depth _SCREAMING_SNAKE_CASE = cls_token _SCREAMING_SNAKE_CASE = attention_drop_rate _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) _SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self: str ): '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = CvtModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for i in range(len(self.depth ) ): _SCREAMING_SNAKE_CASE = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _SCREAMING_SNAKE_CASE = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = CvtForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : Dict = (CvtModel, CvtForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) __snake_case : Dict = False __snake_case : Optional[int] = False __snake_case : Optional[Any] = False __snake_case : Any = False __snake_case : Any = False def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = CvtModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Dict ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self: Dict ): '''simple docstring''' return @unittest.skip(reason="""Cvt does not output attentions""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' def check_hidden_states_output(UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[Any] ): _SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = outputs.hidden_states _SCREAMING_SNAKE_CASE = len(self.model_tester.depth ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' pass @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = CvtModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCAmelCase (unittest.TestCase ): @cached_property def UpperCamelCase ( self: List[str] ): '''simple docstring''' return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.default_image_processor _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**UpperCAmelCase_ ) # verify the logits _SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
1
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCamelCase = logging.get_logger(__name__) class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = ["audio_values", "audio_mask"] def __init__( self: Optional[int] , UpperCAmelCase_: Any=2_048 , UpperCAmelCase_: str=1 , UpperCAmelCase_: Optional[int]=[16, 16] , UpperCAmelCase_: Any=128 , UpperCAmelCase_: List[str]=44_100 , UpperCAmelCase_: Any=86 , UpperCAmelCase_: List[str]=2_048 , UpperCAmelCase_: Tuple=0.0 , **UpperCAmelCase_: Union[str, Any] , ): '''simple docstring''' super().__init__( feature_size=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , padding_value=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = spectrogram_length _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1] _SCREAMING_SNAKE_CASE = n_fft _SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate _SCREAMING_SNAKE_CASE = sampling_rate _SCREAMING_SNAKE_CASE = padding_value _SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase_ , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=UpperCAmelCase_ , norm="""slaney""" , mel_scale="""slaney""" , ).T def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: np.array ): '''simple docstring''' _SCREAMING_SNAKE_CASE = spectrogram( UpperCAmelCase_ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) _SCREAMING_SNAKE_CASE = log_spec[:, :-1] _SCREAMING_SNAKE_CASE = log_spec - 20.0 _SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self: Tuple , UpperCAmelCase_: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase_: Optional[Union[str, TensorType]] = None , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[int] = None , UpperCAmelCase_: bool = False , UpperCAmelCase_: bool = False , **UpperCAmelCase_: Union[str, Any] , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' F' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _SCREAMING_SNAKE_CASE = isinstance(UpperCAmelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) _SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(UpperCAmelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase_ , np.ndarray ): _SCREAMING_SNAKE_CASE = np.asarray(UpperCAmelCase_ , dtype=np.floataa ) elif isinstance(UpperCAmelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _SCREAMING_SNAKE_CASE = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = [np.asarray(UpperCAmelCase_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _SCREAMING_SNAKE_CASE = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _SCREAMING_SNAKE_CASE = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _SCREAMING_SNAKE_CASE = np.array(UpperCAmelCase_ ).astype(np.floataa ) # convert into correct format for padding _SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _SCREAMING_SNAKE_CASE = np.ones([len(UpperCAmelCase_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value for i in range(len(UpperCAmelCase_ ) ): _SCREAMING_SNAKE_CASE = audio_features[i] _SCREAMING_SNAKE_CASE = feature # return as BatchFeature if return_attention_mask: _SCREAMING_SNAKE_CASE = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: _SCREAMING_SNAKE_CASE = {"""audio_values""": padded_audio_features} _SCREAMING_SNAKE_CASE = BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ ) return encoded_inputs
306
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Any = (DPMSolverSDEScheduler,) __snake_case : int = 10 def UpperCamelCase ( self: Optional[int] , **UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_100, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**UpperCAmelCase_ ) return config def UpperCamelCase ( self: List[Any] ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma _SCREAMING_SNAKE_CASE = sample.to(UpperCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = output.prev_sample _SCREAMING_SNAKE_CASE = torch.sum(torch.abs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.47_82_10_44_92_18_75 ) < 1E-2 assert abs(result_mean.item() - 0.21_78_70_59_64_56_52_77 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_21_11_81_64_06 ) < 1E-2 assert abs(result_mean.item() - 0.2_23_42_90_68_92_29_96_52 ) < 1E-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1E-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1E-3 def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type="""v_prediction""" ) _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma _SCREAMING_SNAKE_CASE = sample.to(UpperCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = output.prev_sample _SCREAMING_SNAKE_CASE = torch.sum(torch.abs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_24.77_14_92_00_43_94_53 ) < 1E-2 assert abs(result_mean.item() - 0.1_62_26_28_90_14_81_62_84 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_28.1_66_33_60_59_57_03 ) < 1E-2 assert abs(result_mean.item() - 0.1_66_88_32_60_01_16_72_97 ) < 1E-3 else: assert abs(result_sum.item() - 1_19.8_48_75_48_82_81_25 ) < 1E-2 assert abs(result_mean.item() - 0.15_60_53_06_62_53_66_21 ) < 1E-3 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter.to(UpperCAmelCase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _SCREAMING_SNAKE_CASE = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = output.prev_sample _SCREAMING_SNAKE_CASE = torch.sum(torch.abs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.46_95_73_97_46_09_38 ) < 1E-2 assert abs(result_mean.item() - 0.2_18_05_93_46_07_98_26_35 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_36_37_69_53_12 ) < 1E-2 assert abs(result_mean.item() - 0.2_23_42_90_83_82_41_57_71 ) < 1E-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1E-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1E-3 def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ , use_karras_sigmas=UpperCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter.to(UpperCAmelCase_ ) * scheduler.init_noise_sigma _SCREAMING_SNAKE_CASE = sample.to(UpperCAmelCase_ ) for t in scheduler.timesteps: _SCREAMING_SNAKE_CASE = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = output.prev_sample _SCREAMING_SNAKE_CASE = torch.sum(torch.abs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_76.66_97_41_35_74_21_88 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_77.63_65_35_64_45_31_25 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2 else: assert abs(result_sum.item() - 1_70.3_13_52_23_38_86_72 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2
306
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
1
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class __UpperCAmelCase : __snake_case : List[str] = BlenderbotSmallConfig __snake_case : str = {} __snake_case : Tuple = "gelu" def __init__( self: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: Optional[int]=True , UpperCAmelCase_: Tuple=False , UpperCAmelCase_: Any=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Tuple=2 , UpperCAmelCase_: Dict=4 , UpperCAmelCase_: List[Any]=37 , UpperCAmelCase_: Union[str, Any]=0.1 , UpperCAmelCase_: Union[str, Any]=0.1 , UpperCAmelCase_: int=20 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: Any=1 , UpperCAmelCase_: List[str]=0 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = bos_token_id def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE = prepare_blenderbot_small_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, inputs_dict def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFBlenderbotSmallModel(config=UpperCAmelCase_ ).get_decoder() _SCREAMING_SNAKE_CASE = inputs_dict["""input_ids"""] _SCREAMING_SNAKE_CASE = input_ids[:1, :] _SCREAMING_SNAKE_CASE = inputs_dict["""attention_mask"""][:1, :] _SCREAMING_SNAKE_CASE = inputs_dict["""head_mask"""] _SCREAMING_SNAKE_CASE = 1 # first forward pass _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 ) _SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] _SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-3 ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=None ,) -> Dict: """simple docstring""" if attention_mask is None: _SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(snake_case__ ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : str = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __snake_case : Tuple = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __snake_case : Optional[int] = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __snake_case : str = True __snake_case : Any = False __snake_case : List[str] = False def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFBlenderbotSmallModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase_ ) @require_tokenizers @require_tf class __UpperCAmelCase (unittest.TestCase ): __snake_case : List[Any] = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] __snake_case : Union[str, Any] = "facebook/blenderbot_small-90M" @cached_property def UpperCamelCase ( self: List[str] ): '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) @cached_property def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , return_tensors="""tf""" ) _SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCAmelCase_ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
306
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
1
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """file.csv""" _SCREAMING_SNAKE_CASE = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(snake_case__ ,"""w""" ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def __lowerCamelCase ( snake_case__ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """malformed_file.csv""" _SCREAMING_SNAKE_CASE = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(snake_case__ ,"""w""" ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """csv_with_image.csv""" _SCREAMING_SNAKE_CASE = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(snake_case__ ,"""w""" ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """csv_with_label.csv""" _SCREAMING_SNAKE_CASE = textwrap.dedent( """\ label good bad good """ ) with open(snake_case__ ,"""w""" ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """csv_with_int_list.csv""" _SCREAMING_SNAKE_CASE = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(snake_case__ ,"""w""" ) as f: f.write(snake_case__ ) return str(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = Csv() _SCREAMING_SNAKE_CASE = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(snake_case__ ,match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(snake_case__ ) in record.message for record in caplog.records ) @require_pil def __lowerCamelCase ( snake_case__ ) -> Optional[int]: """simple docstring""" with open(snake_case__ ,encoding="""utf-8""" ) as f: _SCREAMING_SNAKE_CASE = f.read().splitlines()[1] _SCREAMING_SNAKE_CASE = Csv(encoding="""utf-8""" ,features=Features({"""image""": Image()} ) ) _SCREAMING_SNAKE_CASE = csv._generate_tables([[csv_file_with_image]] ) _SCREAMING_SNAKE_CASE = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() _SCREAMING_SNAKE_CASE = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" with open(snake_case__ ,encoding="""utf-8""" ) as f: _SCREAMING_SNAKE_CASE = f.read().splitlines()[1:] _SCREAMING_SNAKE_CASE = Csv(encoding="""utf-8""" ,features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) _SCREAMING_SNAKE_CASE = csv._generate_tables([[csv_file_with_label]] ) _SCREAMING_SNAKE_CASE = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() _SCREAMING_SNAKE_CASE = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(snake_case__ ) for label in labels] def __lowerCamelCase ( snake_case__ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = Csv(encoding="""utf-8""" ,sep=""",""" ,converters={"""int_list""": lambda snake_case__ : [int(snake_case__ ) for i in x.split()]} ) _SCREAMING_SNAKE_CASE = csv._generate_tables([[csv_file_with_int_list]] ) _SCREAMING_SNAKE_CASE = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) _SCREAMING_SNAKE_CASE = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
306
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
1
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: Any ): '''simple docstring''' super().tearDown() gc.collect() def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _SCREAMING_SNAKE_CASE = """xvjiarui/stable-diffusion-2-inpainting""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase_ , safety_checker=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """Face of a yellow cat, high resolution, sitting on a park bench""" _SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE = 50 _SCREAMING_SNAKE_CASE = jax.device_count() _SCREAMING_SNAKE_CASE = num_samples * [prompt] _SCREAMING_SNAKE_CASE = num_samples * [init_image] _SCREAMING_SNAKE_CASE = num_samples * [mask_image] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # shard inputs and rng _SCREAMING_SNAKE_CASE = replicate(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = jax.random.split(UpperCAmelCase_ , jax.device_count() ) _SCREAMING_SNAKE_CASE = shard(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = shard(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = shard(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipeline( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , jit=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = output.images.reshape(UpperCAmelCase_ , 512 , 512 , 3 ) _SCREAMING_SNAKE_CASE = images[0, 253:256, 253:256, -1] _SCREAMING_SNAKE_CASE = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _SCREAMING_SNAKE_CASE = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
306
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[Any] = "gpt_neox" def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=50_432 , UpperCAmelCase_: Union[str, Any]=6_144 , UpperCAmelCase_: int=44 , UpperCAmelCase_: List[Any]=64 , UpperCAmelCase_: str=24_576 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: Any=0.25 , UpperCAmelCase_: Tuple=10_000 , UpperCAmelCase_: List[str]=0.0 , UpperCAmelCase_: List[str]=0.0 , UpperCAmelCase_: str=0.1 , UpperCAmelCase_: Dict=2_048 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: Any=1E-5 , UpperCAmelCase_: str=True , UpperCAmelCase_: List[Any]=0 , UpperCAmelCase_: int=2 , UpperCAmelCase_: List[Any]=False , UpperCAmelCase_: Any=True , UpperCAmelCase_: List[str]=None , **UpperCAmelCase_: int , ): '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = rotary_pct _SCREAMING_SNAKE_CASE = rotary_emb_base _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = hidden_dropout _SCREAMING_SNAKE_CASE = classifier_dropout _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = tie_word_embeddings _SCREAMING_SNAKE_CASE = use_parallel_residual _SCREAMING_SNAKE_CASE = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'got {self.rope_scaling}' ) _SCREAMING_SNAKE_CASE = self.rope_scaling.get("""type""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.rope_scaling.get("""factor""" , UpperCAmelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
306
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = BertJapaneseTokenizer __snake_case : Optional[int] = False __snake_case : Tuple = True def UpperCamelCase ( self: Any ): '''simple docstring''' super().setUp() _SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def UpperCamelCase ( self: int , UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """こんにちは、世界。 \nこんばんは、世界。""" _SCREAMING_SNAKE_CASE = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def UpperCamelCase ( self: List[str] , UpperCAmelCase_: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_input_output_texts(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) return text, ids def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase ( self: int ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase ( self: List[Any] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(UpperCAmelCase_ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """こんにちは、世界。\nこんばんは、世界。""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(UpperCAmelCase_ , """wb""" ) as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(UpperCAmelCase_ , """rb""" ) as handle: _SCREAMING_SNAKE_CASE = pickle.load(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' try: _SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' try: _SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MecabTokenizer(do_lower_case=UpperCAmelCase_ , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' try: _SCREAMING_SNAKE_CASE = MecabTokenizer( do_lower_case=UpperCAmelCase_ , normalize_text=UpperCAmelCase_ , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MecabTokenizer(normalize_text=UpperCAmelCase_ , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """こんにちは、世界。\nこんばんは、世界。""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(UpperCAmelCase_ , """wb""" ) as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(UpperCAmelCase_ , """rb""" ) as handle: _SCREAMING_SNAKE_CASE = pickle.load(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @require_sudachi def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = SudachiTokenizer(do_lower_case=UpperCAmelCase_ , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = SudachiTokenizer(normalize_text=UpperCAmelCase_ , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = SudachiTokenizer(trim_whitespace=UpperCAmelCase_ , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """こんにちは、世界。\nこんばんは、世界。""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(UpperCAmelCase_ , """wb""" ) as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(UpperCAmelCase_ , """rb""" ) as handle: _SCREAMING_SNAKE_CASE = pickle.load(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @require_jumanpp def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = JumanppTokenizer(do_lower_case=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = JumanppTokenizer(normalize_text=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = JumanppTokenizer(trim_whitespace=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] _SCREAMING_SNAKE_CASE = {} for i, token in enumerate(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = i _SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) _SCREAMING_SNAKE_CASE = tokenizer.subword_tokenizer _SCREAMING_SNAKE_CASE = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(UpperCAmelCase_ , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) _SCREAMING_SNAKE_CASE = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(UpperCAmelCase_ , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""ありがとう。""" , add_special_tokens=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""どういたしまして。""" , add_special_tokens=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Dict = BertJapaneseTokenizer __snake_case : Optional[int] = False def UpperCamelCase ( self: Tuple ): '''simple docstring''' super().setUp() _SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def UpperCamelCase ( self: Optional[Any] , **UpperCAmelCase_: List[Any] ): '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """こんにちは、世界。 \nこんばんは、世界。""" _SCREAMING_SNAKE_CASE = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase ( self: Dict ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase ( self: Dict ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( UpperCAmelCase_ , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] _SCREAMING_SNAKE_CASE = {} for i, token in enumerate(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = i _SCREAMING_SNAKE_CASE = CharacterTokenizer(vocab=UpperCAmelCase_ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""ありがとう。""" , add_special_tokens=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""どういたしまして。""" , add_special_tokens=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cl-tohoku/bert-base-japanese""" _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) _SCREAMING_SNAKE_CASE = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments UpperCamelCase = logging.getLogger(__name__) @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[float] = field( default=0.0 ,metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) __snake_case : bool = field(default=_UpperCAmelCase ,metadata={"help": "Whether to SortishSamler or not."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __snake_case : bool = field(default=_UpperCAmelCase ,metadata={"help": "whether to use adafactor"} ) __snake_case : Optional[float] = field( default=_UpperCAmelCase ,metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) __snake_case : Optional[float] = field( default=_UpperCAmelCase ,metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) __snake_case : Optional[float] = field(default=_UpperCAmelCase ,metadata={"help": "Dropout probability. Goes into model.config."} ) __snake_case : Optional[float] = field( default=_UpperCAmelCase ,metadata={"help": "Attention dropout probability. Goes into model.config."} ) __snake_case : Optional[str] = field( default="linear" ,metadata={"help": F'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} ,)
306
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[Any] = "switch_transformers" __snake_case : Dict = ["past_key_values"] __snake_case : Any = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self: Tuple , UpperCAmelCase_: Optional[Any]=32_128 , UpperCAmelCase_: Dict=768 , UpperCAmelCase_: List[Any]=64 , UpperCAmelCase_: Optional[Any]=2_048 , UpperCAmelCase_: Union[str, Any]=64 , UpperCAmelCase_: Optional[int]=12 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: List[str]=12 , UpperCAmelCase_: List[str]=3 , UpperCAmelCase_: List[str]=12 , UpperCAmelCase_: Optional[Any]=8 , UpperCAmelCase_: Any=False , UpperCAmelCase_: Optional[int]=0.01 , UpperCAmelCase_: Union[str, Any]="float32" , UpperCAmelCase_: Optional[Any]=False , UpperCAmelCase_: Dict=32 , UpperCAmelCase_: List[str]=128 , UpperCAmelCase_: Tuple=0.1 , UpperCAmelCase_: Union[str, Any]=1E-6 , UpperCAmelCase_: Tuple=0.0_01 , UpperCAmelCase_: List[Any]=0.0_01 , UpperCAmelCase_: Optional[Any]=1.0 , UpperCAmelCase_: str="relu" , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=False , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=0 , UpperCAmelCase_: int=1 , **UpperCAmelCase_: str , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = d_model _SCREAMING_SNAKE_CASE = d_kv _SCREAMING_SNAKE_CASE = d_ff _SCREAMING_SNAKE_CASE = num_sparse_encoder_layers _SCREAMING_SNAKE_CASE = num_layers _SCREAMING_SNAKE_CASE = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _SCREAMING_SNAKE_CASE = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _SCREAMING_SNAKE_CASE = self.num_layers // self.num_sparse_encoder_layers else: _SCREAMING_SNAKE_CASE = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _SCREAMING_SNAKE_CASE = self.num_decoder_layers // self.num_sparse_decoder_layers else: _SCREAMING_SNAKE_CASE = self.num_decoder_layers # HACK: this will create 0 sparse layers _SCREAMING_SNAKE_CASE = num_heads _SCREAMING_SNAKE_CASE = num_experts _SCREAMING_SNAKE_CASE = expert_capacity _SCREAMING_SNAKE_CASE = router_bias _SCREAMING_SNAKE_CASE = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) _SCREAMING_SNAKE_CASE = router_dtype _SCREAMING_SNAKE_CASE = router_ignore_padding_tokens _SCREAMING_SNAKE_CASE = relative_attention_num_buckets _SCREAMING_SNAKE_CASE = relative_attention_max_distance _SCREAMING_SNAKE_CASE = dropout_rate _SCREAMING_SNAKE_CASE = layer_norm_epsilon _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = feed_forward_proj _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = add_router_probs _SCREAMING_SNAKE_CASE = router_z_loss_coef _SCREAMING_SNAKE_CASE = router_aux_loss_coef _SCREAMING_SNAKE_CASE = self.feed_forward_proj.split("""-""" ) _SCREAMING_SNAKE_CASE = act_info[-1] _SCREAMING_SNAKE_CASE = act_info[0] == """gated""" if len(UpperCAmelCase_ ) > 1 and act_info[0] != "gated" or len(UpperCAmelCase_ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _SCREAMING_SNAKE_CASE = """gelu_new""" super().__init__( pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , **UpperCAmelCase_ , )
306
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
1
import numpy as np from transformers import Pipeline def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.max(snake_case__ ,axis=-1 ,keepdims=snake_case__ ) _SCREAMING_SNAKE_CASE = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 ,keepdims=snake_case__ ) class __UpperCAmelCase (_UpperCAmelCase ): def UpperCamelCase ( self: Union[str, Any] , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} if "second_text" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=None ): '''simple docstring''' return self.tokenizer(UpperCAmelCase_ , text_pair=UpperCAmelCase_ , return_tensors=self.framework ) def UpperCamelCase ( self: int , UpperCAmelCase_: Tuple ): '''simple docstring''' return self.model(**UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_outputs.logits[0].numpy() _SCREAMING_SNAKE_CASE = softmax(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.argmax(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.model.config.idalabel[best_class] _SCREAMING_SNAKE_CASE = probabilities[best_class].item() _SCREAMING_SNAKE_CASE = logits.tolist() return {"label": label, "score": score, "logits": logits}
306
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[str] , UpperCAmelCase_: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 250 _SCREAMING_SNAKE_CASE = ids_tensor((batch_size, length) , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.ones((batch_size, length) , device=UpperCAmelCase_ , dtype=torch.float ) / length return input_ids, scores def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(5 ) _SCREAMING_SNAKE_CASE = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MaxLengthCriteria(max_length=10 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(5 ) _SCREAMING_SNAKE_CASE = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase ( self: int ): '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCAmelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) _SCREAMING_SNAKE_CASE = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCAmelCase_ ) , 1 )
306
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
1
def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> int: """simple docstring""" if len(snake_case__ ) != len(snake_case__ ): raise ValueError("""String lengths must match!""" ) _SCREAMING_SNAKE_CASE = 0 for chara, chara in zip(snake_case__ ,snake_case__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
1
def __lowerCamelCase ( snake_case__ = 2_00 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = [1, 2, 5, 10, 20, 50, 1_00, 2_00] _SCREAMING_SNAKE_CASE = [0] * (pence + 1) _SCREAMING_SNAKE_CASE = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(snake_case__ ,pence + 1 ,1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
import math import sys import cva import numpy as np def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE = math.sqrt(snake_case__ ) _SCREAMING_SNAKE_CASE = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE = np.zeros((kernel_size, kernel_size) ) for i in range(0 ,snake_case__ ): for j in range(0 ,snake_case__ ): _SCREAMING_SNAKE_CASE = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(snake_case__ ,snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE = np.zeros(img.shape ) _SCREAMING_SNAKE_CASE = get_gauss_kernel(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = img.shape for i in range(kernel_size // 2 ,size_x - kernel_size // 2 ): for j in range(kernel_size // 2 ,size_y - kernel_size // 2 ): _SCREAMING_SNAKE_CASE = get_slice(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = img_s - img_s[kernel_size // 2, kernel_size // 2] _SCREAMING_SNAKE_CASE = vec_gaussian(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = np.multiply(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = np.multiply(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = np.sum(snake_case__ ) / np.sum(snake_case__ ) _SCREAMING_SNAKE_CASE = val return imga def __lowerCamelCase ( snake_case__ ) -> tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = args[1] if args[1:] else """../image_data/lena.jpg""" _SCREAMING_SNAKE_CASE = float(args[2] ) if args[2:] else 1.0 _SCREAMING_SNAKE_CASE = float(args[3] ) if args[3:] else 1.0 if args[4:]: _SCREAMING_SNAKE_CASE = int(args[4] ) _SCREAMING_SNAKE_CASE = kernel_size + abs(kernel_size % 2 - 1 ) else: _SCREAMING_SNAKE_CASE = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = parse_args(sys.argv) UpperCamelCase = cva.imread(filename, 0) cva.imshow('''input image''', img) UpperCamelCase = img / 255 UpperCamelCase = out.astype('''float32''') UpperCamelCase = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) UpperCamelCase = out * 255 UpperCamelCase = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
306
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
1